1
|
Frappaolo A, Zaccagnini G, Riparbelli MG, Colotti G, Callaini G, Giansanti MG. PACS deficiency disrupts Golgi architecture and causes cytokinesis failures and seizure-like phenotype in Drosophila melanogaster. Open Biol 2025; 15:240267. [PMID: 39999877 PMCID: PMC11858789 DOI: 10.1098/rsob.240267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The PACS (phosphofurin acidic cluster sorting protein) proteins are membrane trafficking regulators, required for maintaining cellular homeostasis and preventing disease states. Mutations in human PACS1 and PACS2 cause human neurodevelopmental disorders, characterized by epileptic seizures and neurodevelopmental delay. In vertebrates, functional analysis of PACS proteins is complicated by the presence of two paralogues which can compensate for the loss of each other. Here, we characterize the unique fly homologue of human PACS proteins. We demonstrate that Drosophila PACS (dPACS) is required for cell division in dividing spermatocytes and neuroblasts. In primary spermatocytes, dPACS colocalizes with GOLPH3 at the Golgi stacks and is essential for maintaining Golgi architecture. In dividing cells, dPACS is necessary for central spindle stability and contractile ring constriction. dPACS and GOLPH3 proteins form a complex and are mutually dependent for localization to the cleavage site. We propose that dPACS, by associating with GOLPH3, mediates the flow of vesicle trafficking that supports furrow ingression during cytokinesis. Furthermore, loss of dPACS leads to defects in tubulin acetylation and severe bang sensitivity, a phenotype associated with seizures in flies. Together our findings suggest that a Drosophila PACS disease model may contribute to understanding the molecular mechanisms underpinning human PACS syndromes.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Gianluca Zaccagnini
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | | | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche ‘A. Rossi-Fanelli’, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Giuliano Callaini
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
2
|
Zbikowski A, Kowalczyk T, Kasparek P, Prohazka J, Sedlacek R, Ciborowski M, Cysewski D, Łukasiewicz K. Understanding PACS2 syndrome's pathomechanism by studying E209K and E211K mutations. Mamm Genome 2024:10.1007/s00335-024-10098-5. [PMID: 39738582 DOI: 10.1007/s00335-024-10098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS2) plays a vital role in maintaining cellular homeostasis by regulating protein trafficking between cellular membranes. This function impacts crucial processes like apoptosis, mitochondria-endoplasmic reticulum interaction, and subsequently Ca2+ flux, lipid biosynthesis, and autophagy. Missense mutations, particularly E209K and E211K, are linked to developmental and epileptic encephalopathy-66 (DEE66), known as PACS2 syndrome. Individuals with this syndrome exhibit neurodevelopmental delay, seizures, facial dysmorphism, hypotonia, and delayed motor skills.Understanding the impact of these missense mutations on molecular processes is crucial. Studies suggest that E209K mutation decreases phosphorylation, increases the survival time of protein, and modifies protein-protein interaction, consequently leading to disruption of calcium flux and lower resistance to apoptosis induction. Unfortunately, to date, only a limited number of research groups have investigated the effects of mutations in the PACS2 gene. Current research on PACS2 syndrome is hampered by the lack of suitable models. While in vitro models using transfected cell lines offer insights, they cannot fully capture the disease's complexity.To address this, utilizing cells from individuals with PACS2 syndrome, specifically induced pluripotent stem cells (iPSCs), holds promise for understanding phenotypic diversity and developing personalized therapies. However, iPSC models may not fully capture tissue-specific effects of the E209K/E211K mutation. In vivo studies using animal models, particularly mice, could overcome these limitations.This review summarizes current knowledge about PACS2 structure and functions, explores the cellular consequences of E209K and E211K mutations, and highlights the potential of iPSC and mouse models in advancing our understanding of PACS2 syndrome.
Collapse
Affiliation(s)
- Arkadiusz Zbikowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Prohazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Kacper Łukasiewicz
- Experimental Medicine Centre, Medical University of Bialystok, Bialystok, Poland.
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
3
|
Gautam A, Lalande A, Ritter M, Freitas N, Lerolle S, Canus L, Amirache F, Lotteau V, Legros V, Cosset FL, Mathieu C, Boson B. The PACS-2 protein and trafficking motifs in CCHFV Gn and Gc cytoplasmic domains govern CCHFV assembly. Emerg Microbes Infect 2024; 13:2348508. [PMID: 38661085 PMCID: PMC11159592 DOI: 10.1080/22221751.2024.2348508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
The Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne bunyavirus that causes high mortality in humans. This enveloped virus harbors two surface glycoproteins (GP), Gn and Gc, that are released by processing of a glycoprotein precursor complex whose maturation takes place in the ER and is completed through the secretion pathway. Here, we characterized the trafficking network exploited by CCHFV GPs during viral assembly, envelopment, and/or egress. We identified membrane trafficking motifs in the cytoplasmic domains (CD) of CCHFV GPs and addressed how they impact these late stages of the viral life cycle using infection and biochemical assays, and confocal microscopy in virus-producing cells. We found that several of the identified CD motifs modulate GP transport through the retrograde trafficking network, impacting envelopment and secretion of infectious particles. Finally, we identified PACS-2 as a crucial host factor contributing to CCHFV GPs trafficking required for assembly and release of viral particles.
Collapse
Affiliation(s)
- Anupriya Gautam
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Lalande
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Maureen Ritter
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Natalia Freitas
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Solène Lerolle
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Lola Canus
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Fouzia Amirache
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Vincent Legros
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Campus vétérinaire de Lyon, VetAgro Sup, Université de Lyon, Marcy-l’Etoile, France
| | - François-Loïc Cosset
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyrille Mathieu
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bertrand Boson
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
4
|
Byrd DT, Han ZC, Piggott CA, Jin Y. PACS-1 variant protein is aberrantly localized in Caenorhabditis elegans model of PACS1/PACS2 syndromes. Genetics 2024; 228:iyae118. [PMID: 39031646 PMCID: PMC11457933 DOI: 10.1093/genetics/iyae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024] Open
Abstract
PACS (phosphofurin acidic cluster sorting) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the functional effects of syndromic variants at the cellular level remain unknown. Here, we report the expression pattern of Caenorhabditis elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 colocalize to somatic cytoplasm of many types of cells and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.
Collapse
Affiliation(s)
- Dana T Byrd
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ziyuan Christina Han
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher A Piggott
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Trothen S, Teplitsky JE, Armstong RE, Zang RX, Lurie A, Mumby MJ, Edgar CR, Grol MW, Dikeakos JD. PACS-1 Interacts with TRPC3 and ESyt1 to Mediate Protein Trafficking while Promoting SOCE and Cooperatively Regulating Hormone Secretion. ACS OMEGA 2024; 9:35014-35027. [PMID: 39157130 PMCID: PMC11325417 DOI: 10.1021/acsomega.4c04998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
Corticotropic cells of the anterior pituitary gland release adrenocorticotropic hormone (ACTH) in a regulated manner to promote the production of cortisol and androgens. The process of ACTH secretion is partly mediated by the phosphofurin acidic cluster sorting protein 1 (PACS-1); however, the underlying mechanisms behind this regulation remain unclear. Herein, we demonstrated PACS-1 interactions with the short transient receptor potential channel 3 (TRPC3) calcium transporter and the extended synaptotagmin-1 (ESyt1) endoplasmic reticulum-plasma membrane tethering protein. Importantly, PACS-1 promoted interactions between TRPC3 and ESyt1 and regulated their plasma membrane localization. Lastly, we demonstrated that PACS-1 is required for a proper store-operated calcium entry (SOCE) response and that ESyt1 regulates ACTH secretion through an unknown mechanism regulated by PACS-1. Overall, our study provides new insights into the physiological role PACS-1 plays in modulating intracellular calcium levels and regulating ACTH secretion in corticotropic cells.
Collapse
Affiliation(s)
- Steven
M. Trothen
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jack E. Teplitsky
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ryan E. Armstong
- Department
of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rong Xuan Zang
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Antony Lurie
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitchell J. Mumby
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Cassandra R. Edgar
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew W. Grol
- Department
of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
6
|
Byrd DT, Han ZC, Piggott CA, Jin Y. PACS-1 variant protein is aberrantly localized in C. elegans model of PACS1/PACS2 syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590644. [PMID: 38712144 PMCID: PMC11071410 DOI: 10.1101/2024.04.22.590644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PACS (Phosphofurin Acidic Cluster Sorting Protein) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the effects of syndromic variants on function in vivo remains unknown. Here, we report the expression pattern of C. elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 co-localize to somatic cytoplasm of many types of cells, and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.
