1
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
2
|
Fujiyoshi A, Kohsaka S, Hata J, Hara M, Kai H, Masuda D, Miyamatsu N, Nishio Y, Ogura M, Sata M, Sekiguchi K, Takeya Y, Tamura K, Wakatsuki A, Yoshida H, Fujioka Y, Fukazawa R, Hamada O, Higashiyama A, Kabayama M, Kanaoka K, Kawaguchi K, Kosaka S, Kunimura A, Miyazaki A, Nii M, Sawano M, Terauchi M, Yagi S, Akasaka T, Minamino T, Miura K, Node K. JCS 2023 Guideline on the Primary Prevention of Coronary Artery Disease. Circ J 2024; 88:763-842. [PMID: 38479862 DOI: 10.1253/circj.cj-23-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Affiliation(s)
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University
| | - Mitsuhiko Hara
- Department of Health and Nutrition, Wayo Women's University
| | - Hisashi Kai
- Department of Cardiology, Kurume Univeristy Medical Center
| | | | - Naomi Miyamatsu
- Department of Clinical Nursing, Shiga University of Medical Science
| | - Yoshihiko Nishio
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Masatsune Ogura
- Department of General Medical Science, Chiba University School of Medicine
- Department of Metabolism and Endocrinology, Eastern Chiba Medical Center
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | | | - Yasushi Takeya
- Division of Helath Science, Osaka University Gradiate School of Medicine
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
| | | | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | - Yoshio Fujioka
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University
| | | | - Osamu Hamada
- Department of General Internal Medicine, Takatsuki General Hospital
| | | | - Mai Kabayama
- Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Koshiro Kanaoka
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center
| | - Kenjiro Kawaguchi
- Division of Social Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University
| | | | | | | | - Masaki Nii
- Department of Cardiology, Shizuoka Children's Hospital
| | - Mitsuaki Sawano
- Department of Cardiology, Keio University School of Medicine
- Yale New Haven Hospital Center for Outcomes Research and Evaluation
| | | | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Hospital
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Nishinomiya Watanabe Cardiovascular Cerebral Center
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Meidicine
| | - Katsuyuki Miura
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| |
Collapse
|
3
|
Rey M, Kruse MS, Gómez J, Simirgiotis MJ, Tapia A, Coirini H. Ultra-High-Resolution Liquid Chromatography Coupled with Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry Analysis of Tessaria absinthioides (Hook. & Arn.) DC. (Asteraceae) and Antioxidant and Hypocholesterolemic Properties. Antioxidants (Basel) 2023; 13:50. [PMID: 38247475 PMCID: PMC10812689 DOI: 10.3390/antiox13010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Recently, we reported the chemical profile and the hypocholesterolemic effects of a decoction of Tessaria absinthioides (Hook. & Arn.) DC. (Asteraceae). In this study, we evaluated a methanolic extract (METa) instead. Metabolite profiling was conducted using ultra-high-resolution liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS), identifying thirty compounds, including flavonoids, phenolic acids, fatty acids, and phorbolesters. Antioxidant properties were assessed through 2,2-diphenyl-1-picrylhydrazyl (DPPH), Trolox equivalent antioxidant activity (TEAC), ferric-reducing antioxidant power (FRAP), and inhibition of lipid peroxidation in erythrocytes (ILP) assays, exhibiting robust antioxidant activity. The in vivo impact of METa on serum lipid parameters and liver X receptors (LXRs) was evaluated in a hypercholesterolemic animal model. After 14 days on a high-fat diet, male rats received either a vehicle (V) or METa100, METa200 or METa500 (100; 200 and 500 mg METa/kg animal, respectively) for an additional two weeks. METa500 reduced total cholesterol levels (17.62%; p < 0.05) and all doses increased high-density lipoprotein cholesterol levels (METa100: 86.27%; METa200: 48.37%, and METa500: 29.42%; p < 0.0001). However, METa did not alter LXRs expression. The observed antioxidant and hypocholesterolemic properties of METa may be linked to the presence of six di-caffeoylquinic acids. These findings underscore T. absinthioides as a potential candidate for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Mariana Rey
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires C1428ADN, Argentina;
| | - María Sol Kruse
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires C1428ADN, Argentina;
| | - Jessica Gómez
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), San Juan J5400ARL, Argentina; (J.G.); (A.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), San Juan J5400ARL, Argentina; (J.G.); (A.T.)
| | - Héctor Coirini
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires C1428ADN, Argentina;
| |
Collapse
|
4
|
Wang J, Yuan Q, Morovvati H, Goorani S. Green synthesis, characterization and anti-atherosclerotic properties of vanadium nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Messina M, Duncan A, Messina V, Lynch H, Kiel J, Erdman JW. The health effects of soy: A reference guide for health professionals. Front Nutr 2022; 9:970364. [PMID: 36034914 PMCID: PMC9410752 DOI: 10.3389/fnut.2022.970364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Soy is a hotly debated and widely discussed topic in the field of nutrition. However, health practitioners may be ill-equipped to counsel clients and patients about the use of soyfoods because of the enormous, and often contradictory, amount of research that has been published over the past 30 years. As interest in plant-based diets increases, there will be increased pressure for practitioners to gain a working knowledge of this area. The purpose of this review is to provide concise literature summaries (400-500 words) along with a short perspective on the current state of knowledge of a wide range of topics related to soy, from the cholesterol-lowering effects of soy protein to the impact of isoflavones on breast cancer risk. In addition to the literature summaries, general background information on soyfoods, soy protein, and isoflavones is provided. This analysis can serve as a tool for health professionals to be used when discussing soyfoods with their clients and patients.
Collapse
Affiliation(s)
- Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Alison Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Heidi Lynch
- Kinesiology Department, Point Loma Nazarene University, San Diego, CA, United States
| | - Jessica Kiel
- Scientific and Clinical Affairs, Medifast Inc., Baltimore, MD, United States
| | - John W. Erdman
- Division of Nutritional Sciences and Beckman Institute, Department of Food Science and Human Nutrition, University of Illinois at Urbana/Champaign, Urbana, IL, United States
| |
Collapse
|
6
|
Messina M, Sievenpiper JL, Williamson P, Kiel J, Erdman JW. Perspective: Soy-based Meat and Dairy Alternatives, Despite Classification as Ultra-processed Foods, Deliver High-quality Nutrition on Par with Unprocessed or Minimally Processed Animal-based Counterparts. Adv Nutr 2022; 13:726-738. [PMID: 35325028 PMCID: PMC9156366 DOI: 10.1093/advances/nmac026] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/13/2022] [Accepted: 03/18/2022] [Indexed: 01/16/2023] Open
Abstract
In many non-Asian countries, soy is consumed via soy-based meat and dairy alternatives, in addition to the traditional Asian soyfoods, such as tofu and miso. Meat alternatives are typically made using concentrated sources of soy protein, such as soy protein isolate (SPI) and soy protein concentrate (SPC). Therefore, these products are classified as ultra-processed foods (UPFs; group 4) according to NOVA, an increasingly widely used food-classification system that classifies all foods into 1 of 4 groups according to the processing they undergo. Furthermore, most soymilks, even those made from whole soybeans, are also classified as UPFs because of the addition of sugars and emulsifiers. Increasingly, recommendations are being made to restrict the consumption of UPFs because their intake is associated with a variety of adverse health outcomes. Critics of UPFs argue these foods are unhealthful for a wide assortment of reasons. Explanations for the proposed adverse effects of UPFs include their high energy density, high glycemic index (GI), hyper-palatability, and low satiety potential. Claims have also been made that UPFs are not sustainably produced. However, this perspective argues that none of the criticisms of UPFs apply to soy-based meat and dairy alternatives when compared with their animal-based counterparts, beef and cow milk, which are classified as unprocessed or minimally processed foods (group 1). Classifying soy-based meat and dairy alternatives as UPFs may hinder their public acceptance, which could detrimentally affect personal and planetary health. In conclusion, the NOVA classification system is simplistic and does not adequately evaluate the nutritional attributes of meat and dairy alternatives based on soy.
Collapse
Affiliation(s)
- Mark Messina
- Soy Nutrition Institute Global, Washington, DC, USA
| | - John L Sievenpiper
- Departments of Nutritional Sciences and Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Patricia Williamson
- Scientific and Regulatory Affairs, Research and Development, Cargill, Wayzata, MN, USA
| | - Jessica Kiel
- Scientific and Clinical Affairs, Medifast, Inc., Baltimore, MD, USA
| | - John W Erdman
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences and Beckman Institute, University of Illinois at Urbana/Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Sanad FAA, Ahmed SF, El-Tantawy WH. Antidiabetic and hypolipidemic potentials of Solidago virgaurea extract in alloxan-induced diabetes type 1. Arch Physiol Biochem 2022; 128:716-723. [PMID: 32026741 DOI: 10.1080/13813455.2020.1722705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of the current study is to investigate the antidiabetic and hypolipidemic potentials of Solidago virgaurea extract in alloxan-induced diabetic rats. MATERIALS AND METHODS Alloxan-induced diabetic rats were orally administered a dose of Solidago virgaurea extract (250 mg/kg body weight) daily for 15 days. Then blood glucose, insulin, serum lipid profile, amylase, tumour necrosis factor-α (TNF- α), and liver glycogen were determined. Besides, superoxide dismutase (SOD), catalase activities, and malondialdehyde (MDA) levels in pancreatic tissue were assessed. RESULTS Solidago virgaurea extract significantly reduced blood glucose level, serum amylase activity, TNF-α level, and pancreatic MDA level as well as increasing the serum insulin, liver glycogen level, pancreatic SOD, and catalase activities in comparison with their corresponding diabetic rats, p < .05. CONCLUSION The findings of this study support the ethnomedicinal use of Solidago virgaurea extract as an antidiabetic and antihyperlipidemic in the management of diabetes mellitus.
Collapse
|
8
|
Ahmed SF, Abd Al Haleem EN, El-Tantawy WH. Evaluation of the anti-atherogenic potential of Egyptian artichoke leaf extract in hypercholesterolemic rats. Arch Physiol Biochem 2022; 128:163-174. [PMID: 31566004 DOI: 10.1080/13813455.2019.1669662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The current research seeks to assess the anti-atherogenic activity of Egyptian artichoke leaf extract in hypercholesterolemic rats. MATERIALS AND METHODS Male albino rats were categorized into five groups; control group, high cholesterol diet treated group (HCD), HCD + low dose of artichoke, HCD + high dose of artichoke and HCD + Atorvastatin. RESULTS Both doses of artichoke extract significantly decreased the concentration of serum cholesterol, triglycerides, and LDL-C in HCD rats as compared to that of their matching controls, p < .05. The treatment with artichoke led to the inhibition of the liver hydroxymethylglutaryl-CoA (HMG-CoA) reductase. Besides, the extract was proven to be cardioprotective effective by increasing antioxidant activity. The effect of the highest dose of artichoke was more apparent than the effect of the lowest one. The biochemical data was reinforced by the histopathological studies. DISCUSSION AND CONCLUSION Artichoke may act as a natural source for the elimination of cardiovascular ailments.
