1
|
Acharya A, Schrauwen I, Leal SM. Identification of autosomal recessive nonsyndromic hearing impairment genes through the study of consanguineous and non-consanguineous families: past, present, and future. Hum Genet 2022; 141:413-430. [PMID: 34291353 PMCID: PMC10416318 DOI: 10.1007/s00439-021-02309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
Hearing impairment (HI) is one of the most common sensory disabilities with exceptionally high genetic heterogeneity. Of genetic HI cases, 30% are syndromic and 70% are nonsyndromic. For nonsyndromic (NS) HI, 77% of the cases are due to autosomal recessive (AR) inheritance. ARNSHI is usually congenital/prelingual, severe-to-profound, affects all frequencies and is not progressive. Thus far, 73 ARNSHI genes have been identified. Populations with high rates of consanguinity have been crucial in the identification of ARNSHI genes, and 92% (67/73) of these genes were identified in consanguineous families. Recent changes in genomic technologies and analyses have allowed a shift towards ARNSHI gene discovery in outbred populations. The latter is crucial towards understanding the genetic architecture of ARNSHI in diverse and understudied populations. We present an overview of the 73 ARNSHI genes, the methods used to identify them, including next-generation sequencing which revolutionized the field, and new technologies that show great promise in advancing ARNSHI discoveries.
Collapse
Affiliation(s)
- Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Genetics, pathogenesis and therapeutic developments for Usher syndrome type 2. Hum Genet 2021; 141:737-758. [PMID: 34331125 DOI: 10.1007/s00439-021-02324-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/24/2021] [Indexed: 12/28/2022]
Abstract
Usher syndrome (USH) is a rare, autosomal recessively inherited disorder resulting in a combination of sensorineural hearing loss and a progressive loss of vision resulting from retinitis pigmentosa (RP), occasionally accompanied by an altered vestibular function. More and more evidence is building up indicating that also sleep deprivation, olfactory dysfunction, deficits in tactile perception and reduced sperm motility are part of the disease etiology. USH can be clinically classified into three different types, of which Usher syndrome type 2 (USH2) is the most prevalent. In this review, we, therefore, assess the genetic and clinical aspects, available models and therapeutic developments for USH2. Mutations in USH2A, ADGRV1 and WHRN have been described to be responsible for USH2, with USH2A being the most frequently mutated USH-associated gene, explaining 50% of all cases. The proteins encoded by the USH2 genes together function in a dynamic protein complex that, among others, is found at the photoreceptor periciliary membrane and at the base of the hair bundles of inner ear hair cells. To unravel the pathogenic mechanisms underlying USH2, patient-derived cellular models and animal models including mouse, zebrafish and drosophila, have been generated that all in part mimic the USH phenotype. Multiple cellular and genetic therapeutic approaches are currently under development for USH2, mainly focused on preserving or partially restoring the visual function of which one is already in the clinical phase. These developments are opening a new gate towards a possible treatment for USH2 patients.
Collapse
|
3
|
Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:209-236. [PMID: 33850952 PMCID: PMC8010215 DOI: 10.1016/j.omtm.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Generotti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Hwa
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Medicine, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Souissi A, Ben Said M, Ben Ayed I, Elloumi I, Bouzid A, Mosrati MA, Hasnaoui M, Belcadhi M, Idriss N, Kamoun H, Gharbi N, Gibriel AA, Tlili A, Masmoudi S. Novel pathogenic mutations and further evidence for clinical relevance of genes and variants causing hearing impairment in Tunisian population. J Adv Res 2021; 31:13-24. [PMID: 34194829 PMCID: PMC8240103 DOI: 10.1016/j.jare.2021.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Hearing impairment (HI) is characterized by complex genetic heterogeneity. The evolution of next generation sequencing, including targeted enrichment panels, has revolutionized HI diagnosis. Objectives In this study, we investigated genetic causes in 22 individuals with non-GJB2 HI. Methods We customized a HaloplexHS kit to include 30 genes known to be associated with autosomal recessive nonsyndromic HI (ARNSHI) and Usher syndrome in North Africa. Results In accordance with the ACMG/AMP guidelines, we report 11 pathogenic variants; as follows; five novel variants including three missense (ESRRB-Tyr295Cys, MYO15A-Phe2089Leu and MYO7A-Tyr560Cys) and two nonsense (USH1C-Gln122Ter and CIB2-Arg104Ter) mutations; two previously reported mutations (OTOF-Glu57Ter and PNPT1-Glu475Gly), but first time identified among Tunisian families; and four other identified mutations namely WHRN-Gly808AspfsX11, SLC22A4-Cys113Tyr and two MYO7A compound heterozygous splice site variants that were previously described in Tunisia. Pathogenic variants in WHRN and CIB2 genes, in patients with convincing phenotype ruling out retinitis pigmentosa, provide strong evidence supporting their association with ARNSHI. Moreover, we shed lights on the pathogenic implication of mutations in PNPT1 gene in auditory function providing new evidence for its association with ARNSHI. Lack of segregation of a previously identified causal mutation OTOA-Val603Phe further supports its classification as variant of unknown significance. Our study reports absence of otoacoustic emission in subjects using bilateral hearing aids for several years indicating the importance of screening genetic alteration in OTOF gene for proper management of those patients. Conclusion In conclusion, our findings do not only expand the spectrum of HI mutations in Tunisian patients, but also improve our knowledge about clinical relevance of HI causing genes and variants.
