1
|
Wan Z, Wen M, Zheng C, Sun Y, Zhou Y, Tian Y, Xin S, Wang X, Ji X, Yang J, Xiong Y, Han Y. Centromere Protein F in Tumor Biology: Cancer's Achilles Heel. Cancer Med 2025; 14:e70949. [PMID: 40387105 PMCID: PMC12086802 DOI: 10.1002/cam4.70949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/18/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Centromere protein F (CENP-F) is an important nuclear matrix protein that regulates mitosis and the cell cycle, and plays a crucial role in recruiting spindle checkpoint proteins to maintain the accuracy of chromosome segregation. Studies have shown that CENP-F is closely involved in the pathogenesis of various diseases, particularly in the development and progression of malignant tumors, where it exhibits significant oncogenic activity. OBJECTIVE This review aims to systematically summarize the molecular structure, subcellular localization, expression regulation, intracellular transport mechanisms, biological functions, and carcinogenic mechanisms of CENP-F, as well as explore its potential value in cancer diagnosis and therapy. METHODS A comprehensive review and analysis of domestic and international research literature related to CENP-F were conducted, focusing on its role in tumorigenesis, development, and as a therapeutic target. RESULTS CENP-F acts as an oncogene and can maintain or promote the malignant phenotype of tumor cells through multiple mechanisms, including regulating signaling pathways related to cell proliferation and apoptosis, promoting metabolic reprogramming, angiogenesis, and tumor cell invasion and metastasis. Additionally, it plays an important role in the immune microenvironment and drug resistance regulation. CONCLUSION CENP-F plays a key, multidimensional role in tumor biology and is a promising therapeutic target for cancer treatment. Further exploration of the core pathways through which CENP-F regulates tumorigenesis and its potential for clinical translation is needed.
Collapse
Affiliation(s)
- Zitong Wan
- Department of Thoracic Surgery, Air Force Medical CenterFourth Military Medical UniversityBeijingChina
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
- College of Life SciencesNorthwestern UniversityXi'anChina
| | - Miaomiao Wen
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Chunlong Zheng
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Ying Sun
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Yinxi Zhou
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Yahui Tian
- Department of Thoracic Surgery, Air Force Medical CenterFourth Military Medical UniversityBeijingChina
| | - Shaowei Xin
- Department of Thoracic Surgery, Air Force Medical CenterFourth Military Medical UniversityBeijingChina
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
- Department of Thoracic Surgery962 Hospital of the Joint Logistics Support ForceHarbinChina
| | - Xuejiao Wang
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Xiaohong Ji
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Jie Yang
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu HospitalFourth Military Medical UniversityXi'anChina
- Innovation Center for Advanced Medicine, Tangdu HospitalFourth Military Medical UniversityXi'anChina
- Department of Thoracic Surgery, First Medical CenterChinese PLA General Hospital and PLA Medical SchoolBeijingChina
| | - Yong Han
- Department of Thoracic Surgery, Air Force Medical CenterFourth Military Medical UniversityBeijingChina
| |
Collapse
|
2
|
Pan Q, Luo P, Qiu Y, Hu K, Lin L, Zhang H, Yin D, Shi C. The SETDB1-PC4-UPF1 post-transcriptional machinery controls periodic degradation of CENPF mRNA and maintains mitotic progression. Cell Death Differ 2025:10.1038/s41418-025-01465-z. [PMID: 40016337 DOI: 10.1038/s41418-025-01465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Numerous genes exhibit periodic oscillations in mRNA expression, essential for orderly cell division. Mitosis-related mRNAs fluctuate cyclically from the G2 to M phase, primarily regulated by transcription factors. However, the role of post-transcriptional regulation in this process remains unclear. Here, we demonstrated a decrease in mRNA levels of centromere protein F (CENPF) from the early to late G2 phase. SETDB1-PC4-UPF1 serves as a crucial post-transcriptional machinery, orchestrating the periodic degradation of CENPF mRNA, ensuring balanced CENP expression, proper spindle assembly, and successful mitosis. In early G2, newly synthesized CENPF mRNAs accumulate and bind to PC4, leading to SETDB1-mediated PC4 dimethylation at K35. In late G2, dimethylated PC4 interacts with UPF1 to promote deadenylation-dependent degradation of CENPF mRNAs, forming a regulatory loop for CENP homeostasis. Elevated PC4 dimethylation in hepatocellular carcinoma, coupled with increased sensitivity to taxanes upon its inhibition, suggests promising therapeutic avenues. These findings suggest a post-transcriptional quality control mechanism regulating cyclic mitotic mRNA fluctuations, providing comprehensive insights into cell cycle gene regulation dynamics.