Collapse
Affiliation(s)
| | - Ekram Nemr Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
9
|
Rey M, Kruse MS, Magrini-Huamán RN, Gómez J, Simirgiotis MJ, Tapia A, Feresin GE, Coirini H. Tessaria absinthioides (Hook. & Arn.) DC. (Asteraceae) Decoction Improves the Hypercholesterolemia and Alters the Expression of LXRs in Rat Liver and Hypothalamus. Metabolites 2021; 11:579. [PMID: 34564396 PMCID: PMC8467473 DOI: 10.3390/metabo11090579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic high-fat diet consumption induces hypercholesterolemia. The effect of Tessaria absinthioides (Hook. & Arn.) DC. (Asteraceae) was studied on the levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and triglycerides, and on the expression of liver X receptors (LXRs) in a hypercholesterolemic model. Adult male rats received a normal diet (ND) or a high-fat diet (HFD; normal diet + bovine fat + cholesterol). After 14 days, rats received water (W) or a decoction of the aerial parts of T. absinthioides (Ta; 10% w/v) for 2, 4, or 6 weeks. Four and six weeks of Ta improved the levels of TC and HDL-c in HFD. After 6 weeks of Ta, the expression of LXRs in HFD was the same as that in ND in both tissues. The Ta chemical profile was studied with an ultrahigh resolution liquid chromatography Orbitrap MS analysis (UHPLC-PDA-OT-MS/MS). Fifty-one compounds were identified, of which twelve are reported for the first time. Among these compounds, caffeoylquinic acid and its derivatives could modify the lipid profile and the expression of LXRs. This is the first in vivo report of T. absinthioides, which may be a potential candidate against hypercholesterolemia.
Collapse
Affiliation(s)
- Mariana Rey
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
| | - María S Kruse
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
| | - Rocío N Magrini-Huamán
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
- Facultad de Ciencias Médicas, Universidad Católica de Cuyo, Av. José Ignacio de la Roza 1516, San Juan 5400, Argentina
| | - Jessica Gómez
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
| | - Gabriela E Feresin
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan (UNSJ), Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Godoy Cruz 2290 (C1425FQB), Argentina
| | - Héctor Coirini
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires (CABA) C1428ADN, Vuelta de Obligado 2490, Argentina
| |
Collapse
|
10
|
Cicero AFG, Fogacci F, Stoian AP, Vrablik M, Al Rasadi K, Banach M, Toth PP, Rizzo M. Nutraceuticals in the Management of Dyslipidemia: Which, When, and for Whom? Could Nutraceuticals Help Low-Risk Individuals with Non-optimal Lipid Levels? Curr Atheroscler Rep 2021; 23:57. [PMID: 34345932 PMCID: PMC8332568 DOI: 10.1007/s11883-021-00955-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Purpose of Review The aim of this review is to summarize the available clinical efficacy and safety data related to the most studied and used lipid-lowering nutraceuticals. Recent Findings A growing number of meta-analyses of randomized clinical trials supports the effectiveness and tolerability of some lipid-lowering nutraceuticals such as red yeast rice, plant sterols and stanols, soluble fibers, berberine, artichoke extracts, bergamot polyphenol fraction, garlic, green tea, and spiruline. No significant safety concern has been raised for the use of such products. Association of more lipid-lowering nutraceuticals and of some nutraceuticals with lipid-lowering drugs has been tested as well. Summary Current evidence suggests that some clinically tested lipid-lowering nutraceuticals could be safely used to improve plasma lipid levels in subjects affected by mild-to-moderate dyslipidaemia with low cardiovascular risk.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy. .,Italian Society of Nutraceuticals (SINut), Bologna, Italy. .,IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy. .,Atherosclerosis Research Center, University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.
| | - Federica Fogacci
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy.,Italian Society of Nutraceuticals (SINut), Bologna, Italy.,IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Anca Pantea Stoian
- Faculty of Medicine, Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Michal Vrablik
- Third Department of Internal Medicine, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Łódź, Poland
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, USA.,Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manfredi Rizzo
- Italian Society of Nutraceuticals (SINut), Bologna, Italy.,Faculty of Medicine, Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Effects of Soy Protein Containing of Isoflavones and Isoflavones Extract on Plasma Lipid Profile in Postmenopausal Women as a Potential Prevention Factor in Cardiovascular Diseases: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 13:nu13082531. [PMID: 34444691 PMCID: PMC8398438 DOI: 10.3390/nu13082531] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of the report was to evaluate the impact of soy protein containing isoflavones and soy isoflavones extract on lipid profile in postmenopausal women, as compared with placebo or protein of milk, casein or isolated soy protein with or without trace isoflavone content. We used the following databases: MEDLINE (PubMed), EMBASE and the Cochrane Library. Quantitative data synthesis was performed by applying a random-effects model. Subgroup analysis and meta-regression were performed to assess the modifiers of treatment response. In total, in the analysis studies, 2305 postmenopausal women took part. Changes in the lipid profile showed statistically significant decreases of total cholesterol by −0.12 (95% CI: −0.21, −0.03) mmol/L, −4.64 (95% CI: −8.12, −1.16) mg/dL, p = 0.01 and increased HDL-cholesterol by 0.03 (95% CI: 0.00, 0.06) mmol/L, 1.15 (95% CI: 0.00, 1.93) mg/dL, p = 0.05, as well as in LDL-cholesterol −0.05 (95% CI: −0.11, 0.01) mmol/L, −1.93 (95% CI: −4.25, 0.39) mg/dL, p = 0.08 and triacylglycerols −0.07 (95% CI: −0.14, 0.00) mmol/L, −6.123 (95% CI: −12.25, 0.00) mg/dL, p = 0.06. Our results suggests that soy and its isoflavones can be effective in correction changes in lipid metabolism in postmenopausal women and may favorably influence in preventing cardiovascular events.
Collapse
|
12
|
Ye YB, He KY, Li WL, Zhuo SY, Chen YM, Lu W, Wu SL, Liu J, Li YB, Zeng FF. Effects of daidzein and genistein on markers of cardiovascular disease risk among women with impaired glucose regulation: a double-blind, randomized, placebo-controlled trial. Food Funct 2021; 12:7997-8006. [PMID: 34263280 DOI: 10.1039/d1fo00712b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE soy protein and soy isoflavones have been suggested to be associated with improved cardiovascular risk factors (e.g., lipid profiles and uric acid (UA)), but few studies have been conducted among women with impaired glucose regulation (IGR). This study is aimed to evaluate the effect of isolated daidzein and genistein on lipid profiles, high sensitive C-reactive protein (hs-CRP), and uric acid (UA) among Chinese women with IGR. METHODS AND RESULTS this randomized, double-blind, and placebo-controlled trial was conducted in 165 Chinese women aged 30-70 years with IGR. Participants were randomly assigned to one of the three groups: 0 mg of daidzein and genistein with 10 g soy protein (placebo group), 50 mg of daidzein with 10 g soy protein (daidzein group), or 50 mg of genistein with 10 g soy protein (genistein group) supplementation for 24 weeks. Fasting serum total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), lipoprotein a (LP (a)), hs-CRP, and UA were assessed at baseline, 12, and 24 weeks after intervention. The results showed no significant differences in the changes (%) of TC, TG, HDL-C, LDL-C, LP (a), hs-CRP, and UA between the three treatment groups at weeks 12 or 24 (all P > 0.05). CONCLUSION neither isolated daidzein nor genistein had a significant effect on cardiovascular health in Chinese women with IGR.
Collapse
Affiliation(s)
- Yan-Bin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Derosa G, Colletti A, Maffioli P, D'Angelo A, Lupi A, Zito GB, Mureddu GF, Raddino R, Fedele F, Cicero AFG. Lipid-lowering nutraceuticals update on scientific evidence. J Cardiovasc Med (Hagerstown) 2021; 21:845-859. [PMID: 32639326 DOI: 10.2459/jcm.0000000000000970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
: Cardiovascular diseases (CVDs) are the main cause of mortality worldwide. Risk factors of CVD can be classified into modifiable (smoking, hypertension, diabetes, hypercholesterolemia) through lifestyle changes or taking drug therapy and not modifiable (age, ethnicity, sex and family history). Elevated total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) levels have a lead role in the development of coronary heart disease (CHD), while high levels of high-density lipoprotein-cholesterol (HDL-C) seem to have a protective role.The current treatment for dyslipidemia consists of lifestyle modification or drug therapy even if not pharmacological treatment should be always considered in addition to lipid-lowering medications.The use of lipid-lowering nutraceuticals alone or in association with drug therapy may be considered when the atherogenic cholesterol goal was not achieved.These substances can be classified according to their mechanisms of action into natural inhibitors of intestinal cholesterol absorption, inhibitors of hepatic cholesterol synthesis and enhancers of the excretion of LDL-C. Nevertheless, many of them are characterized by mixed or unclear mechanisms of action.The use of these nutraceuticals is suggested in individuals with borderline lipid profile levels or with drug intolerance, but cannot replace standard lipid-lowering treatment in patients at high, or very high CVD risk.Nutraceuticals can also have vascular effects, including improvement in endothelial dysfunction and arterial stiffness, as well as antioxidative properties. Moreover, epidemiological and clinical studies reported that in patients intolerant of statins, many nutraceuticals with demonstrated hypolipidemic effect are well tolerated.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, PAVIA; SINut (Italian Society of Nutraceuticals)
| | - Alessandro Colletti
- Department of Medical and Surgical Sciences, University of Bologna, BOLOGNA; SINut (Italian Society of Nutraceuticals)
| | - Pamela Maffioli
- Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, PAVIA; SINut (Italian Society of Nutraceuticals)
| | - Angela D'Angelo
- Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, PAVIA; SINut (Italian Society of Nutraceuticals)
| | - Alessandro Lupi
- Cardiology Unit, Ospedali Riuniti di Domodossola e Verbania, OMEGNA; CFC (Federative College of Cardiology)
| | - Giovanni B Zito
- ASL Naples 3 SOUTH, NAPLES; ARCA (Regional Association of Ambulatorial Cardiologists)
| | - Gian Francesco Mureddu
- Cardiology Unit - San Giovanni Addolorata Hospital, ROME; AICPR (Italian Association of Clinical, Preventive and Rehabilitative Cardiology)
| | - Riccardo Raddino
- Cardiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University, Cardiothoracic Department, Spedali Civili of Brescia, BRESCIA; SIRC (Italian Society of Cardiovascular Research)
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Anesthesiology, Nephrology and Geriatric Sciences, Sapienza University of Rome, ROME; INCRC (Cardiovascular Research Consortium)
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, BOLOGNA; SINut (Italian Society of Nutraceuticals)
| |
Collapse
|
14
|
Yi XY, Wang ZH, Wang Y. Genistein for glycolipid metabolism in postmenopausal women: a meta-analysis. Climacteric 2021; 24:267-274. [PMID: 33410719 DOI: 10.1080/13697137.2020.1859473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effects of genistein on glycolipid metabolism in postmenopausal women. METHODS Electronic databases were searched and relevant reports were hand-screened. We included only randomized controlled trials of isolated genistein for glycolipid metabolism. The primary outcome for lipid metabolism included a changed value of low-density lipoprotein cholesterol (LDL-C), and for glucose metabolism was a changed value of homeostasis model assessment for insulin resistance (HOMA-IR). Secondary outcomes included a changed value of total cholesterol, triglyceride, high-density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), fasting blood insulin (INS), and body mass index (BMI). RESULTS Ten trials with 11 articles were included. The level of LDL-C was not decreased in the genistein group compared with the placebo group (standardized mean difference [SMD] = -0.58; 95% confidence interval [CI] - 1.19, 0.02; p = 0.06). No statistical significance was found in subgroup analyses. HOMA-IR was obviously improved in the genistein group with SMD of -0.51 (95% CI -0.88, -0.14; p = 0.006). In subgroup analyses, HOMA-IR was improved more in women with BMI <30 kg/m2 and without metabolic disorders (p < 0.0001). For secondary outcomes, there were significant differences in total cholesterol, HDL-C, FBG, and INS, but not triglyceride or BMI. CONCLUSIONS Genistein was effective in ameliorating glycolipid metabolism by increasing HDL-C levels and decreasing total cholesterol levels and improving insulin sensitivity.