Collapse
Affiliation(s)
- Dana T. Byrd
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| | - Ziyuan Christina Han
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| | - Christopher A. Piggott
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| |
Collapse
|
7
|
Stoian A, Bajko Z, Bălașa R, Andone S, Stoian M, Ormenișan I, Muntean C, Bănescu C. Characteristics of Developmental and Epileptic Encephalopathy Associated with PACS2 p.Glu209Lys Pathogenic Variant-Our Experience and Systematic Review of the Literature. Biomolecules 2024; 14:270. [PMID: 38540691 PMCID: PMC10968252 DOI: 10.3390/biom14030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Developmental and epileptic encephalopathies (DEE) encompass a group of rare diseases with hereditary and genetic causes as well as acquired causes such as brain injuries or metabolic abnormalities. The phosphofurin acidic cluster sorting protein 2 (PACS2) is a multifunctional protein with nuclear gene expression. The first cases of the recurrent c.625G>A pathogenic variant of PACS2 gene were reported in 2018 by Olson et al. Since then, several case reports and case series have been published. METHODS We performed a systematic review of the PUBMED and SCOPUS databases using Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Our search parameters included DEE66 with a pathogenic PACS2 gene p.Glu209Lys mutation published cases to which we added our own clinical experience regarding this pathology. RESULTS A total of 11 articles and 29 patients were included in this review, to which we added our own experience for a total of 30 patients. There was not a significant difference between sexes regarding the incidence of this pathology (M/F: 16/14). The most common neurological and psychiatric symptoms presented by the patients were: early onset epileptic seizures, delayed global development (including motor and speech delays), behavioral disturbances, limited intellectual capacity, nystagmus, hypotonia, and a wide-based gait. Facial dysmorphism and other organs' involvement were also frequently reported. Brain MRIs evidenced anomalies of the posterior cerebellar fossa, foliar distortion of the cerebellum, vermis hypoplasia, white matter reduction, and lateral ventricles enlargement. Genetic testing is more frequent in children. Only 4 cases have been reported in adults to date. CONCLUSIONS It is important to maintain a high suspicion of new pathogenic gene variants in adult patients presenting with a characteristic clinical picture correlated with radiologic changes. The neurologist must gradually recognize the distinct evolving phenotype of DEE66 in adult patients, and genetic testing must become a scenario with which the neurologist attending adult patients should be familiar. Accurate diagnosis is required for adequate treatment, genetic counseling, and an improved long-term prognosis.
Collapse
Affiliation(s)
- Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Zoltan Bajko
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Rodica Bălașa
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Sebastian Andone
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Mircea Stoian
- Department of Anesthesia and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Ioana Ormenișan
- 1st Neurology Clinic, Mures County Emergency Hospital, 540142 Targu Mures, Romania;
| | - Carmen Muntean
- Department of Pediatrics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Claudia Bănescu
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
8
|
Elwakiel A, Mathew A, Isermann B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease. Cardiovasc Res 2024; 119:2875-2883. [PMID: 38367274 DOI: 10.1093/cvr/cvad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 02/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. The pathomechanisms of DKD are multifactorial, yet haemodynamic and metabolic changes in the early stages of the disease appear to predispose towards irreversible functional loss and histopathological changes. Recent studies highlight the importance of endoplasmic reticulum-mitochondria-associated membranes (ER-MAMs), structures conveying important cellular homeostatic and metabolic effects, in the pathology of DKD. Disruption of ER-MAM integrity in diabetic kidneys is associated with DKD progression, but the regulation of ER-MAMs and their pathogenic contribution remain largely unknown. Exploring the cell-specific components and dynamic changes of ER-MAMs in diabetic kidneys may lead to the identification of new approaches to detect and stratify diabetic patients with DKD. In addition, these insights may lead to novel therapeutic approaches to target and/or reverse disease progression. In this review, we discuss the association of ER-MAMs with key pathomechanisms driving DKD such as insulin resistance, dyslipidaemia, ER stress, and inflammasome activation and the importance of further exploration of ER-MAMs as diagnostic and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Rylaarsdam L, Rakotomamonjy J, Pope E, Guemez-Gamboa A. iPSC-derived models of PACS1 syndrome reveal transcriptional and functional deficits in neuron activity. Nat Commun 2024; 15:827. [PMID: 38280846 PMCID: PMC10821916 DOI: 10.1038/s41467-024-44989-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
PACS1 syndrome is a neurodevelopmental disorder characterized by intellectual disability and distinct craniofacial abnormalities resulting from a de novo p.R203W variant in phosphofurin acidic cluster sorting protein 1 (PACS1). PACS1 is known to have functions in the endosomal pathway and nucleus, but how the p.R203W variant affects developing neurons is not fully understood. Here we differentiated stem cells towards neuronal models including cortical organoids to investigate the impact of the PACS1 syndrome-causing variant on neurodevelopment. While few deleterious effects were detected in PACS1(+/R203W) neural precursors, mature PACS1(+/R203W) glutamatergic neurons exhibited impaired expression of genes involved in synaptic signaling processes. Subsequent characterization of neural activity using calcium imaging and multielectrode arrays revealed the p.R203W PACS1 variant leads to a prolonged neuronal network burst duration mediated by an increased interspike interval. These findings demonstrate the impact of the PACS1 p.R203W variant on developing human neural tissue and uncover putative electrophysiological underpinnings of disease.
Collapse
Affiliation(s)
- Lauren Rylaarsdam
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer Rakotomamonjy
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eleanor Pope
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alicia Guemez-Gamboa
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Makio T, Simmen T. Not So Rare: Diseases Based on Mutant Proteins Controlling Endoplasmic Reticulum-Mitochondria Contact (MERC) Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241261228. [PMID: 39070058 PMCID: PMC11273598 DOI: 10.1177/25152564241261228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs), also called endoplasmic reticulum (ER)-mitochondria contact sites (ERMCS), are the membrane domains, where these two organelles exchange lipids, Ca2+ ions, and reactive oxygen species. This crosstalk is a major determinant of cell metabolism, since it allows the ER to control mitochondrial oxidative phosphorylation and the Krebs cycle, while conversely, it allows the mitochondria to provide sufficient ATP to control ER proteostasis. MERC metabolic signaling is under the control of tethers and a multitude of regulatory proteins. Many of these proteins have recently been discovered to give rise to rare diseases if their genes are mutated. Surprisingly, these diseases share important hallmarks and cause neurological defects, sometimes paired with, or replaced by skeletal muscle deficiency. Typical symptoms include developmental delay, intellectual disability, facial dysmorphism and ophthalmologic defects. Seizures, epilepsy, deafness, ataxia, or peripheral neuropathy can also occur upon mutation of a MERC protein. Given that most MERC tethers and regulatory proteins have secondary functions, some MERC protein-based diseases do not fit into this categorization. Typically, however, the proteins affected in those diseases have dominant functions unrelated to their roles in MERCs tethering or their regulation. We are discussing avenues to pharmacologically target genetic diseases leading to MERC defects, based on our novel insight that MERC defects lead to common characteristics in rare diseases. These shared characteristics of MERCs disorders raise the hope that they may allow for similar treatment options.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Yang J, Li L, Li C, Chen W, Liu Y, Luo S, Zhao C, Han Y, Yang M, Zhao H, Jiang N, Xi Y, Tang C, Cai J, Xiao L, Liu H, Sun L. PACS-2 deficiency aggravates tubular injury in diabetic kidney disease by inhibiting ER-phagy. Cell Death Dis 2023; 14:649. [PMID: 37794057 PMCID: PMC10550977 DOI: 10.1038/s41419-023-06175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Autophagy of endoplasmic reticulum (ER-phagy) selectively removes damaged ER through autophagy-lysosome pathway, acting as an adaptive mechanism to alleviate ER stress and restore ER homeostasis. However, the role and precise mechanism of ER-phagy in tubular injury of diabetic kidney disease (DKD) remain obscure. In the present study, we demonstrated that ER-phagy of renal tubular cells was severely impaired in streptozocin (STZ)-induced diabetic mice, with a decreased expression of phosphofurin acidic cluster sorting protein 2 (PACS-2), a membrane trafficking protein which was involved in autophagy, and a reduction of family with sequence similarity 134 member B (FAM134B), one ER-phagy receptor. These changes were further aggravated in mice with proximal tubule specific knockout of Pacs-2 gene. In vitro, transfection of HK-2 cells with PACS-2 overexpression plasmid partially improved the impairment of ER-phagy and the reduction of FAM134B, both of which were induced in high glucose ambience; while the effect was blocked by FAM134B siRNA. Mechanistically, PACS-2 interacted with and promoted the nuclear translocation of transcription factor EB (TFEB), which was reported to activate the expression of FAM134B. Collectively, these data unveiled that PACS-2 deficiency aggravates renal tubular injury in DKD via inhibiting ER-phagy through TFEB/FAM134B pathway.