Collapse
Affiliation(s)
- Qimei Pan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heyun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| |
Collapse
|
3
|
Jiang Z, Meyer AN, Yang W, Donoghue DJ. The oncogenic fusion protein EML4-NTRK3 requires three salt bridges for stability and biological activity. Heliyon 2024; 10:e36278. [PMID: 39253179 PMCID: PMC11381775 DOI: 10.1016/j.heliyon.2024.e36278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Aim of study Chromosomal translocations involving neurotrophic receptor tyrosine kinases (NTRKs) have been identified in 20 % of soft tissue sarcomas. This work focuses on the EML4-NTRK3 translocation identified in cases of Infantile Fibrosarcoma, which contains the coiled-coil multimerization domain of Echinoderm Microtubule-like protein 4 (EML4) fused with the tyrosine kinase domain of Neurotrophic Receptor Tyrosine Kinase 3 (NTRK3). The aim of the study was to test the importance of tyrosine kinase activity and multimerization for the oncogenic activity of EML4-NTRK3. Methods These studies examined EML4-NTRK3 proteins containing a kinase-dead or WT kinase domain, together with mutations in specific salt bridge residues within the coiled-coil domain. Biological activity was assayed using focus assays in NIH3T3 cells. The MAPK/ERK, JAK/STAT3 and PI3K/AKT pathways were analyzed for downstream activation of signaling pathways. Localization of EML4-NTRK3 proteins was examined by immunofluorescence microscopy, and the ability of the EML4 coiled-coil domain to drive protein multimerization was examined by biochemical assays. Results Activation of EML4-NTRK3 relies on both the tyrosine kinase activity of NTRK3 and salt-bridge stabilization within the coiled-coil domain of EML4. The tyrosine kinase activity of NTRK3 is essential for the biological activation of EML4-NTRK3. Furthermore, EML4-NTRK3 activates downstream signaling pathways MAPK/ERK, JAK/STAT3 and PKC/PLCγ. The disruption of three specific salt bridge interactions within the EML4 coiled-coil domain of EML4-NTRK3 blocks downstream activation, biological activity, and the ability to hetero-multimerize with EML4. We also demonstrate that EML4-NTRK3 is localized in the cytoplasm and fails to associate with microtubules. Concluding statement These data suggest potential therapeutic strategies for Infantile Fibrosarcoma cases bearing EML4-NTRK3 fusion through inhibition of salt bridge interactions and disruption of multimerization.
Collapse
Affiliation(s)
- Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0367 USA
- UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093-0367, USA
| |
Collapse
|
4
|
Khurana S, Varma D, Foltz DR. Contribution of CENP-F to FOXM1-Mediated Discordant Centromere and Kinetochore Transcriptional Regulation. Mol Cell Biol 2024; 44:209-225. [PMID: 38779933 PMCID: PMC11204039 DOI: 10.1080/10985549.2024.2350543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dileep Varma
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Cellular and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Khurana S, Foltz DR. Contribution of CENP-F to FOXM1-mediated discordant centromere and kinetochore transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573453. [PMID: 38234763 PMCID: PMC10793414 DOI: 10.1101/2023.12.27.573453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Proper chromosome segregation is required to ensure genomic and chromosomal stability. The centromere is a unique chromatin domain present throughout the cell cycle on each chromosome defined by the CENP-A nucleosome. Centromeres (CEN) are responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating spindle attachment and mitotic checkpoint function. Upregulation of many genes that encode the CEN/KT proteins is commonly observed in cancer. Here, we show although that FOXM1 occupies the promoters of many CEN/KT genes with MYBL2, occupancy is insufficient alone to drive the FOXM1 correlated transcriptional program. We show that CENP-F, a component of the outer kinetochore, functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in alteration of chromatin accessibility at G2/M genes, including CENP-A, and leads to reduced FOXM1-MBB complex formation. The FOXM1-CENP-F transcriptional coordination is a cancer-specific function. We observed that a few CEN/KT genes escape FOXM1 regulation such as CENP-C which when upregulated with CENP-A, leads to increased chromosome misegregation and cell death. Together, we show that the FOXM1 and CENP-F coordinately regulate G2/M gene expression, and this coordination is specific to a subset of genes to allow for proliferation and maintenance of chromosome stability for cancer cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
6
|
Burigotto M, Vigorito V, Gliech C, Mattivi A, Ghetti S, Bisio A, Lolli G, Holland AJ, Fava LL. PLK1 promotes the mitotic surveillance pathway by controlling cytosolic 53BP1 availability. EMBO Rep 2023; 24:e57234. [PMID: 37888778 PMCID: PMC10702821 DOI: 10.15252/embr.202357234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
53BP1 acts at the crossroads between DNA repair and p53-mediated stress response. With its interactors p53 and USP28, it is part of the mitotic surveillance (or mitotic stopwatch) pathway (MSP), a sensor that monitors the duration of cell division, promoting p53-dependent cell cycle arrest when a critical time threshold is surpassed. Here, we show that Polo-like kinase 1 (PLK1) activity is essential for the time-dependent release of 53BP1 from kinetochores. PLK1 inhibition, which leads to 53BP1 persistence at kinetochores, prevents cytosolic 53BP1 association with p53 and results in a blunted MSP. Strikingly, the identification of CENP-F as the kinetochore docking partner of 53BP1 enabled us to show that measurement of mitotic timing by the MSP does not take place at kinetochores, as perturbing CENP-F-53BP1 binding had no measurable impact on the MSP. Taken together, we propose that PLK1 supports the MSP by generating a cytosolic pool of 53BP1 and that an unknown cytosolic mechanism enables the measurement of mitotic duration.