Collapse
Affiliation(s)
- X-Y Yi
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Z-H Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Y Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| |
Collapse
|
15
|
George KS, Muñoz J, Akhavan NS, Foley EM, Siebert SC, Tenenbaum G, Khalil DA, Chai SC, Arjmandi BH. Is soy protein effective in reducing cholesterol and improving bone health? Food Funct 2020; 11:544-551. [PMID: 31848551 DOI: 10.1039/c9fo01081e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyperlipidemia associated with cardiovascular health, and bone loss with regard to osteoporosis contribute to increased morbidity and mortality and are influenced by diet. Soy protein has been shown to reduce cholesterol levels, and its isoflavones may improve bone health. The objective of this study was to determine the effects of soy protein on lipid profiles and biomarkers of bone metabolism and inflammation. Ninety men and women (aged 27-87) were randomly assigned to consume 40 g of soy or casein protein daily for three months. Both soy and casein consumption significantly reduced bone alkaline phosphatase (P = 0.011) and body fat % (P < 0.001), tended to decrease tartrate-resistant acid phosphatase (P = 0.066), and significantly increased serum insulin-like growth factor-I (IGF-1) (P < 0.001), yet soy increased IGF-1 to a greater extent (P = 0.01) than casein. Neither treatment affected total cholesterol, HDL cholesterol, LDL cholesterol, or C-reactive protein. These results demonstrate that daily supplementation of soy and casein protein may have positive effects on indices of bone metabolism and body composition, with soy protein being more effective at increasing IGF-1, an anabolic factor, which may be due to soy isoflavones' role in upregulating Runx2 gene expression, while having little effect on lipid profiles and markers of inflammation.
Collapse
Affiliation(s)
- Kelli S George
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Preventive effect of Elateriospermum tapos seed extract against obese Sprague Dawley rats. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-019-00394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Berger M, Schmid M. Flexible modeling of ratio outcomes in clinical and epidemiological research. Stat Methods Med Res 2019; 29:2250-2268. [DOI: 10.1177/0962280219891195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In medical studies one frequently encounters ratio outcomes. For modeling these right-skewed positive variables, two approaches are in common use. The first one assumes that the outcome follows a normal distribution after transformation (e.g. a log-normal distribution), and the second one assumes gamma distributed outcome values. Classical regression approaches relate the mean ratio to a set of explanatory variables and treat the other parameters of the underlying distribution as nuisance parameters. Here, more flexible extensions for modeling ratio outcomes are proposed that allow to relate all the distribution parameters to explanatory variables. The models are embedded into the framework of generalized additive models for location, scale and shape (GAMLSS), and can be fitted using a component-wise gradient boosting algorithm. The added value of the new modeling approach is demonstrated by the analysis of the LDL/HDL cholesterol ratio, which is a strong predictor of cardiovascular events, using data from the German Chronic Kidney Disease Study. Particularly, our results confirm various important findings on risk factors for cardiovascular events.
Collapse
Affiliation(s)
- Moritz Berger
- Department of Medical Biometry, Informatics and Epidemiology, University of Bonn/University Hospital Bonn, Bonn, Germany
| | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University of Bonn/University Hospital Bonn, Bonn, Germany
| |
Collapse
|
18
|
Soy food and isoflavones are not associated with changes in serum lipids and glycohemoglobin concentrations among Japanese adults: a cohort study. Eur J Nutr 2019; 59:2075-2087. [DOI: 10.1007/s00394-019-02057-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
|
19
|
Jenkins DJA, Blanco Mejia S, Chiavaroli L, Viguiliouk E, Li SS, Kendall CWC, Vuksan V, Sievenpiper JL. Cumulative Meta-Analysis of the Soy Effect Over Time. J Am Heart Assoc 2019; 8:e012458. [PMID: 31242779 PMCID: PMC6662359 DOI: 10.1161/jaha.119.012458] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Soy protein foods have attracted attention as useful plant protein foods with mild cholesterol‐lowering effects that are suitable for inclusion in therapeutic diets. But on the basis of the lack of consistency in significant cholesterol reduction by soy in 46 randomized controlled trials, the US Food and Drug Administration (FDA) is reassessing whether the 1999 heart health claim for soy protein should be revoked. Methods and Results We have, therefore, performed a cumulative meta‐analysis on the 46 soy trials identified by the FDA to determine if at any time, since the 1999 FDA final rule that established the soy heart health claim, the soy effect on serum cholesterol lost significance. The cumulative meta‐analysis for both total cholesterol and low‐density lipoprotein cholesterol demonstrated preservation of the small, but significant, reductions seen both before and during the subsequent 14 years since the health claim was originally approved. For low‐density lipoprotein cholesterol, the mean reduction in 1999 was −6.3 mg/dL (95% CI, −8.7 to −3.9 mg/dL; P=0.00001) and remained in the range of −4.2 to −6.7 mg/dL (P=0.0006 to P=0.0002, respectively) in the years after 1999. At no time point did the total cholesterol or low‐density lipoprotein cholesterol reductions lose significance or were the differences at individual time points in the cumulative meta‐analysis significantly different from those seen in 1999 when the health claim was approved. Conclusions A cumulative meta‐analysis of the data selected by the FDA indicates continued significance of total cholesterol and low‐density lipoprotein cholesterol reduction after soy consumption and supports the rationale behind the original soy FDA heart health claim. See Editorial Petersen and Kris‐Etherton
Collapse
Affiliation(s)
- David J A Jenkins
- 1 Department of Nutritional Sciences Faculty of Medicine University of Toronto Ontario Canada.,2 Department of Medicine Faculty of Medicine University of Toronto Ontario Canada.,3 Clinical Nutrition and Risk Factor Modification Centre St. Michael's Hospital, Toronto Ontario Canada.,4 Division of Endocrinology and Metabolism St. Michael's Hospital, Toronto Ontario Canada.,5 Li Ka Shing Knowledge Institute St. Michael's Hospital, Toronto Ontario Canada.,8 Toronto 3D Knowledge Synthesis and Clinical Trials Unit St. Michael's Hospital Toronto Ontario Canada
| | - Sonia Blanco Mejia
- 1 Department of Nutritional Sciences Faculty of Medicine University of Toronto Ontario Canada.,3 Clinical Nutrition and Risk Factor Modification Centre St. Michael's Hospital, Toronto Ontario Canada.,8 Toronto 3D Knowledge Synthesis and Clinical Trials Unit St. Michael's Hospital Toronto Ontario Canada
| | - Laura Chiavaroli
- 1 Department of Nutritional Sciences Faculty of Medicine University of Toronto Ontario Canada.,3 Clinical Nutrition and Risk Factor Modification Centre St. Michael's Hospital, Toronto Ontario Canada.,8 Toronto 3D Knowledge Synthesis and Clinical Trials Unit St. Michael's Hospital Toronto Ontario Canada
| | - Effie Viguiliouk
- 1 Department of Nutritional Sciences Faculty of Medicine University of Toronto Ontario Canada.,8 Toronto 3D Knowledge Synthesis and Clinical Trials Unit St. Michael's Hospital Toronto Ontario Canada
| | - Siying S Li
- 1 Department of Nutritional Sciences Faculty of Medicine University of Toronto Ontario Canada.,7 School of Medicine Faculty of Health Sciences Queen's University Kingston Ontario Canada
| | - Cyril W C Kendall
- 1 Department of Nutritional Sciences Faculty of Medicine University of Toronto Ontario Canada.,3 Clinical Nutrition and Risk Factor Modification Centre St. Michael's Hospital, Toronto Ontario Canada.,6 College of Pharmacy and Nutrition University of Saskatchewan Saskatoon Saskatchewan, Canada.,8 Toronto 3D Knowledge Synthesis and Clinical Trials Unit St. Michael's Hospital Toronto Ontario Canada
| | - Vladmir Vuksan
- 1 Department of Nutritional Sciences Faculty of Medicine University of Toronto Ontario Canada.,2 Department of Medicine Faculty of Medicine University of Toronto Ontario Canada.,3 Clinical Nutrition and Risk Factor Modification Centre St. Michael's Hospital, Toronto Ontario Canada.,4 Division of Endocrinology and Metabolism St. Michael's Hospital, Toronto Ontario Canada.,5 Li Ka Shing Knowledge Institute St. Michael's Hospital, Toronto Ontario Canada
| | - John L Sievenpiper
- 1 Department of Nutritional Sciences Faculty of Medicine University of Toronto Ontario Canada.,3 Clinical Nutrition and Risk Factor Modification Centre St. Michael's Hospital, Toronto Ontario Canada.,4 Division of Endocrinology and Metabolism St. Michael's Hospital, Toronto Ontario Canada.,5 Li Ka Shing Knowledge Institute St. Michael's Hospital, Toronto Ontario Canada.,8 Toronto 3D Knowledge Synthesis and Clinical Trials Unit St. Michael's Hospital Toronto Ontario Canada
| |
Collapse
|
20
|
Berger M, Wagner M, Schmid M. Modeling biomarker ratios with gamma distributed components. Ann Appl Stat 2019. [DOI: 10.1214/18-aoas1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Konya J, Sathyapalan T, Kilpatrick ES, Atkin SL. The Effects of Soy Protein and Cocoa With or Without Isoflavones on Glycemic Control in Type 2 Diabetes. A Double-Blind, Randomized, Placebo-Controlled Study. Front Endocrinol (Lausanne) 2019; 10:296. [PMID: 31143160 PMCID: PMC6521701 DOI: 10.3389/fendo.2019.00296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/25/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: Soy and cocoa have been suggested to be beneficial for diabetes. The aim of this study was to identify the effects of soy protein, isoflavones, and cocoa on glycemic control parameters. Research design and methods: The study was a parallel, double-blind, placebo-controlled study where patients with diet or metformin controlled type 2 diabetes were randomized to, casein soy protein with or without isoflavones (SPI, SP), and with or without cocoa (SPIC, SPC) arms for an 8 week period. Glycemic control and cardiovascular risk factors were assessed prior to and after the completion of the dietary intervention. Sixty participants completed the study. Results: Soy protein improved HbA1c compared to casein (p < 0.05). The addition of isoflavones improved indices of insulin resistance and LDL [delta QUICKIE (SPI: -0.12 ± 0.04 vs. SP: 0.03 ± 0.06, p = 0.03); delta LDL (-0.27 ± 0.41 vs. 0.22 ± 0.43, p = 0.02); percentage change in HOMA (31.02 ± 54.75 vs. -14.42 ± 27.07, p = 0.02); percentage change in QUICKIE (-3.89 ± 7.07 vs. 6.11 ± 10.54, p = 0.01)]. However, the addition of cocoa provided no benefit with or without isoflavones. Summary: Soy protein had intrinsic activity on glycemic control compared to casein. Isoflavones improved both insulin resistance and LDL, but cocoa did not have added benefit on these indices. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT01754662.
