1
|
Liu S, Lyu S, Zhang Y, Liu S, Deng S. Tomato CONSTANS-Like1 promotes anthocyanin biosynthesis under short day and suboptimal low temperature. PLANT PHYSIOLOGY 2025; 198:kiaf190. [PMID: 40359408 DOI: 10.1093/plphys/kiaf190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025]
Abstract
Plant growth and development are precisely controlled by light and temperature during their life span. However, the mechanism by which photoperiod and seasonal changes influence the physiological response of day-neutral plants, such as tomato (Solanum lycopersicum), remains unclear. Here, we found that the tomato CONSTANS (CO) close homolog, CONSTANS-Like1 (SlCOL1), does not affect the flowering of tomato under either long-day or short-day conditions. However, CRISPR/Cas9-mediated editing of SlCOL1 showed a much lower anthocyanin accumulation in mutant than in wild-type plants, especially under SD at suboptimal low-temperature conditions. SlCOL1 directly activated the Hoffman's Anthocyanin 1 (SlAN1) promoter and interacted with SlAN1 to promote anthocyanin biosynthesis under SD. The cold-induced upregulation of SlCOL1 further promoted anthocyanin accumulation and enhanced reactive oxygen species scavenging under SD at low-temperature conditions. These results reveal that the SlCOL1-SlAN1 module collaboratively regulates anthocyanin accumulation under SD and cold conditions, which could help tomato counteract the cold autumn/winter season in nature.
Collapse
Affiliation(s)
- Sai Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanwu Lyu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Siqi Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
2
|
Gou J, Sang X, Liu L, Cao J, Liu Y, Ren C, Zhang Z, Jue D, Shi S. Genome-wide identification and functional analysis of the longan CONSTANS (CO) family. BMC PLANT BIOLOGY 2025; 25:418. [PMID: 40175884 PMCID: PMC11963673 DOI: 10.1186/s12870-025-06451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Longans are among the most economically important subtropical fruits. Its flowering is sensitive to the photoperiod, and flowering time has a significant influence on yield and quality. CONSTANS-like (COL) gene plays a key role in regulating induced flowering in longans. However, the specific role of the COL gene family in the regulation of flowering remains unknown. In this study, 10 DlCOL genes were identified in longans using comprehensive bioinformatics analysis and named based on their physical chromosomal locations. Phylogenetic tree analysis showed that DlCOL genes were divided into three subfamilies, each with a conserved domain. When combined with collinearity analysis, we found DlCOL genes were more closely related to COL genes of dicotyledons. DlCOL family genes are differentially expressed in various longan organs, with DlCOL1, DlCOL3, and DlCOL9 expressed in all organs, with the highest expression levels in floral buds. In the differential expression at different flowering induction stages of 'Sijimi' ('SJ') or 'Shixia' longan ('SX'), DlCOL4 expression was upregulated by 3-fold at the "T1-T2" flowering induction stage in 'SJ', but there was no expression during the three flowering induction stages in 'SX'. Subcellular localization analysis indicated that DlCOL4 is localized in the nucleus. Heterologous transformation of Arabidopsis indicated that DlCOL4 can negatively regulate flowering in transgenic plants. The qRT-PCR (Quantitative real-time PCR) results related to flowering genes indicated that DICOL4 may inhibit flowering by interacting with AtTFL and AtCOL. This study demonstrates the potential functional role of the DlCOL gene and the key role of DlCOL4 in regulating longan flowering.
Collapse
Affiliation(s)
- Jinlin Gou
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Xuelian Sang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Liqin Liu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Jiasui Cao
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Yao Liu
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Ci Ren
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Zhixin Zhang
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Dengwei Jue
- Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/ Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China.
| | - Shengyou Shi
- National Key Laboratory for Tropical Crop Breeding, College of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Sanya, 572025, China.
| |
Collapse
|
3
|
Cai K, Zhu S, Jiang Z, Xu K, Sun X, Li X. Biological macromolecules mediated by environmental signals affect flowering regulation in plants: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108931. [PMID: 39003975 DOI: 10.1016/j.plaphy.2024.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Flowering time is a crucial developmental stage in the life cycle of plants, as it determines the reproductive success and overall fitness of the organism. The precise regulation of flowering time is influenced by various internal and external factors, including genetic, environmental, and hormonal cues. This review provided a comprehensive overview of the molecular mechanisms and regulatory pathways of biological macromolecules (e.g. proteins and phytohormone) and environmental factors (e.g. light and temperature) involved in the control of flowering time in plants. We discussed the key proteins and signaling pathways that govern the transition from vegetative growth to reproductive development, highlighting the intricate interplay between genetic networks, environmental cues, and phytohormone signaling. Additionally, we explored the impact of flowering time regulation on plant adaptation, crop productivity, and agricultural practices. Moreover, we summarized the similarities and differences of flowering mechanisms between annual and perennial plants. Understanding the mechanisms underlying flowering time control is not only essential for fundamental plant biology research but also holds great potential for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Kefan Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Siting Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zeyu Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
4
|
Wang F, Han T, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol 2024; 7:579. [PMID: 38755402 PMCID: PMC11098820 DOI: 10.1038/s42003-024-06275-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongwen Han
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
5
|
Lee SY, Jeung JU, Mo Y. Allelic combinations of Hd1, Hd16, and Ghd7 exhibit pleiotropic effects on agronomic traits in rice. G3 (BETHESDA, MD.) 2024; 14:jkad300. [PMID: 38168849 PMCID: PMC10917519 DOI: 10.1093/g3journal/jkad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Heading date is a critical agronomic trait that significantly affects grain yield and quality in rice. As early heading is typically associated with reduced yield due to shorter growth duration, it is essential to harness optimum heading date genes and their allelic combinations to promote heading while minimizing yield penalties. In this study, we identified quantitative trait loci (QTLs) for heading date and other major agronomic traits in a recombinant inbred line (RIL) population derived from a cross between Koshihikari and Baegilmi. Analyses on 3 major QTLs for heading date and their underlying genes (Hd1, Hd16, and Ghd7) revealed their pleiotropic effects on culm length, panicle length, and head rice percentage. Additionally, Ghd7 exhibited pleiotropic effects on panicle number and grain size. Among 8 different types of allelic combinations of the 3 heading date genes, RILs carrying a single nonfunctional hd16 or ghd7 under the functional background of the other 2 genes (Hd1hd16Ghd7 and Hd1Hd16ghd7) showed potential for maintaining yield and quality-related traits while accelerating heading. These results provide valuable insights for fine-tuning heading dates in rice breeding programs.
Collapse
Affiliation(s)
- Seung Young Lee
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ji-Ung Jeung
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Youngjun Mo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
6
|
Mahmood T, He S, Abdullah M, Sajjad M, Jia Y, Ahmar S, Fu G, Chen B, Du X. Epigenetic insight into floral transition and seed development in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111926. [PMID: 37984609 DOI: 10.1016/j.plantsci.2023.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Seasonal changes are crucial in shifting the developmental stages from the vegetative phase to the reproductive phase in plants, enabling them to flower under optimal conditions. Plants grown at different latitudes sense and interpret these seasonal variations, such as changes in day length (photoperiod) and exposure to cold winter temperatures (vernalization). These environmental factors influence the expression of various genes related to flowering. Plants have evolved to stimulate a rapid response to environmental conditions through genetic and epigenetic mechanisms. Multiple epigenetic regulation systems have emerged in plants to interpret environmental signals. During the transition to the flowering phase, changes in gene expression are facilitated by chromatin remodeling and small RNAs interference, particularly in annual and perennial plants. Key flowering regulators, such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT), interact with various factors and undergo chromatin remodeling in response to seasonal cues. The Polycomb silencing complex (PRC) controls the expression of flowering-related genes in photoperiodic flowering regulation. Under vernalization-dependent flowering, FLC acts as a potent flowering suppressor by downregulating the gene expression of various flower-promoting genes. Eventually, PRCs are critically involved in the regulation of FLC and FT locus interacting with several key genes in photoperiod and vernalization. Subsequently, PRCs also regulate Epigenetical events during gametogenesis and seed development as a driving force. Furthermore, DNA methylation in the context of CHG, CG, and CHH methylation plays a critical role in embryogenesis. DNA glycosylase DME (DEMETER) is responsible for demethylation during seed development. Thus, the review briefly discusses flowering regulation through light signaling, day length variation, temperature variation and seed development in plants.
Collapse
Affiliation(s)
- Tahir Mahmood
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Muhammad Abdullah
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Sajjad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Guoyong Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China.
| |
Collapse
|
7
|
Shi M, Wang C, Wang P, Yun F, Liu Z, Ye F, Wei L, Liao W. Role of methylation in vernalization and photoperiod pathway: a potential flowering regulator? HORTICULTURE RESEARCH 2023; 10:uhad174. [PMID: 37841501 PMCID: PMC10569243 DOI: 10.1093/hr/uhad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023]
Abstract
Recognized as a pivotal developmental transition, flowering marks the continuation of a plant's life cycle. Vernalization and photoperiod are two major flowering pathways orchestrating numerous florigenic signals. Methylation, including histone, DNA and RNA methylation, is one of the recent foci in plant development. Considerable studies reveal that methylation seems to show an increasing potential regulatory role in plant flowering via altering relevant gene expression without altering the genetic basis. However, little has been reviewed about whether and how methylation acts on vernalization- and photoperiod-induced flowering before and after FLOWERING LOCUS C (FLC) reactivation, what role RNA methylation plays in vernalization- and photoperiod-induced flowering, how methylation participates simultaneously in both vernalization- and photoperiod-induced flowering, the heritability of methylation memory under the vernalization/photoperiod pathway, and whether and how methylation replaces vernalization/photoinduction to regulate flowering. Our review provides insight about the crosstalk among the genetic control of the flowering gene network, methylation (methyltransferases/demethylases) and external signals (cold, light, sRNA and phytohormones) in vernalization and photoperiod pathways. The existing evidence that RNA methylation may play a potential regulatory role in vernalization- and photoperiod-induced flowering has been gathered and represented for the first time. This review speculates about and discusses the possibility of substituting methylation for vernalization and photoinduction to promote flowering. Current evidence is utilized to discuss the possibility of future methylation reagents becoming flowering regulators at the molecular level.