Collapse
Affiliation(s)
- Matteo Burigotto
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
- Present address:
Comprehensive Cancer Centre, School of Cancer and Pharmaceutical SciencesKing's CollegeLondonUK
- Present address:
Organelle Dynamics LaboratoryThe Francis Crick InstituteLondonUK
| | - Vincenza Vigorito
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Colin Gliech
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Alessia Mattivi
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Sabrina Ghetti
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Alessandra Bisio
- Laboratory of Radiobiology, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Graziano Lolli
- Laboratory of Protein Crystallography and Structure‐Based Drug Design, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | | | - Luca L Fava
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| |
Collapse
|
7
|
Liu B, Yan J, Li J, Xia W. The Role of BDNF, YBX1, CENPF, ZSCAN4, TEAD4, GLIS1 and USF1 in the Activation of the Embryonic Genome in Bovine Embryos. Int J Mol Sci 2023; 24:16019. [PMID: 38003209 PMCID: PMC10671747 DOI: 10.3390/ijms242216019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Early embryonic development relies on the maternal RNAs and newly synthesized proteins during oogenesis. Zygotic transcription is an important event occurring at a specific time after fertilization. If no zygotic transcription occurs, the embryo will die because it is unable to meet the needs of the embryo and continue to grow. During the early stages of embryonic development, the correct transcription, translation, and expression of genes play a crucial role in blastocyst formation and differentiation of cell lineage species formation among mammalian species, and any variation may lead to developmental defects, arrest, or even death. Abnormal expression of some genes may lead to failure of the embryonic zygote genome before activation, such as BDNF and YBX1; Decreased expression of CENPF, ZSCAN4, TEAD4, GLIS1, and USF1 genes can lead to embryonic development failure. This article reviews the results of studies on the timing and mechanism of gene expression of these genes in bovine fertilized eggs/embryos.
Collapse
Affiliation(s)
- Bingnan Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
| | - Jiaxin Yan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding 071000, China
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding 071000, China
| |
Collapse
|
8
|
Liu M, Yu X, Qu C, Xu S. Predictive Value of Gene Databases in Discovering New Biomarkers and New Therapeutic Targets in Lung Cancer. Medicina (B Aires) 2023; 59:medicina59030547. [PMID: 36984548 PMCID: PMC10051862 DOI: 10.3390/medicina59030547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Background and Objectives: The molecular mechanisms of lung cancer are still unclear. Investigation of immune cell infiltration (ICI) and the hub gene will facilitate the identification of specific biomarkers. Materials and Methods: Key modules of ICI and immune cell-associated differential genes, as well as ICI profiles, were identified using lung cancer microarray data from the single sample gene set enrichment analysis (ssGSEA) and weighted gene co-expression network analysis (WGCNA) in the gene expression omnibus (GEO) database. Protein–protein interaction networks were used to identify hub genes. The receiver operating characteristic (ROC) curve was used to assess the diagnostic significance of the hub genes, and survival analysis was performed using gene expression profiling interactive analysis (GEPIA). Results: Significant changes in ICI were found in lung cancer tissues versus adjacent normal tissues. WGCNA results showed the highest correlation of yellow and blue modules with ICI. Protein–protein interaction networks identified four hub genes, namely CENPF, AURKA, PBK, and CCNB1. The lung adenocarcinoma patients in the low hub gene expression group showed higher overall survival and longer median survival than the high expression group. They were associated with a decreased risk of lung cancer in patients, indicating their potential role as cancer suppressor genes and potential targets for future therapeutic development. Conclusions: CENPF, AURKA, PBK, and CCNB1 show great potential as biomarkers and immunotherapeutic targets specific to lung cancer. Lung cancer patients’ prognoses are often foreseen using matched prognostic models, and genes CENPF, AURKA, PBK, and CCNB1 in lung cancer may serve as therapeutic targets, which require further investigations.