Collapse
Affiliation(s)
- Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Mariem Ben Said
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Ikhlas Ben Ayed
- Medical Genetic Department, University Hedi Chaker Hospital of Sfax, Tunisia
- Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Ines Elloumi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Mohamed Ali Mosrati
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Mehdi Hasnaoui
- Department of Otorhinolaryngology, Taher Sfar University Hospital of Mahdia, Tunisia
| | - Malek Belcadhi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Nabil Idriss
- Department of Otorhinolaryngology, Taher Sfar University Hospital of Mahdia, Tunisia
| | - Hassen Kamoun
- Medical Genetic Department, University Hedi Chaker Hospital of Sfax, Tunisia
- Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Nourhene Gharbi
- Medical Genetic Department, University Hedi Chaker Hospital of Sfax, Tunisia
- Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Abdullah A. Gibriel
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy. The British University in Egypt (BUE) Cairo, Egypt
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
- Corresponding author at: Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, Sidi Mansour road Km 6, BP “1177”, 3018 Sfax, Tunisia.
| |
Collapse
|
5
|
Zhu Y, Delhommel F, Cordier F, Lüchow S, Mechaly A, Colcombet-Cazenave B, Girault V, Pepermans E, Bahloul A, Gautier C, Brûlé S, Raynal B, Hoos S, Haouz A, Caillet-Saguy C, Ivarsson Y, Wolff N. Deciphering the Unexpected Binding Capacity of the Third PDZ Domain of Whirlin to Various Cochlear Hair Cell Partners. J Mol Biol 2020; 432:5920-5937. [PMID: 32971111 DOI: 10.1016/j.jmb.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Hearing is a mechanical and neurochemical process, which occurs in the hair cells of inner ear that converts the sound vibrations into electrical signals transmitted to the brain. The multi-PDZ scaffolding protein whirlin plays a critical role in the formation and function of stereocilia exposed at the surface of hair cells. In this article, we reported seven stereociliary proteins that encode PDZ binding motifs (PBM) and interact with whirlin PDZ3, where four of them are first reported. We solved the atomic resolution structures of complexes between whirlin PDZ3 and the PBMs of myosin 15a, CASK, harmonin a1 and taperin. Interestingly, the PBM of CASK and taperin are rare non-canonical PBM, which are not localized at the extreme C terminus. This large capacity to accommodate various partners could be related to the distinct functions of whirlin at different stages of the hair cell development.
Collapse
Affiliation(s)
- Yanlei Zhu
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France; Complexité du Vivant, Sorbonne Université, 75005 Paris, France
| | - Florent Delhommel
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France; Complexité du Vivant, Sorbonne Université, 75005 Paris, France
| | | | | | - Ariel Mechaly
- Plateforme de Cristallographie, Institut Pasteur, Paris, France
| | - Baptiste Colcombet-Cazenave
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France; Complexité du Vivant, Sorbonne Université, 75005 Paris, France
| | | | - Elise Pepermans
- Complexité du Vivant, Sorbonne Université, 75005 Paris, France; Unité de génétique et physiologie de l'audition, Institut Pasteur, 75015 Paris, France
| | - Amel Bahloul
- Unité de génétique et physiologie de l'audition, Institut Pasteur, 75015 Paris, France
| | - Candice Gautier
- Istituto Pasteur - Fondazione C. Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Sébastien Brûlé
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Bertrand Raynal
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Sylviane Hoos
- Plateforme de Biophysique Moléculaire, Institut Pasteur, Paris, France
| | - Ahmed Haouz
- Plateforme de Cristallographie, Institut Pasteur, Paris, France
| | | | - Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Sweden
| | - Nicolas Wolff
- Unité Récepteurs-Canaux, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
6
|
Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges. J Clin Med 2020; 9:jcm9072309. [PMID: 32708116 PMCID: PMC7408650 DOI: 10.3390/jcm9072309] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Hearing impairment is the most frequent sensory deficit in humans of all age groups, from children (1/500) to the elderly (more than 50% of the over-75 s). Over 50% of congenital deafness are hereditary in nature. The other major causes of deafness, which also may have genetic predisposition, are aging, acoustic trauma, ototoxic drugs such as aminoglycosides, and noise exposure. Over the last two decades, the study of inherited deafness forms and related animal models has been instrumental in deciphering the molecular, cellular, and physiological mechanisms of disease. However, there is still no curative treatment for sensorineural deafness. Hearing loss is currently palliated by rehabilitation methods: conventional hearing aids, and for more severe forms, cochlear implants. Efforts are continuing to improve these devices to help users to understand speech in noisy environments and to appreciate music. However, neither approach can mediate a full recovery of hearing sensitivity and/or restoration of the native inner ear sensory epithelia. New therapeutic approaches based on gene transfer and gene editing tools are being developed in animal models. In this review, we focus on the successful restoration of auditory and vestibular functions in certain inner ear conditions, paving the way for future clinical applications.