Collapse
Affiliation(s)
- Meimei Shi
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- Vegetable and Flower Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fahong Yun
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Fujin Ye
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Xu D, Tang Q, Xu P, Schäffner AR, Leister D, Kleine T. Response of the organellar and nuclear (post)transcriptomes of Arabidopsis to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1220928. [PMID: 37528975 PMCID: PMC10387551 DOI: 10.3389/fpls.2023.1220928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Plants have evolved sophisticated mechanisms to cope with drought, which involve massive changes in nuclear gene expression. However, little is known about the roles of post-transcriptional processing of nuclear or organellar transcripts and how meaningful these changes are. To address these issues, we used RNA-sequencing after ribosomal RNA depletion to monitor (post)transcriptional changes during different times of drought exposure in Arabidopsis Col-0. Concerning the changes detected in the organellar transcriptomes, chloroplast transcript levels were globally reduced, editing efficiency dropped, but splicing was not affected. Mitochondrial transcripts were slightly elevated, while editing and splicing were unchanged. Conversely, alternative splicing (AS) affected nearly 1,500 genes (9% of expressed nuclear genes). Of these, 42% were regulated solely at the level of AS, representing transcripts that would have gone unnoticed in a microarray-based approach. Moreover, we identified 927 isoform switching events. We provide a table of the most interesting candidates, and as proof of principle, increased drought tolerance of the carbonic anhydrase ca1 and ca2 mutants is shown. In addition, altering the relative contributions of the spliced isoforms could increase drought resistance. For example, our data suggest that the accumulation of a nonfunctional FLM (FLOWERING LOCUS M) isoform and not the ratio of FLM-ß and -δ isoforms may be responsible for the phenotype of early flowering under long-day drought conditions. In sum, our data show that AS enhances proteome diversity to counteract drought stress and represent a valuable resource that will facilitate the development of new strategies to improve plant performance under drought.
Collapse
Affiliation(s)
- Duorong Xu
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Qian Tang
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ping Xu
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Anton R. Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Mitsui Y, Yokoyama H, Nakaegawa W, Tanaka K, Komatsu K, Koizuka N, Okuzaki A, Matsumoto T, Takahara M, Tabei Y. Epistatic interactions among multiple copies of FLC genes with naturally occurring insertions correlate with flowering time variation in radish. AOB PLANTS 2023; 15:plac066. [PMID: 36751367 PMCID: PMC9893874 DOI: 10.1093/aobpla/plac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Brassicaceae crops, which underwent whole-genome triplication during their evolution, have multiple copies of flowering-related genes. Interactions among multiple gene copies may be involved in flowering time regulation; however, this mechanism is poorly understood. In this study, we performed comprehensive, high-throughput RNA sequencing analysis to identify candidate genes involved in the extremely late-bolting (LB) trait in radish. Then, we examined the regulatory roles and interactions of radish FLOWERING LOCUS C (RsFLC) paralogs, the main flowering repressor candidates. Seven flowering integrator genes, five vernalization genes, nine photoperiodic/circadian clock genes and eight genes from other flowering pathways were differentially expressed in the early-bolting (EB) cultivar 'Aokubinagafuto' and LB radish cultivar 'Tokinashi' under different vernalization conditions. In the LB cultivar, RsFLC1 and RsFLC2 expression levels were maintained after 40 days of cold exposure. Bolting time was significantly correlated with the expression rates of RsFLC1 and RsFLC2. Using the EB × LB F2 population, we performed association analyses of genotypes with or without 1910- and 1627-bp insertions in the first introns of RsFLC1 and RsFLC2, respectively. The insertion alleles prevented the repression of their respective FLC genes under cold conditions. Interestingly, genotypes homozygous for RsFLC2 insertion alleles maintained high RsFLC1 and RsFLC3 expression levels under cold conditions, and two-way analysis of variance revealed that RsFLC1 and RsFLC3 expression was influenced by the RsFLC2 genotype. Our results indicate that insertions in the first introns of RsFLC1 and RsFLC2 contribute to the late-flowering trait in radish via different mechanisms. The RsFLC2 insertion allele conferred a strong delay in bolting by inhibiting the repression of all three RsFLC genes, suggesting that radish flowering time is determined by epistatic interactions among multiple FLC gene copies.
Collapse
Affiliation(s)
| | - Hinano Yokoyama
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Wataru Nakaegawa
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kenji Komatsu
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Atsugi, Kanagawa 243-0034, Japan
| | - Nobuya Koizuka
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Ayako Okuzaki
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Takashi Matsumoto
- Faculty of Applied Biology, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Manabu Takahara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yutaka Tabei
- Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| |
Collapse
|
10
|
Benaouda S, Stöcker T, Schoof H, Léon J, Ballvora A. Transcriptome profiling at the transition to the reproductive stage uncovers stage and tissue-specific genes in wheat. BMC PLANT BIOLOGY 2023; 23:25. [PMID: 36631761 PMCID: PMC9835304 DOI: 10.1186/s12870-022-03986-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The transition from vegetative to floral phase is the result of complex crosstalk of exogenous and endogenous floral integrators. This critical physiological event is the response to environmental interaction, which causes biochemical cascades of reactions at different internal tissues, organs, and releases signals that make the plant moves from vegetative status to a reproductive phase. This network controlling flowering time is not deciphered largely in bread wheat. In this study, a comparative transcriptome analysis at a transition time in combination with genetic mapping was used to identify responsible genes in a stage and tissue-specific manner. For this reason, two winter cultivars that have been bred in Germany showing contrasting and stable heading time in different environments were selected for the analysis. RESULTS In total, 670 and 1075 differentially expressed genes in the shoot apical meristem and leaf tissue, respectively, could be identified in 23 QTL intervals for the heading date. In the transition apex, Histone methylation H3-K36 and regulation of circadian rhythm are both controlled by the same homoeolog genes mapped in QTL TaHd112, TaHd124, and TaHd137. TaAGL14 gene that identifies the floral meristem was mapped in TaHd054 in the double ridge. In the same stage, the homoeolog located on chromosome 7D of FLOWERING TIME LOCUS T mapped on chr 7B, which evolved an antagonist function and acts as a flowering repressor was uncovered. The wheat orthologue of transcription factor ASYMMETRIC LEAVES 1 (AS1) was identified in the late reproductive stage and was mapped in TaHd102, which is strongly associated with heading date. Deletion of eight nucleotides in the AS1 promoter could be identified in the binding site of the SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1) gene in the late flowering cultivar. Both proteins AS1 and SOC1 are inducing flowering time in response to gibberellin biosynthesis. CONCLUSION The global transcriptomic at the transition phase uncovered stage and tissue-specific genes mapped in QTL of heading date in winter wheat. In response to Gibberellin signaling, wheat orthologous transcription factor AS1 is expressed in the late reproductive phase of the floral transition. The locus harboring this gene is the strongest QTL associated with the heading date trait in the German cultivars. Consequently, we conclude that this is another indication of the Gibberellin biosynthesis as the mechanism behind the heading variation in wheat.
Collapse
Affiliation(s)
- Salma Benaouda
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Heiko Schoof
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Jiang L, Fan T, Wang L, Zhang L, Xu J. Divergence of flowering-related genes to control flowering in five Euphorbiaceae genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1015114. [PMID: 36340397 PMCID: PMC9627276 DOI: 10.3389/fpls.2022.1015114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Reproductive growth and vegetative growth are a pair of main contradictions in the process of plant growth. Flowering, as part of reproductive growth, is a key switch in the life cycle of higher plants, which affects the yield and economic benefits of plants to a certain extent. The Euphorbiaceae species, including castor bean (Ricinus communis), physic nut (Jatropha curcas), tung tree (Vernicia fordii), cassava (Manihot esculenta), and rubber tree (Hevea brasiliensis), have important economic values because they are raw materials for the production of biodiesel, rubber, etc. The flowering mechanisms are still excluded in the Euphorbiaceae species. The flowering-related genes of Arabidopsis thaliana (Arabidopsis) were used as a reference to determine the orthologs of these genes in Euphorbiaceae genomes. The result showed that 146, 144, 114, 114, and 149 of 207 A. thaliana genes were respectively matched to R. communis, V. fordii, J. curcas, H. brasiliensis, and M. esculenta. These identified genes were clustered into seven pathways including gibberellins, floral meristem identity (FMI), vernalization, photoperiod, floral pathway integrators (FPIs), and autonomous pathways. Then, some key numbers of flowering-related genes are widely conserved in the Euphorbiaceae genomes including but not limited to FPI genes LFY, SOC1, FT, and FMI genes AG, CAL, and FUL. However, some genes, including FRI, FLC, and GO, were missing in several or all five Euphorbiaceae species. In this study, we proposed the putative mechanisms of flowering-related genes to control flowering and provided new candidate flowering genes for using marker-assisted breeding to improve variety quality.
Collapse
Affiliation(s)
- Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, China
| | - Tingting Fan
- Forestry College, Central South University of Forestry and Technology, Changsha, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Jun Xu
- Hunan Institute of Microbiology, Changsha, China
| |
Collapse
|
12
|
Nidhi, Kumar P, Pathania D, Thakur S, Sharma M. Environment-mediated mutagenetic interference on genetic stabilization and circadian rhythm in plants. Cell Mol Life Sci 2022; 79:358. [PMID: 35687153 PMCID: PMC11072124 DOI: 10.1007/s00018-022-04368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Many mortal organisms on this planet have developed the potential to merge all internal as well as external environmental cues to regulate various processes running inside organisms and in turn make them adaptive to the environment through the circadian clock. This moving rotator controls processes like activation of hormonal, metabolic, or defense pathways, initiation of flowering at an accurate period, and developmental processes in plants to ensure their stability in the environment. All these processes that are under the control of this rotating wheel can be changed either by external environmental factors or by an unpredictable phenomenon called mutation that can be generated by either physical mutagens, chemical mutagens, or by internal genetic interruption during metabolic processes, which alters normal functionality of organisms like innate immune responses, entrainment of the clock, biomass reduction, chlorophyll formation, and hormonal signaling, despite its fewer positive roles in plants like changing plant type, loss of vernalization treatment to make them survivable in different latitudes, and defense responses during stress. In addition, with mutation, overexpression of gene components sometimes supresses mutation effect and promote normal circadian genes abundance in the cell, while sometimes it affects circadian functionality by generating arrhythmicity and shows that not only mutation but overexpression also effects normal functional activities of plant. Therefore, this review mainly summarizes the role of each circadian clock genes in regulating rhythmicity, and shows that how circadian outputs are controlled by mutations as well as overexpression phenomenon.