Collapse
|
9
|
Abstract
The microtubule minus-end-directed motility of cytoplasmic dynein 1 (dynein), arguably the most complex and versatile cytoskeletal motor, is harnessed for diverse functions, such as long-range organelle transport in neuronal axons and spindle assembly in dividing cells. The versatility of dynein raises a number of intriguing questions, including how is dynein recruited to its diverse cargo, how is recruitment coupled to activation of the motor, how is motility regulated to meet different requirements for force production and how does dynein coordinate its activity with that of other microtubule-associated proteins (MAPs) present on the same cargo. Here, these questions will be discussed in the context of dynein at the kinetochore, the supramolecular protein structure that connects segregating chromosomes to spindle microtubules in dividing cells. As the first kinetochore-localized MAP described, dynein has intrigued cell biologists for more than three decades. The first part of this Review summarizes current knowledge about how kinetochore dynein contributes to efficient and accurate spindle assembly, and the second part describes the underlying molecular mechanisms and highlights emerging commonalities with dynein regulation at other subcellular sites.
Collapse
Affiliation(s)
- Reto Gassmann
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
10
|
Primary Cilia Influence Progenitor Function during Cortical Development. Cells 2022; 11:cells11182895. [PMID: 36139475 PMCID: PMC9496791 DOI: 10.3390/cells11182895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Corticogenesis is an intricate process controlled temporally and spatially by many intrinsic and extrinsic factors. Alterations during this important process can lead to severe cortical malformations. Apical neuronal progenitors are essential cells able to self-amplify and also generate basal progenitors and/or neurons. Apical radial glia (aRG) are neuronal progenitors with a unique morphology. They have a long basal process acting as a support for neuronal migration to the cortical plate and a short apical process directed towards the ventricle from which protrudes a primary cilium. This antenna-like structure allows aRG to sense cues from the embryonic cerebrospinal fluid (eCSF) helping to maintain cell shape and to influence several key functions of aRG such as proliferation and differentiation. Centrosomes, major microtubule organising centres, are crucial for cilia formation. In this review, we focus on how primary cilia influence aRG function during cortical development and pathologies which may arise due to defects in this structure. Reporting and cataloguing a number of ciliary mutant models, we discuss the importance of primary cilia for aRG function and cortical development.
Collapse
|
11
|
Zhang S, Pang K, Feng X, Zeng Y. Transcriptomic data exploration of consensus genes and molecular mechanisms between chronic obstructive pulmonary disease and lung adenocarcinoma. Sci Rep 2022; 12:13214. [PMID: 35918384 PMCID: PMC9345949 DOI: 10.1038/s41598-022-17552-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Most current research has focused on chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma (LUAD) alone; however, it is important to understand the complex mechanism of COPD progression to LUAD. This study is the first to explore the unique and jointly molecular mechanisms in the pathogenesis of COPD and LUAD across several datasets based on a variety of analysis methods. We used weighted correlation network analysis to search hub genes in two datasets from public databases: GSE10072 and GSE76925. We explored the unique and jointly molecular mechanistic signatures of the two diseases in pathogenesis through enrichment analysis, immune infiltration analysis, and therapeutic targets analysis. Finally, the results were confirmed using real-time quantitative reverse transcription PCR. Fifteen hub genes were identified: GPI, EZH2, EFNA4, CFB, ENO1, SH3PXD2B, SELL, CORIN, MAD2L1, CENPF, TOP2A, ASPM, IGFBP2, CDKN2A, and ELF3. For the first time, SELL, CORIN, GPI, and EFNA4 were found to play a role in the etiology of COPD and LUAD. The LUAD genes identified were primarily involved in the cell cycle and DNA replication processes; COPD genes we found were related to ubiquitin-mediated proteolysis, ribosome, and T/B-cell receptor signaling pathways. The tumor microenvironment of LUAD pathogenesis was influenced by CD4 + T cells, type 1 regulatory T cells, and T helper 1 cells. T follicular helper cells, natural killer T cells, and B cells all impact the immunological inflammation in COPD. The results of drug targets analysis suggest that cisplatin and tretinoin, as well as bortezomib and metformin may be potential targeted therapy for patients with COPD combined LUAD. These signatures may be provided a new direction for developing early interventions and treatments to improve the prognosis of COPD and LUAD.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Avenue, Wuchang District, Wuhan, 430000, Hubei, China
| | - Kun Pang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xinyu Feng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Avenue, Wuchang District, Wuhan, 430000, Hubei, China
| | - Yulan Zeng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Avenue, Wuchang District, Wuhan, 430000, Hubei, China.
