1
|
Luna-Arias JP, Castro-Muñozledo F. Participation of the TBP-associated factors (TAFs) in cell differentiation. J Cell Physiol 2024; 239:e31167. [PMID: 38126142 DOI: 10.1002/jcp.31167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The understanding of the mechanisms that regulate gene expression to establish differentiation programs and determine cell lineages, is one of the major challenges in Developmental Biology. Besides the participation of tissue-specific transcription factors and epigenetic processes, the role of general transcription factors has been ignored. Only in recent years, there have been scarce studies that address this issue. Here, we review the studies on the biological activity of some TATA-box binding protein (TBP)-associated factors (TAFs) during the proliferation of stem/progenitor cells and their involvement in cell differentiation. Particularly, the accumulated evidence suggests that TAF4, TAF4b, TAF7L, TAF8, TAF9, and TAF10, among others, participate in nervous system development, adipogenesis, myogenesis, and epidermal differentiation; while TAF1, TAF7, TAF15 may be involved in the regulation of stem cell proliferative abilities and cell cycle progression. On the other hand, evidence suggests that TBP variants such as TBPL1 and TBPL2 might be regulating some developmental processes such as germ cell maturation and differentiation, myogenesis, or ventral specification during development. Our analysis shows that it is necessary to study in greater depth the biological function of these factors and its participation in the assembly of specific transcription complexes that contribute to the differential gene expression that gives rise to the great diversity of cell types existing in an organism. The understanding of TAFs' regulation might lead to the development of new therapies for patients which suffer from mutations, alterations, and dysregulation of these essential elements of the transcriptional machinery.
Collapse
Affiliation(s)
- Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| |
Collapse
|
2
|
Leid J, Gray R, Rakita P, Koenig AL, Tripathy R, Fitzpatrick JAJ, Kaufman C, Solnica-Krezel L, Lavine KJ. Deletion of taf1 and taf5 in zebrafish capitulate cardiac and craniofacial abnormalities associated with TAFopathies through perturbations in metabolism. Biol Open 2023; 12:bio059905. [PMID: 37746814 PMCID: PMC10354717 DOI: 10.1242/bio.059905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 09/26/2023] Open
Abstract
Intellectual disability is a neurodevelopmental disorder that affects 2-3% of the general population. Syndromic forms of intellectual disability frequently have a genetic basis and are often accompanied by additional developmental anomalies. Pathogenic variants in components of TATA-binding protein associated factors (TAFs) have recently been identified in a subset of patients with intellectual disability, craniofacial hypoplasia, and congenital heart disease. This syndrome has been termed as a TAFopathy and includes mutations in TATA binding protein (TBP), TAF1, TAF2, and TAF6. The underlying mechanism by which TAFopathies give rise to neurodevelopmental, craniofacial, and cardiac abnormalities remains to be defined. Through a forward genetic screen in zebrafish, we have recovered a recessive mutant phenotype characterized by craniofacial hypoplasia, ventricular hypoplasia, heart failure at 96 h post-fertilization and lethality, and show it is caused by a nonsense mutation in taf5. CRISPR/CAS9 mediated gene editing revealed that these defects where phenocopied by mutations in taf1 and taf5. Mechanistically, taf5-/- zebrafish displayed misregulation in metabolic gene expression and metabolism as evidenced by RNA sequencing, respiration assays, and metabolite studies. Collectively, these findings suggest that the TAF complex may contribute to neurologic, craniofacial, and cardiac development through regulation of metabolism.
Collapse
Affiliation(s)
- Jamison Leid
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan Gray
- Departments of Nutritional Sciences, Dell Pediatrics Research Institute, University of Texas at Austin, Austin, TX 78723, USA
| | - Peter Rakita
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L. Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohan Tripathy
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A. J. Fitzpatrick
- Departments of Neuroscience and Cell Biology, Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles Kaufman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
4
|
El-Saafin F, Bergamasco MI, Chen Y, May RE, Esakky P, Hediyeh-Zadeh S, Dixon M, Wilcox S, Davis MJ, Strasser A, Smyth GK, Thomas T, Voss AK. Loss of TAF8 causes TFIID dysfunction and p53-mediated apoptotic neuronal cell death. Cell Death Differ 2022; 29:1013-1027. [PMID: 35361962 PMCID: PMC9091217 DOI: 10.1038/s41418-022-00982-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Mutations in genes encoding general transcription factors cause neurological disorders. Despite clinical prominence, the consequences of defects in the basal transcription machinery during brain development are unclear. We found that loss of the TATA-box binding protein-associated factor TAF8, a component of the general transcription factor TFIID, in the developing central nervous system affected the expression of many, but notably not all genes. Taf8 deletion caused apoptosis, unexpectedly restricted to forebrain regions. Nuclear levels of the transcription factor p53 were elevated in the absence of TAF8, as were the mRNAs of the pro-apoptotic p53 target genes Noxa, Puma and Bax. The cell death in Taf8 forebrain regions was completely rescued by additional loss of p53, but Taf8 and p53 brains failed to initiate a neuronal expression program. Taf8 deletion caused aberrant transcription of promoter regions and splicing anomalies. We propose that TAF8 supports the directionality of transcription and co-transcriptional splicing, and that failure of these processes causes p53-induced apoptosis of neuronal cells in the developing mouse embryo.
Collapse
Affiliation(s)
- Farrah El-Saafin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Maria I Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yunshun Chen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rose E May
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Prabagaran Esakky
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Soroor Hediyeh-Zadeh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Mathew Dixon
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Stephen Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
- The University of Queensland Diamantina Institute, Woolloongabba, QLD, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Genotype–Phenotype Correlations for Putative Haploinsufficient Genes in Deletions of 6q26-q27: Report of Eight Patients and Review of Literature. Glob Med Genet 2022; 9:166-174. [PMID: 35707784 PMCID: PMC9192176 DOI: 10.1055/s-0042-1743568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background
Cytogenomic analyses have been used to detect pathogenic copy number variants. Patients with deletions at 6q26-q27 present variable clinical features. We reported clinical and cytogenomic findings of eight unrelated patients with a deletion of 6q26-q27. A systematic review of the literature found 28 patients with a deletion of 6q26-q27 from 2010 to 2020.
Results
For these 36 patients, the sex ratio showed equal occurrence between males and females; 29 patients (81%) had a terminal deletion and seven patients (19%) had a proximal or distal interstitial deletion. Of the 22 patients with parental studies, deletions of de novo, maternal, paternal, and bi-parental inheritance accounted for 64, 18, 14, and 4% of patients, respectively. The most common clinical findings were brain abnormalities (100%) in fetuses observed by ultrasonography followed by developmental delay and intellectual disability (81%), brain abnormalities (72%), facial dysmorphism (66%), hypotonia (63%), learning difficulty or language delay (50%), and seizures (47%) in pediatric and adult patients. Anti-epilepsy treatment showed the effect on controlling seizures in these patients. Cytogenomic mapping defined one proximal critical region at 6q26 containing the putative haploinsufficient gene
PRKN
and one distal critical region at 6q27 containing two haploinsufficient genes
DLL1
and
TBP
. Deletions involving the
PRKN
gene could associate with early-onset Parkinson disease and autism spectrum disorder; deletions involving the
DLL1
gene correlate with the 6q terminal deletion syndrome.
Conclusion
The genotype–phenotype correlations for putative haploinsufficient genes in deletions of 6q26-q27 provided evidence for precise diagnostic interpretation, genetic counseling, and clinical management of patients with a deletion of 6q26-q27.