Collapse
Affiliation(s)
- Judit Konya
- Diabetes Research Centre, University of Hull, Kingston upon Hull, United Kingdom
| | | | | | - Stephen L. Atkin
- Weill Cornell Medicine, Doha, Qatar
- *Correspondence: Stephen L. Atkin
| |
Collapse
|
22
|
Swart AC, Johannes ID, Sathyapalan T, Atkin SL. The Effect of Soy Isoflavones on Steroid Metabolism. Front Endocrinol (Lausanne) 2019; 10:229. [PMID: 31031706 PMCID: PMC6470182 DOI: 10.3389/fendo.2019.00229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/21/2019] [Indexed: 12/30/2022] Open
Abstract
Objective: This study is a post-hoc analysis of steroid hormones before and after administration of pharmacological doses of soy isoflavones in a large cohort of men and women from two independent studies. Isoflavones are reported to inhibit mineralo- and glucocorticoid hormone production as well as reproductive steroids in vivo and in vitro. We focused on cytochrome P450 17α-hydroxylase (CYP17A1) which catalyses the production of dehydroepiandrosterone (DHEA), in the androgen biosynthesis pathway to elucidate effects on sex steroids in vitro. Design and Setting: Effects of soy isoflavones on steroid levels in two studies comprising 400 patients were examined: 200 men (study 1; 3 months duration) and 200 postmenopausal women (study 2; 6 months duration), randomized to consume 15 g soy protein with 66 mg isoflavones (SPI) or 15 g soy protein alone without isoflavones (SP) daily. Effects of genistein and daidzein on steroid metabolism were determined in vitro, in HEK293 cells expressing CYP17A1 and in the human adrenocortical carcinoma H295R cell model. Results: SPI decreased serum dehydroepiandrosterone sulfate (DHEAS) levels in both men and women (P < 0.01), with decreased androstenedione (A4) (P < 0.01) in women not observed in men (P < 0.86). Cortisol, cortisone, 11-deoxycortisol, aldosterone, testosterone (T), or estradiol (E2) levels were unchanged. The dual hydroxylase and lyase activity of CYP17A1, which catalyses the biosynthesis of androgen precursors, and 3β-hydroxysteroid dehydrogenase (3βHSD2) were investigated in vitro. In transiently transfected HEK293 cells, only the lyase activity was inhibited by both genistein, 20% (P < 0.001) and daidzein, 58% (P < 0.0001). In forskolin-stimulated H295R cells DHEA production was decreased by daidzein (P < 0.05) and genistein, confirming inhibition of the lyase activity by the isoflavones. Conclusion: In Vivo clinical data suggested inhibition of CYP17A1 17,20 lyase within the adrenal in men and within the ovary and adrenal in females. This was confirmed in vitro with inhibition of the lyase activity by both genistein and daidzein. In addition, 3βHSD2 was inhibited perhaps accounting for decreased A4 levels observed in females. The decreased DHEAS and A4 levels together with the inhibition of the 17,20 lyase activity of CYP17A1, may impact production of androgens in clinical conditions associated with androgen excess. ISRCTN number: ISRCTN55827330 ISRCTN number: ISRCTN 90604927.
Collapse
Affiliation(s)
- Amanda C. Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Inge D. Johannes
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, University of Hull, Hull, United Kingdom
| | - Stephen L. Atkin
- Research Department, Weill Cornell Medical College Qatar, Doha, Qatar
- *Correspondence: Stephen L. Atkin
| |
Collapse
|
23
|
Marques LR, Diniz TA, Antunes BM, Rossi FE, Caperuto EC, Lira FS, Gonçalves DC. Reverse Cholesterol Transport: Molecular Mechanisms and the Non-medical Approach to Enhance HDL Cholesterol. Front Physiol 2018; 9:526. [PMID: 29867567 PMCID: PMC5962737 DOI: 10.3389/fphys.2018.00526] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
Dyslipidemia (high concentrations of LDL-c and low concentrations of HDL-c) is a major cause of cardiovascular events, which are the leading cause of death in the world. On the other hand, nutrition and regular exercise can be an interesting strategy to modulate lipid profile, acting as prevention or treatment, inhibiting the risk of diseases due to its anti-inflammatory and anti-atherogenic characteristics. Additionally, the possibility of controlling different training variables, such as type, intensity and recovery interval, can be used to maximize the benefits of exercise in promoting cardiovascular health. However, the mechanisms by which exercise and nutrients act in the regulation of cholesterol and its fractions, such as reverse cholesterol transport, receptors and transcription factors involved, such as PPARs and their role related to exercise, deserve further discussion. Therefore, the objective of this review is to debate about non-medical approaches to increase HDL-c, such as nutritional and training strategies, and to discuss the central mechanisms involved in the modulation of lipid profile during exercise, as well as that can be controlled by physical trainers or sports specialists in attempt to maximize the benefits promoted by exercise. The search for papers was performed in the databases: Medline (Pubmed), Science Direct, Scopus, Sport Discus, Web of Science, Scielo and Lilacs until February 2016.
Collapse
Affiliation(s)
- Leandro R Marques
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Tiego A Diniz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Barbara M Antunes
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Fabrício E Rossi
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piauí, Teresina, Brazil
| | - Erico C Caperuto
- Human Movement Laboratory, Universidade São Judas Tadeu, São Paulo, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista, Presidente Prudente, Brazil
| | - Daniela C Gonçalves
- Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| |
Collapse
|
24
|
Dietary management of dyslipidaemias. Is there any evidence for cardiovascular benefit? Maturitas 2018; 108:45-52. [DOI: 10.1016/j.maturitas.2017.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
|
25
|
Cicero AFG, Colletti A. An update on the safety of nutraceuticals and effects on lipid parameters. Expert Opin Drug Saf 2018; 17:303-313. [DOI: 10.1080/14740338.2018.1429404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arrigo F. G. Cicero
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Alessandro Colletti
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Sathyapalan T, Dawson AJ, Rigby AS, Thatcher NJ, Kilpatrick ES, Atkin SL. The Effect of Phytoestrogen on Thyroid in Subclinical Hypothyroidism: Randomized, Double Blind, Crossover Study. Front Endocrinol (Lausanne) 2018; 9:531. [PMID: 30254609 PMCID: PMC6141627 DOI: 10.3389/fendo.2018.00531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: Soy phytoestrogens are suggested to impair thyroid function but the effects of pharmacological doses of soy phytoestrogens are unknown; therefore, this study was performed to determine the effect of high dose soy phytoestrogens (66 mg) on thyroid function in subclinical hypothyroidism. Design and setting: Randomized, double-blind, crossover study. Participants: Forty four patients with subclinical hypothyroidism. Intervention: Participants were randomly allocated to either 66 mg phytoestrogen with 30 g soy protein (active) or 0 mg phytoestrogen with 30 g soy protein (placebo) supplementation for 8 weeks, washed out for 8 weeks and then crossed over for another 8 week period. Main outcome measures: The primary outcome was progression to overt hypothyroidism with the secondary outcome measures were changes in thyroid function tests. Results: Two patients in this trial progressed into overt hypothyroidism after high dose phytoestrogen supplementation. TSH, free thyroxine and triiodothyronine did not differ between groups. Conclusion: A pharmacological dose of 66 mg of soy phytoestrogens did not increase the overt thyroid failure rate or alter thyroid function tests in patients with subclinical hypothyroidism.