Collapse
|
7
|
Tadenev ALD, Akturk A, Devanney N, Mathur PD, Clark AM, Yang J, Tarchini B. GPSM2-GNAI Specifies the Tallest Stereocilia and Defines Hair Bundle Row Identity. Curr Biol 2019; 29:921-934.e4. [PMID: 30827920 DOI: 10.1016/j.cub.2019.01.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/12/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
The transduction compartment of inner ear hair cells, the hair bundle, is composed of stereocilia rows of graded height, a property essential for sensory function that remains poorly understood at the molecular level. We previously showed that GPSM2-GNAI is enriched at stereocilia distal tips and required for their postnatal elongation and bundle morphogenesis-two characteristics shared with MYO15A (short isoform), WHRN, and EPS8 proteins. Here we first performed a comprehensive genetic analysis of the mouse auditory epithelium to show that GPSM2, GNAI, MYO15A, and WHRN operate in series within the same pathway. To understand how these functionally disparate proteins act as an obligate complex, we then systematically analyzed their distribution in normal and mutant bundles over time. We discovered that WHRN-GPSM2-GNAI is an extra module recruited by and added to a pre-existing MYO15A-EPS8 stereocilia tip complex. This extended complex is only present in the first, tallest row, and is required to stabilize larger amounts of MYO15A-EPS8 than in shorter rows, which at tips harbor only MYO15A-EPS8. In the absence of GPSM2 or GNAI function, including in the epistatic Myo15a and Whrn mutants, bundles retain an embryonic-like organization that coincides with generic stereocilia at the molecular level. We propose that GPSM2-GNAI confers on the first row its unique tallest identity and participates in generating differential row identity across the hair bundle.
Collapse
Affiliation(s)
| | - Anil Akturk
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Pranav Dinesh Mathur
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Anna M Clark
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA; Division of Otolaryngology, Department of Surgery, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Department of Medicine, Tufts University, Boston, MA 02111, USA; Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
8
|
Carpena NT, Lee MY. Genetic Hearing Loss and Gene Therapy. Genomics Inform 2018; 16:e20. [PMID: 30602081 PMCID: PMC6440668 DOI: 10.5808/gi.2018.16.4.e20] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Genetic hearing loss crosses almost all the categories of hearing loss which includes the following: conductive, sensory, and neural; syndromic and nonsyndromic; congenital, progressive, and adult onset; high-frequency, low-frequency, or mixed frequency; mild or profound; and recessive, dominant, or sex-linked. Genes play a role in almost half of all cases of hearing loss but effective treatment options are very limited. Genetic hearing loss is considered to be extremely genetically heterogeneous. The advancements in genomics have been instrumental to the identification of more than 6,000 causative variants in more than 150 genes causing hearing loss. Identification of genes for hearing impairment provides an increased insight into the normal development and function of cells in the auditory system. These defective genes will ultimately be important therapeutic targets. However, the auditory system is extremely complex which requires tremendous advances in gene therapy including gene vectors, routes of administration, and therapeutic approaches. This review summarizes and discusses recent advances in elucidating the genomics of genetic hearing loss and technologies aimed at developing a gene therapy that may become a treatment option for in the near future.
Collapse
Affiliation(s)
- Nathanial T Carpena
- Department of Otolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan 31116, Korea
| | - Min Young Lee
- Department of Otolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan 31116, Korea.,Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
9
|
Barić A, Brčić L, Gračan S, Torlak Lovrić V, Gunjača I, Šimunac M, Brekalo M, Boban M, Polašek O, Barbalić M, Zemunik T, Punda A, Boraska Perica V. Association of established hypothyroidism-associated genetic variants with Hashimoto's thyroiditis. J Endocrinol Invest 2017; 40:1061-1067. [PMID: 28382505 DOI: 10.1007/s40618-017-0660-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE Hashimoto's thyroiditis (HT) as a chronic autoimmune disease of the thyroid gland is the most common cause of hypothyroidism. Since HT and hypothyroidism are closely related, the main aim of this study was to explore the association of established hypothyroidism single-nucleotide polymorphisms (SNPs) with HT. METHODS The case-control dataset included 200 HT cases and 304 controls. Diagnosis of HT cases was based on clinical examination, measurement of thyroid antibodies (TgAb, TPOAb), hormones (TSH and FT4) and ultrasound examination. We genotyped and analysed 11 known hypothyroidism-associated genetic variants. Case-control association analysis was performed in order to test each SNP for the association with HT using logistic regression model. Additionally, each SNP was tested for the association with thyroid-related quantitative traits (TPOAb levels, TgAb levels and thyroid volume) in HT cases only using linear regression. RESULTS We identified two genetic variants nominally associated with HT rs3184504 in SH2B3 gene (P = 0.0135, OR = 0.74, 95% CI = 0.57-0.95) and rs4704397 in PDE8B gene (P = 0.0383, OR = 1.32, 95% CI = 1.01-1.74). The SH2B3 genetic variant also showed nominal association with TPOAb levels (P = 0.0163, β = -0.46) and rs4979402 inside DFNB31 gene was nominally associated with TgAb levels (P = 0.0443, β = 0.41). CONCLUSIONS SH2B3 gene has previously been associated with susceptibility to several autoimmune diseases, whereas PDE8B has been associated with TSH levels and suggested to modulate thyroid physiology that may influence the manifestation of thyroid disease. Identified loci are novel and biologically plausible candidates for HT development and represent good basis for further exploration of HT susceptibility.