Collapse
Affiliation(s)
- Nidhi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Pradeep Kumar
- Central University of Himachal Pradesh, Dharmshala, India
| | - Diksha Pathania
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India.
| |
Collapse
|
13
|
Liang Q, Song K, Lu M, Dai T, Yang J, Wan J, Li L, Chen J, Zhan R, Wang S. Transcriptome and Metabolome Analyses Reveal the Involvement of Multiple Pathways in Flowering Intensity in Mango. FRONTIERS IN PLANT SCIENCE 2022; 13:933923. [PMID: 35909785 PMCID: PMC9330041 DOI: 10.3389/fpls.2022.933923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/13/2022] [Indexed: 05/19/2023]
Abstract
Mango (Mangifera indica L.) is famous for its sweet flavor and aroma. China is one of the major mango-producing countries. Mango is known for variations in flowering intensity that impacts fruit yield and farmers' profitability. In the present study, transcriptome and metabolome analyses of three cultivars with different flowering intensities were performed to preliminarily elucidate their regulatory mechanisms. The transcriptome profiling identified 36,242 genes. The major observation was the differential expression patterns of 334 flowering-related genes among the three mango varieties. The metabolome profiling detected 1,023 metabolites that were grouped into 11 compound classes. Our results show that the interplay of the FLOWERING LOCUS T and CONSTANS together with their upstream/downstream regulators/repressors modulate flowering robustness. We found that both gibberellins and auxins are associated with the flowering intensities of studied mango varieties. Finally, we discuss the roles of sugar biosynthesis and ambient temperature pathways in mango flowering. Overall, this study presents multiple pathways that can be manipulated in mango trees regarding flowering robustness.
Collapse
Affiliation(s)
- Qingzhi Liang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- *Correspondence: Qingzhi Liang
| | - Kanghua Song
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Mingsheng Lu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Tao Dai
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Jie Yang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jiaxin Wan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Li Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jingjing Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Rulin Zhan
| | - Songbiao Wang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Songbiao Wang
| |
Collapse
|
14
|
Zhao N, Su XM, Liu ZW, Zhou JX, Su YN, Cai XW, Chen L, Wu Z, He XJ. The RNA recognition motif-containing protein UBA2c prevents early flowering by promoting transcription of the flowering repressor FLM in Arabidopsis. THE NEW PHYTOLOGIST 2022; 233:751-765. [PMID: 34724229 DOI: 10.1111/nph.17836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
FLOWERING LOCUS M (FLM) is a well-known MADS-box transcription factor that is required for preventing early flowering under low temperatures in Arabidopsis thaliana. Alternative splicing of FLM is involved in the regulation of temperature-responsive flowering. However, how the basic transcript level of FLM is regulated is largely unknown. Here, we conducted forward genetic screening and identified a previously uncharacterized flowering repressor gene, UBA2c. Genetic analyses indicated that UBA2c represses flowering at least by promoting FLM transcription. We further demonstrated that UBA2c directly binds to FLM chromatin and facilitates FLM transcription by inhibiting histone H3K27 trimethylation, a histone marker related to transcriptional repression. UBA2c encodes a protein containing two putative RNA recognition motifs (RRMs) and one prion-like domain (PrLD). We found that UBA2c forms speckles in the nucleus and that both the RRMs and PrLD are required not only for forming the nuclear speckles but also for the biological function of UBA2c. These results identify a previously unknown flowering repressor and provide insights into the regulation of flowering time.
Collapse
Affiliation(s)
- Nan Zhao
- National Institute of Biological Sciences, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Xiao-Min Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Ling Chen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Ding F, Li H, Wang J, Peng H, Chen H, Hu F, Lai B, Wei Y, Ma W, Li H, He X, Zhang S. Development of molecular markers based on the promoter difference of LcFT1 to discriminate easy- and difficult-flowering litchi germplasm resources and its application in crossbreeding. BMC PLANT BIOLOGY 2021; 21:539. [PMID: 34784881 PMCID: PMC8594225 DOI: 10.1186/s12870-021-03309-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Litchi is a well-known subtropical fruit crop. However, irregular bearing attributed to unstable flowering is a major ongoing problem for the development of the litchi industry. In a previous study, our laboratory proved that litchi flowering was induced by low temperature and that a FLOWERING LOCUS T (FT) homologue gene named LcFT1 played a pivotal role in this process. The present study aimed to understand the natural variation in FT among litchi germplasm resources and designed markers to verify easy- and difficult-flowering litchi germplasms. A grafting experiment was also carried out to explore whether it could shorten the seedling stage of litchi seedlings. RESULTS Two types of LcFT1 promoter existed in different litchi germplasm resources, and we named them the 'easy-flowering type of LcFT1 promoter' and 'difficult-flowering type of LcFT1 promoter', which resulted in three different LcFT1 genotypes of litchi germplasm resources, including the homozygous easy-flowering type of the LcFT1 genotype, homozygous difficult-flowering type of the LcFT1 genotype and heterozygous LcFT1 genotype of litchi germplasm resources. The homozygous easy-flowering type of the LcFT1 genotype and heterozygous LcFT1 genotype of the litchi germplasm resources completed their floral induction more easily than the homozygous difficult-flowering type of the LcFT1 genotype of litchi germplasm resources. Herein, we designed two kinds of efficient molecular markers based on the difference in LcFT1 promoter sequences and applied them to identify of the easy- and difficult-flowering litchi germplasm resources. These two kinds of molecular markers were capable of clearly distinguishing the easy- from difficult-flowering litchi germplasm resources at the seedling stage and provided the same results. Meanwhile, grafting the scion of seedlings to the annual branches of adult litchi trees could significantly shorten the seedling stage. CONCLUSIONS Understanding the flowering characteristics of litchi germplasm resources is essential for easy-flowering litchi breeding. In the present study, molecular markers provide a rapid and accurate approach for identifying the flowering characteristics. The application of these molecular markers not only significantly shortened the artificial crossbreeding cycle of easy-flowering litchi cultivars but also greatly saved manpower, material resources and land.
Collapse
Affiliation(s)
- Feng Ding
- Guangxi Crop Genetic Improvement and Biotechnology Key Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Haoran Li
- Guangxi Crop Genetic Improvement and Biotechnology Key Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Jinying Wang
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hongxiang Peng
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Houbin Chen
- Horticulture College, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Fuchu Hu
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/Hainan Provincial Key Laboratory of Tropical Fruit Tree Biology, Haikou, 510642, Hainan, China
| | - Biao Lai
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Yongzan Wei
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Wuqiang Ma
- College of Horticulture, Hainan University, Haikou, 570228, Hainan, China
| | - Hongli Li
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xinhua He
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Shuwei Zhang
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China.
| |
Collapse
|
16
|
Han R, Lavelle D, Truco MJ, Michelmore R. Quantitative Trait Loci and Candidate Genes Associated with Photoperiod Sensitivity in Lettuce (Lactuca spp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3473-3487. [PMID: 34245320 PMCID: PMC8440299 DOI: 10.1007/s00122-021-03908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A population of lettuce that segregated for photoperiod sensitivity was planted under long-day and short-day conditions. Genetic mapping revealed two distinct sets of QTLs controlling daylength-independent and photoperiod-sensitive flowering time. The molecular mechanism of flowering time regulation in lettuce is of interest to both geneticists and breeders because of the extensive impact of this trait on agricultural production. Lettuce is a facultative long-day plant which changes in flowering time in response to photoperiod. Variations exist in both flowering time and the degree of photoperiod sensitivity among accessions of wild (Lactuca serriola) and cultivated (L. sativa) lettuce. An F6 population of 236 recombinant inbred lines (RILs) was previously developed from a cross between a late-flowering, photoperiod-sensitive L. serriola accession and an early-flowering, photoperiod-insensitive L. sativa accession. This population was planted under long-day (LD) and short-day (SD) conditions in a total of four field and screenhouse trials; the developmental phenotype was scored weekly in each trial. Using genotyping-by-sequencing (GBS) data of the RILs, quantitative trait loci (QTL) mapping revealed five flowering time QTLs that together explained more than 20% of the variation in flowering time under LD conditions. Using two independent statistical models to extract the photoperiod sensitivity phenotype from the LD and SD flowering time data, we identified an additional five QTLs that together explained more than 30% of the variation in photoperiod sensitivity in the population. Orthology and sequence analysis of genes within the nine QTLs revealed potential functional equivalents in the lettuce genome to the key regulators of flowering time and photoperiodism, FD and CONSTANS, respectively, in Arabidopsis.
Collapse
Affiliation(s)
- Rongkui Han
- The Plant Biology Graduate Group, University of California, Davis, 95616, USA
- The Genome Center, University of California, Davis, 95616, USA
| | - Dean Lavelle
- The Genome Center, University of California, Davis, 95616, USA
| | | | - Richard Michelmore
- The Genome Center, University of California, Davis, 95616, USA.
- Department of Plant Sciences, University of California, Davis, 95616, USA.
| |
Collapse
|
17
|
Effect of Flowering Time-Related Genes on Biomass, Harvest Index, and Grain Yield in CIMMYT Elite Spring Bread Wheat. BIOLOGY 2021; 10:biology10090855. [PMID: 34571732 PMCID: PMC8471161 DOI: 10.3390/biology10090855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Allelic variants of vernalization (Vrn), photoperiod (Ppd), and earliness per se (Eps) genes in two panels of elite spring wheat were used to estimate their effects on the phenological stages, biomass (BM), harvest index (HI), and grain yield (YLD). Major spring alleles of Vrn-1 had the largest effect on shortening the time to anthesis, while the Ppd-insensitive allele Ppd-D1a had the most significant positive effect on YLD. Furthermore, alleles at recently identified loci TaTOE-B1 and TaFT3-B1 promoted between 3.8% and 7.6% higher YLD and 4.2% and 10.2% higher HI in the two panels. Further, when the possible effects of the TaTOE-B1 and TaFT3-B1 alleles on the sink and source traits were explored, the favorable allele at TaTOE-B1 showed positive effects on several sink traits related mainly to the grain number. Favorable alleles at TaFT3-B1 followed a different pattern, with positive effects on the traits related to grain weight. The results of this study expanded the wheat breeders’ toolbox in the quest to breed better-adapted and higher-yielding wheat cultivars. Abstract Grain yield (YLD) is a function of the total biomass (BM) and of partitioning the biomass by grains, i.e., the harvest index (HI). The most critical developmental stage for their determination is the flowering time, which mainly depends on the vernalization requirement (Vrn) and photoperiod sensitivity genes (Ppd) loci. Allelic variants at the Vrn, Ppd, and earliness per se (Eps) genes of elite spring wheat genotypes included in High Biomass Association Panel (HiBAP) I and II were used to estimate their effects on the phenological stages BM, HI, and YLD. Each panel was grown for two consecutive years in Northwest Mexico. Spring alleles at Vrn-1 had the largest effect on shortening the time to anthesis, and the Ppd-insensitive allele Ppd-D1a had the most significant positive effect on YLD in both panels. In addition, alleles at TaTOE-B1 and TaFT3-B1 promoted between 3.8% and 7.6% higher YLD and 4.2% and 10.2% higher HI in HiBAP I and II, respectively. When the possible effects of the TaTOE-B1 and TaFT3-B1 alleles on the sink and source traits were explored, the favorable allele at TaTOE-B1 showed positive effects on several sink traits mainly related to grain number. The favorable alleles at TaFT3-B1 followed a different pattern, with positive effects on the traits related to grain weight. The results of this study expanded the wheat breeders’ toolbox in the quest to breed better-adapted and higher-yielding wheat cultivars.