Collapse
|
6
|
Lesieur-Sebellin M, Till M, Khau Van Kien P, Herve B, Bourgon N, Dupont C, Tabet AC, Barrois M, Coussement A, Loeuillet L, Mousty E, Ea V, El Assal A, Mary L, Jaillard S, Beneteau C, Le Vaillant C, Coutton C, Devillard F, Goumy C, Delabaere A, Redon S, Laurent Y, Lamouroux A, Massardier J, Turleau C, Sanlaville D, Cantagrel V, Sonigo P, Vialard F, Salomon LJ, Malan V. Terminal 6q deletions cause brain malformations, a phenotype mimicking heterozygous DLL1 pathogenic variants: A multicenter retrospective case series. Prenat Diagn 2021; 42:118-135. [PMID: 34894355 DOI: 10.1002/pd.6074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Terminal 6q deletion is a rare genetic condition associated with a neurodevelopmental disorder characterized by intellectual disability and structural brain anomalies. Interestingly, a similar phenotype is observed in patients harboring pathogenic variants in the DLL1 gene. Our study aimed to further characterize the prenatal phenotype of this syndrome as well as to attempt to establish phenotype-genotype correlations. METHOD We collected ultrasound findings from 22 fetuses diagnosed with a pure 6qter deletion. We reviewed the literature and compared our 22 cases with 14 fetuses previously reported as well as with patients with heterozygous DLL1 pathogenic variants. RESULTS Brain structural alterations were observed in all fetuses. The most common findings (>70%) were cerebellar hypoplasia, ventriculomegaly, and corpus callosum abnormalities. Gyration abnormalities were observed in 46% of cases. Occasional findings included cerebral heterotopia, aqueductal stenosis, vertebral malformations, dysmorphic features, and kidney abnormalities. CONCLUSION This is the first series of fetuses diagnosed with pure terminal 6q deletion. Based on our findings, we emphasize the prenatal sonographic anomalies, which may suggest the syndrome. Furthermore, this study highlights the importance of chromosomal microarray analysis to search for submicroscopic deletions of the 6q27 region involving the DLL1 gene in fetuses with these malformations.
Collapse
Affiliation(s)
- Marion Lesieur-Sebellin
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
- Faculté de Médecine, Sorbonne Université, Paris, France
| | - Marianne Till
- Laboratoire de Cytogénétique, service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | | | - Bérénice Herve
- Département de Génétique, CHI Poissy Saint-Germain, Saint-Germain, France
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Nicolas Bourgon
- Service d'Obstétrique et de Médecine Fœtale, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Céline Dupont
- Département de Génétique, Unité de Cytogénétique, Hôpital Robert Debré, APHP Nord, Paris, France
| | - Anne-Claude Tabet
- Département de Génétique, Unité de Cytogénétique, Hôpital Robert Debré, APHP Nord, Paris, France
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Mathilde Barrois
- Maternité Port Royal, APHP Centre, Hôpital Cochin, Paris, France
| | - Aurélie Coussement
- Service des Maladies Génétiques de système et d'organes, APHP-Centre, Hôpital Cochin, Paris, France
| | - Laurence Loeuillet
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Eve Mousty
- Service de Gynécologie Obstétrique, Hôpital Caremeau, Nîmes, France
| | - Vuthy Ea
- UF de Cytogénétique et Génétique Médicale, Hôpital Caremeau, Nîmes, France
| | - Amal El Assal
- Département de Gynécologie Obstétrique, CHI Poissy Saint-Germain, Saint-Germain, France
| | - Laura Mary
- Service d'Anatomie Pathologique, CHU Rennes, Rennes, France
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET, Université Rennes 1, Rennes, France
| | - Claire Beneteau
- Service de Génétique Médicale, CHU Nantes, Nantes, France
- UF de Fœtopathologie et Génétique, CHU de Nantes, Nantes, France
| | | | - Charles Coutton
- Service de Génétique, Génomique et Procréation, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences, Equipe Génétique, Epigénétique et Thérapies de l'infertilité, Grenoble, France
| | - Françoise Devillard
- Service de Génétique, Génomique et Procréation, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Carole Goumy
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | | | - Sylvia Redon
- CHU Brest, Inserm, Université de Brest, Brest, France
| | - Yves Laurent
- Service de Gynécologie et Obstétrique, GHBS Lorient, Lorient, France
| | - Audrey Lamouroux
- Service de Génétique Clinique, CHU Montpellier, Université de Montpellier, Montpellier, France
- Service de Gynécologie Obstétrique, CHU Nîmes, Université de Montpellier, Nîmes, France
| | - Jérôme Massardier
- Service de Gynécologie et Obstétrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France
| | - Catherine Turleau
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Damien Sanlaville
- Laboratoire de Cytogénétique, service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Vincent Cantagrel
- Université de Paris, Institut Imagine, Laboratoire de génétique des troubles du neurodéveloppement, Paris, France
- Université de Paris, Paris, France
| | - Pascale Sonigo
- Service de Radiologie Pédiatrique, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - François Vialard
- Département de Génétique, CHI Poissy Saint-Germain, Saint-Germain, France
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Laurent J Salomon
- Service d'Obstétrique et de Médecine Fœtale, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
- Université de Paris, Paris, France
| | - Valérie Malan
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
- Université de Paris, Institut Imagine, Laboratoire de génétique des troubles du neurodéveloppement, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
7
|
Stern S, Hacohen N, Meiner V, Yagel S, Zenvirt S, Shkedi-Rafid S, Macarov M, Valsky DV, Porat S, Yanai N, Frumkin A, Daum H. Universal chromosomal microarray analysis reveals high proportion of copy-number variants in low-risk pregnancies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:813-820. [PMID: 32202684 DOI: 10.1002/uog.22026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
OBJECTIVES To evaluate the yield and utility of the routine use of chromosomal microarray analysis (CMA) for prenatal genetic diagnosis in a large cohort of pregnancies with normal ultrasound (US) at the time of genetic testing, compared with pregnancies with abnormal US findings. METHODS We reviewed all prenatal CMA results in our center between November 2013 and December 2018. The prevalence of different CMA results in pregnancies with normal US at the time of genetic testing ('low-risk pregnancies'), was compared with that in pregnancies with abnormal US findings ('high-risk pregnancies'). Medical records were searched in order to evaluate subsequent US follow-up and the outcome of pregnancies with a clinically relevant copy-number variant (CNV), i.e. a pathogenic or likely pathogenic CNV or a susceptibility locus for disease with > 10% penetrance, related to early-onset disease in the low-risk group. RESULTS In a cohort of 6431 low-risk pregnancies that underwent CMA, the prevalence of a clinically significant CNV related to early-onset disease was 1.1% (72/6431), which was significantly lower than the prevalence in high-risk pregnancies (4.9% (65/1326)). Of the low-risk pregnancies, 0.4% (27/6431) had a pathogenic or likely pathogenic CNV, and another 0.7% (45/6431) had a susceptibility locus with more than 10% penetrance. Follow-up of the low-risk pregnancies with a clinically significant early-onset CNV revealed that 31.9% (23/72) were terminated, while outcome data were missing in 26.4% (19/72). In 16.7% (12/72) of low-risk pregnancies, an US abnormality was discovered later on in gestation, after genetic testing had been performed. CONCLUSION Although the background risk of identifying a clinically significant early-onset abnormal CMA result in pregnancies with a low a-priori risk is lower than that observed in high-risk pregnancies, the risk is substantial and should be conveyed to all pregnant women. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- S Stern
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Hacohen
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - V Meiner
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Yagel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Zenvirt
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Shkedi-Rafid
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - M Macarov
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - D V Valsky
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Porat
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Yanai
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Frumkin
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H Daum
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
8
|
Abstract
Any change in either the short (p) or long (q) arm of chromosome six can result in a variety of disorders. A two-year-old female child came to us with a history of sudden onset generalized tonic-clonic seizure. She had a syndromic face with frontal bossing and palpable thinning of the right lower lip and an apparent facial asymmetry while crying due to the hypoplasia of the right depressor angularis oris. Her joints were hypermobile and hypotonic. Chromosomal karyotyping exhibited a normal female karyotype, but pathogenic microarray genetic evaluation showed a loss of approximately 783 kb of the 6q27 terminus. She was diagnosed with chromosome 6q27 terminal deletion and managed with anti-seizure medications. Chromosome 6q27 terminal deletion can present with an array of structural and developmental anomalies. It is, therefore, necessary to understand the typical phenotypic and distinctive clinical features of congenital chromosome 6q27 terminal deletion syndrome for early diagnosis and intervention.