Collapse
Affiliation(s)
- A Barić
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - L Brčić
- Department of Medical Biology, School of Medicine, University of Split, Split, Croatia
| | - S Gračan
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - V Torlak Lovrić
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - I Gunjača
- Department of Medical Biology, School of Medicine, University of Split, Split, Croatia
| | - M Šimunac
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - M Brekalo
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - M Boban
- Department of Pharmacology, School of Medicine, University of Split, Split, Croatia
| | - O Polašek
- Department of Public Health, School of Medicine, University of Split, Split, Croatia
| | - M Barbalić
- Department of Medical Biology, School of Medicine, University of Split, Split, Croatia
| | - T Zemunik
- Department of Medical Biology, School of Medicine, University of Split, Split, Croatia
| | - A Punda
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - V Boraska Perica
- Department of Medical Biology, School of Medicine, University of Split, Split, Croatia.
| |
Collapse
|
10
|
Gene Therapy Restores Balance and Auditory Functions in a Mouse Model of Usher Syndrome. Mol Ther 2017; 25:780-791. [PMID: 28254438 DOI: 10.1016/j.ymthe.2017.01.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Dizziness and hearing loss are among the most common disabilities. Many forms of hereditary balance and hearing disorders are caused by abnormal development of stereocilia, mechanosensory organelles on the apical surface of hair cells in the inner ear. The deaf whirler mouse, a model of human Usher syndrome (manifested by hearing loss, dizziness, and blindness), has a recessive mutation in the whirlin gene, which renders hair cell stereocilia short and dysfunctional. In this study, wild-type whirlin cDNA was delivered to the inner ears of neonatal whirler mice using adeno-associated virus serotype 2/8 (AAV8-whirlin) by injection into the posterior semicircular canal. Unilateral whirlin gene therapy injection was able to restore balance function as well as improve hearing in whirler mice for at least 4 months. Our data indicate that gene therapy is likely to become a treatment option for hereditary disorders of balance and hearing.
Collapse
|
11
|
Alternative Splice Forms Influence Functions of Whirlin in Mechanosensory Hair Cell Stereocilia. Cell Rep 2016; 15:935-943. [PMID: 27117407 PMCID: PMC4859837 DOI: 10.1016/j.celrep.2016.03.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/18/2016] [Accepted: 03/22/2016] [Indexed: 11/23/2022] Open
Abstract
WHRN (DFNB31) mutations cause diverse hearing disorders: profound deafness (DFNB31) or variable hearing loss in Usher syndrome type II. The known role of WHRN in stereocilia elongation does not explain these different pathophysiologies. Using spontaneous and targeted Whrn mutants, we show that the major long (WHRN-L) and short (WHRN-S) isoforms of WHRN have distinct localizations within stereocilia and also across hair cell types. Lack of both isoforms causes abnormally short stereocilia and profound deafness and vestibular dysfunction. WHRN-S expression, however, is sufficient to maintain stereocilia bundle morphology and function in a subset of hair cells, resulting in some auditory response and no overt vestibular dysfunction. WHRN-S interacts with EPS8, and both are required at stereocilia tips for normal length regulation. WHRN-L localizes midway along the shorter stereocilia, at the level of inter-stereociliary links. We propose that differential isoform expression underlies the variable auditory and vestibular phenotypes associated with WHRN mutations. Major WHRN isoforms WHRN-S and WHRN-L have distinct localizations within stereocilia Lack of WHRN-S and WHRN-L causes short stereocilia bundles and profound deafness In absence of WHRN-L, WHRN-S can preserve stereocilia length in certain hair cells Differential isoform expression underlies distinct phenotypes of known Whrn mutations
Collapse
|
12
|
Ciardo MG, Andrés-Bordería A, Cuesta N, Valente P, Camprubí-Robles M, Yang J, Planells-Cases R, Ferrer-Montiel A. Whirlin increases TRPV1 channel expression and cellular stability. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:115-27. [PMID: 26516054 DOI: 10.1016/j.bbamcr.2015.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 02/01/2023]
Abstract
The expression and function of TRPV1 are influenced by its interaction with cellular proteins. Here, we identify Whirlin, a cytoskeletal PDZ-scaffold protein implicated in hearing, vision and mechanosensory transduction, as an interacting partner of TRPV1. Whirlin associates with TRPV1 in cell lines and in primary cultures of rat nociceptors. Whirlin is expressed in 55% of mouse sensory C-fibers, including peptidergic and non-peptidergic nociceptors, and co-localizes with TRPV1 in 70% of them. Heterologous expression of Whirlin increased TRPV1 protein expression and trafficking to the plasma membrane, and promoted receptor clustering. Silencing Whirlin expression with siRNA or blocking protein translation resulted in a concomitant degradation of TRPV1 that could be prevented by inhibiting the proteasome. The degradation kinetics of TRPV1 upon arresting protein translation mirrored that of Whirlin in cells co-expressing both proteins, suggesting a parallel degradation mechanism. Noteworthy, Whirlin expression significantly reduced TRPV1 degradation induced by prolonged exposure to capsaicin. Thus, our findings indicate that Whirlin and TRPV1 are associated in a subset of nociceptors and that TRPV1 protein stability is increased through the interaction with the cytoskeletal scaffold protein. Our results suggest that the Whirlin–TRPV1 complex may represent a novel molecular target and its pharmacological disruption might be a therapeutic strategy for the treatment of peripheral TRPV1-mediated disorders.