Collapse
Affiliation(s)
- Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Alison J Dawson
- Bradford Teaching Hospital NHS Foundation Trust, Bradford, United Kingdom
| | - Alan S Rigby
- Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | - Eric S Kilpatrick
- Department of Clinical Chemistry, Sidra Medical and Research Center, Doha, Qatar
| | | |
Collapse
|
27
|
Sathyapalan T, Köhrle J, Rijntjes E, Rigby AS, Dargham SR, Kilpatrick ES, Atkin SL. The Effect of High Dose Isoflavone Supplementation on Serum Reverse T 3 in Euthyroid Men With Type 2 Diabetes and Post-menopausal Women. Front Endocrinol (Lausanne) 2018; 9:698. [PMID: 30524380 PMCID: PMC6262038 DOI: 10.3389/fendo.2018.00698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Background: The health benefits of soy are widely reported but there are queries on the effect of soy isoflavones on thyroid function and the underlying mechanism of action. Materials and Methods: We examined the effect of soy isoflavones on reverse tri-iodothyronine (or 3,3',5'-tri-iodothyronine; rT3) in two studies comprising 400 patients: 200 men (study 1; 3 months) and 200 post-menopausal women (study 2; 6 months) who were randomized to consume 15 g soy protein with 66 mg of isoflavones (SPI) daily, or 15 g soy protein alone without isoflavones (SP) daily. Results: SPI supplementation increased rT3 serum concentration in both men 0.41 (0.12) vs. 0.45 (0.14) nmol/L and women 0.33 (0.12) vs. 0.37 (0.09) nmol/L at 3 months compared to SP that was not seen at 6 months. Thyroid stimulating hormone (TSH) serum concentrations increased while free thyroxine (fT4) concentrations decreased with 3 months of SPI compared to SP supplementation for both men and women. rT3 correlated with TSH in both studies (p = 0.03) but not with either fT3 or fT4. fT3 levels did not differ between the SPI and SP preparations. Conclusion: Soy isoflavones transiently increased rT3 levels within 3 months though reverted to baseline at 6 months. The mechanism for this would be either rT3 degrading deiodinase 1 and/or deiodinase 2 activities are transiently inhibited at 3 months, or inhibition of deiodinase 3, which generates rT3 from T4 is induced at 6 months. These changes were mirrored in the TSH concentrations, suggesting that short-term high dose isoflavone transiently impairs thyroid function in the first 3 months and may impact on general health during this period. ISRCTN Registry: ISRCTN 90604927; ISRCTN34051237.
Collapse
Affiliation(s)
- Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin Institute of Health, CVK, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin Institute of Health, CVK, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alan S. Rigby
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | - Eric S. Kilpatrick
- Department of Clinical Chemistry, Sidra Medical and Research Center, Doha, Qatar
| | - Stephen L. Atkin
- Weill Cornell Medical College Qatar, Doha, Qatar
- *Correspondence: Stephen L. Atkin
| |
Collapse
|
28
|
Cicero AF, Colletti A. Food and plant bioactives for reducing cardiometabolic disease: How does the evidence stack up? Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, Fras Z, Katsiki N, Langlois M, Latkovskis G, Panagiotakos DB, Paragh G, Mikhailidis DP, Mitchenko O, Paulweber B, Pella D, Pitsavos C, Reiner Ž, Ray KK, Rizzo M, Sahebkar A, Serban MC, Sperling LS, Toth PP, Vinereanu D, Vrablík M, Wong ND, Banach M. Lipid-lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Nutr Rev 2017; 75:731-767. [PMID: 28938795 DOI: 10.1093/nutrit/nux047] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In recent years, there has been growing interest in the possible use of nutraceuticals to improve and optimize dyslipidemia control and therapy. Based on the data from available studies, nutraceuticals might help patients obtain theraputic lipid goals and reduce cardiovascular residual risk. Some nutraceuticals have essential lipid-lowering properties confirmed in studies; some might also have possible positive effects on nonlipid cardiovascular risk factors and have been shown to improve early markers of vascular health such as endothelial function and pulse wave velocity. However, the clinical evidence supporting the use of a single lipid-lowering nutraceutical or a combination of them is largely variable and, for many of the nutraceuticals, the evidence is very limited and, therefore, often debatable. The purpose of this position paper is to provide consensus-based recommendations for the optimal use of lipid-lowering nutraceuticals to manage dyslipidemia in patients who are still not on statin therapy, patients who are on statin or combination therapy but have not achieved lipid goals, and patients with statin intolerance. This statement is intended for physicians and other healthcare professionals engaged in the diagnosis and management of patients with lipid disorders, especially in the primary care setting.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; and Italian Society of Nutraceuticals
| | - Alessandro Colletti
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; and Italian Society of Nutraceuticals
| | - Gani Bajraktari
- Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina, Kosovo; Medical Faculty, University of Prishtina, Prishtina, Kosovo; and Kosovo Society of Cardiology
| | - Olivier Descamps
- Department of Internal Medicine, Centres Hospitaliers Jolimont, Haine Saint-Paul, Belgium; and Belgian Atherosclerosis Society
| | - Dragan M Djuric
- Institute of Medical Physiology "Richard Burian," Faculty of Medicine, University of Belgrade, Belgrade, Serbia; and Serbian Association for Arteriosclerosis, Thrombosis and Vascular Biology Research
| | - Marat Ezhov
- Russian Cardiology Research and Production Centre, Moscow, Russia; and Russian National Atherosclerosis Society
| | - Zlatko Fras
- Preventive Cardiology Unit, Department of Vascular Medicine, Division of Internal Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia; Chair for Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and Slovenian Society of Cardiology
| | - Niki Katsiki
- Second Department of Propaedeutic Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Michel Langlois
- Department of Laboratory Medicine, AZ Sint-Jan Hospital, Bruges, Belgium; and Belgian Atherosclerosis Society
| | - Gustavs Latkovskis
- Faculty of Medicine and Institute of Cardiology and Regenerative Medicine, University of Latvia, Riga, Latvia; and Baltic Atherosclerosis Society
| | - Demosthenes B Panagiotakos
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Gyorgy Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; and Hungarian Atherosclerosis Society
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London, London, UK
| | - Olena Mitchenko
- Dyslipidaemia Department, Institute of Cardiology AMS of Ukraine, Kiev, Ukraine; and Ukrainian Atherosclerosis Society
| | - Bernhard Paulweber
- 1st Department of Internal Medicine, Paracelsus Private Medical University, Salzburg, Austria; and Austrian Atherosclerosis Society
| | - Daniel Pella
- 1st Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University, Košice, Slovakia; and Slovak Association of Atherosclerosis
| | - Christos Pitsavos
- Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece; and Hellenic Atherosclerosis Society
| | - Željko Reiner
- University Hospital Centre Zagreb, School of Medicine University of Zagreb, Department of Internal Medicine, Zagreb, Croatia; and Croatian Atherosclerosis Society
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial College, London, UK
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; and Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria-Corina Serban
- Center for Interdisciplinary Research, and Department of Functional Sciences, University of Medicine and Pharmacy "Victor Babes," Timisoara, Romania
| | - Laurence S Sperling
- Division of Cardiology, Emory University, Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, USA
| | - Peter P Toth
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, Maryland, USA; and Preventive Cardiology, CGH Medical Center, Sterling, Illinois, USA
| | - Dragos Vinereanu
- University of Medicine and Pharmacy "Carol Davila," Bucharest, Romania; Department of Cardiology, University and Emergency Hospital, Bucharest, Romania; and Romanian Society of Cardiology
| | - Michal Vrablík
- Third Department of Internal Medicine, First Medical Faculty, Charles University, Prague, Czech Republic; and Czech Atherosclerosis Society
| | - Nathan D Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, California, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute, Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland; Lipid and Blood Pressure Meta-Analysis Collaboration Group; and Polish Lipid Association
| |
Collapse
|
30
|
Cicero AF, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, Fras Z, Katsiki N, Langlois M, Latkovskis G, Panagiotakos DB, Paragh G, Mikhailidis DP, Mitchenko O, Paulweber B, Pella D, Pitsavos C, Reiner Ž, Ray KK, Rizzo M, Sahebkar A, Serban MC, Sperling LS, Toth PP, Vinereanu D, Vrablík M, Wong ND, Banach M. Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Arch Med Sci 2017; 13:965-1005. [PMID: 28883839 PMCID: PMC5575230 DOI: 10.5114/aoms.2017.69326] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 02/05/2023] Open
Affiliation(s)
- Arrigo F.G. Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; Italian Society of Nutraceuticals (SINut)
| | - Alessandro Colletti
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy; Italian Society of Nutraceuticals (SINut)
| | - Gani Bajraktari
- Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina, Kosovo; Medical Faculty, University of Prishtina, Prishtina, Kosovo; Kosovo Society of Caridology
| | - Olivier Descamps
- Institute of Medical Physiology “Richard Burian“, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Serbian Association for Arteriosclerosis, Thrombosis and Vascular Biology Research
| | - Dragan M. Djuric
- Institute of Medical Physiology “Richard Burian“, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Serbian Association for Arteriosclerosis, Thrombosis and Vascular Biology Research
| | - Marat Ezhov
- Russian Cardiology Research and Production Centre, Moscow, Russia; Russian National Atherosclerosis Society
| | - Zlatko Fras
- Preventive Cardiology Unit, Department of Vascular Medicine, Division of Internal Medicine, University Medical Centre Ljubljana, Slovenia; Chair for Internal Medicine, Faculty of Medicine, University of Ljubljana, Slovenia; Slovenian Society of Cardiology
| | - Niki Katsiki
- Second Department of Propaedeutic Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Michel Langlois
- Department of Laboratory Medicine, AZ Sint-Jan Hospital, Bruges, Belgium; Belgian Atheroclerosis Society
| | - Gustavs Latkovskis
- Faculty of Medicine and Institute of Cardiology and Regenerative Medicine, University of Latvia, Riga, Latvia; Baltic Atherosclerosis Society
| | - Demosthenes B. Panagiotakos
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Gyorgy Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Hungarian Atherosclerosis Society
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Olena Mitchenko
- 13Dyslipidaemia Department, Institute of Cardiology AMS of Ukraine, Ukraine; Ukrainian Atherosclerosis Society
| | - Bernhard Paulweber
- First Department of Internal Medicine, Paracelsus Private Medical University, Salzburg, Austria; Austrian Atheroclerosis Society (AAS)
| | - Daniel Pella
- 1 Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University, Košice, Slovakia; Slovak Association of Atherosclerosis
| | - Christos Pitsavos
- Cardiology Clinic, School of Medicine, University of Athens, Greece; Hellenic Atherosclerosis Society
| | - Željko Reiner
- University Hospital Centre Zagreb, School of Medicine University of Zagreb, Department of Internal Medicine, Zagreb, Croatia; Croatian Atherosclerosis Society
| | - Kausik K. Ray
- Department of Primary Care and Public Health, Imperial College, London, UK
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria-Corina Serban
- Center for Interdisciplinary Research, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania; Department of Functional Sciences, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
| | - Laurence S. Sperling
- Division of Cardiology, Emory University, Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, USA
| | - Peter P. Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, Illinois, USA
| | - Dragos Vinereanu
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania; Department of Cardiology, University and Emergency Hospital, Bucharest, Romania; Romanian Society of Cardiology
| | - Michal Vrablík
- Third Department of Internal Medicine, First Medical Faculty, Charles University, Prague, Czech Republic; Czech Atherosclerosis Society
| | - Nathan D. Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland; Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group; Polish Lipid Association (PoLA)
| |
Collapse
|
31
|
Sathyapalan T, Javed Z, Rigby AS, Kilpatrick ES, Atkin SL. Soy Protein Improves Cardiovascular Risk in Subclinical Hypothyroidism: A Randomized Double-Blinded Crossover Study. J Endocr Soc 2017; 1:423-430. [PMID: 29264497 PMCID: PMC5686670 DOI: 10.1210/js.2016-1068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/27/2017] [Indexed: 11/19/2022] Open
Abstract
Background: Soy protein with isoflavones appears to have an adverse effect on thyroid function, but it is not known whether it is the protein or isoflavone component that is deleterious. The effect of isoflavone-free soy on thyroid function was determined in patients with subclinical hypothyroidism, with a secondary aim of assessing its effect on cardiovascular risk indices. Methods: This was a randomized, double-blind, crossover study involving 80 patients with subclinical (compensated) hypothyroidism. Patients were randomly assigned to either isolated soy (isoflavone-free) protein (SP) or casein protein (CP) supplementation for 8 weeks, washed out for 8 weeks, and then crossed over for a further 8-week period. Results: Thyroid function was unaffected by either a SP or CP. There were significant decreases in fasting glucose (4.7 ± 0.6 vs 5.5 ± 1.4, P < 0.01), insulin resistance (3.3 ± 3.0 vs 3.8 ± 3.4, P = 0.05), total cholesterol (4.4 ± 0.9 vs 5.3 ± 1.2, P < 0.01), triglycerides (0.9 ± 0.5 vs 1.7 ± 0.9, P < 0.1), and highly sensitive C-reactive protein (hsCRP; 0.8 ± 0.7 vs 2.6 ± 2.8, P < 0.01) in the SP group compared with the CP group. Blood pressure, low-density lipoprotein, and high-density lipoprotein remained unchanged in both groups. Conclusion: SP alone had no effect on thyroid function in patients with subclinical hypothyroidism and resulted in a significant reduction in fasting glucose, insulin resistance, total cholesterol, triglycerides, and hsCRP compared with CP.