Collapse
Affiliation(s)
- Jinfei Yang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chanyue Zhao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lin Sun
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
12
|
Thi My Nhung T, Phuoc Long N, Diem Nghi T, Suh Y, Hoang Anh N, Jung CW, Minh Triet H, Jung M, Woo Y, Yoo J, Noh S, Kim SJ, Lee SB, Park S, Thomas G, Simmen T, Mun J, Rhee HW, Kwon SW, Park SK. Genome-wide kinase-MAM interactome screening reveals the role of CK2A1 in MAM Ca 2+ dynamics linked to DEE66. Proc Natl Acad Sci U S A 2023; 120:e2303402120. [PMID: 37523531 PMCID: PMC10410754 DOI: 10.1073/pnas.2303402120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria form a unique subcellular compartment called mitochondria-associated ER membranes (MAMs). Disruption of MAMs impairs Ca2+ homeostasis, triggering pleiotropic effects in the neuronal system. Genome-wide kinase-MAM interactome screening identifies casein kinase 2 alpha 1 (CK2A1) as a regulator of composition and Ca2+ transport of MAMs. CK2A1-mediated phosphorylation of PACS2 at Ser207/208/213 facilitates MAM localization of the CK2A1-PACS2-PKD2 complex, regulating PKD2-dependent mitochondrial Ca2+ influx. We further reveal that mutations of PACS2 (E209K and E211K) associated with developmental and epileptic encephalopathy-66 (DEE66) impair MAM integrity through the disturbance of PACS2 phosphorylation at Ser207/208/213. This, in turn, causes the reduction of mitochondrial Ca2+ uptake and the dramatic increase of the cytosolic Ca2+ level, thereby, inducing neurotransmitter release at the axon boutons of glutamatergic neurons. In conclusion, our findings suggest a molecular mechanism that MAM alterations induced by pathological PACS2 mutations modulate Ca2+-dependent neurotransmitter release.
Collapse
Affiliation(s)
- Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan47392, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Cheol Woon Jung
- College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Hong Minh Triet
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Jinyeong Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Sujin Noh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Seongoh Park
- School of Mathematics, Statistics and Data Science, Sungshin Women’s University, Seoul02844, Republic of Korea
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, PA15219
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, ABT6G 2H7, Canada
| | - Jiyoung Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul08826, Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| |
Collapse
|
13
|
He Q, Qu M, Shen T, Su J, Xu Y, Xu C, Barkat MQ, Cai J, Zhu H, Zeng LH, Wu X. Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res Rev 2023; 87:101920. [PMID: 37004843 DOI: 10.1016/j.arr.2023.101920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic coupling structures between mitochondria and the endoplasmic reticulum (ER). As a new subcellular structure, MAMs combine the two critical organelle functions. Mitochondria and the ER could regulate each other via MAMs. MAMs are involved in calcium (Ca2+) homeostasis, autophagy, ER stress, lipid metabolism, etc. Researchers have found that MAMs are closely related to metabolic syndrome and neurodegenerative diseases (NDs). The formation of MAMs and their functions depend on specific proteins. Numerous protein enrichments, such as the IP3R-Grp75-VDAC complex, constitute MAMs. The changes in these proteins govern the interaction between mitochondria and the ER; they also affect the biological functions of MAMs. S-palmitoylation is a reversible protein post-translational modification (PTM) that mainly occurs on protein cysteine residues. More and more studies have shown that the S-palmitoylation of proteins is closely related to their membrane localization. Here, we first briefly describe the composition and function of MAMs, reviewing the component and biological roles of MAMs mediated by S-palmitoylation, elaborating on S-palmitoylated proteins in Ca2+ flux, lipid rafts, and so on. We try to provide new insight into the molecular basis of MAMs-related diseases, mainly NDs. Finally, we propose potential drug compounds targeting S-palmitoylation.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Haibin Zhu
- Department of Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
14
|
Chou IJ, Hou JY, Fan WL, Tsai MH, Lin KL. Long-Term Outcome of Neonatal Seizure with PACS2 Mutation: Case Series and Literature Review. CHILDREN 2023; 10:children10040621. [PMID: 37189870 DOI: 10.3390/children10040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Phosphofurin Acidic Cluster Sorting Protein 2 (PACS2)-related early infantile developmental and epileptic encephalopathy (EIDEE) is a rare neurodevelopmental disorder. EIDEE is characterized by seizures that begin during the first three months of life and are accompanied by developmental impairment over time. In this article, we present three patients with EIDEE who experienced neonatal-onset seizures that developed into intractable seizures during infancy. Whole exome sequencing revealed a de novo heterozygous missense variant in all three patients in the p.Glu209Lys variant of the PACS2 gene. We conducted a literature review and found 29 cases to characterize the seizure patterns, neuroimaging features, the usage of anticonvulsants, and the clinical neurodevelopmental outcomes of PACS2-related EIDEE. The seizures were characterized by brief, recurring tonic seizures in the upper limbs, sometimes accompanied by autonomic features. Neuroimaging abnormalities were observed in the posterior fossa region, including mega cisterna magna, cerebellar dysplasia, and vermian hypoplasia. The long-term prognosis ranges from low–average intelligence to severe developmental retardation, emphasizing the importance of early recognition and accurate diagnosis by pediatric neurologists to provide personalized patient management.
Collapse
|
15
|
Abstract
Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.
Collapse
Affiliation(s)
- Orhi Esarte Palomero
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Megan Larmore
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
16
|
Ryu IS, Kim DH, Cho HJ, Ryu JH. The role of microRNA-485 in neurodegenerative diseases. Rev Neurosci 2023; 34:49-62. [PMID: 35793556 DOI: 10.1515/revneuro-2022-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases (NDDs) are age-related disorders characterized by progressive neurodegeneration and neuronal cell loss in the central nervous system. Neuropathological conditions such as the accumulation of misfolded proteins can cause neuroinflammation, apoptosis, and synaptic dysfunction in the brain, leading to the development of NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression post-transcriptionally via RNA interference. Recently, some studies have reported that some miRNAs play an important role in the development of NDDs by regulating target gene expression. MiRNA-485 (miR-485) is a highly conserved brain-enriched miRNA. Accumulating clinical reports suggest that dysregulated miR-485 may be involved in the pathogenesis of AD and PD. Emerging studies have also shown that miR-485 plays a novel role in the regulation of neuroinflammation, apoptosis, and synaptic function in the pathogenesis of NDDs. In this review, we introduce the biological characteristics of miR-485, provide clinical evidence of the dysregulated miR-485 in NDDs, novel roles of miR-485 in neuropathological events, and discuss the potential of targeting miR-485 as a diagnostic and therapeutic marker for NDDs.
Collapse
Affiliation(s)
- In Soo Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, South Korea
| | - Jin-Hyeob Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea.,Biorchestra Co. Ltd., 245 Main St, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Zang RX, Mumby MJ, Dikeakos JD. The Phosphofurin Acidic Cluster Sorting Protein 2 (PACS-2) E209K Mutation Responsible for PACS-2 Syndrome Increases Susceptibility to Apoptosis. ACS OMEGA 2022; 7:34378-34388. [PMID: 36188273 PMCID: PMC9520720 DOI: 10.1021/acsomega.2c04014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a multifunctional cytosolic membrane trafficking protein with distinct roles in maintaining cellular homeostasis. Recent clinical reports have described 28 individuals possessing a de novo PACS-2 E209K mutation that present with epileptic seizures and cerebellar dysgenesis. As the PACS-2 E209K missense mutation has become a marker for neurodevelopmental disorders, we sought to characterize its biochemical properties. Accordingly, we observed that the PACS-2 E209K protein exhibited a slower turnover rate relative to PACS-2 wild type (WT) upon cycloheximide treatment in 293T cells. The longer half-life of PACS-2 E209K suggests a disruption in its proteostasis, with the potential for altered protein-protein interactions. Indeed, a regulatory protein in neurodevelopment known as 14-3-3ε was identified as having an increased association with PACS-2 E209K. Subsequently, when comparing the effect of PACS-2 WT and E209K expression on the staurosporine-induced apoptosis response, we found that PACS-2 E209K increased susceptibility to staurosporine-induced apoptosis in HCT 116 cells. Overall, our findings suggest PACS-2 E209K alters PACS-2 proteostasis and favors complex formation with 14-3-3ε, leading to increased cell death in the presence of environmental stressors.