Collapse
Affiliation(s)
- Maria Grazia Ciardo
- Instituto de Biología Molecular y Celular. Universitas Miguel Hernández, Alicante, Spain; Centro de Investigaciones Príncipe Felipe, Valencia, Spain
| | | | - Natalia Cuesta
- Instituto de Biología Molecular y Celular. Universitas Miguel Hernández, Alicante, Spain
| | - Pierluigi Valente
- Instituto de Biología Molecular y Celular. Universitas Miguel Hernández, Alicante, Spain
| | - María Camprubí-Robles
- Instituto de Biología Molecular y Celular. Universitas Miguel Hernández, Alicante, Spain
| | - Jun Yang
- John A Moran Eye Center, The University of Utah, Salt Lake City, UT 84132, USA
| | | | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular. Universitas Miguel Hernández, Alicante, Spain.
| |
Collapse
|
13
|
Gene Therapy Restores Hair Cell Stereocilia Morphology in Inner Ears of Deaf Whirler Mice. Mol Ther 2015; 24:17-25. [PMID: 26307667 DOI: 10.1038/mt.2015.150] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023] Open
Abstract
Hereditary deafness is one of the most common disabilities affecting newborns. Many forms of hereditary deafness are caused by morphological defects of the stereocilia bundles on the apical surfaces of inner ear hair cells, which are responsible for sound detection. We explored the effectiveness of gene therapy in restoring the hair cell stereocilia architecture in the whirlin mouse model of human deafness, which is deaf due to dysmorphic, short stereocilia. Wild-type whirlin cDNA was delivered via adeno-associated virus (AAV8) by injection through the round window of the cochleas in neonatal whirler mice. Subsequently, whirlin expression was detected in infected hair cells (IHCs), and normal stereocilia length and bundle architecture were restored. Whirlin gene therapy also increased inner hair cell survival in the treated ears compared to the contralateral nontreated ears. These results indicate that a form of inherited deafness due to structural defects in cochlear hair cells is amenable to restoration through gene therapy.
Collapse
|
14
|
Najmabadi H, Kahrizi K. Genetics of non-syndromic hearing loss in the Middle East. Int J Pediatr Otorhinolaryngol 2014; 78:2026-36. [PMID: 25281338 DOI: 10.1016/j.ijporl.2014.08.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/24/2014] [Accepted: 08/25/2014] [Indexed: 12/23/2022]
Abstract
Hearing impairment is the most common sensory disorder, present 1 in every 500 newborns. About 80% of genetic HL is classified as non-syndromic deafness. To date, over 115 non-syndromic loci have been identified of which fifty associated with autosomal recessive non-syndromic hearing loss (ARNSHL). In this review article, we represent the 40 genes function and contribution to genetic deafness in different Middle Eastern populations as well as gene frequencies and mutation spectrum. The wide variety of mutations have so far detected in 19 countries reflects the heterogeneity of the genes involved in HL in this region. The deafness genes can cause dysfunction of cochlear homeostasis, cellular organization, neuronal transmission, cell growth, differentiation, and survival, some coding for tectorial membrane-associated proteins, and the remaining with unknown functions. Non-syndromic deafness is highly heterogeneous and mutations in the GJB2 are responsible for almost 30-50% in northwest to as low as 0-5% in south and southeast of the Middle East, it remain as major gene in ARNSHL in Middle East. The other genes contributing to AR/ADNSHL in some countries have been determined while for many other countries in the Middle East have not been studied or little study has been done. With the advancement of next generation sequencing one could expect in next coming year many of the remaining genes to be determine and to understand their function in the inner ear.
Collapse
Affiliation(s)
- Hossein Najmabadi
- Genetics Research Centre (GRC), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Kimia Kahrizi
- Genetics Research Centre (GRC), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
15
|
Ben-Salem S, Rehm HL, Willems PJ, Tamimi ZA, Ayadi H, Ali BR, Al-Gazali L. Analysis of two Arab families reveals additional support for a DFNB2 nonsyndromic phenotype of MYO7A. Mol Biol Rep 2014; 41:193-200. [PMID: 24194196 DOI: 10.1007/s11033-013-2851-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 10/29/2013] [Indexed: 02/05/2023]
Abstract
Variants in the head and tail domains of the MYO7A gene, encoding myosin VIIA, cause Usher syndrome type 1B (USH1B) and nonsyndromic deafness (DFNB2, DFNA11). In order to identify the genetic defect(s) underling profound deafness in two consanguineous Arab families living in UAE, we have sequenced a panel of 19 genes involved in Usher syndrome and nonsyndromic deafness in the index cases of the two families. This analysis revealed a novel homozygous insertion of AG (c.1952_1953insAG/p.C652fsX11) in exon 17 of the MYO7A gene in an Iraqi family, and a homozygous point mutation (c.5660C>T/p.P1887L) in exon 41 affecting the same gene in a large Palestinian family. Moreover, some individuals from the Palestinian family also harbored a novel heterozygous truncating variant (c.1267C>T/p.R423X) in the DFNB31 gene, which is involved in autosomal recessive nonsyndromic deafness type DFNB31 and Usher syndrome type II. Assuming an autosomal recessive mode of inheritance in the two inbred families, we conclude that the homozygous variants in the MYO7A gene are the disease-causing mutations in these families. Furthermore, given the absence of retinal disease in all affected patients examined, particularly a 28 year old patient, suggests that at least one family may segregate a DFNB2 presentation rather than USH1B. This finding further supports the premise that the MYO7A gene is responsible for two distinct diseases and gives evidence that the p.P1887L mutation in a homozygous state may be responsible for nonsyndromic hearing loss.