Collapse
Affiliation(s)
| | - Marsha Medows
- Pediatrics, Woodhull Hospital Center, Brooklyn, USA.,Pediatrics, New York University School of Medicine, New York, USA
| | - Yogesh Acharya
- Vascular and Endovascular Surgery, Western Vascular Institute, Galway, IRL
| |
Collapse
|
9
|
Cheng H, Capponi S, Wakeling E, Marchi E, Li Q, Zhao M, Weng C, Piatek SG, Ahlfors H, Kleyner R, Rope A, Lumaka A, Lukusa P, Devriendt K, Vermeesch J, Posey JE, Palmer EE, Murray L, Leon E, Diaz J, Worgan L, Mallawaarachchi A, Vogt J, de Munnik SA, Dreyer L, Baynam G, Ewans L, Stark Z, Lunke S, Gonçalves AR, Soares G, Oliveira J, Fassi E, Willing M, Waugh JL, Faivre L, Riviere JB, Moutton S, Mohammed S, Payne K, Walsh L, Begtrup A, Sacoto MJG, Douglas G, Alexander N, Buckley MF, Mark PR, Adès LC, Sandaradura SA, Lupski JR, Roscioli T, Agrawal PB, Kline AD, Wang K, Timmers HTM, Lyon GJ. Missense variants in TAF1 and developmental phenotypes: challenges of determining pathogenicity. Hum Mutat 2019; 41:10.1002/humu.23936. [PMID: 31646703 PMCID: PMC7187541 DOI: 10.1002/humu.23936] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022]
Abstract
We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hanyin Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Simona Capponi
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Urology, Medical Faculty-University of Freiburg, Freiburg, Germany
| | - Emma Wakeling
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Harrow, UK
| | - Elaine Marchi
- Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mengge Zhao
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York
| | - Stefan G. Piatek
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, UK
| | - Helena Ahlfors
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, UK
| | - Robert Kleyner
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Alan Rope
- Kaiser Permanente Center for Health Research, Portland, Oregon
- Genome Medical, South San Francisco, California
| | - Aimé Lumaka
- Department of Biomedical and Preclinical Sciences, GIGA-R, Laboratory of Human Genetics, University of Liège, Liège, Belgium
- Institut National de Recherche Biomédicale, Kinshasa, DR Congo
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR Congo
| | - Prosper Lukusa
- Institut National de Recherche Biomédicale, Kinshasa, DR Congo
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR Congo
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Joris Vermeesch
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Elizabeth E. Palmer
- Genetics of Learning Disability Service, Newcastle, New South Wales, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Lucinda Murray
- Genetics of Learning Disability Service, Newcastle, New South Wales, Australia
| | - Eyby Leon
- Rare Disease Institute, Children’s National Health System, Washington, District of Columbia
| | - Jullianne Diaz
- Rare Disease Institute, Children’s National Health System, Washington, District of Columbia
| | - Lisa Worgan
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Amali Mallawaarachchi
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham, UK
| | - Sonja A. de Munnik
- Department of Human Genetics, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lauren Dreyer
- Genetic Services of Western Australia, Undiagnosed Diseases Program, Perth, Western Australia, Australia
| | - Gareth Baynam
- Genetic Services of Western Australia, Undiagnosed Diseases Program, Perth, Western Australia, Australia
- Western Australian Register of Developmental Anomalies, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Telethon Kids Institute, Perth, Western Australia, Australia
- Division of Paediatrics, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Lisa Ewans
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Ana R. Gonçalves
- Center for Medical Genetics Dr. Jacinto de Magalhāes, Hospital and University Center of Porto, Porto, Portugal
| | - Gabriela Soares
- Center for Medical Genetics Dr. Jacinto de Magalhāes, Hospital and University Center of Porto, Porto, Portugal
| | - Jorge Oliveira
- Center for Medical Genetics Dr. Jacinto de Magalhāes, Hospital and University Center of Porto, Porto, Portugal
- unIGENe, and Center for Predictive and Preventive Genetics (CGPP), Institute for Molecular and Cell Biology (IBMC), Institute of Health Research and Innovation (i3S), University of Porto, Porto, Portugal
| | - Emily Fassi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Michigan
| | - Marcia Willing
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Michigan
| | - Jeff L. Waugh
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pediatrics, Division of Pediatric Neurology, University of Texas Southwestern, Dallas, Texas
| | - Laurence Faivre
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, Dijon, France
| | | | - Sebastien Moutton
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, Dijon, France
- Department of Medical Genetics, Reference Center for Developmental Anomalies, Bordeaux University Hospital, Bordeaux, France
| | | | - Katelyn Payne
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laurence Walsh
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | - Michael F. Buckley
- New South Wales Health Pathology Genomic Laboratory, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Paul R. Mark
- Spectrum Health Division of Medical and Molecular Genetics, Grand Rapids, Michigan
| | - Lesley C. Adès
- Department of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Genetics, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sarah A. Sandaradura
- Department of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Genetics, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Texas Children’s Hospital, Houston, Texas
| | - Tony Roscioli
- New South Wales Health Pathology Genomic Laboratory, Prince of Wales Hospital, Randwick, New South Wales, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, New South Wales, Australia
- Neuroscience Research Australia, University of New South Wales, Sydney, New South Wales, Australia
| | - Pankaj B. Agrawal
- Divisions of Newborn Medicine and Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, Maryland
| | - Antonie D. Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, Maryland
| | | | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - H. T. Marc Timmers
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Urology, Medical Faculty-University of Freiburg, Freiburg, Germany
| | - Gholson J. Lyon
- Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- The Graduate Center, The City University of New York, New York, New York
| |
Collapse
|
10
|
Hanna MD, Moretti PN, P de Oliveira C, A Rosa MT, R Versiani B, de Oliveira SF, Pic-Taylor A, F Mazzeu J. Defining the Critical Region for Intellectual Disability and Brain Malformations in 6q27 Microdeletions. Mol Syndromol 2019; 10:202-208. [PMID: 31602192 DOI: 10.1159/000501008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 11/19/2022] Open
Abstract
Terminal microdeletions of the long arm of chromosome 6 are associated with a phenotype that includes multiple brain malformations, intellectual disability, and epilepsy. A 1.7-Mb region has been proposed to contain a gene responsible for the brain anomalies. Here, we present the case of a 12-year-old girl with multiple brain alterations and moderate intellectual disability with a 18-kb deletion in chromosome 6q27, which is smaller than the microdeletions previously described by microarray analysis. We refined the smallest region of overlap possibly associated with the phenotype of brain malformations and intellectual disability to a segment of 325 kb, comprising the DLL1, PSMB1, TBP, and PDCD2 genes since these genes were structurally and/or functionally lost in the smaller deletions described to date. We hypothesize that DLL1 is responsible for brain malformations and possibly interacts with other adjacent genes. The TBP gene encodes a transcription factor which is potentially related to cognitive development. TBP is linked to PSMB1 and PDCD2 in a conserved manner among mammals, suggesting a potential interaction between these genes. In conclusion, the 6q27 microdeletion is a complex syndrome with variable expressivity of brain malformations and intellectual disability phenotypes which are possibly triggered by the 4 genes described and adjacent genes susceptible to gene regulation changes.
Collapse
Affiliation(s)
- Marcela D Hanna
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil.,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | | | | | - Maria T A Rosa
- Secretaria de Estado de Saúde do Distrito Federal, Brasília, Brazil
| | - Beatriz R Versiani
- Hospital Universitário de Brasília, Universidade de Brasília, Brasília, Brazil
| | - Silviene F de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil.,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Aline Pic-Taylor
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil.,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Juliana F Mazzeu
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil.,Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
11
|
Gudmundsson S, Wilbe M, Filipek-Górniok B, Molin AM, Ekvall S, Johansson J, Allalou A, Gylje H, Kalscheuer VM, Ledin J, Annerén G, Bondeson ML. TAF1, associated with intellectual disability in humans, is essential for embryogenesis and regulates neurodevelopmental processes in zebrafish. Sci Rep 2019; 9:10730. [PMID: 31341187 PMCID: PMC6656882 DOI: 10.1038/s41598-019-46632-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/01/2019] [Indexed: 11/22/2022] Open
Abstract
The TATA-box binding protein associated factor 1 (TAF1) protein is a key unit of the transcription factor II D complex that serves a vital function during transcription initiation. Variants of TAF1 have been associated with neurodevelopmental disorders, but TAF1's molecular functions remain elusive. In this study, we present a five-generation family affected with X-linked intellectual disability that co-segregated with a TAF1 c.3568C>T, p.(Arg1190Cys) variant. All affected males presented with intellectual disability and dysmorphic features, while heterozygous females were asymptomatic and had completely skewed X-chromosome inactivation. We investigated the role of TAF1 and its association to neurodevelopment by creating the first complete knockout model of the TAF1 orthologue in zebrafish. A crucial function of human TAF1 during embryogenesis can be inferred from the model, demonstrating that intact taf1 is essential for embryonic development. Transcriptome analysis of taf1 zebrafish knockout revealed enrichment for genes associated with neurodevelopmental processes. In conclusion, we propose that functional TAF1 is essential for embryonic development and specifically neurodevelopmental processes.