Collapse
|
18
|
Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115716. [PMID: 34071961 PMCID: PMC8198774 DOI: 10.3390/ijms22115716] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Flowering is one of the most critical developmental transitions in plants’ life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny’s success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.
Collapse
|
19
|
Lopez L, Fasano C, Perrella G, Facella P. Cryptochromes and the Circadian Clock: The Story of a Very Complex Relationship in a Spinning World. Genes (Basel) 2021; 12:672. [PMID: 33946956 PMCID: PMC8145066 DOI: 10.3390/genes12050672] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023] Open
Abstract
Cryptochromes are flavin-containing blue light photoreceptors, present in most kingdoms, including archaea, bacteria, plants, animals and fungi. They are structurally similar to photolyases, a class of flavoproteins involved in light-dependent repair of UV-damaged DNA. Cryptochromes were first discovered in Arabidopsis thaliana in which they control many light-regulated physiological processes like seed germination, de-etiolation, photoperiodic control of the flowering time, cotyledon opening and expansion, anthocyanin accumulation, chloroplast development and root growth. They also regulate the entrainment of plant circadian clock to the phase of light-dark daily cycles. Here, we review the molecular mechanisms by which plant cryptochromes control the synchronisation of the clock with the environmental light. Furthermore, we summarise the circadian clock-mediated changes in cell cycle regulation and chromatin organisation and, finally, we discuss a putative role for plant cryptochromes in the epigenetic regulation of genes.
Collapse
Affiliation(s)
| | | | | | - Paolo Facella
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), TERIN-BBC-BBE, Trisaia Research Center, 75026 Rotondella, Matera, Italy; (L.L.); (C.F.); (G.P.)
| |
Collapse
|
20
|
Adal AM, Doshi K, Holbrook L, Mahmoud SS. Comparative RNA-Seq analysis reveals genes associated with masculinization in female Cannabis sativa. PLANTA 2021; 253:17. [PMID: 33392743 PMCID: PMC7779414 DOI: 10.1007/s00425-020-03522-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/02/2020] [Indexed: 05/28/2023]
Abstract
Using RNA profiling, we identified several silver thiosulfate-induced genes that potentially control the masculinization of female Cannabis sativa plants. Genetically female Cannabis sativa plants normally bear female flowers, but can develop male flowers in response to environmental and developmental cues. In an attempt to elucidate the molecular elements responsible for sex expression in C. sativa plants, we developed genetically female lines producing both female and chemically-induced male flowers. Furthermore, we carried out RNA-Seq assays aimed at identifying differentially expressed genes responsible for male flower development in female plants. The results revealed over 10,500 differentially expressed genes, of which around 200 potentially control masculinization of female cannabis plants. These genes include transcription factors and other genes involved in male organ (i.e., anther and pollen) development, as well as genes involved in phytohormone signalling and male-biased phenotypes. The expressions of 15 of these genes were further validated by qPCR assay confirming similar expression patterns to that of RNA-Seq data. These genes would be useful for understanding predisposed plants producing flowers of both sex types in the same plant, and help breeders to regulate the masculinization of female plants through targeted breeding and plant biotechnology.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, The University of British Columbia, Kelowna, BC, Canada
| | - Ketan Doshi
- Zyus Life Sciences Inc., 204-407 Downey Rd, Saskatoon, SK, Canada
| | - Larry Holbrook
- Zyus Life Sciences Inc., 204-407 Downey Rd, Saskatoon, SK, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
21
|
Complementary Transcriptome and Proteome Analyses Provide Insight into the Floral Transition in Bamboo ( Dendrocalamus latiflorus Munro). Int J Mol Sci 2020; 21:ijms21228430. [PMID: 33182654 PMCID: PMC7696756 DOI: 10.3390/ijms21228430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Most woody bamboos bloom only once after long vegetative growth phases and die immediately afterwards. It is difficult, however, to determine the timing of the floral transition, as little information is available on the molecular mechanism of plant maturity in bamboos. To uncover the bamboo floral transition mechanism, its morpho-physiological characteristics, transcriptomes and large-scale quantitative proteomes were investigated in leaves which were collected at different stages during floral transition in a woody bamboo, Dendrocalamus latiflorus. We identified many flowering time-associated genes and the continued increase and decrease genes were screened as flowering biomarker genes (e.g., the MADS14 and bHLH13 genes). These different genes were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG). And the photoperiod pathways depending on the circadian rhythm may play an essential role in the bamboo floral transition. In addition, a total of 721 differently expressed proteins of leaves from the vegetative-to-reproductive stages were identified. Fifty-five genes were specifically differentially expressed at both the transcriptomic and proteomic levels, including genes related to photosynthesis and nucleotide sugar, which may be involved in the floral transition. This work provides insights into bamboo flowers and the management of forest breeding.
Collapse
|
22
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
23
|
Gou Y, Quandahor P, Zhang K, Guo S, Zhang Q, Liu C, Coulter JA. Artificial Diet Influences Population Growth of the Root Maggot Bradysia impatiens (Diptera: Sciaridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5933138. [PMID: 33080018 PMCID: PMC7751181 DOI: 10.1093/jisesa/ieaa123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 06/11/2023]
Abstract
In order to investigate the effects of artificial diets on the population growth of root maggot Bradysia impatiens, its population growth parameters were assayed on eight artificial diets (Diet 1, D2, D3, D4, D5, D6, D7, and D8). Results showed that developmental duration from egg to pupa was successfully completed on all eight artificial diets. However, the egg to pupal duration was shortest, while the survival rate of four insect stages was lowest when B. impatiens was reared on D1. When B. impatiens was reared on D7 and D8, the survival rate, female longevity, and female oviposition were higher than those reared on other diets. When B. impatiens was reared on D7, the intrinsic rate of increase (rm = 0.19/d), net reproductive rate (R0 = 39.88 offspring per individual), and finite rate of increase (λ = 1.21/d) were higher for its population growth with shorter generation time (T = 19.49 d) and doubling time (Dt = 3.67 d). The findings indicate that the D7 artificial diet is more appropriate for the biological parameters of B. impatiens and can be used an indoor breeding food for population expansion as well as further research. We propose that vitamin C supplement added to the D7 is critical for the improvement of the B. impatiens growth.
Collapse
Affiliation(s)
- Yuping Gou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Peter Quandahor
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Kexin Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Sufan Guo
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Qiangyan Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN
| |
Collapse
|
24
|
Lu J, Sun J, Jiang A, Bai M, Fan C, Liu J, Ning G, Wang C. Alternate expression of CONSTANS-LIKE 4 in short days and CONSTANS in long days facilitates day-neutral response in Rosa chinensis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4057-4068. [PMID: 32227095 PMCID: PMC7475255 DOI: 10.1093/jxb/eraa161] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/26/2020] [Indexed: 05/08/2023]
Abstract
Photoperiodic flowering responses are classified into three major types: long day (LD), short day (SD), and day neutral (DN). The inverse responses to daylength of LD and SD plants have been partly characterized in Arabidopsis and rice; however, the molecular mechanism underlying the DN response is largely unknown. Modern roses are economically important ornamental plants with continuous flowering (CF) features, and are generally regarded as DN plants. Here, RcCO and RcCOL4 were identified as floral activators up-regulated under LD and SD conditions, respectively, in the CF cultivar Rosa chinensis 'Old-Blush'. Diminishing the expression of RcCO or/and RcCOL4 by virus-induced gene silencing (VIGS) delayed flowering time under both SDs and LDs. Interestingly, in contrast to RcCO-silenced plants, the flowering time of RcCOL4-silenced plants was more delayed under SD than under LD conditions, indicating perturbed plant responses to day neutrality. Further analyses revealed that physical interaction between RcCOL4 and RcCO facilitated binding of RcCO to the CORE motif in the promoter of RcFT and induction of RcFT. Taken together, the complementary expression of RcCO in LDs and of RcCOL4 in SDs guaranteed flowering under favorable growth conditions regardless of the photoperiod. This finding established the molecular foundation of CF in roses and further shed light on the underlying mechanisms of DN responses.
Collapse
Affiliation(s)
- Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Anqi Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mengjuan Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chunguo Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guogui Ning
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Correspondence:
| |
Collapse
|
25
|
Wang D, Liu H, Wang H, Zhang P, Shi C. A novel sucrose transporter gene IbSUT4 involves in plant growth and response to abiotic stress through the ABF-dependent ABA signaling pathway in Sweetpotato. BMC PLANT BIOLOGY 2020; 20:157. [PMID: 32293270 PMCID: PMC7157994 DOI: 10.1186/s12870-020-02382-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/02/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND To maintain sweetpotato (Ipomoea batatas (L.) Lam) growth and yield, sucrose must be transported from the leaves to the roots. Sucrose transporters or carriers (SUTs or SUCs) transport sucrose and are involved in plant growth and response to abiotic stress. However, the mechanisms of SUTs in sweetpotato abiotic stress resistance remains to be determined. RESULTS In the present study, we cloned a novel IbSUT4 gene; the protein encoded by this gene is localized in the tonoplast and plasma membrane. The plant growth was promoted in the IbSUT4 transgenic Arabidopsis thaliana lines, with increased expression of AtFT, a regulator of flowering time in plants. Over-expression of IbSUT4 in Arabidopsis thaliana resulted in higher sucrose content in the roots and lower sucrose content in the leaves, as compared to the wild-type (WT) plants, leading to improved stress tolerance during seedling growth. Moreover, we systematically analyzed the mechanisms of IbSUT4 in response to abiotic stress. The results suggest that the ABRE-motif was localized in the IbSUT4 promoter region, and the expression of the ABA signaling pathway genes (i.e., ABF2, ABF4, SnRK2.2, SnRK2.3, and PYL8/RCAR3) were induced, and the expression of ABI1 was inhibited. CONCLUSIONS Our dates provide evidence that IbSUT4 is not only involved in plant growth but also is an important positive regulator in plant stress tolerance through the ABF-dependent ABA signaling pathway.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Crop Biology, College of Agronomic Science, Shandong Agricultural University, Tai' an, 271018, China
| | - Hongjuan Liu
- State Key Laboratory of Crop Biology, College of Agronomic Science, Shandong Agricultural University, Tai' an, 271018, China
| | - Hongxia Wang
- National Key of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of sciences, Shanghai, 200032, China
| | - Peng Zhang
- National Key of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of sciences, Shanghai, 200032, China
| | - Chunyu Shi
- State Key Laboratory of Crop Biology, College of Agronomic Science, Shandong Agricultural University, Tai' an, 271018, China.
| |
Collapse
|
26
|
Park YJ, Lee JH, Kim JY, Park CM. Synchronization of photoperiod and temperature signals during plant thermomorphogenesis. PLANT SIGNALING & BEHAVIOR 2020; 15:1739842. [PMID: 32163001 PMCID: PMC7194384 DOI: 10.1080/15592324.2020.1739842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
It is well-known that even small changes in ambient temperatures by a few degrees profoundly affect plant growth and morphology. This architectural property is intimately associated with global warming. In particular, under warm temperature conditions, plants exhibit distinct morphological changes, such as elongation of hypocotyls and leaf petioles, formation of small, thin leaves, and leaf hyponasty that describes an upward bending of leaf petioles. These thermoresponsive morphological adjustments are termed thermomorphogenesis. Under warm temperature conditions, the PHYTOCHROME INTERACTING FACTOR 4 (PIF4) transcription factor is thermoactivated and stimulates the transcription of the YUCCA8 gene encoding an auxin biosynthetic enzyme, promoting hypocotyl elongation. Notably, these thermomorphogenic growth is influenced by daylength or photoperiod, displaying relatively high and low thermomorphogenic hypocotyl growth during the nighttime under short days and long days, respectively. We have recently reported that the photoperiod signaling regulator GIGANTEA (GI) thermostabilizes the REPRESSOR OF ga1-3 transcription factor, which is known to attenuate the PIF4-mediated thermomorphogenesis. We also found that the N-terminal domain of GI interacts with PIF4, possibly destabilizing the PIF4 proteins. We propose that the GI-mediated shaping of photoperiodic rhythms of hypocotyl thermomorphogenesis helps plant adapt to fluctuations in daylength and temperature environments occurring during seasonal transitions.