| |
Collapse
|
12
|
Zhang Y, Song C, Wang L, Jiang H, Zhai Y, Wang Y, Fang J, Zhang G. Zombies Never Die: The Double Life Bub1 Lives in Mitosis. Front Cell Dev Biol 2022; 10:870745. [PMID: 35646932 PMCID: PMC9136299 DOI: 10.3389/fcell.2022.870745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
When eukaryotic cells enter mitosis, dispersed chromosomes move to the cell center along microtubules to form a metaphase plate which facilitates the accurate chromosome segregation. Meanwhile, kinetochores not stably attached by microtubules activate the spindle assembly checkpoint and generate a wait signal to delay the initiation of anaphase. These events are highly coordinated. Disruption of the coordination will cause severe problems like chromosome gain or loss. Bub1, a conserved serine/threonine kinase, plays important roles in mitosis. After extensive studies in the last three decades, the role of Bub1 on checkpoint has achieved a comprehensive understanding; its role on chromosome alignment also starts to emerge. In this review, we summarize the latest development of Bub1 on supporting the two mitotic events. The essentiality of Bub1 in higher eukaryotic cells is also discussed. At the end, some undissolved questions are raised for future study.
Collapse
Affiliation(s)
- Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Wang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujing Zhai
- School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Fang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| |
Collapse
|
13
|
Nie J, Gong L, Li Z, Ou D, Zhang L, Liu Y, Zhang J, Liu D. Bioinformatics Analysis of mRNAs and miRNAs for Identifying Potential Biomarkers in Lung Adenosquamous Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5851269. [PMID: 35281953 PMCID: PMC8906974 DOI: 10.1155/2022/5851269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/25/2022]
Abstract
Background Lung adenosquamous carcinoma (LASC) is a special type of lung cancer. LASC is a malignant tumor with strong aggressiveness and a poor prognosis. Previous studies have revealed that microRNAs (miRNAs) are widely involved in the development of tumors by targeting mRNA. This study is aimed at identifying the key mRNAs and miRNAs of LASC and constructing miRNA-mRNA networks for deeply comprehending the latent molecular mechanisms. Methods mRNA dataset (GSE51852) and miRNA dataset (GSE51853) were extracted and downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were picked out by the GEO2R web tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were conducted in the DAVID database. The protein-protein interaction (PPI) network was performed and analyzed by using the STRING database and Cytoscape software, respectively. TransmiR v2.0 was applied to predict potential transcription factors of miRNAs. The target genes of DEMs were predicted in the miRWalk database. Results In comparison to normal tissues, a total of 1458 DEGs (511 upregulated and 947 downregulated) and 13 DEMs (5 upregulated and 8 downregulated) were screened out in LASC tissues. The PPI network of the DEGs displayed five key modules and seventeen hub genes. Six target genes of the DEMs were predicted, and five essential miRNA-mRNA regulatory pairs were established. Ensuingly, CENPF, one of the target genes, was also the hub genes of GSE51852, which was obtained from MCODE and cytoHubba and regulated by hsa-miR-205. Conclusions We constructed the miRNA-mRNA regulatory pairs, which are helpful to study the potential regulatory mechanisms and find out promising diagnosis biomarkers and therapeutic targets for LASC.