Collapse
Affiliation(s)
- Sanna Gudmundsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Beata Filipek-Górniok
- Department of Organismal Biology, Genome Engineering Zebrafish, Science for Life Laboratory, Uppsala University, Uppsala, 752 36, Sweden
| | - Anna-Maja Molin
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Sara Ekvall
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Josefin Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden
| | - Amin Allalou
- Department of Information Technology, Uppsala University, Sweden and Science for Life Laboratory, Uppsala, 751 05, Sweden
| | - Hans Gylje
- Department of Paediatrics, Central Hospital, Västerås, 721 89, Sweden
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, 141 95, Germany
| | - Johan Ledin
- Department of Organismal Biology, Genome Engineering Zebrafish, Science for Life Laboratory, Uppsala University, Uppsala, 752 36, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, Science for Life Laboratory, Uppsala, 751 08, Sweden.
| |
Collapse
|
12
|
Neves A, Eisenman RN. Distinct gene-selective roles for a network of core promoter factors in Drosophila neural stem cell identity. Biol Open 2019; 8:8/4/bio042168. [PMID: 30948355 PMCID: PMC6504003 DOI: 10.1242/bio.042168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcriptional mechanisms that allow neural stem cells (NSC) to balance self-renewal with differentiation are not well understood. Employing an in vivo RNAi screen we identify here NSC-TAFs, a subset of nine TATA-binding protein associated factors (TAFs), as NSC identity genes in Drosophila We found that depletion of NSC-TAFs results in decreased NSC clone size, reduced proliferation, defective cell polarity and increased hypersensitivity to cell cycle perturbation, without affecting NSC survival. Integrated gene expression and genomic binding analyses revealed that NSC-TAFs function with both TBP and TRF2, and that NSC-TAF-TBP and NSC-TAF-TRF2 shared target genes encode different subsets of transcription factors and RNA-binding proteins with established or emerging roles in NSC identity and brain development. Taken together, our results demonstrate that core promoter factors are selectively required for NSC identity in vivo by promoting cell cycle progression and NSC cell polarity. Because pathogenic variants in a subset of TAFs have all been linked to human neurological disorders, this work may stimulate and inform future animal models of TAF-linked neurological disorders.
Collapse
Affiliation(s)
- Alexandre Neves
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| |
Collapse
|
13
|
Sheth F, Liehr T, Shah V, Shah H, Tewari S, Solanki D, Trivedi S, Sheth J. A child with intellectual disability and dysmorphism due to complex ring chromosome 6: identification of molecular mechanism with review of literature. Ital J Pediatr 2018; 44:114. [PMID: 30305128 PMCID: PMC6180451 DOI: 10.1186/s13052-018-0571-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Background Ring chromosome 6 (r(6)) is a rare disorder that mainly occurs as a ‘de novo’ event. Nonetheless, a wide phenotypic spectrum has been reported in r(6) cases, depending on breakpoints, size of involved region, copy number alterations and mosaicism of cells with r(6) and/or monosomy 6 due to loss of r(6). Case presentation An 11-year-old male was referred with developmental delay, intellectual disability and microcephaly. Physical examination revealed additionally short stature and multiple facial dysmorphisms. Banding cytogenetic studies revealed a karyotype of mos 46,XY,r(6)(p25.3q27)[54]/45,XY,-6[13]/46,XY,r(6)(::p25.3→q27::p25.3→q27::)[13]/46,XY[6]/47,XY,r(6)(p25.3q27)×2[2]dn. Additionally, molecular karyotyping and molecular cytogenetics confirmed the breakpoints and characterized a 1.3 Mb contiguous duplication at 6p25.3. Conclusion The present study has accurately identified copy number alterations caused by ring chromosome formation. A review of the literature suggests that hemizygous expression of TBP gene in 6q27~qter, is likely to be the underlying cause of the phenotype. The phenotypic correlation and clinical severity in r(6) cases continue to remain widely diverse in spite of numerous reports of genomic variations.
Collapse
Affiliation(s)
- Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India.
| | - Thomas Liehr
- University Clinic Jena, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Viraj Shah
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India
| | - Hillary Shah
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India
| | - Stuti Tewari
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India
| | - Dhaval Solanki
- Mantra Child Neurology & Epilepsy Hospital, 3rd floor, Oarnate complex, Kalubha road, Kalanala, Bhavanagar, 364001, India
| | - Sunil Trivedi
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India
| | - Jayesh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380009, India
| |
Collapse
|
14
|
Thakur M, Bronshtein E, Hankerd M, Adekola H, Puder K, Gonik B, Ebrahim S. Genomic detection of a familial 382 Kb 6q27 deletion in a fetus with isolated severe ventriculomegaly and her affected mother. Am J Med Genet A 2018; 176:1985-1990. [PMID: 30194807 DOI: 10.1002/ajmg.a.40376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/26/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022]
Abstract
Terminal deletions of the chromosome 6q27 region are rare genomic abnormalities, linked to specific brain malformations and other neurological phenotypes. Reported cases have variable sized genomic deletions that harbor several genes including the DLL1 and TBP. We report on an inherited 0.38 Mb terminal deletion of chromosome 6q27 in a 22-week fetus with isolated bilateral ventriculomegaly and her affected mother using microarray-based comparative genomic hybridization and fluorescent in situ hybridization (FISH). The deleted region harbors at least seven genes including DLL1 and TBP. The affected mother had a history of hydrocephalus, developmental delay, and seizures commonly associated with DLL1 and TBP 6q27 deletions. This deletion is one of the smallest reported isolated 6q27 terminal deletions. Our data provides additional evidence that haploinsufficiency of the DLL1 and TBP genes may be sufficient to cause the ventriculomegaly, seizures, and developmental delays associated with terminal 6q27 deletions, indicating a plausible role in the abnormal development of the central nervous system.
Collapse
Affiliation(s)
- Mili Thakur
- Division of Genetic and Metabolic Disorders, Department of Pediatrics and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University/Detroit Medical Center, Detroit, Michigan
| | - Elena Bronshtein
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University/Detroit Medical Center, Detroit, Michigan
| | - Michael Hankerd
- Cytogenetics Laboratory, Detroit Medical Center University Laboratories, Detroit, Michigan
| | - Henry Adekola
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University/Detroit Medical Center, Detroit, Michigan
| | - Karoline Puder
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University/Detroit Medical Center, Detroit, Michigan
| | - Bernard Gonik
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University/Detroit Medical Center, Detroit, Michigan
| | - Salah Ebrahim
- Cytogenetics Laboratory, Detroit Medical Center University Laboratories, Detroit, Michigan.,Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
15
|
Liu S, Wang Z, Wei S, Liang J, Chen N, OuYang H, Zeng W, Chen L, Xie X, Jiang J. Gray Matter Heterotopia, Mental Retardation, Developmental Delay, Microcephaly, and Facial Dysmorphisms in a Boy with Ring Chromosome 6: A 10-Year Follow-Up and Literature Review. Cytogenet Genome Res 2018; 154:201-208. [DOI: 10.1159/000488692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
Ring chromosome 6, r(6), is an extremely rare cytogenetic abnormality with clinical heterogeneity which arises typically de novo. The phenotypes of r(6) can be highly variable, ranging from almost normal to severe malformations and neurological defects. Up to now, only 33 cases have been reported in the literature. In this 10-year follow-up study, we report a case presenting distinctive facial features, severe developmental delay, and gray matter heterotopia with r(6) and terminal deletions of 6p25.3 (115426-384174, 268 kb) and 6q26-27 (168697778-170732033, 2.03 Mb) encompassing 2 and 15 candidate genes, respectively, which were detected using G-banding karyotyping, FISH, and chromosomal microarray analysis. We also analyzed the available information on the clinical features of the reported r(6) cases in order to provide more valuable information on genotype-phenotype correlations. To the best of our knowledge, this is the first report of gray matter heterotopia manifested in a patient with r(6) in China, and the deletions of 6p and 6q in our case are the smallest with the precise size of euchromatic material loss currently known.