Collapse
Affiliation(s)
- Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
27
|
Wells RS, Adal AM, Bauer L, Najafianashrafi E, Mahmoud SS. Cloning and functional characterization of a floral repressor gene from Lavandula angustifolia. PLANTA 2020; 251:41. [PMID: 31907678 DOI: 10.1007/s00425-019-03333-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/21/2019] [Indexed: 05/22/2023]
Abstract
Using RNA-Seq, we identified genes involved in floral development in lavenders and functionally characterized the floral repressor LaSVP. The molecular aspects of flower initiation and development have not been adequately investigated in lavender (Lavandula). In order to identify genes that control these processes, we employed RNA-Seq to obtain sequence information for transcripts originating from the vegetative shoot apical meristem (SAM) and developing inflorescence tissues of Lavandula angustifolia and Lavandula × intermedia plants, and assemble a comprehensive transcriptome of 105,294 contigs. Homology-based annotation provided gene ontology terms for the majority of transcripts, including over 100 genes homologous to those that control flower initiation and organ identity in Arabidopsis thaliana. Expression analysis revealed that most of these genes are differentially expressed during flower development. For example, LaSVP, a homolog of the floral repressor SHORT VEGETATIVE PHASE (SVP), was strongly expressed in vegetative SAM compared to developing flowers, implicating its potential involvement in flowering repression in lavender. To investigate LaSVP further, we constitutively expressed the gene in transformed A. thaliana plants, evaluating its effects on flower initiation and morphology. Expression of the LaSVP in A. thaliana delayed flowering and affected flower organ identity in a dosage-dependent manner. Two of the highest expressing lines produced sepals instead of petals and were sterile as they failed to develop proper seed pods. This study provides the foundation for future investigations aimed at elucidating flower initiation and development in lavender.
Collapse
Affiliation(s)
- Rebecca S Wells
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Ayelign M Adal
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Lina Bauer
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Elaheh Najafianashrafi
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
28
|
Wang P, Gong R, Yang Y, Yu S. Ghd8 controls rice photoperiod sensitivity by forming a complex that interacts with Ghd7. BMC PLANT BIOLOGY 2019; 19:462. [PMID: 31675987 PMCID: PMC6825352 DOI: 10.1186/s12870-019-2053-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/24/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Flowering time is one of the most important agronomic characteristics that ultimately determine yield potential and eco-geographical adaptation in crops. Ghd8 and Ghd7, two major flowering genes, have similar functions and large pleiotropic effects in controlling the heading date, plant height and grain yield of rice. However, these gene interactions at the genetic and molecular levels have not been determined to date. RESULTS In this study, we investigated the genetic interaction between Ghd8 and Ghd7 by using a set of near-isogenic lines and a panel of natural germplasm accessions in rice. We found that Ghd8 affected multiple agronomic traits in a functional Ghd7-dependent manner. Both functional Ghd8 and Ghd7 are pivotal for rice photoperiod sensitivity controlled by Hd1 and Hd3a. GHD8 could form a heterotrimeric complex with HD1 and OsHAP5b to activate the transcription of Ghd7 by binding directly to the promoter region of Ghd7, which contains the CCAAT-box motif. CONCLUSIONS The results of this study help to elucidate the genetic and molecular bases of Ghd8 and Ghd7 interactions, indicating that Ghd8 acts upstream of Ghd7 to activate its transcription, which inhibits Hd3a expression and thus affects flowering time and rice adaptation.
Collapse
Affiliation(s)
- Peng Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Present Address: Department of Agronomy and Horticulture, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Rong Gong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Present Address: Department of Agronomy and Horticulture, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
29
|
Wu L, Li F, Deng Q, Zhang S, Zhou Q, Chen F, Liu B, Bao M, Liu G. Identification and Characterization of the FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family in Petunia. DNA Cell Biol 2019; 38:982-995. [PMID: 31411493 DOI: 10.1089/dna.2019.4720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phosphatidylethanolamine-binding protein (PEBP) gene family exists in all eukaryote kingdoms, with three subfamilies: FT (FLOWERING LOCUS T)-like, TFL1 (TERMINAL FLOWER 1)-like, and MFT (MOTHER OF FT AND TFL1)-like. FT genes promote flowering, TFL1 genes act as a repressor of the floral transition, and MFT genes have functions in flowering promotion and regulating seed germination. We identified and characterized orthologs of the Arabidopsis FT/TFL1 gene family in petunia to elucidate their expression patterns and evolution. Thirteen FT/TFL1-like genes were isolated from petunia, with the five FT-like genes mainly expressed in leaves. The circadian rhythms of five FT-like genes and PhCO (petunia CONSTANS ortholog) were figured out. The expression of PhFT1 was contrary to that of PhFT2, PhFT3, PhFT4, and PhFT5. PhCO had a circadian clock different from Arabidopsis CO, but coincided with PhFT1; it decreased in daytime and accumulated at night. Two of the FT-like genes with differential circadian rhythm and higher expression levels, PhFT1 and PhFT4, were used to transform Arabidopsis. Eventually, overexpressing PhFT1 strongly delayed flowering, whereas overexpression of PhFT4 produced extremely early-flowering phenotype. Different from previous reports, PhTFL1a, PhTFL1b, and PhTFL1c were relatively highly expressed in roots. Taken together, this study demonstrates that petunia FT-like genes, like FT, are able to respond to photoperiod. The expression pattern of FT/TFL1 gene family in petunia contributes to a new insight into the functional evolution of this gene family.
Collapse
Affiliation(s)
- Lan Wu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Fei Li
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Qiaohong Deng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,CottonConnect China Co., Ltd, Shijiazhuang, China
| | - Sisi Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.,Wuhan Institute of Landscape Architecture, Wuhan, China
| | - Qin Zhou
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Feng Chen
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Baojun Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Guofeng Liu
- Deparment of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| |
Collapse
|
30
|
Mäkinen H, Viitaniemi HM, Visser ME, Verhagen I, van Oers K, Husby A. Temporally replicated DNA methylation patterns in great tit using reduced representation bisulfite sequencing. Sci Data 2019; 6:136. [PMID: 31341168 PMCID: PMC6656709 DOI: 10.1038/s41597-019-0136-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 06/19/2019] [Indexed: 12/28/2022] Open
Abstract
Seasonal timing of reproduction is an important fitness trait in many plants and animals but the underlying molecular mechanism for this trait is poorly known. DNA methylation is known to affect timing of reproduction in various organisms and is therefore a potential mechanism also in birds. Here we describe genome wide data aiming to detect temporal changes in methylation in relation to timing of breeding using artificial selection lines of great tits (Parus major) exposed to contrasting temperature treatments. Methylation levels of DNA extracted from erythrocytes were examined using reduced representation bisulfite sequencing (RRBS). In total, we obtained sequencing data from 63 libraries over four different time points from 16 birds with on average 20 million quality filtered reads per library. These data describe individual level temporal variation in DNA methylation throughout the breeding season under experimental temperature regimes and provides a resource for future studies investigating the role of temporal changes in DNA methylation in timing of reproduction.
Collapse
Affiliation(s)
- Hannu Mäkinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
- Centre for Biodiversity Dynamics, Department of Biology, NTNU, Trondheim, Norway.
| | - Heidi M Viitaniemi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Irene Verhagen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Arild Husby
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
- Centre for Biodiversity Dynamics, Department of Biology, NTNU, Trondheim, Norway.