Collapse
Affiliation(s)
- Salma Ben-Salem
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates,
| | | | | | | | | | | | | |
Collapse
|
16
|
Wright RN, Hong DH, Perkins B. RpgrORF15 connects to the usher protein network through direct interactions with multiple whirlin isoforms. Invest Ophthalmol Vis Sci 2012; 53:1519-29. [PMID: 22323458 DOI: 10.1167/iovs.11-8845] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene are a frequent cause of X-linked retinitis pigmentosa. The RPGR transcript undergoes complex alternative splicing to express both constitutive (Rpgr(ex1-19)) and Rpgr(ORF15) variants. Because functional studies of Rpgr suggest a role in intracellular protein trafficking through the connecting cilia, the goal of this study was to identify potential binding partners for Rpgr(ORF15) and to identify the domains on whirlin necessary for Rpgr binding. METHODS The C-terminus of mouse Rpgr(ORF15) was used as bait in a yeast two-hybrid system. Whirlin expression was analyzed using RT-PCR and Western blot analysis. Protein-protein interactions were confirmed using in vitro binding assays and coimmunoprecipitation. Subcellular colocalization was analyzed using immunohistochemistry on retinal cryosections. RESULTS Yeast two-hybrid analysis identified whirlin, a PDZ-scaffold protein, as a putative binding partner for Rpgr(ORF15). The RPGR(ORF15)-whirlin interaction was confirmed using in vitro binding assays and coimmunoprecipitation from retinal tissue, and both proteins were shown to colocalize in the photoreceptor connecting cilia in vivo. Results from RT-PCR, Western blot analysis, and immunocytochemistry demonstrated that whirlin expressed multiple isoforms in photoreceptors with variable subcellular localization. CONCLUSIONS Whirlin expression has been reported in photoreceptors and cochlear hair cells, and mutations in whirlin cause Usher syndrome (USH2D) and nonsyndromic congenital deafness (DFNB31). Because mutations in the 5' end of whirlin are associated with the syndromic phenotype associated with USH2D, the identification of novel N-terminal isoforms in the retina and a novel RPGR(ORF15)-whirlin interaction provide a potential mechanism for the retinal phenotype observed in USH2D.
Collapse
Affiliation(s)
- Rachel N Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
17
|
Khan SY, Riazuddin S, Shahzad M, Ahmed N, Zafar AU, Rehman AU, Morell RJ, Griffith AJ, Ahmed ZM, Riazuddin S, Friedman TB. DFNB79: reincarnation of a nonsyndromic deafness locus on chromosome 9q34.3. Eur J Hum Genet 2010; 18:125-9. [PMID: 19603065 PMCID: PMC2795002 DOI: 10.1038/ejhg.2009.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 11/09/2022] Open
Abstract
Genetic analysis of an inbred Pakistani family PKDF280, segregating prelingual severe to profound sensorineural hearing loss, provided evidence for a DFNB locus on human chromosome 9q34.3. Co-segregation of the deafness trait with marker D9SH159 was determined by a two-point linkage analysis (LOD score 9.43 at theta=0). Two additional large families, PKDF517 and PKDF741, co-segregate recessive deafness with markers linked to the same interval. Haplotype analyses of these three families refined the interval to 3.84 Mb defined by D9S1818 (centromeric) and D9SH6 (telomeric). This interval overlaps with the previously reported DFNB33 locus whose chromosomal map position has been recently revised and assigned to a new position on chromosome 10p11.23-q21.1. The nonsyndromic deafness locus on chromosome 9q segregating in family PKDF280 was designated DFNB79. We are currently screening the 113 candidate DFNB79 genes for mutations and have excluded CACNA1B, EDF1, PTGDS, EHMT1, QSOX2, NOTCH1, MIR126 and MIR602.
Collapse
Affiliation(s)
- Shahid Yar Khan
- National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan
| | - Saima Riazuddin
- Laboratory of Molecular Genetics, Section on Human Genetics, Rockville, MD, USA
| | - Mohsin Shahzad
- National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan
| | - Nazir Ahmed
- National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan
| | - Ahmad Usman Zafar
- National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan
| | - Atteeq Ur Rehman
- National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan
- Laboratory of Molecular Genetics, Section on Human Genetics, Rockville, MD, USA
| | - Robert J Morell
- Laboratory of Molecular Genetics, Section on Human Genetics, Rockville, MD, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD, USA
| | - Zubair M Ahmed
- Laboratory of Molecular Genetics, Section on Human Genetics, Rockville, MD, USA
| | - Sheikh Riazuddin
- National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, Section on Human Genetics, Rockville, MD, USA
| |
Collapse
|
18
|
Hamamy H, Al-Hait S, Alwan A, Ajlouni K. Jordan: communities and community genetics. ACTA ACUST UNITED AC 2007; 10:52-60. [PMID: 17167252 DOI: 10.1159/000096282] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The population in Jordan mounted from half a million in 1952 to 5.3 millions in 2004 and is composed of a variety of ethnic groups, the majority being Arabs. Couples nowadays tend to have fewer children, with the total fertility rate falling from 7.4 in 1976 to 3.7 in 2004. Consanguineous marriages are traditionally favored, with the preferred marriage partner being the offspring of the father's brother. First-cousin marriages declined from 28.5% for marriages contracted between 1950 and 1979 to 19.5% for marriages contracted after 1980. In the overall population, carrier rates for beta-thalassemia, alpha-thalassemia and sickle cell anemia are in the range of 2-4%, 3.2-12% of males have glucose-6-phosphate dehydrogenase deficiency, and the prevalences for familial Mediterranean fever and cystic fibrosis were estimated at around 0.04% each. A mandatory premarital screening program for beta-thalassemia carriers commenced in June 2004. The high consanguinity rate and the large family size in Jordan have contributed to the description of a number of rare and new autosomal recessive conditions. Genetic services in Jordan are still scarce and do not cover all the country due to the major impediments of a paucity of resources and trained health professionals in the area of medical genetics. The demographic data suggest that the health system in Jordan is capable of introducing some basic community genetic services into the primary health care program through comprehensive and cost-effective programs.