Collapse
|
19
|
Neagu AC, Budișteanu M, Gheorghe DC, Mocanu AI, Mocanu H. Rare Gene Mutations in Romanian Hypoacusis Patients: Case Series and a Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091252. [PMID: 36143929 PMCID: PMC9501263 DOI: 10.3390/medicina58091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: In this paper, we report on three cases of hypoacusis as part of a complex phenotype and some rare gene variants. An extensive review of literature completes the newly reported clinical and genetic information. (2) Methods: The cases range from 2- to 11-year-old boys, all with a complex clinical picture and hearing impairment. In all cases, whole exome sequencing (WES) was performed, in the first case in association with mitochondrial DNA study. (3) Results: The detected variants were: two heterozygous variants in the TWNK gene, one likely pathogenic and another of uncertain clinical significance (autosomal recessive mitochondrial DNA depletion syndrome type 7-hepatocerebral type); heterozygous variants of uncertain significance PACS2 and SYT2 genes (autosomal dominant early infantile epileptic encephalopathy) and a homozygous variant of uncertain significance in SUCLG1 gene (mitochondrial DNA depletion syndrome 9). Some of these genes have never been previously reported as associated with hearing problems. (4) Conclusions: Our cases bring new insights into some rare genetic syndromes. Although the role of TWNK gene in hearing impairment is clear and accordingly reflected in published literature as well as in the present article, for the presented gene variants, a correlation to hearing problems could not yet be established and requires more scientific data. We consider that further studies are necessary for a better understanding of the role of these variants.
Collapse
Affiliation(s)
- Alexandra-Cristina Neagu
- Department of ENT&HNS, “Marie Sklodowska Curie” Emergency Children’s Hospital, 041434 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Medical Genetics, Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence: (M.B.); (A.-I.M.); Tel.: +407-2292-9091 (M.B.); +407-2340-0435 (A.-I.M.)
| | - Dan-Cristian Gheorghe
- Department of ENT&HNS, “Marie Sklodowska Curie” Emergency Children’s Hospital, 041434 Bucharest, Romania
- Department of ENT&HNS, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adela-Ioana Mocanu
- Department of ENT&HNS, Polimed Medical Center, 040067 Bucharest, Romania
- Correspondence: (M.B.); (A.-I.M.); Tel.: +407-2292-9091 (M.B.); +407-2340-0435 (A.-I.M.)
| | - Horia Mocanu
- Department of ENT&HNS, Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| |
Collapse
|
20
|
Molecular Basis of the Schuurs-Hoeijmakers Syndrome: What We Know about the Gene and the PACS-1 Protein and Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23179649. [PMID: 36077045 PMCID: PMC9456036 DOI: 10.3390/ijms23179649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The Schuurs−Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopment Disorder (PACS1-NDD) is a rare autosomal dominant disease caused by mutations in the PACS1 gene. To date, only 87 patients have been reported and, surprisingly, most of them carry the same variant (c.607C>T; p.R203W). The most relevant clinical features of the syndrome include neurodevelopment delay, seizures or a recognizable facial phenotype. Moreover, some of these characteristics overlap with other syndromes, such as the PACS2 or Wdr37 syndromes. The encoded protein phosphofurin acid cluster sorting 1 (PACS-1) is able to bind to different client proteins and direct them to their subcellular final locations. Therefore, although its main function is protein trafficking, it could perform other roles related to its client proteins. In patients with PACS1-NDD, a gain-of-function or a dominant negative mechanism for the mutated protein has been suggested. This, together with the fact that most of the patients carry the same genetic variant, makes it a good candidate for novel therapeutic approaches directed to decreasing the toxic effect of the mutated protein. Some of these strategies include the use of antisense oligonucleotides (ASOs) or targeting of its client proteins.
Collapse
|
21
|
Liu X, Tang J, Chen XZ. Role of PKD2 in the endoplasmic reticulum calcium homeostasis. Front Physiol 2022; 13:962571. [PMID: 36035467 PMCID: PMC9399649 DOI: 10.3389/fphys.2022.962571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene which encodes membrane receptor PKD1 and cation channel PKD2, respectively. PKD2, also called transient receptor potential polycystin-2 (TRPP2), is a Ca2+-permeable channel located on the membrane of cell surface, primary cilia, and endoplasmic reticulum (ER). Ca2+ is closely associated with diverse cellular functions. While ER Ca2+ homeostasis depends on different Ca2+ receptors, channels and transporters, the role of PKD2 within the ER remains controversial. Whether and how PKD2-mediated ER Ca2+ leak relates to ADPKD pathogenesis is not well understood. Here, we reviewed current knowledge about the biophysical and physiological properties of PKD2 and how PKD2 contributes to ER Ca2+ homeostasis.
Collapse
Affiliation(s)
- Xiong Liu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, HB, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Xing-Zhen Chen,
| |
Collapse
|
22
|
TRPP2 ion channels: The roles in various subcellular locations. Biochimie 2022; 201:116-127. [PMID: 35760123 DOI: 10.1016/j.biochi.2022.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
TRPP2 (PC2, PKD2 or Polycytin-2), encoded by PKD2 gene, belongs to the nonselective cation channel TRP family. Recently, the three-dimensional structure of TRPP2 was constructed. TRPP2 mainly functions in three subcellular compartments: endoplasmic reticulum, plasma membrane and primary cilia. TRPP2 can act as a calcium-activated intracellular calcium release channel on the endoplasmic reticulum. TRPP2 also interacts with other Ca2+ release channels to regulate calcium release, like IP3R and RyR2. TRPP2 acts as an ion channel regulated by epidermal growth factor through activation of downstream factors in the plasma membrane. TRPP2 binding to TRPC1 in the plasma membrane or endoplasmic reticulum is associated with mechanosensitivity. In cilium, TRPP2 was found to combine with PKD1 and TRPV4 to form a complex related to mechanosensitivity. Because TRPP2 is involved in regulating intracellular ion concentration, TRPP2 mutations often lead to autosomal dominant polycystic kidney disease, which may also be associated with cardiovascular disease. In this paper, we review the molecular structure of TRPP2, the subcellular localization of TRPP2, the related functions and mechanisms of TRPP2 at different sites, and the diseases related to TRPP2.
Collapse
|
23
|
Cantero MDR, Cantiello HF. Polycystin-2 (TRPP2): Ion channel properties and regulation. Gene 2022; 827:146313. [PMID: 35314260 DOI: 10.1016/j.gene.2022.146313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
Polycystin-2 (TRPP2, PKD2, PC2) is the product of the PKD2 gene, whose mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). PC2 belongs to the superfamily of TRP (Transient Receptor Potential) proteins that generally function as Ca2+-permeable nonselective cation channels implicated in Ca2+ signaling. PC2 localizes to various cell domains with distinct functions that likely depend on interactions with specific channel partners. Functions include receptor-operated, nonselective cation channel activity in the plasma membrane, intracellular Ca2+ release channel activity in the endoplasmic reticulum (ER), and mechanosensitive channel activity in the primary cilium of renal epithelial cells. Here we summarize our current understanding of the properties of PC2 and how other transmembrane and cytosolic proteins modulate this activity, providing functional diversity and selective regulatory mechanisms to its role in the control of cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina.
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina
| |
Collapse
|
24
|
Cesaroni E, Matricardi S, Cappanera S, Marini C. First reported case of an inherited PACS2 pathogenic variant with variable expression. Epileptic Disord 2022; 24:572-576. [PMID: 35770754 DOI: 10.1684/epd.2022.1417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Neonatal epilepsy, cerebellar dysgenesis and facial dysmorphisms may be associated with de novo PACS2 missense pathogenic variants (EIEE 66) (OMIM #618067). Here, we report a toddler boy with neonatal-onset seizures, developmental delay with hypotonia, facial dysmorphisms and prominence of the cisterna magna, mild inferior vermian and cerebellar hypoplasia. A nextgeneration epilepsy gene panel revealed a known pathogenic PACS2 missense variant, p.Glu209Lys, that was inherited from his mildly affected mother. We describe the first PACS2 pathogenic variant to be inherited, expanding the clinical spectrum, associated with a mild phenotype in the mother and a more severe phenotype in her son, in keeping with previously reported descriptions.