| |
Collapse
|
31
|
Liu J, Cheng Z, Li X, Xie L, Bai Y, Peng L, Li J, Gao J. Expression Analysis and Regulation Network Identification of the CONSTANS-Like Gene Family in Moso Bamboo ( Phyllostachys edulis) Under Photoperiod Treatments. DNA Cell Biol 2019; 38:607-626. [PMID: 31210530 DOI: 10.1089/dna.2018.4611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONSTANS (CO)/CONSTANS-like (COL) genes that have been studied in annual model plants such as Arabidopsis thaliana and Oryza sativa play key roles in the photoperiodic flowering pathway. Moso bamboo is a perennial plant characterized by a long vegetative stage and flowers synchronously followed by widespread death. However, the characteristics of COL in moso bamboo remain unclear. In view of this, we performed a genome-wide identification and expression analysis of the COL gene family in moso bamboo. Fourteen nonredundant PheCOL genes were identified, and we analyzed gene structures, phylogeny, and subcellular location predictions. Phylogenetic analyses indicated that 14 PheCOLs could be clustered into three groups, and each clade was well supported by conserved intron/exon structures and motifs. A number of light-related and tissue-specific cis-elements were randomly distributed within the promoter sequences of the PheCOLs. The expression profiling of PheCOL genes in various tissues and developmental stages revealed that most of PheCOL genes were most highly expressed in the leaves and took part in moso bamboo flower development and rapid shoot growth. In addition, the transcription of PheCOLs exhibited a clear diurnal oscillation in both long-day and short-day conditions. Most of the PheCOL genes were inhibited under light treatment and upregulated in dark conditions. PheCOLs can interact with each other. Subcellular localization result showed that PheCOL14 encoded a cell membrane protein, and it bound to the promoter of PheCOL3. Taken together, the results of this study will be useful not only as they contribute to comprehensive information for further analyses of the molecular functions of the PheCOL gene family, but also will provide a theoretical foundation for the further construction of moso bamboo photoperiod regulation networks.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Zhanchao Cheng
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Xiangyu Li
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Lihua Xie
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Yucong Bai
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Lixin Peng
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Juan Li
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| | - Jian Gao
- Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry Administration, Beijing, People's Republic of China
| |
Collapse
|
32
|
Sternberger AL, Bowman MJ, Kruse CPS, Childs KL, Ballard HE, Wyatt SE. Transcriptomics Identifies Modules of Differentially Expressed Genes and Novel Cyclotides in Viola pubescens. FRONTIERS IN PLANT SCIENCE 2019; 10:156. [PMID: 30828342 PMCID: PMC6384259 DOI: 10.3389/fpls.2019.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/29/2019] [Indexed: 05/24/2023]
Abstract
Viola is a large genus with worldwide distribution and many traits not currently exemplified in model plants including unique breeding systems and the production of cyclotides. Here we report de novo genome assembly and transcriptomic analyses of the non-model species Viola pubescens using short-read DNA sequencing data and RNA-Seq from eight diverse tissues. First, V. pubescens genome size was estimated through flow cytometry, resulting in an approximate haploid genome of 455 Mbp. Next, the draft V. pubescens genome was sequenced and assembled resulting in 264,035,065 read pairs and 161,038 contigs with an N50 length of 3,455 base pairs (bp). RNA-Seq data were then assembled into tissue-specific transcripts. Together, the DNA and transcript data generated 38,081 ab initio gene models which were functionally annotated based on homology to Arabidopsis thaliana genes and Pfam domains. Gene expression was visualized for each tissue via principal component analysis and hierarchical clustering, and gene co-expression analysis identified 20 modules of tissue-specific transcriptional networks. Some of these modules highlight genetic differences between chasmogamous and cleistogamous flowers and may provide insight into V. pubescens' mixed breeding system. Orthologous clustering with the proteomes of A. thaliana and Populus trichocarpa revealed 8,531 sequences unique to V. pubescens, including 81 novel cyclotide precursor sequences. Cyclotides are plant peptides characterized by a stable, cyclic cystine knot motif, making them strong candidates for drug scaffolding and protein engineering. Analysis of the RNA-Seq data for these cyclotide transcripts revealed diverse expression patterns both between transcripts and tissues. The diversity of these cyclotides was also highlighted in a maximum likelihood protein cladogram containing V. pubescens cyclotides and published cyclotide sequences from other Violaceae and Rubiaceae species. Collectively, this work provides the most comprehensive sequence resource for Viola, offers valuable transcriptomic insight into V. pubescens, and will facilitate future functional genomics research in Viola and other diverse plant groups.
Collapse
Affiliation(s)
- Anne L. Sternberger
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
| | - Megan J. Bowman
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Colin P. S. Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Kevin L. Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Harvey E. Ballard
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
| | - Sarah E. Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| |
Collapse
|
33
|
Multifaceted Role of PheDof12-1 in the Regulation of Flowering Time and Abiotic Stress Responses in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2019; 20:ijms20020424. [PMID: 30669467 PMCID: PMC6358834 DOI: 10.3390/ijms20020424] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
DNA binding with one finger (Dof) proteins, forming an important transcriptional factor family, are involved in gene transcriptional regulation, development, stress responses, and flowering responses in annual plants. However, knowledge of Dofs in perennial and erratically flowering moso bamboo is limited. In view of this, a Dof gene, PheDof12-1, was isolated from moso bamboo. PheDof12-1 is located in the nucleus and has the highest expression in palea and the lowest in bract. Moreover, PheDof12-1 expression is high in flowering leaves, then declines during flower development. The transcription level of PheDof12-1 is highly induced by cold, drought, salt, and gibberellin A3 (GA₃) stresses. The functional characteristics of PheDof are researched for the first time in Arabidopsis, and the results show that transgenic Arabidopsis overexpressing PheDof12-1 shows early flowering under long-day (LD) conditions but there is no effect on flowering time under short-day (SD) conditions; the transcription levels of FT, SOC1, and AGL24 are upregulated; and FLC and SVP are downregulated. PheDof12-1 exhibits a strong diurnal rhythm, inhibited by light treatment and induced in dark. Yeast one-hybrid (Y1H) assay shows that PheDof12-1 can bind to the promoter sequence of PheCOL4. Taken together, these results indicate that PheDof12-1 might be involved in abiotic stress and flowering time, which makes it an important candidate gene for studying the molecular regulation mechanisms of moso bamboo flowering.
Collapse
|
34
|
Ermert AL, Stahl F, Gans T, Hughes J. Analysis of Physcomitrella Phytochrome Mutants via Phototropism and Polarotropism. Methods Mol Biol 2019; 2026:225-236. [PMID: 31317417 DOI: 10.1007/978-1-4939-9612-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In mosses such as Physcomitrella patens phytochrome photoreceptors steer directional/vectorial responses to unilateral/polarized light. In this chapter, we describe procedures to assay phototropism and polarotropism quantitatively in wild type and mutant lines. Protonemata are placed on agar-based medium in square Petri dishes in darkness for 1 week, allowing caulonemata to develop and grow negatively gravitropically. For phototropism, the dishes are placed vertically in black boxes and unilaterally irradiated with continuous red light. For polarotropism, Petri dishes are placed horizontally and irradiated with linearly polarized red light from above. After irradiation, the filaments are photographed using a macroscope with CCD camera and the bending angles measured using image processing software. The data are transfered to a spreadsheet program, placed into 10° bending angle classes and illustrated using a circular histogram.
Collapse
Affiliation(s)
- Anna Lena Ermert
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Fabian Stahl
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Tanja Gans
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
35
|
Nibau C, Gallemí M, Dadarou D, Doonan JH, Cavallari N. Thermo-Sensitive Alternative Splicing of FLOWERING LOCUS M Is Modulated by Cyclin-Dependent Kinase G2. FRONTIERS IN PLANT SCIENCE 2019; 10:1680. [PMID: 32038671 PMCID: PMC6987439 DOI: 10.3389/fpls.2019.01680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/29/2019] [Indexed: 05/05/2023]
Abstract
The ability to sense environmental temperature and to coordinate growth and development accordingly, is critical to the reproductive success of plants. Flowering time is regulated at the level of gene expression by a complex network of factors that integrate environmental and developmental cues. One of the main players, involved in modulating flowering time in response to changes in ambient temperature is FLOWERING LOCUS M (FLM). FLM transcripts can undergo extensive alternative splicing producing multiple variants, of which FLM-β and FLM-δ are the most representative. While FLM-β codes for the flowering repressor FLM protein, translation of FLM-δ has the opposite effect on flowering. Here we show that the cyclin-dependent kinase G2 (CDKG2), together with its cognate cyclin, CYCLYN L1 (CYCL1) affects the alternative splicing of FLM, balancing the levels of FLM-β and FLM-δ across the ambient temperature range. In the absence of the CDKG2/CYCL1 complex, FLM-β expression is reduced while FLM-δ is increased in a temperature dependent manner and these changes are associated with an early flowering phenotype in the cdkg2 mutant lines. In addition, we found that transcript variants retaining the full FLM intron 1 are sequestered in the cell nucleus. Strikingly, FLM intron 1 splicing is also regulated by CDKG2/CYCL1. Our results provide evidence that temperature and CDKs regulate the alternative splicing of FLM, contributing to flowering time definition.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- *Correspondence: Nicola Cavallari, ; Candida Nibau,
| | - Marçal Gallemí
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Despoina Dadarou
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John H. Doonan
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Nicola Cavallari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
- *Correspondence: Nicola Cavallari, ; Candida Nibau,
| |
Collapse
|
36
|
Steinbach Y. The Arabidopsis thaliana CONSTANS- LIKE 4 ( COL4) - A Modulator of Flowering Time. FRONTIERS IN PLANT SCIENCE 2019; 10:651. [PMID: 31191575 PMCID: PMC6546890 DOI: 10.3389/fpls.2019.00651] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/30/2019] [Indexed: 05/22/2023]
Abstract
Appropriate control of flowering time is crucial for crop yield and the reproductive success of plants. Flowering can be induced by a number of molecular pathways that respond to internal and external signals. In Arabidopsis, expression of the key florigenic signal FLOWERING LOCUS T (FT) is positively regulated by CONSTANS (CO) a BBX protein sharing high sequence similarity with 16 CO-like proteins. Within this study, we investigated the role of the Arabidopsis CONSTANS-LIKE 4 (COL4), whose role in flowering control was unknown. We demonstrate that, unlike CO, COL4 is a flowering repressor in long days (LD) and short days (SD) and acts on the expression of FT and FT-like genes as well as on SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Reduction of COL4 expression level leads to an increase of FT and APETALA 1 (AP1) expression and to accelerated flowering, while the increase of COL4 expression causes a flowering delay. Further, the observed co-localization of COL4 protein and CO in nuclear speckles supports the idea that the two act as an antagonistic pair of transcription factors. This interaction may serve the fine-tuning of flowering time control and other light dependent plant developmental processes.
Collapse
|
37
|
Ding F, Zhang S, Chen H, Peng H, Lu J, He X, Pan J. Functional analysis of a homologue of the FLORICAULA/LEAFY gene in litchi (Litchi chinensis Sonn.) revealing its significance in early flowering process. Genes Genomics 2018; 40:10.1007/s13258-018-0739-4. [PMID: 30218346 DOI: 10.1007/s13258-018-0739-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/30/2017] [Indexed: 10/28/2022]
Abstract
Litchi (Litchi chinensis Sonn.) is an important subtropical fruit crop with high commercial value due to its high nutritional values and favorable tastes. However, irregular bearing attributed to unstable flowering is a major ongoing problem for litchi producers. Previous studies indicate that low-temperature is a key factor in litchi floral induction. In order to reveal the genetic and molecular mechanisms underlying the reproductive process in litchi, we had analyzed the transcriptome of buds before and after low-temperature induction using RNA-seq technology. A key flower bud differentiation associated gene, a homologue of FLORICAULA/LEAFY, was identified and named LcLFY (GenBank Accession No. KF008435). The cDNA sequence of LcLFY encodes a putative protein of 388 amino acids. To gain insight into the role of LcLFY, the temporal expression level of this gene was measured by real-time RT-PCR. LcLFY was highly expressed in flower buds and its expression correlated with the floral developmental stage. Heterologous expression of LcLFY in transgenic tobacco plants induced precocious flowering. Meantime, we investigated the sub-cellular localization of LcLFY. The LcLFY-Green fluorescent protein (GFP) fusion protein was found in the nucleus. The results suggest that LcLFY plays a pivotal role as a transcription factor in controlling the transition to flowering and in the development of floral organs in litchi.