Collapse
|
16
|
De Cinque M, Palumbo O, Mazzucco E, Simone A, Palumbo P, Ciavatta R, Maria G, Ferese R, Gambardella S, Angiolillo A, Carella M, Garofalo S. Developmental Coordination Disorder in a Patient with Mental Disability and a Mild Phenotype Carrying Terminal 6q26-qter Deletion. Front Genet 2017; 8:206. [PMID: 29270193 PMCID: PMC5723635 DOI: 10.3389/fgene.2017.00206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/24/2017] [Indexed: 11/13/2022] Open
Abstract
Terminal deletion of chromosome 6q is a rare chromosomal abnormality associated with variable phenotype spectrum. Although intellectual disability, facial dysmorphism, seizures and brain abnormalities are typical features of this syndrome, genotype-phenotype correlation needs to be better understood. We report the case of a 6-year-old Caucasian boy with a clinical diagnosis of intellectual disability, delayed language development and dyspraxia who carries an approximately 8 Mb de novo heterozygous microdeletion in the 6q26-q27 locus identified by karyotype and defined by high-resolution SNP-array analysis. This patient has no significant structural brain or other organ malformation, and he shows a very mild phenotype compared to similar 6q26-qter deletion. The patient phenotype also suggests that a dyspraxia susceptibility gene is located among the deleted genes.
Collapse
Affiliation(s)
- Marianna De Cinque
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università degli Studi del Molise, Campobasso, Italy.,Unità Operativa di Medicina Trasfusionale, Azienda Sanitaria Regionale del Molise, Presidio Ospedaliero San Timoteo, Termoli, Italy
| | - Orazio Palumbo
- Unità Operativa Complessa di Genetica Medica, Poliambulatorio "Giovanni Paolo II", IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ermelinda Mazzucco
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università degli Studi del Molise, Campobasso, Italy
| | - Antonella Simone
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università degli Studi del Molise, Campobasso, Italy.,Unità Operativa di Medicina Trasfusionale, Azienda Sanitaria Regionale del Molise, Presidio Ospedaliero San Timoteo, Termoli, Italy
| | - Pietro Palumbo
- Unità Operativa Complessa di Genetica Medica, Poliambulatorio "Giovanni Paolo II", IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Renata Ciavatta
- Ufficio per la Tutela della Salute Neurologica e Psichica dell'Età Evolutiva, Azienda Sanitaria Regionale del Molise, Termoli, Italy
| | - Giuliana Maria
- Ufficio per la Tutela della Salute Neurologica e Psichica dell'Età Evolutiva, Azienda Sanitaria Regionale del Molise, Termoli, Italy
| | | | | | - Antonella Angiolillo
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università degli Studi del Molise, Campobasso, Italy
| | - Massimo Carella
- Unità Operativa Complessa di Genetica Medica, Poliambulatorio "Giovanni Paolo II", IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Silvio Garofalo
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
17
|
Tawamie H, Martianov I, Wohlfahrt N, Buchert R, Mengus G, Uebe S, Janiri L, Hirsch FW, Schumacher J, Ferrazzi F, Sticht H, Reis A, Davidson I, Colombo R, Abou Jamra R. Hypomorphic Pathogenic Variants in TAF13 Are Associated with Autosomal-Recessive Intellectual Disability and Microcephaly. Am J Hum Genet 2017; 100:555-561. [PMID: 28257693 DOI: 10.1016/j.ajhg.2017.01.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022] Open
Abstract
In two independent consanguineous families each with two children affected by mild intellectual disability and microcephaly, we identified two homozygous missense variants (c.119T>A [p.Met40Lys] and c.92T>A [p.Leu31His]) in TATA-box-binding-protein-associated factor 13 (TAF13). Molecular modeling suggested a pathogenic effect of both variants through disruption of the interaction between TAF13 and TAF11. These two proteins form a histone-like heterodimer that is essential for their recruitment into the general RNA polymerase II transcription factor IID (TFIID) complex. Co-immunoprecipitation in HeLa cells transfected with plasmids encoding TAF11 and TAF13 revealed that both variants indeed impaired formation of the TAF13-TAF11 heterodimer, thus confirming the protein modeling analysis. To further understand the functional role of TAF13, we performed RNA sequencing of neuroblastoma cell lines upon TAF13 knockdown. The transcriptional profile showed significant deregulation of gene expression patterns with an emphasis on genes related to neuronal and skeletal functions and those containing E-box motives in their promoters. Here, we expand the spectrum of TAF-associated phenotypes and highlight the importance of TAF13 in neuronal functions.
Collapse
|
18
|
De novo mutations in genes of mediator complex causing syndromic intellectual disability: mediatorpathy or transcriptomopathy? Pediatr Res 2016; 80:809-815. [PMID: 27500536 DOI: 10.1038/pr.2016.162] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/13/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies. METHODS Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents. Clinically relevant findings were confirmed by conventional sequencing. RESULTS Each patient showed one de novo variant not previously reported in the literature or databases. Two different missense variants were found in the MED12 or MED13L genes and one nonsense mutation was found in the MED13L gene. CONCLUSION The phenotypic consequences of these mutations are closely related and/or have been previously reported in one or other gene. Additionally, MED12 and MED13L code for two closely related partners of the mediator kinase module. Consequently, we propose the concept of a common MED12/MED13L clinical spectrum, encompassing Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, MED13L haploinsufficiency syndrome, and others.
Collapse
|
19
|
Li Y, Choy KW, Xie HN, Chen M, He WY, Gong YF, Liu HY, Song YQ, Xian YX, Sun XF, Chen XJ. Congenital hydrocephalus and hemivertebrae associated with de novo partial monosomy 6q (6q25.3→qter). Balkan J Med Genet 2015; 18:77-84. [PMID: 26929909 PMCID: PMC4768829 DOI: 10.1515/bjmg-2015-0009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study was conducted to describe a prenatal case of congenital hydrocephalus and hemivertebrae with a 6q terminal deletion and to investigate the possible correlation between the genotype and phenotype of the proband. We performed an array-based comparative genomic hybridization (aCGH) analysis on a fetus diagnosed with congenital hydrocephalus and hemivertebrae. The deletion, spanning 10.06 Mb from 6q25.3 to 6qter, was detected in this fetus. The results of aCGH, karyotype and fluorescent in situ hybridization (FISH) analyses in the healthy parents were normal, which confirmed that the proband’s copy-number variant (CNV) was de novo. This deleted region encompassed 97 genes, including 28 OMIM genes. We discussed four genes (TBP, PSMB1, QKI and Pacrg) that may be responsible for hydrocephalus while the T gene may have a role in hemivertebra. We speculate that five genes in the 6q terminal deletion region were potentially associated with hemivertebrae and hydrocephalus in the proband.