Collapse
|
25
|
Higgins DP, Weisman CM, Lui DS, D'Agostino FA, Walker AK. Defining characteristics and conservation of poorly annotated genes in Caenorhabditis elegans using WormCat 2.0. Genetics 2022; 221:6588682. [PMID: 35587742 PMCID: PMC9339291 DOI: 10.1093/genetics/iyac085] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 12/03/2022] Open
Abstract
Omics tools provide broad datasets for biological discovery. However, the computational tools for identifying important genes or pathways in RNA-seq, proteomics, or GWAS (Genome-Wide Association Study) data depend on Gene Ontogeny annotations and are biased toward well-described pathways. This limits their utility as poorly annotated genes, which could have novel functions, are often passed over. Recently, we developed an annotation and category enrichment tool for Caenorhabditis elegans genomic data, WormCat, which provides an intuitive visualization output. Unlike Gene Ontogeny-based enrichment tools, which exclude genes with no annotation information, WormCat 2.0 retains these genes as a special UNASSIGNED category. Here, we show that the UNASSIGNED gene category enrichment exhibits tissue-specific expression patterns and can include genes with biological functions identified in published datasets. Poorly annotated genes are often considered to be potentially species-specific and thus, of reduced interest to the biomedical community. Instead, we find that around 3% of the UNASSIGNED genes have human orthologs, including some linked to human diseases. These human orthologs themselves have little annotation information. A recently developed method that incorporates lineage relationships (abSENSE) indicates that the failure of BLAST to detect homology explains the apparent lineage specificity for many UNASSIGNED genes. This suggests that a larger subset could be related to human genes. WormCat provides an annotation strategy that allows the association of UNASSIGNED genes with specific phenotypes and known pathways. Building these associations in C. elegans, with its robust genetic tools, provides a path to further functional study and insight into these understudied genes.
Collapse
Affiliation(s)
- Daniel P Higgins
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester MA 01605, USA
| | - Caroline M Weisman
- Lewis-Sigler Institute for Quantitative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Dominique S Lui
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester MA 01605, USA
| | - Frank A D'Agostino
- Department of Applied Mathematics, Harvard University, Cambridge MA 02138, USA
| | - Amy K Walker
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester MA 01605, USA
| |
Collapse
|
26
|
Li C, Li L, Yang M, Yang J, Zhao C, Han Y, Zhao H, Jiang N, Wei L, Xiao Y, Liu Y, Xiong X, Xi Y, Luo S, Deng F, Chen W, Yuan S, Zhu X, Xiao L, Sun L. PACS-2 Ameliorates Tubular Injury by Facilitating Endoplasmic Reticulum-Mitochondria Contact and Mitophagy in Diabetic Nephropathy. Diabetes 2022; 71:1034-1050. [PMID: 35133431 DOI: 10.2337/db21-0983] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022]
Abstract
Mitochondria-associated endoplasmic reticulum membrane (MAM) may have a role in tubular injury in diabetic nephropathy (DN), but the precise mechanism remains unclear. Here, we demonstrate that the expression of phosphofurin acidic cluster sorting protein 2 (PACS-2), a critical regulator of MAM formation, is significantly decreased in renal tubules of patients with DN, and PACS-2 expression is positively correlated with renal function and negatively correlated with degrees of tubulointerstitial lesions. Conditional deletion of Pacs-2 in proximal tubules (PTs) aggravates albuminuria and tubular injury in a streptozotocin-induced mouse model of diabetes. Mitochondrial fragmentation, MAM disruption, and defective mitophagy accompanied by altered expression of mitochondrial dynamics and mitophagic proteins, including Drp1 and Becn1, are observed in tubules of diabetic mice; these changes are more pronounced in PT-specific Pacs-2 knockout mice. In vitro, overexpression of PACS-2 in HK-2 cells alleviates excessive mitochondrial fission induced by high glucose concentrations through blocking mitochondrial recruitment of DRP1 and subsequently restores MAM integrity and enhances mitophagy. Mechanistically, PACS-2 binds to BECN1 and mediates the relocalization of BECN1 to MAM, where it promotes the formation of mitophagosome. Together, these data highlight an important but previously unrecognized role of PACS-2 in ameliorating tubular injury in DN by facilitating MAM formation and mitophagy.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chanyue Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ling Wei
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xiaofen Xiong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
27
|
Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs. Biomedicines 2022; 10:biomedicines10030594. [PMID: 35327396 PMCID: PMC8945769 DOI: 10.3390/biomedicines10030594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations of ion channels and G-protein-coupled receptors (GPCRs) are not uncommon and can lead to cardiovascular diseases. Given previously reported multiple factors associated with high mutation rates, we sorted the relative mutability of multiple human genes by (i) proximity to telomeres and/or (ii) high adenine and thymine (A+T) content. We extracted genomic information using the genome data viewer and examined the mutability of 118 ion channel and 143 GPCR genes based on their association with factors (i) and (ii). We then assessed these two factors with 31 genes encoding ion channels or GPCRs that are targeted by the United States Food and Drug Administration (FDA)-approved drugs. Out of the 118 ion channel genes studied, 80 met either factor (i) or (ii), resulting in a 68% match. In contrast, a 78% match was found for the 143 GPCR genes. We also found that the GPCR genes (n = 20) targeted by FDA-approved drugs have a relatively lower mutability than those genes encoding ion channels (n = 11), where targeted genes encoding GPCRs were shorter in length. The result of this study suggests that the use of matching rate analysis on factor-druggable genome is feasible to systematically compare the relative mutability of GPCRs and ion channels. The analysis on chromosomes by two factors identified a unique characteristic of GPCRs, which have a significant relationship between their nucleotide sizes and proximity to telomeres, unlike most genetic loci susceptible to human diseases.
Collapse
|
28
|
Knoell J, Chillappagari S, Knudsen L, Korfei M, Dartsch R, Jonigk D, Kuehnel MP, Hoetzenecker K, Guenther A, Mahavadi P. PACS2-TRPV1 axis is required for ER-mitochondrial tethering during ER stress and lung fibrosis. Cell Mol Life Sci 2022; 79:151. [PMID: 35212819 PMCID: PMC8881280 DOI: 10.1007/s00018-022-04189-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/16/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria (mito) play a vital role in alveolar type II cell (AEC2) homeostasis and are both stressed in patients with idiopathic pulmonary fibrosis (IPF). Up to now, no data are available with regard to ER–mito cross talk and tethering under conditions of IPF. We here demonstrate that ER–mitochondrial tethering is reduced upon experimental ER stress in vitro and in the IPF AECII ex vivo, and this is—at least in part—due to decreased phosphofurin acidic cluster sorting protein 2 (PACS-2, also called PACS2) protein levels. PACS2 levels are influenced by its interaction with the transient receptor potential cation channel subfamily V member 1 (TRPV1) and can be experimentally modified by the TRPV1-modulating drug capsaicin (CPS). Employing alveolar epithelial cells with overexpression of the terminal ER stress signaling factor Chop or the IPF-associated surfactant protein C mutation (SPCΔexon4) in vitro, we observed a restoration of PACS2 levels upon treatment with CPS. Similarly, treatment of precision cut lung slices from IPF patients with CPS ex vivo forwarded similar effects. Importantly, in all models such kind of intervention also greatly reduced the extent of alveolar epithelial apoptosis. We therefore conclude that therapeutic targeting of the PACS2–TRPV1 axis represents an interesting novel, epithelial-protective approach in IPF.