Collapse
Affiliation(s)
- Feng Ding
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, People's Republic of China
- Agricultural College, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Shuwei Zhang
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, People's Republic of China
| | - Houbin Chen
- Horticulture College, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| | - Hongxiang Peng
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, People's Republic of China
| | - Jiang Lu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, People's Republic of China.
| | - Xinhua He
- Agricultural College, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Jiechun Pan
- Agricultural College, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| |
Collapse
|
38
|
H. C, J. JJ, S. S, L. MP, F. C, T. S. Induction of flowering in cassava through grafting. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/jpbcs2016.0617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
39
|
Yang Z, Liu B, Su J, Liao J, Lin C, Oka Y. Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants. Photochem Photobiol 2017; 93:112-127. [PMID: 27861972 DOI: 10.1111/php.12663] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
Blue light affects many aspects of plant growth and development throughout the plant lifecycle. Plant cryptochromes (CRYs) are UV-A/blue light photoreceptors that play pivotal roles in regulating blue light-mediated physiological responses via the regulated expression of more than one thousand genes. Photoactivated CRYs regulate transcription via two distinct mechanisms: indirect promotion of the activity of transcription factors by inactivation of the COP1/SPA E3 ligase complex or direct activation or inactivation of at least two sets of basic helix-loop-helix transcription factor families by physical interaction. Hence, CRYs govern intricate mechanisms that modulate activities of transcription factors to regulate multiple aspects of blue light-responsive photomorphogenesis. Here, we review recent progress in dissecting the pathways of CRY signaling and discuss accumulating evidence that shows how CRYs regulate broad physiological responses to blue light.
Collapse
Affiliation(s)
- Zhaohe Yang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bobin Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiakai Liao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
40
|
Nelson MN, Książkiewicz M, Rychel S, Besharat N, Taylor CM, Wyrwa K, Jost R, Erskine W, Cowling WA, Berger JD, Batley J, Weller JL, Naganowska B, Wolko B. The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. THE NEW PHYTOLOGIST 2017; 213:220-232. [PMID: 27418400 DOI: 10.1111/nph.14094] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/05/2016] [Indexed: 05/19/2023]
Abstract
Adaptation of Lupinus angustifolius (narrow-leafed lupin) to cropping in southern Australian and northern Europe was transformed by a dominant mutation (Ku) that removed vernalization requirement for flowering. The Ku mutation is now widely used in lupin breeding to confer early flowering and maturity. We report here the identity of the Ku mutation. We used a range of genetic, genomic and gene expression approaches to determine whether Flowering Locus T (FT) homologues are associated with the Ku locus. One of four FT homologues present in the narrow-leafed lupin genome, LanFTc1, perfectly co-segregated with the Ku locus in a reference mapping population. Expression of LanFTc1 in the ku (late-flowering) parent was strongly induced by vernalization, in contrast to the Ku (early-flowering) parent, which showed constitutively high LanFTc1 expression. Co-segregation of this expression phenotype with the LanFTc1 genotype indicated that the Ku mutation impairs cis-regulation of LanFTc1. Sequencing of LanFTc1 revealed a 1.4-kb deletion in the promoter region, which was perfectly predictive of vernalization response in 216 wild and domesticated accessions. Linkage disequilibrium rapidly decayed around LanFTc1, suggesting that this deletion caused the loss of vernalization response. This is the first time a legume FTc subclade gene has been implicated in the vernalization response.
Collapse
Affiliation(s)
- Matthew N Nelson
- Natural Capital and Plant Health, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Michał Książkiewicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Sandra Rychel
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Naghmeh Besharat
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Candy M Taylor
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Katarzyna Wyrwa
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Ricarda Jost
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology and Centre for AgriBiosciences, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - William Erskine
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Centre for Plant Genetics and Breeding, School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Wallace A Cowling
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Jens D Berger
- Centre for Plant Genetics and Breeding, School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- CSIRO Agriculture, Private Bag No. 5, Wembley, WA, 6913, Australia
| | - Jacqueline Batley
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - James L Weller
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Barbara Naganowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Bogdan Wolko
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
41
|
Tsukamoto A, Hirai T, Chin DP, Mii M, Mizoguchi T, Mizuta D, Yoshida H, Olsen JE, Ezura H, Fukuda N. The FT-like gene PehFT in petunia responds to photoperiod and light quality but is not the main gene promoting light quality-associated flowering. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:297-307. [PMID: 31274991 PMCID: PMC6565942 DOI: 10.5511/plantbiotechnology.16.0620a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/20/2016] [Indexed: 05/27/2023]
Abstract
In Arabidopsis, flowering is delayed under red light and induced under far red light and blue light. Studies suggest that the florigen, FLOWERING LOCUS T, is involved in the control of light quality-associated flowering in Arabidopsis. In petunia, similar to Arabidopsis, flowering is delayed under red light and induced under blue light, however its mechanism still remains unknown. Here we isolated a gene which has 75% amino acid sequence similarity with Arabidopsis FT (AtFT), named PehFT. By overexpressing PehFT in Arbidopsis and petunia, we tested its ability to induce flowering. Also, by conducting expression analyses of PehFT under different light quality treatments, we tested its response to light quality. We concluded that PehFT, like AtFT, is a gene which responds to photoperiod and light quality, but unlike AtFT, is not the main gene controlling the light quality-associated flowering.
Collapse
Affiliation(s)
- Atsuko Tsukamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tadayoshi Hirai
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Dong Poh Chin
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1, Kashiwanoha Kashiwa, Chiba 277-0882, Japan
| | - Masahiro Mii
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1, Kashiwanoha Kashiwa, Chiba 277-0882, Japan
| | - Tsuyoshi Mizoguchi
- Department of Natural Science, International Christian University (ICU), 10-2-3, Osawa, Mitaka, Tokyo 181-8585, Japan
| | - Daiki Mizuta
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hideo Yoshida
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jorunn E. Olsen
- Department of Plant Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Naoya Fukuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
42
|
Shibaya T, Hori K, Ogiso-Tanaka E, Yamanouchi U, Shu K, Kitazawa N, Shomura A, Ando T, Ebana K, Wu J, Yamazaki T, Yano M. Hd18, Encoding Histone Acetylase Related to Arabidopsis FLOWERING LOCUS D, is Involved in the Control of Flowering Time in Rice. PLANT & CELL PHYSIOLOGY 2016; 57:1828-38. [PMID: 27318280 DOI: 10.1093/pcp/pcw105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/06/2016] [Indexed: 05/04/2023]
Abstract
Flowering time is one of the most important agronomic traits in rice (Oryza sativa L.), because it defines harvest seasons and cultivation areas, and affects yields. We used a map-based strategy to clone Heading date 18 (Hd18). The difference in flowering time between the Japanese rice cultivars Koshihikari and Hayamasari was due to a single nucleotide polymorphism within the Hd18 gene, which encodes an amine oxidase domain-containing protein and is homologous to Arabidopsis FLOWERING LOCUS D (FLD). The Hayamasari Hd18 allele and knockdown of Hd18 gene expression delayed the flowering time of rice plants regardless of the day-length condition. Structural modeling of the Hd18 protein suggested that the non-synonymous substitution changed protein stability and function due to differences in interdomain hydrogen bond formation. Compared with those in Koshihikari, the expression levels of the flowering-time genes Early heading date 1 (Ehd1), Heading date 3a (Hd3a) and Rice flowering locus T1 (RFT1) were lower in a near-isogenic line with the Hayamasari Hd18 allele in a Koshihikari genetic background. We revealed that Hd18 acts as an accelerator in the rice flowering pathway under both short- and long-day conditions by elevating transcription levels of Ehd1 Gene expression analysis also suggested the involvement of MADS-box genes such as OsMADS50, OsMADS51 and OsMADS56 in the Hd18-associated regulation of Ehd1 These results suggest that, like FLD, its rice homolog accelerates flowering time but is involved in rice flowering pathways that differ from the autonomous pathways in Arabidopsis.
Collapse
Affiliation(s)
- Taeko Shibaya
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan These authors contributed equally to this work
| | - Kiyosumi Hori
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan These authors contributed equally to this work.
| | - Eri Ogiso-Tanaka
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Utako Yamanouchi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Koka Shu
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Noriyuki Kitazawa
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ayahiko Shomura
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Tsuyu Ando
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kaworu Ebana
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Jianzhong Wu
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Toshimasa Yamazaki
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Masahiro Yano
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
43
|
Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proc Natl Acad Sci U S A 2016; 113:7661-6. [PMID: 27325772 DOI: 10.1073/pnas.1602004113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The phenomenon of delayed flowering after the application of nitrogen (N) fertilizer has long been known in agriculture, but the detailed molecular basis for this phenomenon is largely unclear. Here we used a modified method of suppression-subtractive hybridization to identify two key factors involved in N-regulated flowering time control in Arabidopsis thaliana, namely ferredoxin-NADP(+)-oxidoreductase and the blue-light receptor cryptochrome 1 (CRY1). The expression of both genes is induced by low N levels, and their loss-of-function mutants are insensitive to altered N concentration. Low-N conditions increase both NADPH/NADP(+) and ATP/AMP ratios, which in turn affect adenosine monophosphate-activated protein kinase (AMPK) activity. Moreover, our results show that the AMPK activity and nuclear localization are rhythmic and inversely correlated with nuclear CRY1 protein abundance. Low-N conditions increase but high-N conditions decrease the expression of several key components of the central oscillator (e.g., CCA1, LHY, and TOC1) and the flowering output genes (e.g., GI and CO). Taken together, our results suggest that N signaling functions as a modulator of nuclear CRY1 protein abundance, as well as the input signal for the central circadian clock to interfere with the normal flowering process.
Collapse
|
44
|
Liu B, Yang Z, Gomez A, Liu B, Lin C, Oka Y. Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2016; 129:137-48. [PMID: 26810763 PMCID: PMC6138873 DOI: 10.1007/s10265-015-0782-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
Cryptochromes (CRY) are flavoproteins that direct a diverse array of developmental processes in response to blue light in plants. Conformational changes in CRY are induced by the absorption of photons and result in the propagation of light signals to downstream components. In Arabidopsis, CRY1 and CRY2 serve both distinct and partially overlapping functions in regulating photomorphogenic responses and photoperiodic flowering. For example, both CRY1 and CRY2 regulate the abundance of transcription factors by directly reversing the activity of E3 ubiquitin ligase on CONSTITUTIVE PHOTOMORPHOGENIC 1 and SUPPRESSOR OF PHYA-105 1 complexes in a blue light-dependent manner. CRY2 also specifically governs a photoperiodic flowering mechanism by directly interacting with a transcription factor called CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX. Recently, structure/function analysis of CRY1 revealed that the CONSTITUTIVE PHOTOMORPHOGENIC 1 independent pathway is also involved in CRY1-mediated inhibition of hypocotyl elongation. CRY1 and CRY2 thus not only share a common pathway but also relay light signals through distinct pathways, which may lead to altered developmental programs in plants.