Collapse
Affiliation(s)
- Thozhukat Sathyapalan
- Department of Academic Endocrinology, Diabetes, and Metabolism, Hull York Medical School, Hull HU3 2JZ, United Kingdom
| | - Zeeshan Javed
- Department of Academic Endocrinology, Diabetes, and Metabolism, Hull York Medical School, Hull HU3 2JZ, United Kingdom
| | - Alan S Rigby
- Department of Academic Cardiology, University of Hull, Hull HU3 2JZ, United Kingdom
| | | | | |
Collapse
|
32
|
Ramdath DD, Padhi EMT, Sarfaraz S, Renwick S, Duncan AM. Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients 2017; 9:E324. [PMID: 28338639 PMCID: PMC5409663 DOI: 10.3390/nu9040324] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022] Open
Abstract
The hypocholesterolemic effect of soy is well-documented and this has led to the regulatory approval of a health claim relating soy protein to a reduced risk of cardiovascular disease (CVD). However, soybeans contain additional components, such as isoflavones, lecithins, saponins and fiber that may improve cardiovascular health through independent mechanisms. This review summarizes the evidence on the cardiovascular benefits of non-protein soy components in relation to known CVD risk factors such as hypertension, hyperglycemia, inflammation, and obesity beyond cholesterol lowering. Overall, the available evidence suggests non-protein soy constituents improve markers of cardiovascular health; however, additional carefully designed studies are required to independently elucidate these effects. Further, work is also needed to clarify the role of isoflavone-metabolizing phenotype and gut microbiota composition on biological effect.
Collapse
Affiliation(s)
- D Dan Ramdath
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Emily M T Padhi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Sidra Sarfaraz
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Simone Renwick
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Alison M Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2E1, Canada.
| |
Collapse
|
33
|
Millar CL, Duclos Q, Blesso CN. Effects of Dietary Flavonoids on Reverse Cholesterol Transport, HDL Metabolism, and HDL Function. Adv Nutr 2017; 8:226-239. [PMID: 28298268 PMCID: PMC5347106 DOI: 10.3945/an.116.014050] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Strong experimental evidence confirms that HDL directly alleviates atherosclerosis. HDL particles display diverse atheroprotective functions in reverse cholesterol transport (RCT), antioxidant, anti-inflammatory, and antiapoptotic processes. In certain inflammatory disease states, however, HDL particles may become dysfunctional and proatherogenic. Flavonoids show the potential to improve HDL function through their well-documented effects on cellular antioxidant status and inflammation. The aim of this review is to summarize the basic science and clinical research examining the effects of dietary flavonoids on RCT and HDL function. Based on preclinical studies that used cell culture and rodent models, it appears that many flavonoids (e.g., anthocyanidins, flavonols, and flavone subclasses) influence RCT and HDL function beyond simple HDL cholesterol concentration by regulating cellular cholesterol efflux from macrophages and hepatic paraoxonase 1 expression and activity. In clinical studies, dietary anthocyanin intake is associated with beneficial changes in serum biomarkers related to HDL function in a variety of human populations (e.g., in those who are hyperlipidemic, hypertensive, or diabetic), including increased HDL cholesterol concentration, as well as HDL antioxidant and cholesterol efflux capacities. However, clinical research on HDL functionality is lacking for some flavonoid subclasses (e.g., flavanols, flavones, flavanones, and isoflavones). Although there has been a tremendous effort to develop HDL-targeted drug therapies, more research is warranted on how the intake of foods or specific nutrients affects HDL function.
Collapse
|
34
|
Pirro M, Vetrani C, Bianchi C, Mannarino MR, Bernini F, Rivellese AA. Joint position statement on "Nutraceuticals for the treatment of hypercholesterolemia" of the Italian Society of Diabetology (SID) and of the Italian Society for the Study of Arteriosclerosis (SISA). Nutr Metab Cardiovasc Dis 2017; 27:2-17. [PMID: 27956024 DOI: 10.1016/j.numecd.2016.11.122] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022]
Abstract
AIM Evidence showed that LDL-cholesterol lowering is associated with a significant cardiovascular risk reduction. The initial therapeutic approach to hypercholesterolemia includes dietary modifications but the compliance to recommendations is often inadequate. Some dietary components with potential cholesterol-lowering activity are present in small amounts in food. Therefore, in recent years the use of "nutraceuticals" (i.e., nutrients and/or bioactive compounds with potential beneficial effects on human health) has become widespread. Such substances may be added to foods and beverages, or taken as dietary supplements (liquid preparations, tablets, capsules). In the present manuscript, the cholesterol-lowering activity of some nutraceuticals (i.e. fiber, phytosterols, soy, policosanol, red yeast rice and berberine) will be discussed along with: 1) the level of evidence on the cholesterol-lowering efficacy emerging from clinical trial; 2) the possible side effects associated with their use; 3) the categories of patients who could benefit from their use. DATA SYNTHESIS Based on the current literature, the cholesterol-lowering effect of fiber, phytosterols and red yeast rice is consistent and supported by a good level of evidence. Over berberine, there is sufficient evidence showing significant cholesterol-lowering effects, although the results come from studies carried out almost exclusively in Asian populations. Data on the effects of soy are conflicting and, therefore, the strength of recommendation is quite low. The evidence on policosanol is inconclusive. CONCLUSION Although health benefits may arise from the use of nutraceuticals with cholesterol-lowering activity, their use might be also associated with possible risks and pitfalls, some of which are common to all nutraceuticals whereas others are related to specific nutraceuticals.
Collapse
Affiliation(s)
- M Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy; Italian Society for the Study of Arteriosclerosis (SISA), Italy
| | - C Vetrani
- Department of Clinical Medicine and Surgery, "Federico II" University, Naples, Italy; Italian Society of Diabetology (SID), Italy
| | - C Bianchi
- Italian Society of Diabetology (SID), Italy; Unit of Diabetology and Metabolic Diseases, Department of Medical Area "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - M R Mannarino
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy; Italian Society for the Study of Arteriosclerosis (SISA), Italy
| | - F Bernini
- Italian Society for the Study of Arteriosclerosis (SISA), Italy; Department of Pharmacy, University of Parma, Parma, Italy
| | - A A Rivellese
- Department of Clinical Medicine and Surgery, "Federico II" University, Naples, Italy; Italian Society of Diabetology (SID), Italy.
| |
Collapse
|
35
|
Cicero AFG, Fogacci F, Colletti A. Food and plant bioactives for reducing cardiometabolic disease risk: an evidence based approach. Food Funct 2017; 8:2076-2088. [DOI: 10.1039/c7fo00178a] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nutraceuticals active on the main cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Arrigo F. G. Cicero
- Atherosclerosis and Metabolic Diseases Research Center
- Medical & Surgical Sciences Dept
- Alma Mater Studiorum – University of Bologna
- Bologna
- Italy
| | - Federica Fogacci
- Atherosclerosis and Metabolic Diseases Research Center
- Medical & Surgical Sciences Dept
- Alma Mater Studiorum – University of Bologna
- Bologna
- Italy
| | - Alessandro Colletti
- Atherosclerosis and Metabolic Diseases Research Center
- Medical & Surgical Sciences Dept
- Alma Mater Studiorum – University of Bologna
- Bologna
- Italy
| |
Collapse
|
36
|
Messina M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016; 8:E754. [PMID: 27886135 PMCID: PMC5188409 DOI: 10.3390/nu8120754] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 01/10/2023] Open
Abstract
Soyfoods have long been recognized as sources of high-quality protein and healthful fat, but over the past 25 years these foods have been rigorously investigated for their role in chronic disease prevention and treatment. There is evidence, for example, that they reduce risk of coronary heart disease and breast and prostate cancer. In addition, soy alleviates hot flashes and may favorably affect renal function, alleviate depressive symptoms and improve skin health. Much of the focus on soyfoods is because they are uniquely-rich sources of isoflavones. Isoflavones are classified as both phytoestrogens and selective estrogen receptor modulators. Despite the many proposed benefits, the presence of isoflavones has led to concerns that soy may exert untoward effects in some individuals. However, these concerns are based primarily on animal studies, whereas the human research supports the safety and benefits of soyfoods. In support of safety is the recent conclusion of the European Food Safety Authority that isoflavones do not adversely affect the breast, thyroid or uterus of postmenopausal women. This review covers each of the major research areas involving soy focusing primarily on the clinical and epidemiologic research. Background information on Asian soy intake, isoflavones, and nutrient content is also provided.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Matters, Inc., 26 Spadina Parkway, Pittsfield, MA 01201, USA.