Collapse
Affiliation(s)
- Y Li
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - K-W Choy
- Department of Obstetrics & Gynaecology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - H-N Xie
- Department of Ultrasonic Medicine, Fetal Medical Center, First Affiliated hospital of Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - M Chen
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - W-Y He
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Y-F Gong
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - H-Y Liu
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Y-Q Song
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Y-X Xian
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - X-F Sun
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - X-J Chen
- Key Laboratory of Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
20
|
O’Rawe J, Wu Y, Dörfel M, Rope A, Au P, Parboosingh J, Moon S, Kousi M, Kosma K, Smith C, Tzetis M, Schuette J, Hufnagel R, Prada C, Martinez F, Orellana C, Crain J, Caro-Llopis A, Oltra S, Monfort S, Jiménez-Barrón L, Swensen J, Ellingwood S, Smith R, Fang H, Ospina S, Stegmann S, Den Hollander N, Mittelman D, Highnam G, Robison R, Yang E, Faivre L, Roubertie A, Rivière JB, Monaghan K, Wang K, Davis E, Katsanis N, Kalscheuer V, Wang E, Metcalfe K, Kleefstra T, Innes A, Kitsiou-Tzeli S, Rosello M, Keegan C, Lyon G. TAF1 Variants Are Associated with Dysmorphic Features, Intellectual Disability, and Neurological Manifestations. Am J Hum Genet 2015; 97:922-32. [PMID: 26637982 PMCID: PMC4678794 DOI: 10.1016/j.ajhg.2015.11.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/05/2015] [Indexed: 11/30/2022] Open
Abstract
We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome.
Collapse
|
21
|
Borck G, Hög F, Dentici ML, Tan PL, Sowada N, Medeira A, Gueneau L, Thiele H, Kousi M, Lepri F, Wenzeck L, Blumenthal I, Radicioni A, Schwarzenberg TL, Mandriani B, Fischetto R, Morris-Rosendahl DJ, Altmüller J, Reymond A, Nürnberg P, Merla G, Dallapiccola B, Katsanis N, Cramer P, Kubisch C. BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies. Genome Res 2015; 25:155-66. [PMID: 25561519 PMCID: PMC4315290 DOI: 10.1101/gr.176925.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/26/2014] [Indexed: 01/11/2023]
Abstract
RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.
Collapse
Affiliation(s)
- Guntram Borck
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany;
| | - Friederike Hög
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | | | - Perciliz L Tan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710, USA
| | - Nadine Sowada
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Ana Medeira
- Serviço de Genética, Departamento de Pediatria, Hospital S. Maria, CHLN, 1649-035 Lisboa, Portugal
| | - Lucie Gueneau
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Maria Kousi
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710, USA
| | | | - Larissa Wenzeck
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ian Blumenthal
- Molecular Neurogenetics Unit and Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Antonio Radicioni
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy
| | | | - Barbara Mandriani
- IRCCS Casa Sollievo Della Sofferenza, Medical Genetics Unit, 71013 San Giovanni Rotondo, Italy; PhD Program, Molecular Genetics applied to Medical Sciences, University of Brescia, 25121 Brescia, Italy
| | - Rita Fischetto
- U.O. Malattie Metaboliche PO Giovanni XXIII, AOU Policlinico Consorziale, 70120 Bari, Italy
| | | | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany; Institute for Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Giuseppe Merla
- IRCCS Casa Sollievo Della Sofferenza, Medical Genetics Unit, 71013 San Giovanni Rotondo, Italy
| | | | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710, USA
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
22
|
Zhou L, Chen C, Li H, Chen Y, Xu X, Lin X, Tang S. Delineation variable genotype/phenotype correlations of 6q27 terminal deletion derived from dic(6;18)(q27;p10). Mol Cytogenet 2014; 7:78. [PMID: 25426168 PMCID: PMC4243269 DOI: 10.1186/s13039-014-0078-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
Background Terminal deletion of 6q27 produces a rare syndrome associated with unexplained mental retardation, hypotonia, epilepsy, and multiple malformations. Structural brain malformations are consistently observed, including agenesis of the corpus callosum, hydrocephalus, periventricular nodular heterotopia, polymicrogyria, and cerebellar malformations. Here we report a fetal risk assessment of a 27-year-old woman with mental retardation, hypotonia and dysmorphic features at 17 weeks of pregnancy. Results Cytogenetic analyses revealed an addition at chromosome 6qter in the mother. Haploinsufficiency of 6q27 to 6qter (1.3 Mb) and trisomy of the entire short arm of chromosome 18 (15.2 Mb) were found using a single nucleotide polymorphism based array. Results were confirmed by molecular cytogenetics and multiplex ligation-dependent probe amplification. The karyotype of the mother was 46,XX dic(6;18)(6pter → 6q27::18p10 → 18pter).arr [hg19]6q27(169,591,548-170,898,549) × 1,18p11.3p10(12,842-15,375,878) × 3.ish dic(6;18)(q27;p10)(RP11-614P3-,RP11-1035E2+,D18Z1+). Deletion of 6q27 was associated with the structural brain malformations, whereas trisomy of 18p had minor clinical effects. The unbalanced rearrangement of chromosome 6 and chromosome 18 was de novo and was not inherited by the developing fetus. Conclusions A rare rearrangement between 6q27 and 18p was identified, which led to a de novo 1.3 Mb deletion of 6q27 and a 15.2 Mb duplication of 18p in an adult with mental retardation, hypotonia, epilepsy, and multiple malformations.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China
| | - Chong Chen
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China
| | - Huanzheng Li
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China
| | - Yunying Chen
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, China
| | - Xueqin Xu
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China
| | - Xiaoling Lin
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China
| | - Shaohua Tang
- Department of Genetics, Dingli Clinical Medical School, Wenzhou Medical University, Key Laboratory of Birth Defects, Wenzhou, Zhejiang China ; Key Laboratory of Medical Genetics, Zhejiang, China
| |
Collapse
|
23
|
Peddibhotla S, Nagamani SCS, Erez A, Hunter JV, Holder JL, Carlin ME, Bader PI, Perras HMF, Allanson JE, Newman L, Simpson G, Immken L, Powell E, Mohanty A, Kang SHL, Stankiewicz P, Bacino CA, Bi W, Patel A, Cheung SW. Delineation of candidate genes responsible for structural brain abnormalities in patients with terminal deletions of chromosome 6q27. Eur J Hum Genet 2014; 23:54-60. [PMID: 24736736 DOI: 10.1038/ejhg.2014.51] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 11/09/2022] Open
Abstract
Patients with terminal deletions of chromosome 6q present with structural brain abnormalities including agenesis of corpus callosum, hydrocephalus, periventricular nodular heterotopia, and cerebellar malformations. The 6q27 region harbors genes that are important for the normal development of brain and delineation of a critical deletion region for structural brain abnormalities may lead to a better genotype-phenotype correlation. We conducted a detailed clinical and molecular characterization of seven unrelated patients with deletions involving chromosome 6q27. All patients had structural brain abnormalities. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. The smallest region of overlap spans 1.7 Mb and contains DLL1, THBS2, PHF10, and C6orf70 (ERMARD) that are plausible candidates for the causation of structural brain abnormalities. Our study reiterates the importance of 6q27 region in normal development of brain and helps identify putative genes in causation of structural brain anomalies.
Collapse
Affiliation(s)
- Sirisha Peddibhotla
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ayelet Erez
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - J Lloyd Holder
- 1] Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA [2] Texas Children's Hospital, Houston, TX, USA
| | - Mary E Carlin
- Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Patricia I Bader
- Parkview Cytogenetics and Northeast Indiana Genetic Counseling Center, Fort Wayne, IN, USA
| | - Helene M F Perras
- Regional Genetics Program, Conseillère en génétique agréée, Programme régional de Génétique, Ottawa, Ontario, Canada
| | - Judith E Allanson
- Regional Genetics Program, Conseillère en génétique agréée, Programme régional de Génétique, Ottawa, Ontario, Canada
| | | | | | | | - Erin Powell
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Aaron Mohanty
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Sung-Hae L Kang
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Allina Medical Laboratories, Minneapolis, MN, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sau W Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
24
|
Hellman-Aharony S, Smirin-Yosef P, Halevy A, Pasmanik-Chor M, Yeheskel A, Har-Zahav A, Maya I, Straussberg R, Dahary D, Haviv A, Shohat M, Basel-Vanagaite L. Microcephaly thin corpus callosum intellectual disability syndrome caused by mutated TAF2. Pediatr Neurol 2013; 49:411-416.e1. [PMID: 24084144 DOI: 10.1016/j.pediatrneurol.2013.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/10/2013] [Accepted: 07/20/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND The combination of microcephaly, pyramidal signs, abnormal corpus callosum, and intellectual disability presents a diagnostic challenge. We describe an autosomal recessive disorder characterized by microcephaly, pyramidal signs, thin corpus callosum, and intellectual disability. METHODS We previously mapped the locus for this disorder to 8q23.2-q24.12; the candidate region included 22 genes. We performed Sanger sequencing of 10 candidate genes; to ensure other genes in the candidate region do not harbor mutations, we sequenced the exome of one affected individual. RESULTS We identified two homozygous missense changes, p.Thr186Arg and p.Pro416His in TAF2, which encodes a multisubunit cofactor for TFIID-dependent RNA polymerase II-mediated transcription, in all affected individuals. CONCLUSIONS We propose that the disorder is caused by the more conserved mutation p.Thr186Arg, with the second sequence change identified, p.Pro416His, possibly further negatively affecting the function of the protein. However, it is unclear which of the two changes, or maybe both, represents the causative mutation. A single missense mutation in TAF2 in a family with microcephaly and intellectual disability was described in a large-scale study reporting on the identification of 50 novel genes. We suggest that a mutation in TAF2 can cause this syndrome.