Collapse
Affiliation(s)
- Hanan Hamamy
- National Center for Diabetes, Endocrinology and Genetics, Amman, Jordan.
| | | | | | | |
Collapse
|
19
|
Ebermann I, Scholl HPN, Charbel Issa P, Becirovic E, Lamprecht J, Jurklies B, Millán JM, Aller E, Mitter D, Bolz H. A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss. Hum Genet 2006; 121:203-11. [PMID: 17171570 DOI: 10.1007/s00439-006-0304-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 11/18/2006] [Indexed: 10/23/2022]
Abstract
Usher syndrome is an autosomal recessive condition characterized by sensorineural hearing loss, variable vestibular dysfunction, and visual impairment due to retinitis pigmentosa (RP). The seven proteins that have been identified for Usher syndrome type 1 (USH1) and type 2 (USH2) may interact in a large protein complex. In order to identify novel USH genes, we followed a candidate strategy, assuming that mutations in proteins interacting with this "USH network" may cause Usher syndrome as well. The DFNB31 gene encodes whirlin, a PDZ scaffold protein with expression in both hair cell stereocilia and retinal photoreceptor cells. Whirlin represents an excellent candidate for USH2 because it binds to Usherin (USH2A) and VLGR1b (USH2C). Genotyping of microsatellite markers specific for the DFNB31 gene locus on chromosome 9q32 was performed in a German USH2 family that had been excluded for all known USH loci. Patients showed common haplotypes. Sequence analysis of DFNB31 revealed compound heterozygosity for a nonsense mutation, p.Q103X, in exon 1, and a mutation in the splice donor site of exon 2, c.837+1G>A. DFNB31 mutations appear to be a rare cause of Usher syndrome, since no mutations were identified in an additional 96 USH2 patients. While mutations in the C-terminal half of whirlin have previously been reported in non-syndromic deafness (DFNB31), both alterations identified in our USH2 family affect the long protein isoform. We propose that mutations causing Usher syndrome are probably restricted to exons 1-6 that are specific for the long isoform and probably crucial for retinal function. We describe a novel genetic subtype for Usher syndrome, which we named USH2D and which is caused by mutations in whirlin. Moreover, this is the first case of USH2 that is allelic to non-syndromic deafness.
Collapse
Affiliation(s)
- Inga Ebermann
- Institute of Human Genetics, University Hospital of Cologne, Kerpener Str. 34, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shabbir MI, Ahmed ZM, Khan SY, Riazuddin S, Waryah AM, Khan SN, Camps RD, Ghosh M, Kabra M, Belyantseva IA, Friedman TB, Riazuddin S. Mutations of human TMHS cause recessively inherited non-syndromic hearing loss. J Med Genet 2006; 43:634-40. [PMID: 16459341 PMCID: PMC2564584 DOI: 10.1136/jmg.2005.039834] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/19/2006] [Accepted: 01/24/2006] [Indexed: 11/04/2022]
Abstract
BACKGROUND Approximately half the cases of prelingual hearing loss are caused by genetic factors. Identification of genes causing deafness is a crucial first step in understanding the normal function of these genes in the auditory system. Recently, a mutant allele of Tmhs was reported to be associated with deafness and circling behaviour in the hurry-scurry mouse. Tmhs encodes a predicted tetraspan protein of unknown function, which is expressed in inner ear hair cells. The human homologue of Tmhs is located on chromosome 6p. OBJECTIVE To determine the cause of deafness in four consanguineous families segregating recessive deafness linked to markers on chromosome 6p21.1-p22.3 defining a novel DFNB locus. RESULTS A novel locus for non-syndromic deafness DFNB67 was mapped in an interval of approximately 28.51 cM on human chromosome 6p21.1-p22.3. DNA sequence analysis of TMHS revealed a homozygous frameshift mutation (246delC) and a missense mutation (Y127C) in affected individuals of two families segregating non-syndromic deafness, one of which showed significant evidence of linkage to markers in the DFNB67 interval. The localisation of mTMHS in developing mouse inner ear hair cells was refined and found to be expressed briefly from E16.5 to P3. CONCLUSIONS These findings establish the importance of TMHS for normal sound transduction in humans.
Collapse
Affiliation(s)
- M I Shabbir
- National Centre of Excellence in Molecular Biology, Punjab University, Thokar Niaz Baig, Lahore, Pakistan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Non-syndromic deafness is a paradigm of genetic heterogeneity with 85 loci and 39 nuclear disease genes reported so far. Autosomal-recessive genes are responsible for about 80% of the cases of hereditary non-syndromic deafness of pre-lingual onset with 23 different genes identified to date. In the present article, we review these 23 genes, their function, and their contribution to genetic deafness in different populations. The wide range of functions of these DFNB genes reflects the heterogeneity of the genes involved in hearing and hearing loss. Several of these genes are involved in both recessive and dominant deafness, or in both non-syndromic and syndromic deafness. Mutations in the GJB2 gene encoding connexin 26 are responsible for as much as 50% of pre-lingual, recessive deafness. By contrast, mutations in most of the other DFNB genes have so far been detected in only a small number of families, and their contribution to deafness on a population scale might therefore be limited. Identification of all genes involved in hereditary hearing loss will help in our understanding of the basic mechanisms underlying normal hearing, in early diagnosis and therapy.