| |
Collapse
|
37
|
Gonciulea AR, Sellmeyer DE. The effect of dietary protein source on serum lipids: Secondary data analysis from a randomized clinical trial. J Clin Lipidol 2016; 11:46-54. [PMID: 28391910 DOI: 10.1016/j.jacl.2016.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/12/2016] [Accepted: 09/24/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Plant-based diets can lower serum lipids. Whether soy foods offer additional benefits remains controversial. OBJECTIVE To determine the effect of different protein sources on serum lipids and glucose metabolism, emphasizing comparisons between soy and nonsoy plant-based diets. METHODS Secondary data analysis. A total of 173 postmenopausal women were randomized to 1 of 4 weighed metabolic diets for 6 weeks. Diets were equivalent in energy, protein, and fat with at least 80% of protein from either nondairy animal, dairy, nonsoy plant, or soy foods. At baseline and week 6, total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, glucose, and insulin were measured. Changes in variables during the diet period were compared within and among groups using t tests and analysis of variance. RESULTS TC decreased 38.8 mg/dL in soy group (P < .001 vs dairy and animal) and 30.5 mg/dL in nonsoy plant group (P = .003 vs dairy, .03 vs animal). LDL decreased 28.3 mg/dL in soy group (P < .001 vs dairy and animal) and 20.6 mg/dL in nonsoy plant group (P = .005 vs dairy, .06 vs animal). HDL decreased 12 mg/dL in soy group (P = .003 vs dairy, .0008 vs animal) and 10 mg/dL in nonsoy plant group (P = .05 vs dairy, .04 vs animal). There were no significant differences in lipid changes between soy and nonsoy plant-based diets. No differences among groups in changes in triglycerides, glucose, or insulin were seen. CONCLUSIONS Soy and nonsoy plant-based diets reduced TC and LDL with no significant difference between them. Further studies are needed to determine the specific lipid-lowering components of both soy and nonsoy plant foods.
Collapse
Affiliation(s)
- Anda R Gonciulea
- Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah E Sellmeyer
- Division of Endocrinology, The Johns Hopkins Bayview Medical Center, Baltimore, MD, USA.
| |
Collapse
|
38
|
Bian X, Muhammad Z, Evivie SE, Luo GW, Xu M, Huo GC. Screening of antifungal potentials of Lactobacillus helveticus KLDS 1.8701 against spoilage microorganism and their effects on physicochemical properties and shelf life of fermented soybean milk during preservation. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Paul G, Mendelson GJ. Evidence Supports the Use of Soy Protein to Promote Cardiometabolic Health and Muscle Development. J Am Coll Nutr 2016; 34 Suppl 1:56-9. [PMID: 26400436 DOI: 10.1080/07315724.2015.1080531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Consumption of adequate amounts of dietary protein can help individuals maintain a healthy body composition, especially when combined with resistance exercise and during weight loss. It is well established that dietary protein intake supports muscle development and helps reduce loss of lean body mass during weight loss. Numerous studies have demonstrated the efficacy of soy protein intake for promoting fat loss while preserving muscle mass and supporting lean body mass gains. In fact, soy protein and animal-based proteins both support weight loss and weight maintenance equally as part of an energy-restricted diet; however, soy protein offers additional cardiometabolic advantages. Key teaching points: Soy protein is a high-quality, plant-based protein that can be consumed throughout the life span. More human clinical studies have been conducted to assess the cholesterol-lowering effects of soy protein than any other cholesterol-lowering food ingredient. Ingestion of proteins with unique and complementary characteristics like soy, whey, and casein helps resistance-trained individuals achieve significant muscle growth. Recent research supports the efficacy of consuming a combination of soy, whey, and casein after resistance exercise to extend the time period that muscle building occurs.
Collapse
Affiliation(s)
- Greg Paul
- a DuPont Nutrition & Health , St. Louis , Missouri
| | | |
Collapse
|
40
|
Kartawijaya M, Han HW, Kim Y, Lee SM. Genistein upregulates LDLR levels via JNK-mediated activation of SREBP-2. Food Nutr Res 2016; 60:31120. [PMID: 27211318 PMCID: PMC4876195 DOI: 10.3402/fnr.v60.31120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
Background Genistein has been proved in vitro and in vivo to lower LDLR level. It is also widely consumed and implicated for its anti-atherogenic effects. However, the molecular mechanism by which genistein lowers the LDL level is still unknown. Objective To understand the anti-atherogenic molecular mechanism of action, genistein was investigated for its impact on the expression of LDLR, the receptor for LDL cholesterol, and related signaling pathways in a human hepatoma cell line. Design HepG2 cell was used for the experiments. Genistein with different concentrations was diluted in media and was incubated for 24 h or more as indicated. Protein levels were measured by western blotting, and mRNA expression was detected by RT-qPCR. Chromatin immunoprecipitation assay (CHIP) assay was used to determine protein binding levels, and luciferase assay was used to measure promoter activity. Result Genistein increased the mRNA and protein levels of LDLR in a time-dependent manner. Genistein increased the transcriptional activity of the LDLR promoter containing the reporter gene (pLDLR-luc, −805 to +50). But the sterol regulatory element deletion mutant construct failed to be activated by genistein. Genistein increased the nuclear fraction of SREBP-2 and the DNA-binding activity of SREBP-2 to LDLR promoter, as assessed by CHIP. The genistein-phosphorylated JNK inhibitor (SP600126) abolished the genistein-stimulated levels of LDLR and the nuclear SREBP-2. The addition of cholesterol up to 5 µg/mL for 24 h did not affect the effect of genistein on LDLR protein expression. Even the addition of 40 µM genistein increased the cholesterol uptake by more than 10% in the human hepatoma cell line. Conclusion Our data support the idea that genistein may have anti-atherogenic effects by activating JNK signals and SREBP-2 processing, which is followed by the upregulation of LDLR.
Collapse
Affiliation(s)
- Medicia Kartawijaya
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea
| | - Hye Won Han
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea
| | - Yunhye Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea
| | - Seung-Min Lee
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, South Korea;
| |
Collapse
|
41
|
Padhi EM, Blewett HJ, Duncan AM, Guzman RP, Hawke A, Seetharaman K, Tsao R, Wolever TM, Ramdath DD. Whole Soy Flour Incorporated into a Muffin and Consumed at 2 Doses of Soy Protein Does Not Lower LDL Cholesterol in a Randomized, Double-Blind Controlled Trial of Hypercholesterolemic Adults. J Nutr 2015; 145:2665-74. [PMID: 26446482 PMCID: PMC4656908 DOI: 10.3945/jn.115.219873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/02/2015] [Accepted: 09/09/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Soy protein may reduce coronary heart disease (CHD) risk by lowering LDL cholesterol, but few studies have assessed whether whole soy flour displays a similar effect. OBJECTIVE The aim of this study was to assess the dose effect of whole soy flour incorporated into muffins on plasma LDL cholesterol in hypercholesterolemic adults. METHODS Adults aged 30-70 y (n = 243) with elevated LDL cholesterol (≥3.0 and ≤5.0 mmol/L) were stratified by LDL cholesterol and randomly assigned to consume 2 soy muffins containing 25 g soy protein [high-dose soy (HDS)], 1 soy and 1 wheat muffin containing 12.5 g soy protein and 12.5 g whey protein [low-dose soy (LDS)], or 2 wheat muffins containing 25 g whey protein (control) daily for 6 wk while consuming a self-selected diet. Fasting blood samples were collected at weeks 0, 3, and 6 for analysis of plasma lipids [total, LDL, and HDL cholesterol and triglycerides (TGs)], glucose, insulin, C-reactive protein (CRP), and isoflavones. Blood pressures also were measured. Dietary intake was assessed at weeks 0 and 4 with the use of 3 d food records. Treatment effects were assessed with the use of intention-to-treat analysis with multiple imputation and LDL cholesterol as the primary outcome. RESULTS In total, 213 (87.6%) participants completed the trial. Participants were primarily Caucasian (83%) and mostly female (63%), with a mean ± SD body mass index (in kg/m2) of 28.0 ± 4.6 and systolic and diastolic blood pressures of 122 ± 16 and 77 ± 11 mm Hg, respectively. Despite a dose-dependent increase in plasma isoflavones (P < 0.001), neither HDS nor LDS had a significant effect on LDL cholesterol compared with control (mean ± SEM changes: control, -0.04 ± 0.05 mmol/L; HDS, 0.01 ± 0.05 mmol/L; and LDS, -0.04 ± 0.06 mmol/L). There were no significant treatment effects on total or HDL cholesterol, TGs, CRP, homeostatic model assessment of insulin resistance, blood pressure, or the Framingham 10-y CHD risk score. CONCLUSION Consuming 12.5 or 25 g protein from defatted soy flour incorporated into muffins does not reduce LDL cholesterol or other CHD risk factors in hypercholesterolemic adults. This trial was registered at clinicaltrials.gov as NCT01547585.
Collapse
Affiliation(s)
- Emily Mt Padhi
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Heather J Blewett
- Canadian Centre for Agri-Food Research in Health and Medicine, Agriculture and Agri-Food Canada, Winnipeg, Canada; and
| | - Alison M Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Randolph P Guzman
- Canadian Centre for Agri-Food Research in Health and Medicine, Agriculture and Agri-Food Canada, Winnipeg, Canada; and
| | - Aileen Hawke
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | | | - Rong Tsao
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | | | - D Dan Ramdath
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada;
| |
Collapse
|
42
|
Nie Q, Xing M, Hu J, Hu X, Nie S, Xie M. Metabolism and health effects of phyto-estrogens. Crit Rev Food Sci Nutr 2015; 57:2432-2454. [DOI: 10.1080/10408398.2015.1077194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qixing Nie
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| | - Mengmeng Xing
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| | - Xiaojuan Hu
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| |
Collapse
|
43
|
Richter CK, Skulas-Ray AC, Champagne CM, Kris-Etherton PM. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk? Adv Nutr 2015; 6:712-28. [PMID: 26567196 PMCID: PMC4642426 DOI: 10.3945/an.115.009654] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat.