Collapse
|
25
|
Wadt K, Jensen LN, Bjerglund L, Lundstrøm M, Kirchhoff M, Kjaergaard S. Fetal ventriculomegaly due to familial submicroscopic terminal 6q deletions. Prenat Diagn 2012; 32:1212-7. [PMID: 23065819 DOI: 10.1002/pd.3981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Submicroscopic terminal 6q deletions are rare. We report on two familial submicroscopic terminal 6q deletions ascertained because of prenatally detected isolated ventriculomegaly and further delineate the variable prenatal and postnatal phenotype. We review published cases of <5 Mb terminal 6q deletions.
Collapse
|
26
|
Hillman SC, McMullan DJ, Williams D, Maher ER, Kilby MD. Microarray comparative genomic hybridization in prenatal diagnosis: a review. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2012; 40:385-391. [PMID: 22887694 DOI: 10.1002/uog.11180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2012] [Indexed: 06/01/2023]
Abstract
G-band chromosomal karyotyping of fetal cells obtained by invasive prenatal testing has been used since the 1960s to identify structural chromosomal anomalies. Prenatal testing is usually performed in response to parental request, increased risk of fetal chromosomal abnormality associated with advanced maternal age, a high-risk screening test and/or the presence of a congenital malformation identified by ultrasonography. The results of karyotyping may inform the long-term prognosis (e.g. aneuploidy being associated with a poor outcome or microscopic chromosomal anomalies predicting global neurodevelopmental morbidity). Relatively recent advances in microarray technology are now enabling high-resolution genome-wide evaluation for DNA copy number abnormalities (e.g. deletions or duplications). While such technological advances promise increased sensitivity and specificity they can also pose difficult challenges of interpretation and clinical management. This review aims to give interested clinicians without an extensive prior knowledge of microarray technology, an overview of its use in prenatal diagnosis, the literature to date, advantages, potential pitfalls and experience from our own tertiary center.
Collapse
Affiliation(s)
- S C Hillman
- School of Clinical and Experimental Medicine, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
27
|
Abstract
Polyglutamine neurodegenerative diseases result from the expansion of a trinucleotide CAG repeat, encoding a polyglutamine tract in the disease-causing protein. The process by which each polyglutamine protein exerts its toxicity is complex, involving a variety of mechanisms including transcriptional dysregulation, proteasome impairment and mitochondrial dysfunction. Thus, the most effective and widely applicable therapies are likely to be those designed to eliminate production of the mutant protein upstream of these deleterious effects. RNA-based approaches represent promising therapeutic strategies for polyglutamine diseases, offering the potential to suppress gene expression in a sequence-specific manner at the transcriptional and post-transcriptional levels. In particular, gene silencing therapies capable of discrimination between mutant and wildtype alleles, based on disease-linked polymorphisms or CAG repeat length, might prove crucial in cases where a loss of wild type function is deleterious. Novel methods, such as gene knockdown and replacement, seek to eliminate the technical difficulties associated with allele-specific silencing by avoiding the need to target specific mutations. With a variety of RNA technologies currently being developed to target multiple facets of polyglutamine pathogenesis, the emergence of an effective therapy seems imminent. However, numerous technical obstacles associated with design, discrimination and delivery must be overcome before RNA therapy can be effectively applied in the clinical setting.
Collapse
|
28
|
Lee JY, Cho YH, Hallford G. Delineation of subtelomeric deletion of the long arm of chromosome 6. Ann Hum Genet 2011; 75:755-64. [PMID: 21950800 DOI: 10.1111/j.1469-1809.2011.00675.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pure subtelomeric deletion of the long arm of chromosome 6 is rare. The frequency of this deletion accounts for approximately 0.05% of subjects with intellectual disability and developmental delay with or without dysmorphic features. Common phenotypes associated with this deletion include intellectual disability, developmental delay, dysmorphic features, seizure, hypotonia, microcephaly and hypoplasia of the corpus callosum. The smallest overlapped region is approximately 0.4 Mb, and contains three known genes. Of these genes, TBP has been considered as a plausible candidate gene for the phenotype in patients with a subtelomeric 6q deletion. Analysis of the breakpoints in 14 cases revealed a potential common breakpoint interval 8.0-9.0 Mb from the chromosome 6q terminus where the FRA6E fragile site exists and the PARK2 gene is located. This suggests that breakage at the FRA6E fragile site may be the mechanism behind chromosome 6q subtelomeric deletion in some of the cases.
Collapse
Affiliation(s)
- Ji-Yun Lee
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | | |
Collapse
|
29
|
Li P, Pomianowski P, DiMaio MS, Florio JR, Rossi MR, Xiang B, Xu F, Yang H, Geng Q, Xie J, Mahoney MJ. Genomic characterization of prenatally detected chromosomal structural abnormalities using oligonucleotide array comparative genomic hybridization. Am J Med Genet A 2011; 155A:1605-15. [PMID: 21671377 DOI: 10.1002/ajmg.a.34043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 03/18/2011] [Indexed: 12/17/2022]
Abstract
Detection of chromosomal structural abnormalities using conventional cytogenetic methods poses a challenge for prenatal genetic counseling due to unpredictable clinical outcomes and risk of recurrence. Of the 1,726 prenatal cases in a 3-year period, we performed oligonucleotide array comparative genomic hybridization (aCGH) analysis on 11 cases detected with various structural chromosomal abnormalities. In nine cases, genomic aberrations and gene contents involving a 3p distal deletion, a marker chromosome from chromosome 4, a derivative chromosome 5 from a 5p/7q translocation, a de novo distal 6q deletion, a recombinant chromosome 8 comprised of an 8p duplication and an 8q deletion, an extra derivative chromosome 9 from an 8p/9q translocation, mosaicism for chromosome 12q with added material of initially unknown origin, an unbalanced 13q/15q rearrangement, and a distal 18q duplication and deletion were delineated. An absence of pathogenic copy number changes was noted in one case with a de novo 11q/14q translocation and in another with a familial insertion of 21q into a 19q. Genomic characterization of the structural abnormalities aided in the prediction of clinical outcomes. These results demonstrated the value of aCGH analysis in prenatal cases with subtle or complex chromosomal rearrangements. Furthermore, a retrospective analysis of clinical indications of our prenatal cases showed that approximately 20% of them had abnormal ultrasound findings and should be considered as high risk pregnancies for a combined chromosome and aCGH analysis.