Collapse
Affiliation(s)
- Jessica Knoell
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Shashi Chillappagari
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.,Department of Biochemistry, Faculty of Medicine, JLU, Giessen, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Martina Korfei
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Ruth Dartsch
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Mark P Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Vienna General Hospital, Vienna, Austria.,European IPF/ILD Registry and Biobank, Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.,European IPF/ILD Registry and Biobank, Giessen, Germany.,Member of the Cardio-Pulmonary Institute (CPI), JLU, Giessen, Germany.,Lung Clinic, Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany. .,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
29
|
ADULT DOMINANT POLYCYSTIC KIDNEY DISEASE: A PROTOTYPICAL DISEASE FOR PHARMANUTRITION INTERVENTIONS. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Becker A, Götz C, Montenarh M, Philipp SE. Control of TRPM3 Ion Channels by Protein Kinase CK2-Mediated Phosphorylation in Pancreatic β-Cells of the Line INS-1. Int J Mol Sci 2021; 22:13133. [PMID: 34884938 PMCID: PMC8658122 DOI: 10.3390/ijms222313133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
In pancreatic β-cells of the line INS-1, glucose uptake and metabolism induce the openings of Ca2+-permeable TRPM3 channels that contribute to the elevation of the intracellular Ca2+ concentration and the fusion of insulin granules with the plasma membrane. Conversely, glucose-induced Ca2+ signals and insulin release are reduced by the activity of the serine/threonine kinase CK2. Therefore, we hypothesized that TRPM3 channels might be regulated by CK2 phosphorylation. We used recombinant TRPM3α2 proteins, native TRPM3 proteins from INS-1 β-cells, and TRPM3-derived oligopeptides to analyze and localize CK2-dependent phosphorylation of TRPM3 channels. The functional consequences of CK2 phosphorylation upon TRPM3-mediated Ca2+ entry were investigated in Fura-2 Ca2+-imaging experiments. Recombinant TRPM3α2 channels expressed in HEK293 cells displayed enhanced Ca2+ entry in the presence of the CK2 inhibitor CX-4945 and their activity was strongly reduced after CK2 overexpression. TRPM3α2 channels were phosphorylated by CK2 in vitro at serine residue 1172. Accordingly, a TRPM3α2 S1172A mutant displayed enhanced Ca2+ entry. The TRPM3-mediated Ca2+ entry in INS-1 β-cells was also strongly increased in the presence of CX-4945 and reduced after overexpression of CK2. Our study shows that CK2-mediated phosphorylation controls TRPM3 channel activity in INS-1 β-cells.
Collapse
Affiliation(s)
- Alexander Becker
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Building 46, D-66424 Homburg, Germany;
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, D-66424 Homburg, Germany; (C.G.); (M.M.)
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, D-66424 Homburg, Germany; (C.G.); (M.M.)
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Building 46, D-66424 Homburg, Germany;
| |
Collapse
|
31
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
32
|
Sorokina EA, Reis LM, Thompson S, Agre K, Babovic-Vuksanovic D, Ellingson MS, Hasadsri L, van Bever Y, Semina EV. WDR37 syndrome: identification of a distinct new cluster of disease-associated variants and functional analyses of mutant proteins. Hum Genet 2021; 140:1775-1789. [PMID: 34642815 PMCID: PMC9241141 DOI: 10.1007/s00439-021-02384-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Missense variants located in the N-terminal region of WDR37 were recently identified to cause a multisystemic syndrome affecting neurological, ocular, gastrointestinal, genitourinary, and cardiac development. WDR37 encodes a WD40 repeat-containing protein of unknown function. We identified three novel WDR37 variants, two likely pathogenic de novo alleles and one inherited variant of uncertain significance, in individuals with phenotypes overlapping those previously reported but clustering in a different region of the protein. The novel alleles are C-terminal to the prior variants and located either within the second WD40 motif (c.659A>G p.(Asp220Gly)) or in a disordered protein region connecting the second and third WD40 motifs (c.778G>A p.(Asp260Asn) and c.770C>A p.(Pro257His)). The three novel mutants showed normal cellular localization but lower expression levels in comparison to wild-type WDR37. To investigate the normal interactions of WDR37, we performed co-immunoprecipitation and yeast two-hybrid assays. This revealed the ability of WDR37 to form homodimers and to strongly bind PACS1 and PACS2 phosphofurin acidic cluster sorting proteins; immunocytochemistry confirmed colocalization of WDR37 with PACS1 and PACS2 in human cells. Next, we analyzed previously reported and novel mutants for their ability to dimerize with wild-type WDR37 and bind PACS proteins. Interaction with wild-type WDR37 was not affected for any variant; however, one novel mutant, p.(Asp220Gly), lost its ability to bind PACS1 and PACS2. In summary, this study presents a novel region of WDR37 involved in human disease, identifies PACS1 and PACS2 as major binding partners of WDR37 and provides insight into the functional effects of various WDR37 variants.
Collapse
Affiliation(s)
- Elena A Sorokina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Children's of Wisconsin, Milwaukee, WI, USA
| | - Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Children's of Wisconsin, Milwaukee, WI, USA
| | - Samuel Thompson
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Children's of Wisconsin, Milwaukee, WI, USA
| | - Katherine Agre
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Dusica Babovic-Vuksanovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marissa S Ellingson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Children's of Wisconsin, Milwaukee, WI, USA.
- Departments of Ophthalmology and Visual Sciences and Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
33
|
Agosto MA, Adeosun AAR, Kumar N, Wensel TG. The mGluR6 ligand-binding domain, but not the C-terminal domain, is required for synaptic localization in retinal ON-bipolar cells. J Biol Chem 2021; 297:101418. [PMID: 34793838 PMCID: PMC8671642 DOI: 10.1016/j.jbc.2021.101418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
Signals from retinal photoreceptors are processed in two parallel channels-the ON channel responds to light increments, while the OFF channel responds to light decrements. The ON pathway is mediated by ON type bipolar cells (BCs), which receive glutamatergic synaptic input from photoreceptors via a G-protein-coupled receptor signaling cascade. The metabotropic glutamate receptor mGluR6 is located at the dendritic tips of all ON-BCs and is required for synaptic transmission. Thus, it is critically important for delivery of information from photoreceptors into the ON pathway. In addition to detecting glutamate, mGluR6 participates in interactions with other postsynaptic proteins, as well as trans-synaptic interactions with presynaptic ELFN proteins. Mechanisms of mGluR6 synaptic targeting and functional interaction with other synaptic proteins are unknown. Here, we show that multiple regions in the mGluR6 ligand-binding domain are necessary for both synaptic localization in BCs and ELFN1 binding in vitro. However, these regions were not required for plasma membrane localization in heterologous cells, indicating that secretory trafficking and synaptic localization are controlled by different mechanisms. In contrast, the mGluR6 C-terminus was dispensable for synaptic localization. In mGluR6 null mice, localization of the postsynaptic channel protein TRPM1 was compromised. Introducing WT mGluR6 rescued TRPM1 localization, while a C-terminal deletion mutant had significantly reduced rescue ability. We propose a model in which trans-synaptic ELFN1 binding is necessary for mGluR6 postsynaptic localization, whereas the C-terminus has a role in mediating TRPM1 trafficking. These findings reveal different sequence determinants of the multifunctional roles of mGluR6 in ON-BCs.
Collapse
Affiliation(s)
- Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.
| | - Abiodun Adefola R Adeosun
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Pharmacology and Chemical Biology Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| | - Nitin Kumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Pharmacology and Chemical Biology Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
34
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
35
|
Nair-Gill E, Bonora M, Zhong X, Liu A, Miranda A, Stewart N, Ludwig S, Russell J, Gallagher T, Pinton P, Beutler B. Calcium flux control by Pacs1-Wdr37 promotes lymphocyte quiescence and lymphoproliferative diseases. EMBO J 2021; 40:e104888. [PMID: 33630350 DOI: 10.15252/embj.2020104888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Endoplasmic reticulum (ER) calcium (Ca2+ ) stores are critical to proteostasis, intracellular signaling, and cellular bioenergetics. Through forward genetic screening in mice, we identified two members of a new complex, Pacs1 and Wdr37, which are required for normal ER Ca2+ handling in lymphocytes. Deletion of Pacs1 or Wdr37 caused peripheral lymphopenia that was linked to blunted Ca2+ release from the ER after antigen receptor stimulation. Pacs1-deficient cells showed diminished inositol triphosphate receptor expression together with increased ER and oxidative stress. Mature Pacs1-/- B cells proliferated and died in vivo under lymphocyte replete conditions, indicating spontaneous loss of cellular quiescence. Disruption of Pacs1-Wdr37 did not diminish adaptive immune responses, but potently suppressed lymphoproliferative disease models by forcing loss of quiescence. Thus, Pacs1-Wdr37 plays a critical role in stabilizing lymphocyte populations through ER Ca2+ handling and presents a new target for lymphoproliferative disease therapy.