Collapse
Affiliation(s)
- Chesney K Richter
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and
| | - Ann C Skulas-Ray
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and
| | - Catherine M Champagne
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA; and
| |
Collapse
|
44
|
Jacobson TA, Maki KC, Orringer CE, Jones PH, Kris-Etherton P, Sikand G, La Forge R, Daniels SR, Wilson DP, Morris PB, Wild RA, Grundy SM, Daviglus M, Ferdinand KC, Vijayaraghavan K, Deedwania PC, Aberg JA, Liao KP, McKenney JM, Ross JL, Braun LT, Ito MK, Bays HE, Brown WV. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 2. J Clin Lipidol 2015; 9:S1-122.e1. [DOI: 10.1016/j.jacl.2015.09.002] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Abstract
Soya proteins and isoflavones have been reported to exert beneficial effects on the serum lipid profile. More recently, this claim is being challenged. The objective of this study was to comprehensively examine the effects of soya consumption on the lipid profile using published trials. A detailed literature search was conducted via MEDLINE (from 2004 through February 2014), CENTRAL (The Cochrane Controlled Clinical Trials Register) and ClinicalTrials.gov for randomised controlled trials assessing the effects of soya on the lipid profile. The primary effect measure was the difference in means of the final measurements between the intervention and control groups. In all, thirty-five studies (fifty comparisons) were included in our analyses. Treatment duration ranged from 4 weeks to 1 year. Intake of soya products resulted in a significant reduction in serum LDL-cholesterol concentration, -4.83 (95% CI -7.34, -2.31) mg/dl, TAG, -4.92 (95% CI -7.79, -2.04) mg/dl, and total cholesterol (TC) concentrations, -5.33 (95% CI -8.35, -2.30) mg/dl. There was also a significant increase in serum HDL-cholesterol concentration, 1.40 (95% CI 0.58, 2.23) mg/dl. The I² statistic ranged from 92 to 99%, indicating significant heterogeneity. LDL reductions were more marked in hypercholesterolaemic patients, -7.47 (95% CI -11.79, -3.16) mg/dl, than in healthy subjects, -2.96 (95% CI -5.28, -0.65) mg/dl. LDL reduction was stronger when whole soya products (soya milk, soyabeans and nuts) were used as the test regimen, -11.06 (95% CI -15.74, -6.37) mg/dl, as opposed to when 'processed' soya extracts, -3.17 (95% CI -5.75, -0.58) mg/dl, were used. These data are consistent with the beneficial effects of soya proteins on serum LDL, HDL, TAG and TC concentrations. The effect was stronger in hypercholesterolaemic subjects. Whole soya foods appeared to be more beneficial than soya supplementation, whereas isoflavone supplementation had no effects on the lipid profile.
Collapse
|
46
|
El-Tantawy WH. Biochemical effects, hypolipidemic and anti-inflammatory activities of Artemisia vulgaris extract in hypercholesterolemic rats. J Clin Biochem Nutr 2015. [PMID: 26236098 DOI: 10.3164/jcbn.14.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to investigate hypolipidemic and anti-inflammatory effects of Artemisia vulgaris extract in hypercholesterolemic rats. Hypercholesterolemia was induced by feeding of rats with high fat diet containing 3% cholesterol in olein oil, for 8 weeks. Feeding of rats with high fat diet for 8 weeks, leading to a significant increase in serum triglycerides, total cholesterol, low density lipoprotein cholesterol, malondialdehyde and nitric oxide, tumor necrosis factor-α levels and a significant decrease in serum high density lipoprotein cholesterol level, liver hydroxymethylglutaryl-CoA reductase activity and paraoxonase-1 activities as compared to the normal control group. Treatment of high fat diet rats with Artemisia vulgaris extract for 4 weeks at a dose of 100 mg/kg per day, resulted in normalized serum lipid profile, a significant increase in paraoxonase-1 activity and decrease in serum malondialdehyde, nitric oxide and tumor necrosis factor-α level as compared to high fat diet-treated animals. Also the extract caused a significant decrease in hydroxymethylglutaryl-CoA reductase activity as compared with both high fat diet-treated animals and control ones. In conclusion, Artemisia vulgaris extract has hypolipidemic, anti-inflammatory, antioxidant properties; it may serve as a source for the prevention of atherosclerosis and cardiovascular diseases.
Collapse
|
47
|
El-Tantawy WH. Biochemical effects, hypolipidemic and anti-inflammatory activities of Artemisia vulgaris extract in hypercholesterolemic rats. J Clin Biochem Nutr 2015; 57:33-8. [PMID: 26236098 PMCID: PMC4512891 DOI: 10.3164/jcbn.14-141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/26/2015] [Indexed: 02/05/2023] Open
Abstract
The purpose of the present study was to investigate hypolipidemic and anti-inflammatory effects of Artemisia vulgaris extract in hypercholesterolemic rats. Hypercholesterolemia was induced by feeding of rats with high fat diet containing 3% cholesterol in olein oil, for 8 weeks. Feeding of rats with high fat diet for 8 weeks, leading to a significant increase in serum triglycerides, total cholesterol, low density lipoprotein cholesterol, malondialdehyde and nitric oxide, tumor necrosis factor-α levels and a significant decrease in serum high density lipoprotein cholesterol level, liver hydroxymethylglutaryl-CoA reductase activity and paraoxonase-1 activities as compared to the normal control group. Treatment of high fat diet rats with Artemisia vulgaris extract for 4 weeks at a dose of 100 mg/kg per day, resulted in normalized serum lipid profile, a significant increase in paraoxonase-1 activity and decrease in serum malondialdehyde, nitric oxide and tumor necrosis factor-α level as compared to high fat diet-treated animals. Also the extract caused a significant decrease in hydroxymethylglutaryl-CoA reductase activity as compared with both high fat diet-treated animals and control ones. In conclusion, Artemisia vulgaris extract has hypolipidemic, anti-inflammatory, antioxidant properties; it may serve as a source for the prevention of atherosclerosis and cardiovascular diseases.
Collapse
|
48
|
Rababah TM, Awaisheh SS, Al-Tamimi HJ, Brewer S. The hypocholesterolemic and hormone modulation effects of isoflavones alone or co-fermented with probiotic bacteria in hypercholesterolemic rats model. Int J Food Sci Nutr 2015; 66:546-52. [DOI: 10.3109/09637486.2015.1028908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Mannarino MR, Ministrini S, Pirro M. Nutraceuticals for the treatment of hypercholesterolemia. Eur J Intern Med 2014; 25:592-9. [PMID: 24997485 DOI: 10.1016/j.ejim.2014.06.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/07/2014] [Accepted: 06/10/2014] [Indexed: 12/15/2022]
Abstract
Hypercholesterolemia is a well-established modifiable cardiovascular risk factor and its treatment is an essential aim in preventing cardiovascular disease. Current guidelines highlight lifestyle intervention as a primary issue in the treatment of the patient with hypercholesterolemia. Therapeutic lifestyle changes are often insufficient to achieve desirable cholesterol levels. This is particularly true for high risk patients; however, also low risk patients, whose cholesterol levels are not necessarily far from recommended targets, have either sub-optimal or even significantly increased lipid levels. Nutraceuticals are borderline devices between nutrients and drugs providing a supplementation of particular nutrients with beneficial effects on health. Several nutraceuticals have been suggested to improve plasma lipid profile. The literature counted over 40 nutraceutical substances with a supposed beneficial effect on lipid metabolism; for some of them a number of clinical trials highlighted a cholesterol lowering effect and a possible positive influence on cardiovascular prognosis. The aim of this article is to review the main evidences supporting or denying the efficacy and safety of some of the most commonly used nutraceuticals with supposed cholesterol lowering activity.
Collapse
Affiliation(s)
- Massimo R Mannarino
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Stefano Ministrini
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
50
|
Yoon GA, Park S. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutr Res Pract 2014; 8:618-24. [PMID: 25489400 PMCID: PMC4252520 DOI: 10.4162/nrp.2014.8.6.618] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/24/2014] [Accepted: 05/29/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/OBJECTIVES Isoflavones are widely believed to be beneficial to human health, in relation to their antioxidant potentials. Exercise can cause an imbalance between reactive oxygen species (ROS) and antioxidants. This study was conducted in order to investigate the ability of isoflavones in amelioration of oxidative stress induced by exercise. MATERIALS/METHODS Male Sprague-Dawley rats were assigned to one of four groups: isoflavone-free with no exercise (CON-sd), isoflavone-free with exercise (CON-ex), isoflavone-supplemented with no exercise (ISF-sd), and isoflavone-supplemented with exercise (ISF-ex). Animals exercised on the treadmill for 30 minutes per day, five days per week. TBARS as a marker of oxidative stress and antioxidant enzyme activity, including SOD, GSH-px, and catalase were determined in liver tissue. Serum lipid profile was also examined. RESULTS A significant effect of isoflavone alone was observed on abdominal fat pad mass. ISF-ex had significantly less abdominal fat pad than CON-ex. Both exercise and isoflavone treatment had significant effects on lowering plasma triglyceride (TG), thus, the ISF-ex group had a significantly lower TG level than the CON-sd group, by 30.9%. However, no differences were observed in plasma cholesterol, HDL-C, and cholesterol/HDL-C ratio. Exercise, isoflavone, and exercise-isoflavone interaction effects were significant on thiobarbituric acid reactive substances (TBARS) (P = 0.001, 0.002, and 0.005, respectively). The CON-ex group showed a higher TBARS level than the other three groups. By contrast, in the ISF-ex group, TBARS was restored to the level of the ISF-sd or CON-sd group. Isoflavone had a significant effect on superoxide dismutase (SOD) (P = 0.022) and catalase activities (P = 0.049). Significantly higher SOD and catalase activities were observed in ISF-ex than CON-ex. SOD and catalase activities showed an inverse pattern of TBARS. Taken together, isoflavones increased the activities of SOD and catalase with concomitant decreases in TBARS, indicative of decreased oxidative stress. CONCLUSIONS Isoflavone supplementation enhances antioxidant action with attenuation of exercise-induced oxidative stress, as measured by decreases in TBARS, and inhibits body fat accumulation and plasma TG increase. Antioxidative effects ascribed to isoflavones may be partially exerted via enhancement of antioxidant enzyme activities.
Collapse
Affiliation(s)
- Gun-Ae Yoon
- Department of Food and Nutrition, College of Natural Science and Human Ecology, Dong-eui University, 176 Eomgwangno, Busanjin-gu, Busan 614-714, Korea
| | - Sunmin Park
- Department of Food and Nutrition, College of Natural Science, Hoseo University, Chungnam 336-795, Korea
| |
Collapse
|