Collapse
Affiliation(s)
- Peining Li
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dupé V, Rochard L, Mercier S, Le Pétillon Y, Gicquel I, Bendavid C, Bourrouillou G, Kini U, Thauvin-Robinet C, Bohan TP, Odent S, Dubourg C, David V. NOTCH, a new signaling pathway implicated in holoprosencephaly. Hum Mol Genet 2010; 20:1122-31. [PMID: 21196490 DOI: 10.1093/hmg/ddq556] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genetics of Holoprosencephaly (HPE), a congenital malformation of the developing human forebrain, is due to multiple genetic defects. Most genes that have been implicated in HPE belong to the sonic hedgehog signaling pathway. Here we describe a new candidate gene isolated from array comparative genomic hybridization redundant 6qter deletions, DELTA Like 1 (DLL1), which is a ligand of NOTCH. We show that DLL1 is co-expressed in the developing chick forebrain with Fgf8. By treating chick embryos with a pharmacological inhibitor, we demonstrate that DLL1 interacts with FGF signaling pathway. Moreover, a mutation analysis of DLL1 in HPE patients revealed a three-nucleotide deletion. These various findings implicate DLL1 in early patterning of the forebrain and identify NOTCH as a new signaling pathway involved in HPE.
Collapse
Affiliation(s)
- Valérie Dupé
- Institut de Génétique et Développement, CNRS UMR6061, Université de Rennes 1, IFR140 GFAS, Faculté de Médecine, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mosca AL, Callier P, Masurel-Paulet A, Thauvin-Robinet C, Marle N, Nouchy M, Huet F, Dipanda D, De Paepe A, Coucke P, Mugneret F, Faivre L. Cytogenetic and array-CGH characterization of a 6q27 deletion in a patient with developmental delay and features of Ehlers-Danlos syndrome. Am J Med Genet A 2010; 152A:1314-7. [PMID: 20425843 DOI: 10.1002/ajmg.a.33254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- A L Mosca
- Département de Génétique, CHU le Bocage, Dijon, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Valduga M, Philippe C, Bach Segura P, Thiebaugeorges O, Miton A, Beri M, Bonnet C, Nemos C, Foliguet B, Jonveaux P. A retrospective study by oligonucleotide array-CGH analysis in 50 fetuses with multiple malformations. Prenat Diagn 2010; 30:333-41. [PMID: 20155755 DOI: 10.1002/pd.2460] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To retrospectively define the frequency and the nature of submicroscopic chromosomal imbalances among fetuses with multiple congenital anomalies (MCA). METHODS We used oligonucleotide arrays to perform comparative genomic hybridization after termination of pregnancy in 50 polymalformated fetuses with a normal karyotype. These fetuses presented with at least three significant malformations (42 cases) or a severe brain anomaly (eight cases). RESULTS We identified a deleterious copy number variation (CNV) in five fetuses (10%). De novo genomic imbalances identified in this study consisted of a 6qter deletion in a fetus with brain and renal malformations, a mosaicism for a 8p tetrasomy in a fetus with agenesis of corpus callosum, growth retardation, mild facial dysmorphic features, and vertebral anomalies, a 17p13.3 deletion in a fetus with a complex brain malformation, and a partial 11p trisomy in a fetus with severe growth retardation and oligoamnios. In one case, we identified a partial 17q trisomy resulting from malsegregation of a cryptic-balanced translocation. CONCLUSIONS This study shows that array comparative genomic hybridization (aCGH) is particularly effective for identifying the molecular basis of the disease phenotype in fetuses with multiple anomalies. Our study should help to define clinical relevant regions that would need to be included in targeted arrays designed for prenatal testing.
Collapse
Affiliation(s)
- M Valduga
- Laboratoire de Génétique Médicale, Nancy Université, Centre Hospitalier Régional et Universitaire, Rue du Morvan, Vandoeuvre-les-Nancy cedex 1, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Backx L, Fryns JP, Marcelis C, Devriendt K, Vermeesch J, Van Esch H. Haploinsufficiency of the gene Quaking (QKI) is associated with the 6q terminal deletion syndrome. Am J Med Genet A 2010; 152A:319-26. [PMID: 20082458 DOI: 10.1002/ajmg.a.33202] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Subtelomeric rearrangements involving chromosome 6q have been reported in a limited number of studies. Although the sizes are very variable, ranging from cytogenetically visible deletions to small submicroscopic deletions, a common recognizable phenotype associated with a 6q deletion could be distilled. The main characteristics are intellectual disabilities, hypotonia, seizures, brain anomalies, and specific dysmorphic features including short neck, broad nose with bulbous tip, large and low-set ears and downturned corners of the mouth. In this article we report on a female patient, carrying a reciprocal balanced translocation t(5;6)(q23.1;q26), presenting with a clinical phenotype highly similar to the common 6q- phenotype. Breakpoint analysis using array painting revealed that the Quaking (QKI) gene that maps in 6q26 is disrupted, suggesting that haploinsufficiency of this gene plays a role in the 6q- clinical phenotype.
Collapse
Affiliation(s)
- Liesbeth Backx
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Abu-Amero KK, Hellani A, Salih MA, Al Hussain A, al Obailan M, Zidan G, Alorainy IA, Bosley TM. Ophthalmologic abnormalities in a de novo terminal 6q deletion. Ophthalmic Genet 2010; 31:1-11. [PMID: 20141352 DOI: 10.3109/13816810903312535] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To correlate the clinical phenotype with the genotype of a boy with a terminal deletion of chromosome 6q and to compare these observations to previous reports of 6q deletions and review of the literature. METHODS Careful clinical evaluation, conventional cytogenetic analysis on GTG-banded chromosomes and 244K array CGH analysis. RESULTS This 14 year old Saudi boy had modest mental retardation, seizures, microcephaly, cortical dysplasia, a non-comitant esotropia, impersistent eccentric gaze, congenital nystagmus, thick corneas, and substantial myopia. He had a de novo 10.79 Mb deletion on chromosome 6 from 6q25.3 to 6qter. The deleted region extended from nucleotide 159929512 to 170723629 and encompassed 87 genes. Eleven genes remained within the proband's deleted region after excluding genes located in deleted areas reported in phenotypically normal individuals. Among those 11 genes, only the TBP (TATA box binding protein) gene has been associated with any symptom or sign observed in our patient. CONCLUSIONS This boy had clinical features similar to patients reported with the 6q terminal deletion syndrome. In addition, he had an unusual ocular motility pattern and thick corneas, features that may be more common than previously recognized. Deleted genes in this area of chromosome 6 may contribute to ophthalmic abnormalities in addition to mental retardation.
Collapse
Affiliation(s)
- Khaled K Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Therapeutic gene silencing strategies for polyglutamine disorders. Trends Genet 2010; 26:29-38. [DOI: 10.1016/j.tig.2009.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/05/2009] [Accepted: 11/05/2009] [Indexed: 11/18/2022]
|
36
|
DeScipio C, Spinner NB, Kaur M, Yaeger D, Conlin LK, Ambrosini A, Hu S, Shan S, Krantz ID, Riethman H. Fine-mapping subtelomeric deletions and duplications by comparative genomic hybridization in 42 individuals. Am J Med Genet A 2008; 146A:730-9. [PMID: 18257100 DOI: 10.1002/ajmg.a.32216] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human subtelomere regions contain numerous gene-rich segments and are susceptible to germline rearrangements. The availability of diagnostic test kits to detect subtelomeric rearrangements has resulted in the diagnosis of numerous abnormalities with clinical implications including congenital heart abnormalities and mental retardation. Several of these have been described as clinically recognizable syndromes (e.g., deletion of 1p, 3p, 5q, 6p, 9q, and 22q). Given this, fine-mapping of subtelomeric breakpoints is of increasing importance to the assessment of genotype-phenotype correlations in these recognized syndromes as well as to the identification of additional syndromes. We developed a BAC and cosmid-based DNA array (TEL array) with high-resolution coverage of 10 Mb-sized subtelomeric regions, and used it to analyze 42 samples from unrelated patients with subtelomeric rearrangements whose breakpoints were previously either unmapped or mapped at a lower resolution than that achievable with the TEL array. Six apparently recurrent subtelomeric breakpoint loci were localized to genomic regions containing segmental duplication, copy number variation, and sequence gaps. Small (1 Mb or less) candidate gene regions for clinical phenotypes in separate patients were identified for 3p, 6q, 9q, and 10p deletions as well as for a 19q duplication. In addition to fine-mapping nearly all of the expected breakpoints, several previously unidentified rearrangements were detected.
Collapse
Affiliation(s)
- Cheryl DeScipio
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|