Collapse
Affiliation(s)
- Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aijie Liu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amber Miranda
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathan Stewart
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Gallagher
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
36
|
Giamogante F, Poggio E, Barazzuol L, Covallero A, Calì T. Apoptotic signals at the endoplasmic reticulum-mitochondria interface. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:307-343. [PMID: 34090618 DOI: 10.1016/bs.apcsb.2021.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The maintenance of cellular homeostasis involves the participation of multiple organelles, such as the endoplasmic reticulum (ER) and mitochondria. Specifically, ER plays a key role in calcium (Ca2+) storage, lipid synthesis, protein folding, and assembly, while mitochondria are the "energy factories" and provide energy to drive intracellular processes. Hence, alteration in ER or mitochondrial homeostasis has detrimental effects on cell survival, being linked to the triggering of apoptosis, a programmed form of cell death. Besides, ER stress conditions affect mitochondria functionality and vice-versa, as ER and mitochondria communicate via mitochondria-associated ER membranes (MAMs) to carry out a number of fundamental cellular functions. It is not surprising, thus, that also MAMs perturbations are involved in the regulation of apoptosis. This chapter intends to accurately discuss the involvement of MAMs in apoptosis, highlighting their crucial role in controlling this delicate cellular process.
Collapse
Affiliation(s)
- Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Poggio
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alberto Covallero
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
37
|
Goretzki B, Guhl C, Tebbe F, Harder JM, Hellmich UA. Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions in Channel Function and Regulation. J Mol Biol 2021; 433:166931. [PMID: 33741410 DOI: 10.1016/j.jmb.2021.166931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022]
Abstract
The first genuine high-resolution single particle cryo-electron microscopy structure of a membrane protein determined was a transient receptor potential (TRP) ion channel, TRPV1, in 2013. This methodical breakthrough opened up a whole new world for structural biology and ion channel aficionados alike. TRP channels capture the imagination due to the sheer endless number of tasks they carry out in all aspects of animal physiology. To date, structures of at least one representative member of each of the six mammalian TRP channel subfamilies as well as of a few non-mammalian families have been determined. These structures were instrumental for a better understanding of TRP channel function and regulation. However, all of the TRP channel structures solved so far are incomplete since they miss important information about highly flexible regions found mostly in the channel N- and C-termini. These intrinsically disordered regions (IDRs) can represent between a quarter to almost half of the entire protein sequence and act as important recruitment hubs for lipids and regulatory proteins. Here, we analyze the currently available TRP channel structures with regard to the extent of these "missing" regions and compare these findings to disorder predictions. We discuss select examples of intra- and intermolecular crosstalk of TRP channel IDRs with proteins and lipids as well as the effect of splicing and post-translational modifications, to illuminate their importance for channel function and to complement the prevalently discussed structural biology of these versatile and fascinating proteins with their equally relevant 'unstructural' biology.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Frederike Tebbe
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jean-Martin Harder
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany; Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, 07743 Jena, Germany.
| |
Collapse
|
38
|
Mitochondria Associated Membranes (MAMs): Architecture and physiopathological role. Cell Calcium 2021; 94:102343. [PMID: 33418313 DOI: 10.1016/j.ceca.2020.102343] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/27/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022]
Abstract
In the last decades, the communication between the Endoplasmic reticulum (ER) and mitochondria has obtained great attention: mitochondria-associated membranes (MAMs), which represent the contact sites between the two organelles, have indeed emerged as central hub involved in different fundamental cell processes, such as calcium signalling, apoptosis, autophagy and lipid biosynthesis. Consistently, dysregulation of ER-mitochondria crosstalk has been associated with different pathological conditions, ranging from diabetes to cancer and neurodegenerative diseases. In this review, we will try to summarize the current knowledge on MAMs' structure and functions in health and their relevance for human diseases.
Collapse
|
39
|
He C, Su C, Zhang W, Wan Q. miR-485-5p alleviates Alzheimer's disease progression by targeting PACS1. Transl Neurosci 2021; 12:335-345. [PMID: 34594577 PMCID: PMC8442568 DOI: 10.1515/tnsci-2020-0177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a common dementia and a heterogeneous disease. Previous research has validated that microRNAs (miRNAs) are pivotal regulators in the initiation and development of tremendous diseases including AD. MicroRNA-485-5p (miR-485-5p) was reported to be an important participant implicated in several neurological diseases, but its role in AD still needs to be further investigated. In this research, we explored the biological function of miR-485-5p in AD. RT-qPCR revealed that miR-485-5p expression was downregulated in the hippocampus of APP/PS1 mice. Additionally, miR-485-5p overexpression facilitated the learning and memory capabilities of APP/PS1 mice according to Morris water maze test, fear conditioning test, and immunofluorescent staining. Moreover, CCK-8 assay, flow cytometric analysis, and western blot analysis suggested that miR-485-5p overexpression promoted pericyte viability and prohibited pericyte apoptosis in APP/PS1 mice. Mechanistically, miR-485-5p directly targeted PACS1 in pericytes, as shown in a luciferase reporter assay. In rescue assays, PACS1 overexpression countervailed the effect of miR-485-5p overexpression on pericyte viability and apoptosis. In conclusion, miR-485-5p ameliorates AD progression by targeting PACS1.
Collapse
Affiliation(s)
- Chuan He
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Caixia Su
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Wentong Zhang
- Department of Rehabilitation Medicine, Jiangsu-Shengze Hospital affiliated to Nanjing Medical University, Suzhou 215228, Jiangsu, China
| | - Qi Wan
- Department of Neurological Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 21000, Jiangsu, China
| |
Collapse
|
40
|
Ji C, McCulloch CA. TRPV4 integrates matrix mechanosensing with Ca 2+ signaling to regulate extracellular matrix remodeling. FEBS J 2020; 288:5867-5887. [PMID: 33300268 DOI: 10.1111/febs.15665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
In healthy connective tissues, mechanosensors trigger the generation of Ca2+ signals, which enable cells to maintain the structure of the fibrillar collagen matrix through actomyosin contractile forces. Transient receptor potential vanilloid type 4 (TRPV4) is a mechanosensitive Ca2+ -permeable channel that, when expressed in cell-matrix adhesions of the plasma membrane, regulates extracellular matrix (ECM) remodeling. In high prevalence disorders such as fibrosis and tumor metastasis, dysregulated matrix remodeling is associated with disruptions of Ca2+ homeostasis and TRPV4 function. Here, we consider that ECM polymers transmit cell-activating mechanical signals to TRPV4 in cell adhesions. When activated, TRPV4 regulates fibrillar collagen remodeling, thereby altering the mechanical properties of the ECM. In this review, we integrate functionally connected processes of matrix remodeling to highlight how TRPV4 in cell adhesions and matrix mechanics are reciprocally regulated through Ca2+ signaling.
Collapse
Affiliation(s)
- Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, ON, Canada
| | | |
Collapse
|
41
|
Li C, Li L, Yang M, Zeng L, Sun L. PACS-2: A key regulator of mitochondria-associated membranes (MAMs). Pharmacol Res 2020; 160:105080. [DOI: 10.1016/j.phrs.2020.105080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
42
|
Terrone G, Marchese F, Vari MS, Severino M, Madia F, Amadori E, Del Giudice E, Romano A, Gennaro E, Zara F, Striano P. A further contribution to the delineation of epileptic phenotype in PACS2-related syndrome. Seizure 2020; 79:53-55. [DOI: 10.1016/j.seizure.2020.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 01/15/2023] Open
|
43
|
Streets A, Ong A. Post-translational modifications of the polycystin proteins. Cell Signal 2020; 72:109644. [PMID: 32320857 DOI: 10.1016/j.cellsig.2020.109644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and affects up to 12 million people worldwide. Germline mutations in two genes, PKD1 or PKD2, account for almost all patients with ADPKD. The ADPKD proteins, polycystin-1 (PC1) and polycystin-2 (PC2), are regulated by post-translational modifications (PTM), with phosphorylation, glycosylation and proteolytic cleavage being the best described changes. A few PTMs have been shown to regulate polycystin trafficking, signalling, localisation or stability and thus their physiological function. A key challenge for the future will be to elucidate the functional significance of all the individual PTMs reported to date. Finally, it is possible that site-specific mutations that disrupt PTM could contribute to cystogenesis although in the majority of cases, confirmatory evidence is awaited.