Collapse
Affiliation(s)
- M B Petersen
- Department of Genetics, Institute of Child Health, Aghia Sophia Children's Hospital, Athens, Greece.
| | | |
Collapse
|
22
|
Shahin H, Walsh T, Sobe T, Abu Sa’ed J, Abu Rayan A, Lynch ED, Lee MK, Avraham KB, King MC, Kanaan M. Mutations in a novel isoform of TRIOBP that encodes a filamentous-actin binding protein are responsible for DFNB28 recessive nonsyndromic hearing loss. Am J Hum Genet 2006; 78:144-52. [PMID: 16385458 PMCID: PMC1380212 DOI: 10.1086/499495] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 11/07/2005] [Indexed: 11/03/2022] Open
Abstract
In a large consanguineous Palestinian kindred, we previously mapped DFNB28--a locus associated with recessively inherited, prelingual, profound sensorineural hearing impairment--to chromosome 22q13.1. We report here that mutations in a novel 218-kDa isoform of TRIOBP (TRIO and filamentous actin [F-actin] binding protein) are associated with DFNB28 hearing loss in a total of nine Palestinian families. Two nonsense mutations (R347X and Q581X) truncate the protein, and a potentially deleterious missense mutation (G1019R) occurs in a conserved motif in a putative SH3-binding domain. In seven families, 27 deaf individuals are homozygous for one of the nonsense mutations; in two other families, 3 deaf individuals are compound heterozygous for the two nonsense mutations or for Q581X and G1019R. The novel long isoform of TRIOBP has a restricted expression profile, including cochlea, retina, and fetal brain, whereas the original short isoform is widely expressed. Antibodies to TRIOBP reveal expression in sensory cells of the inner ear and colocalization with F-actin along the length of the stereocilia.
Collapse
Affiliation(s)
- Hashem Shahin
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Tom Walsh
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Tama Sobe
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Judeh Abu Sa’ed
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Amal Abu Rayan
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Eric D. Lynch
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Ming K. Lee
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Karen B. Avraham
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Mary-Claire King
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| | - Moein Kanaan
- Department of Life Sciences, Bethlehem University, Bethlehem; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv; and Departments of Medicine and Genome Sciences, University of Washington, Seattle
| |
Collapse
|
23
|
Mburu P, Mustapha M, Varela A, Weil D, El-Amraoui A, Holme RH, Rump A, Hardisty RE, Blanchard S, Coimbra RS, Perfettini I, Parkinson N, Mallon AM, Glenister P, Rogers MJ, Paige AJ, Moir L, Clay J, Rosenthal A, Liu XZ, Blanco G, Steel KP, Petit C, Brown SDM. Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 2003; 34:421-8. [PMID: 12833159 DOI: 10.1038/ng1208] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 06/06/2003] [Indexed: 11/09/2022]
Abstract
The whirler mouse mutant (wi) does not respond to sound stimuli, and detailed ultrastructural analysis of sensory hair cells in the organ of Corti of the inner ear indicates that the whirler gene encodes a protein involved in the elongation and maintenance of stereocilia in both inner hair cells (IHCs) and outer hair cells (OHCs). BAC-mediated transgene correction of the mouse phenotype and mutation analysis identified the causative gene as encoding a novel PDZ protein called whirlin. The gene encoding whirlin also underlies the human autosomal recessive deafness locus DFNB31. In the mouse cochlea, whirlin is expressed in the sensory IHC and OHC stereocilia. Our findings suggest that this novel PDZ domain-containing molecule acts as an organizer of submembranous molecular complexes that control the coordinated actin polymerization and membrane growth of stereocilia.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chromosome Mapping
- Cilia/physiology
- Cilia/ultrastructure
- DNA Mutational Analysis
- DNA, Complementary/genetics
- Deafness/genetics
- Gene Expression
- Genes, Recessive
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/ultrastructure
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Molecular Sequence Data
- Phenotype
- Proteins/genetics
- Proteins/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Species Specificity
Collapse
Affiliation(s)
- Philomena Mburu
- MRC Mammalian Genetics Unit and UK Mouse Genome Centre, Harwell, Oxon OX11 ORD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pace JM, Corrado M, Missero C, Byers PH. Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biol 2003; 22:3-14. [PMID: 12714037 DOI: 10.1016/s0945-053x(03)00007-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fibrillar collagens provide structural scaffolding and strength to the extracellular matrices of connective tissues. We identified a partial sequence of a new fibrillar collagen gene in the NCBI databases and completed the sequence with bioinformatic approaches and 5' RACE. This gene, designated COL27A1, is approximately 156 kbp long and has 61 exons located on chromosome 9q32-33. The homologous mouse gene is located on chromosome 4. The gene encodes amino- and carboxyl-terminal propeptides similar to those in the 'minor' fibrillar collagens. The triple-helical domain is, however, shorter and contains 994 amino acids with two imperfections of the Gly-Xaa-Yaa repeat pattern. There were three sites of alternative RNA splicing, only one of which led to the intact mRNA that encodes this full-length collagen proalpha chain. Phylogenetic analyses indicated that COL27A1 forms a clade with COL24A1 that is distinct from the two known lineages of fibrillar collagens. Expression analyses of the mouse col27a1 gene demonstrated high expression in cartilage, the eye and ear, but also in lung and colon. It is likely that the major protein product of COL27A1, proalpha1(XXVII), is a component of the extracellular matrices of cartilage and these other tissues. Study of this collagen should yield insights into normal chondrogenesis, and provide clues to the pathogenesis of some chondrodysplasias and disorders of other tissues in which this gene is expressed.
Collapse
Affiliation(s)
- James M Pace
- Department of Pathology, University of Washington, Box 357470, Seattle 98195, USA
| | | | | | | |
Collapse
|