Collapse
Affiliation(s)
- Jin Nie
- The Second Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ling Gong
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People Hospital of Zunyi), Zunyi, 563000, China
| | - Zhu Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People Hospital of Zunyi), Zunyi, 563000, China
| | - Dong Ou
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People Hospital of Zunyi), Zunyi, 563000, China
| | - Ling Zhang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People Hospital of Zunyi), Zunyi, 563000, China
| | - Yi Liu
- Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- The Second Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Daishun Liu
- Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
14
|
Renda F, Khodjakov A. Role of spatial patterns and kinetochore architecture in spindle morphogenesis. Semin Cell Dev Biol 2021; 117:75-85. [PMID: 33836948 PMCID: PMC8762378 DOI: 10.1016/j.semcdb.2021.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/30/2022]
Abstract
Mitotic spindle is a self-assembling macromolecular machine responsible for the faithful segregation of chromosomes during cell division. Assembly of the spindle is believed to be governed by the 'Search & Capture' (S&C) principle in which dynamic microtubules explore space in search of kinetochores while the latter capture microtubules and thus connect chromosomes to the spindle. Due to the stochastic nature of the encounters between kinetochores and microtubules, the time required for incorporating all chromosomes into the spindle is profoundly affected by geometric constraints, such as the size and shape of kinetochores as well as their distribution in space at the onset of spindle assembly. In recent years, several molecular mechanisms that control these parameters have been discovered. It is now clear that stochastic S&C takes place in structured space, where components are optimally distributed and oriented to minimize steric hindrances. Nucleation of numerous non-centrosomal microtubules near kinetochores accelerates capture, while changes in the kinetochore architecture at various stages of spindle assembly promote proper connection of sister kinetochores to the opposite spindle poles. Here we discuss how the concerted action of multiple facilitating mechanisms ensure that the spindle assembles rapidly yet with a minimal number of errors.
Collapse
Affiliation(s)
- Fioranna Renda
- Biggs Laboratory, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States.
| | - Alexey Khodjakov
- Biggs Laboratory, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12237, United States; Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| |
Collapse
|
15
|
McIntosh JR. Anaphase A. Semin Cell Dev Biol 2021; 117:118-126. [PMID: 33781672 DOI: 10.1016/j.semcdb.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Anaphase A is the motion of recently separated chromosomes to the spindle pole they face. It is accompanied by the shortening of kinetochore-attached microtubules. The requisite tubulin depolymerization may occur at kinetochores, at poles, or both, depending on the species and/or the time in mitosis. These depolymerization events are local and suggest that cells regulate microtubule dynamics in specific places, presumably by the localization of relevant enzymes and microtubule-associated proteins to specific loci, such as pericentriolar material and outer kinetochores. Motor enzymes can contribute to anaphase A, both by altering microtubule stability and by pushing or pulling microtubules through the cell. The generation of force on chromosomes requires couplings that can both withstand the considerable force that spindles can generate and simultaneously permit tubulin addition and loss. This chapter reviews literature on the molecules that regulate anaphase microtubule dynamics, couple dynamic microtubules to kinetochores and poles, and generate forces for microtubule and chromosome motion.
Collapse
Affiliation(s)
- J Richard McIntosh
- Dept. of Molecular, Cellular, and Developmental Biology University of Colorado, Boulder, CO 80309-0347, USA.
| |
Collapse
|
16
|
Leaving no-one behind: how CENP-E facilitates chromosome alignment. Essays Biochem 2021; 64:313-324. [PMID: 32347304 PMCID: PMC7475649 DOI: 10.1042/ebc20190073] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Chromosome alignment and biorientation is essential for mitotic progression and genomic stability. Most chromosomes align at the spindle equator in a motor-independent manner. However, a subset of polar kinetochores fail to bi-orient and require a microtubule motor-based transport mechanism to move to the cell equator. Centromere Protein E (CENP-E/KIF10) is a kinesin motor from the Kinesin-7 family, which localizes to unattached kinetochores during mitosis and utilizes plus-end directed microtubule motility to slide mono-oriented chromosomes to the spindle equator. Recent work has revealed how CENP-E cooperates with chromokinesins and dynein to mediate chromosome congression and highlighted its role at aligned chromosomes. Additionally, we have gained new mechanistic insights into the targeting and regulation of CENP-E motor activity at the kinetochore. Here, we will review the function of CENP-E in chromosome congression, the pathways that contribute to CENP-E loading at the kinetochore, and how CENP-E activity is regulated during mitosis.