Collapse
Affiliation(s)
- Andrew Streets
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK.
| | - Albert Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
44
|
Polycystins as components of large multiprotein complexes of polycystin interactors. Cell Signal 2020; 72:109640. [PMID: 32305669 DOI: 10.1016/j.cellsig.2020.109640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022]
Abstract
Naturally occurring mutations in two separate genes, PKD1 and PKD2, are responsible for the vast majority of all cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases affecting 1 in 1000 Americans. The hallmark of ADPKD is the development of epithelial cysts in the kidney, liver, and pancreas. PKD1 encodes a large plasma membrane protein (PKD1, PC1, or Polycystin-1) with a long extracellular domain and has been speculated to function as an atypical G protein coupled receptor. PKD2 encodes an ion channel of the Transient Receptor Potential superfamily (TRPP2, PKD2, PC2, or Polycystin-2). Despite the identification of these genes more than 20 years ago, the molecular function of their encoded proteins and the mechanism(s) by which mutations in PKD1 and PKD2 cause ADPKD remain elusive. Genetic, biochemical, and functional evidence suggests they form a multiprotein complex present in multiple locations in the cell, including the plasma membrane, endoplasmic reticulum, and the primary cilium. Over the years, numerous interacting proteins have been identified using directed and unbiased approaches, and shown to modulate function, cellular localization, and protein stability and turnover of Polycystins. Delineation of the molecular composition of the Polycystin complex can have a significant impact on understanding their cellular function in health and disease states and on the identification of more specific and effective therapeutic targets.
Collapse
|
45
|
Genes dysregulated in the blood of people with Williams syndrome are enriched in protein-coding genes positively selected in humans. Eur J Med Genet 2020; 63:103828. [DOI: 10.1016/j.ejmg.2019.103828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/09/2019] [Accepted: 12/21/2019] [Indexed: 12/29/2022]
|
46
|
Peña-Oyarzun D, Batista-Gonzalez A, Kretschmar C, Burgos P, Lavandero S, Morselli E, Criollo A. New emerging roles of Polycystin-2 in the regulation of autophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:165-186. [PMID: 32475472 DOI: 10.1016/bs.ircmb.2020.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystin-2 (PC2) is a calcium channel that can be found in the endoplasmic reticulum, the plasmatic membrane, and the primary cilium. The structure of PC2 is characterized by a highly ordered C-terminal tail with an EF-motif (calcium-binding domain) and a canonical coiled-coil domain (CCD; interaction domain), and its activity is regulated by interacting partners and post-translational modifications. Calcium mobilization into the cytosol by PC2 has been mainly associated with cell growth and differentiation, and therefore mutations or dysfunction of PC2 lead to renal and cardiac consequences. Interestingly, PC2-related pathologies are usually treated with rapamycin, an autophagy stimulator. Autophagy is an intracellular degradation process where recycling material is sequestered into autophagosomes and then hydrolyzed by fusion with a lysosome. Interestingly, several studies have provided evidence that PC2 may be required for autophagy, suggesting that PC2 maintains a physiologic catabolic state.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzun
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ana Batista-Gonzalez
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paulina Burgos
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eugenia Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
47
|
Dumit VI, Köttgen M, Hofherr A. Mass Spectrometry-Based Analysis of TRPP2 Phosphorylation. Methods Mol Biol 2020; 1987:51-64. [PMID: 31028673 DOI: 10.1007/978-1-4939-9446-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Differential phosphorylation of proteins is a key regulatory mechanism in biology. Immunoprecipitation-coupled mass spectrometry facilitates the targeted analysis of transient receptor ion potential channel polycystin-2 (TRPP2) phosphorylation. However, empirical testing is required to optimize experimental conditions for immunoprecipitation and mass spectrometry. Here, we present a detailed workflow for the reliable analysis of endogenous TRPP2 phosphorylation in differentiated renal epithelial cells.
Collapse
Affiliation(s)
- Verónica I Dumit
- Core Facility Proteomics, Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
| | - Michael Köttgen
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
48
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
49
|
Cao H, Zhang Y, Chu Z, Zhao B, Wang H, An L. MAP‑1B, PACS‑2 and AHCYL1 are regulated by miR‑34A/B/C and miR‑449 in neuroplasticity following traumatic spinal cord injury in rats: Preliminary explorative results from microarray data. Mol Med Rep 2019; 20:3011-3018. [PMID: 31432119 PMCID: PMC6755151 DOI: 10.3892/mmr.2019.10538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 01/18/2019] [Indexed: 11/06/2022] Open
Abstract
Spinal cord injury (SCI) is a specific type of damage to the central nervous system causing temporary or permanent changes in its function. The present aimed to identify the genetic changes in neuroplasticity following SCI in rats. The GSE52763 microarray dataset, which included 15 samples [3 sham (1 week), 4 injury only (1 week), 4 injury only (3 weeks), 4 injury + treadmill (3 weeks)] was downloaded from the Gene Expression Omnibus database. An empirical Bayes linear regression model in limma package was used to identify the differentially expressed genes (DEGs) in injury vs. sham and treadmill vs. non‑treadmill comparison groups. Subsequently, time series and enrichment analyses were performed using pheatmap and clusterProfile packages, respectively. Additionally, protein‑protein interaction (PPI) and transcription factor (TF)‑microRNA (miRNA)‑target regulatory networks were constructed using Cytoscape software. In total, 159 and 105 DEGs were identified in injury vs. sham groups and treadmill vs. non‑treadmill groups, respectively. There were 40 genes in cluster 1 that presented increased expression levels in the injury (1 week/3 weeks) groups compared with the sham group, and decreased expression levels in the injury + treadmill group compared with the injury only groups; conversely, 52 genes in cluster 2 exhibited decreased expression levels in the injury (1 week/3 weeks) groups compared with the sham group, and increased expression levels in the injury + treadmill group compared with the injury only groups. Enrichment analysis indicated that clusters 1 and 2 were associated with immune response and signal transduction, respectively. Furthermore, microtubule associated protein 1B, phosphofurin acidic cluster sorting protein 2 and adenosylhomocysteinase‑like 1 exhibited the highest degrees in the regulatory network, and were regulated by miRNAs including miR‑34A, miR‑34B, miR‑34C and miR‑449. These miRNAs and their target genes may serve important roles in neuroplasticity following traumatic SCI in rats. Nevertheless, additional in‑depth studies are required to confirm these data.
Collapse
Affiliation(s)
- Hongshi Cao
- School of Nursing, Jilin University, Jilin 130021, P.R. China
| | - Yu Zhang
- Department of Neurovascular Disease, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhe Chu
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bolun Zhao
- School of Nursing, Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Haiyan Wang
- Department of Neurotrauma Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Libin An
- School of Nursing, Dalian University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
50
|
Kumari S, Kumar M, Verma R, Ghosh JK, Tripathi RK. HIV-1 Nef-GCC185 interaction regulates assembly of cellular protein complexes at TGN targeting MHC-I downregulation. Life Sci 2019; 229:13-20. [PMID: 30953643 DOI: 10.1016/j.lfs.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
Abstract
AIM HIV-1 Nef downregulates surface MHC-I to protect the infected cells from CTLs-mediated killing. Although MHC-I downregulation has been extensively studied, the Nef-dependent assembly of the multi-protein complex and subsequent pathways activation has not yet been well explored. The present study is aimed for the identification of Nef-mediated sequential recruitment of cellular proteins that constitute the functional multi-protein complex, required for the downregulation of MHC-I. MAIN METHODS Different Cellular protein complexes were identified by co-immunoprecipitation in Nef or NefE4A mutant-expressing Jurkat T, and THP-1 cells followed by exposure to Nef-specific peptides 24 h post infection. The MHC-I downregulation was analyzed by confocal microscopy and flow cytometry. KEY FINDINGS We found the association of Nef with PACS-2, GCC185, PI3K, AP-1, SFK, and MHC-I proteins that probably constitute a functional multi-protein complex. Furthermore, the immunoprecipitations with PACS-2 and GCC185 in the presence or absence of Nef, Nef E4A mutant and Nef with CP-inhibitor divide the functional complex of Nef into Nef-dependent (AP-1 and PI3K) and GCC185-dependent complex (MHC-I and SFK). The molecular mechanisms for activation of cellular pathways have been deciphered on the basis of these interactions that are brought in close proximity through Nef-GCC185 interaction. Knockdown of GCC185 using siRNA in Jurkat T cells showed a direct relationship between the assembly of functional multi-protein complex and MHC-I accumulation at GCC185. SIGNIFICANCE Overall, our study elucidates that GCC185 is a focal point for the assembly of the Nef-mediated multi-protein complex at TGN.
Collapse
Affiliation(s)
- Sushila Kumari
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Manjeet Kumar
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Richa Verma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Raj Kamal Tripathi
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|