Collapse
Affiliation(s)
- Bobin Liu
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaohe Yang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Adam Gomez
- Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agriculture Sciences, Beijing, 100081, People's Republic of China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Yoshito Oka
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
45
|
Xing L, Zhang D, Song X, Weng K, Shen Y, Li Y, Zhao C, Ma J, An N, Han M. Genome-Wide Sequence Variation Identification and Floral-Associated Trait Comparisons Based on the Re-sequencing of the 'Nagafu No. 2' and 'Qinguan' Varieties of Apple (Malus domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2016; 7:908. [PMID: 27446138 PMCID: PMC4921462 DOI: 10.3389/fpls.2016.00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/08/2016] [Indexed: 05/14/2023]
Abstract
Apple (Malus domestica Borkh.) is a commercially important fruit worldwide. Detailed information on genomic DNA polymorphisms, which are important for understanding phenotypic traits, is lacking for the apple. We re-sequenced two elite apple varieties, 'Nagafu No. 2' and 'Qinguan,' which have different characteristics. We identified many genomic variations, including 2,771,129 single nucleotide polymorphisms (SNPs), 82,663 structural variations (SVs), and 1,572,803 insertion/deletions (INDELs) in 'Nagafu No. 2' and 2,262,888 SNPs, 63,764 SVs, and 1,294,060 INDELs in 'Qinguan.' The 'SNP,' 'INDEL,' and 'SV' distributions were non-random, with variation-rich or -poor regions throughout the genomes. In 'Nagafu No. 2' and 'Qinguan' there were 171,520 and 147,090 non-synonymous SNPs spanning 23,111 and 21,400 genes, respectively; 3,963 and 3,196 SVs in 3,431 and 2,815 genes, respectively; and 1,834 and 1,451 INDELs in 1,681 and 1,345 genes, respectively. Genetic linkage maps of 190 flowering genes associated with multiple flowering pathways in 'Nagafu No. 2,' 'Qinguan,' and 'Golden Delicious,' identified complex regulatory mechanisms involved in floral induction, flower bud formation, and flowering characteristics, which might reflect the genetic variation of the flowering genes. Expression profiling of key flowering genes in buds and leaves suggested that the photoperiod and autonomous flowering pathways are major contributors to the different floral-associated traits between 'Nagafu No. 2' and 'Qinguan.' The genome variation data provided a foundation for the further exploration of apple diversity and gene-phenotype relationships, and for future research on molecular breeding to improve apple and related species.
Collapse
|
46
|
Li L, Li X, Liu Y, Liu H. Flowering responses to light and temperature. SCIENCE CHINA-LIFE SCIENCES 2015; 59:403-8. [PMID: 26687726 DOI: 10.1007/s11427-015-4910-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/20/2015] [Indexed: 11/27/2022]
Abstract
Light and temperature signals are the most important environmental cues regulating plant growth and development. Plants have evolved various strategies to prepare for, and adapt to environmental changes. Plants integrate environmental cues with endogenous signals to regulate various physiological processes, including flowering time. There are at least five distinct pathways controlling flowering in the model plant Arabidopsis thaliana: the photoperiod pathway, the vernalization/thermosensory pathway, the autonomous floral initiation, the gibberellins pathway, and the age pathway. The photoperiod and temperature/ vernalization pathways mainly perceive external signals from the environment, while the autonomous and age pathways transmit endogenous cues within plants. In many plant species, floral transition is precisely controlled by light signals (photoperiod) and temperature to optimize seed production in specific environments. The molecular mechanisms by which light and temperature control flowering responses have been revealed using forward and reverse genetic approaches. Here we focus on the recent advances in research on flowering responses to light and temperature.
Collapse
Affiliation(s)
- Li Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yawen Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
47
|
Ding F, Zhang S, Chen H, Su Z, Zhang R, Xiao Q, Li H. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:128-37. [PMID: 26706065 DOI: 10.1016/j.plantsci.2015.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 05/05/2023]
Abstract
Litchi (Litchi chinensis) is an important subtropical evergreen fruit crop with high commercial value due to its high nutritional values and favorable tastes. However, irregular bearing attributed to unstable flowering is a major ongoing problem for litchi producers. There is a need to better understand the genetic and molecular mechanisms underlying the reproductive process in litchi. In a previous study, our laboratory had analyzed the transcriptome of litchi leaves before and after low-temperature treatment with RNA-seq technology. Herein, we demonstrated that litchi flowering was induced by low-temperature and identified two FLOWERING LOCUS T (FT) homologue genes named LcFT1 and LcFT2, respectively. We found that low-temperature could only induce LcFT1 expression in leaves, but could not induce LcFT2 expression. Heterologous expression of LcFT1 in transgenic tobacco and Arabidopsis plants induced their precocious flowering. These results indicate that LcFT1 plays a pivotal role in litchi floral induction by low-temperature. In addition, we found that two types of LcFT1 promoter existed in different litchi cultivars. The LcFT1 promoters in the early-flowering cultivars belonged to one type whereas LcFT1 promoters in the late-flowering belonged to another one. LcFT1 promoter in the early-flowering cultivars was more sensitive to low-temperature than that of the late-flowering cultivars was, which may be caused by the different cis-acting elements, including MYC, MYB, ABRE, and WRKY cis-acting elements, which were found to be present in the LcFT1 promoter sequences of the early-flowering cultivars. This difference may be responsible for the different requirements of low-temperature for floral induction in the early- and late-flowering cultivars of litchi. Taken together, the difference in LcFT1 promoter sequences may be one of the leading cause for the natural variation of flowering timing in different litchi cultivars. Our study has provided valuable genetic basis for cross-breeding of litchi cultivars to generate new litchi cultivars for overcoming the problem of unstable flowering for litchi producers.
Collapse
Affiliation(s)
- Feng Ding
- Horticulture College, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China; Agricultural College of Guangxi University, Nanning 530004, Guangxi, China
| | - Shuwei Zhang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China; Agricultural College of Guangxi University, Nanning 530004, Guangxi, China
| | - Houbin Chen
- Horticulture College, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Zuanxian Su
- Horticulture College, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Rong Zhang
- Horticulture College, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qiusheng Xiao
- Horticulture College, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Hongli Li
- Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| |
Collapse
|
48
|
Han SH, Yoo SC, Lee BD, An G, Paek NC. Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod. PLANT, CELL & ENVIRONMENT 2015; 38:2527-40. [PMID: 25850808 DOI: 10.1111/pce.12549] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 05/09/2023]
Abstract
In the facultative long-day (LD) plant Arabidopsis thaliana, FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) is activated by blue light and promotes flowering through the transcriptional and post-translational regulation of CONSTANS under inductive LD conditions. By contrast, the facultative short day (SD) plant rice (Oryza sativa) flowers early under inductive SD and late under non-inductive LD conditions; the regulatory function of OsFKF1 remains elusive. Here we show that osfkf1 mutants flower late under SD, LD and natural LD conditions. Transcriptional analysis revealed that OsFKF1 up-regulates the expression of the floral activator Ehd2 and down-regulates the expression of the floral repressor Ghd7; these regulators up- and down-regulate Ehd1 expression, respectively. Moreover, OsFKF1 can up-regulate Ehd1 expression under blue light treatment, without affecting the expression of Ehd2 and Ghd7. In contrast to the LD-specific floral activator Arabidopsis FKF1, OsFKF1 likely acts as an autonomous floral activator because it promotes flowering independent of photoperiod, probably via its distinct roles in controlling the expression of rice-specific genes including Ehd2, Ghd7 and Ehd1. Like Arabidopsis FKF1, which interacts with GI and CDF1, OsFKF1 also interacts with OsGI and OsCDF1 (also termed OsDOF12). Thus, we have identified similar and distinct roles of FKF1 in Arabidopsis and rice.
Collapse
Affiliation(s)
- Su-Hyun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Soo-Cheul Yoo
- Department of Plant Life and Environmental Science, Hankyong National University, Ansung, 456-749, South Korea
| | - Byoung-Doo Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 232-916, South Korea
| |
Collapse
|
49
|
Ortiz-Marchena MI, Romero JM, Valverde F. Photoperiodic control of sugar release during the floral transition: What is the role of sugars in the florigenic signal? PLANT SIGNALING & BEHAVIOR 2015; 10:e1017168. [PMID: 26039474 PMCID: PMC4623508 DOI: 10.1080/15592324.2015.1017168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 05/19/2023]
Abstract
Florigen is a mobile signal released by the leaves that reaching the shoot apical meristem (SAM), changes its developmental program from vegetative to reproductive. The protein FLOWERING LOCUS T (FT) constitutes an important element of the florigen, but other components such as sugars, have been also proposed to be part of this signal. (1-5) We have studied the accumulation and composition of starch during the floral transition in Arabidopsis thaliana in order to understand the role of carbon mobilization in this process. In A. thaliana and Antirrhinum majus the gene coding for the Granule-Bound Starch Synthase (GBSS) is regulated by the circadian clock (6,7) while in the green alga Chlamydomonas reinhardtii the homolog gene CrGBSS is controlled by photoperiod and circadian signals. (8,9) In a recent paper(10) we described the role of the central photoperiodic factor CONSTANS (CO) in the regulation of GBSS expression in Arabidopsis. This regulation is in the basis of the change in the balance between starch and free sugars observed during the floral transition. We propose that this regulation may contribute to the florigenic signal and to the increase in sugar transport required during the flowering process.
Collapse
Affiliation(s)
- M Isabel Ortiz-Marchena
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas y Universidad de Sevilla; Sevilla, Spain
| | - José M Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas y Universidad de Sevilla; Sevilla, Spain
| | | |
Collapse
|
50
|
Capovilla G, Schmid M, Posé D. Control of flowering by ambient temperature. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:59-69. [PMID: 25326628 DOI: 10.1093/jxb/eru416] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The timing of flowering is a crucial decision in the life cycle of plants since favourable conditions are needed to maximize reproductive success and, hence, the survival of the species. It is therefore not surprising that plants constantly monitor endogenous and environmental signals, such as day length (photoperiod) and temperature, to adjust the timing of the floral transition. Temperature in particular has been shown to have a tremendous effect on the timing of flowering: the effect of prolonged periods of cold, called the vernalization response, has been extensively studied and the underlying epigenetic mechanisms are reasonably well understood in Arabidopsis thaliana. In contrast, the effect of moderate changes in ambient growth temperature on the progression of flowering, the thermosensory pathway, is only starting to be understood on the molecular level. Several genes and molecular mechanisms underlying the thermosensory pathway have already been identified and characterized in detail. At a time when global temperature is rising due to climate change, this knowledge will be pivotal to ensure crop production in the future.
Collapse
Affiliation(s)
- Giovanna Capovilla
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Spemannstr. 35, D-72076 Tübingen, Germany
| | - Markus Schmid
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Spemannstr. 35, D-72076 Tübingen, Germany
| | - David Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|