Collapse
|
17
|
Li MX, Zhang MY, Dong HH, Li AJ, Teng HF, Liu AL, Xu N, Qu YQ. Overexpression of CENPF is associated with progression and poor prognosis of lung adenocarcinoma. Int J Med Sci 2021; 18:494-504. [PMID: 33390818 PMCID: PMC7757141 DOI: 10.7150/ijms.49041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Background and aim: The molecular signatures of lung adenocarcinoma (LUAD) are not well understood. Centromere protein F (CENPF) has been shown to promote oncogenesis in many cancers; however, its role in LUAD has not been illustrated. We explored the role of CENPF in LUAD. Methods: CENPF expression level was investigated in public online database firstly, the prognosis of CENPF in LUAD were also assessed by Kaplan-Meier analysis. Then quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed using 13 matched pairs of clinical LUAD tissue samples. Subsequently, the impact of CENPF expression on cell proliferation, cell cycle, apoptosis, colony formation was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), flow cytometric analysis and colony formation assay, respectively. Finally, experimental xenograft lung cancer model of nude mice armpit of right forelimb to determine the effect of CENPF on LUAD tumorigenesis. Results: CENPF mRNA expression was significantly elevated in LUAD tissues compared with adjacent non-tumor lung tissues in Gene Expression Profiling Interactive Analysis (GEPIA) (P < 0.001). Up-regulated CENPF was remarkably positively associated with pathological stage, relapse free survival (RFS) as well as overall survival (OS) of LUAD patients. Besides, CENPF knockdown greatly suppressed A549 cell proliferation, induced S phase arrest, promoted apoptosis and decreased colony numbers of LUAD cells. Furthermore, knockdown of CENPF significantly inhibited the tumor growth of the LUAD cells in an experimental xenograft lung cancer model of nude mice armpit of right forelimb. Conclusion: Taken together, these results demonstrated that CENPF may serve as a potential biomarker of prognostic relevance and a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Mei-Xiang Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huan-Huan Dong
- Department of Pathology, Weihai Municipal Hospital, Weihai 264200, China
| | - Ai-Jun Li
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Hai-Feng Teng
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Ai-Ling Liu
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Ning Xu
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
18
|
Soto-Perez J, Baumgartner M, Kanadia RN. Role of NDE1 in the Development and Evolution of the Gyrified Cortex. Front Neurosci 2020; 14:617513. [PMID: 33390896 PMCID: PMC7775536 DOI: 10.3389/fnins.2020.617513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
An expanded cortex is a hallmark of human neurodevelopment and endows increased cognitive capabilities. Recent work has shown that the cell cycle-related gene NDE1 is essential for proper cortical development. Patients who have mutations in NDE1 exhibit congenital microcephaly as a primary phenotype. At the cellular level, NDE1 is essential for interkinetic nuclear migration and mitosis of radial glial cells, which translates to an indispensable role in neurodevelopment. The nuclear migration function of NDE1 is well conserved across Opisthokonta. In mammals, multiple isoforms containing alternate terminal exons, which influence the functionality of NDE1, have been reported. It has been noted that the pattern of terminal exon usage mirrors patterns of cortical complexity in mammals. To provide context to these findings, here, we provide a comprehensive review of the literature regarding NDE1, its molecular biology and physiological relevance at the cellular and organismal levels. In particular, we outline the potential roles of NDE1 in progenitor cell behavior and explore the spectrum of NDE1 pathogenic variants. Moreover, we assessed the evolutionary conservation of NDE1 and interrogated whether the usage of alternative terminal exons is characteristic of species with gyrencephalic cortices. We found that gyrencephalic species are more likely to express transcripts that use the human-associated terminal exon, whereas lissencephalic species tend to express transcripts that use the mouse-associated terminal exon. Among gyrencephalic species, the human-associated terminal exon was preferentially expressed by those with a high order of gyrification. These findings underscore phylogenetic relationships between the preferential usage of NDE1 terminal exon and high-order gyrification, which provide insight into cortical evolution underlying high-order brain functions.
Collapse
Affiliation(s)
- Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | | - Rahul N. Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
19
|
Auckland P, Roscioli E, Coker HLE, McAinsh AD. CENP-F stabilizes kinetochore-microtubule attachments and limits dynein stripping of corona cargoes. J Cell Biol 2020; 219:e201905018. [PMID: 32207772 PMCID: PMC7199848 DOI: 10.1083/jcb.201905018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/04/2019] [Accepted: 02/19/2020] [Indexed: 01/14/2023] Open
Abstract
Accurate chromosome segregation demands efficient capture of microtubules by kinetochores and their conversion to stable bioriented attachments that can congress and then segregate chromosomes. An early event is the shedding of the outermost fibrous corona layer of the kinetochore following microtubule attachment. Centromere protein F (CENP-F) is part of the corona, contains two microtubule-binding domains, and physically associates with dynein motor regulators. Here, we have combined CRISPR gene editing and engineered separation-of-function mutants to define how CENP-F contributes to kinetochore function. We show that the two microtubule-binding domains make distinct contributions to attachment stability and force transduction but are dispensable for chromosome congression. We further identify a specialized domain that functions to limit the dynein-mediated stripping of corona cargoes through a direct interaction with Nde1. This antagonistic activity is crucial for maintaining the required corona composition and ensuring efficient kinetochore biorientation.
Collapse
Affiliation(s)
- Philip Auckland
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Emanuele Roscioli
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Helena Louise Elvidge Coker
- Computing and Advanced Microscopy Development Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Andrew D. McAinsh
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
20
|
Li R, Wang X, Zhao X, Zhang X, Chen H, Ma Y, Liu Y. Centromere protein F and Forkhead box M1 correlation with prognosis of non-small cell lung cancer. Oncol Lett 2020; 19:1368-1374. [PMID: 31966068 PMCID: PMC6956421 DOI: 10.3892/ol.2019.11232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer. Altered expression of centromere protein F (CENPF), a transient kinetochore protein, has been found in a variety of human cancers. However, its clinical significance in NSCLC remains unknown. In the present study the results of quantitative PCR and western blot analyses demonstrated that CENPF and Forkhead box M1 (FOXM1) were significantly higher in NSCLC tissues than in the non-cancerous controls at both transcriptional and translational levels. Immunohistochemical staining results showed 58.7% (44/75) and 64.0% (48/75) of NSCLC tissues displayed high expression of CENPF and FOXM1, respectively. CENPF protein expression showed a positive correlation with tumor size (P=0.0179), vital status (P=0.0008) and FOXM1 expression (P=0.0013) in NSCLC. Poor overall survival was correlated with high levels of CENPF and FOXM1 in NSCLC patients as evaluated by Kaplan-Meier and log rank test. Multivariate analyses showed that CENPF expression was an independent prognostic factor for NSCLC. In conclusion, our study provides evidence of the prognostic function of CENPF in NSCLC.
Collapse
Affiliation(s)
- Rui Li
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Xia Wang
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Xiaoqian Zhao
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Xiaohong Zhang
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Honghai Chen
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Yue Ma
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Yandong Liu
- Admin Office, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| |
Collapse
|
21
|
Zhou CJ, Wang XY, Han Z, Wang DH, Ma YZ, Liang CG. Loss of CENPF leads to developmental failure in mouse embryos. Cell Cycle 2019; 18:2784-2799. [PMID: 31478449 DOI: 10.1080/15384101.2019.1661173] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aneuploidy caused by abnormal chromosome segregation during early embryo development leads to embryonic death or congenital malformation. Centromere protein F (CENPF) is a member of centromere protein family that regulates chromosome segregation during mitosis. However, its necessity in early embryo development has not been fully investigated. In this study, expression and function of CENPF was investigated in mouse early embryogenesis. Detection of CENPF expression and localization revealed a cytoplasm, spindle and nuclear membrane related dynamic pattern throughout mitotic progression. Farnesyltransferase inhibitor (FTI) was employed to inhibit CENPF farnesylation in zygotes. The results showed that CENPF degradation was inhibited and its specific localization on nuclear membranes in morula and blastocyst vanished after FTI treatment. Also, CAAX motif mutation leads to failure of CENPF-C630 localization in morula and blastocyst. These results indicate that farnesylation plays a key role during CENPF degradation and localization in early embryos. To further assess CENPF function in parthenogenetic or fertilized embryos development, morpholino (MO) and Trim-Away were used to disturb CENPF function. CENPF knockdown in Metaphase II (MII) oocytes, zygotes or embryos with MO approach resulted in failure to develop into morulae and blastocysts, revealing its indispensable role in both parthenogenetic and fertilized embryos. Disturbing of CENPF with Trim-Away approach in zygotes resulted in impaired development of 2-cell and 4-cell, but did not affect the morula and blastocyst formation because of the recovered expression of CENPF. Taken together, our data suggest CENPF plays an important role during early embryonic development in mice. Abbreviation: CENPF: centromere protein F; MO: morpholino; FTI: Farnesyltransferase inhibitor; CENPE: centromere protein E; IVF: in vitro fertilization; MII: metaphase II; SAC: spindle assembly checkpoint; Mad1: mitotic arrest deficient 1; BUB1: budding uninhibited by benzimidazole 1; BUBR1: BUB1 mitotic checkpoint serine/threonine kinase B; Cdc20: cell division cycle 20.
Collapse
Affiliation(s)
- Cheng-Jie Zhou
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Xing-Yue Wang
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Zhe Han
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Dong-Hui Wang
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Yu-Zhen Ma
- Department of Obstetrics and Gynecology, Inner Mongolia People's Hospital , Hohhot , People's Republic of China
| | - Cheng-Guang Liang
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| |
Collapse
|
22
|
Mahmoud AD, Ballantyne MD, Miscianinov V, Pinel K, Hung J, Scanlon JP, Iyinikkel J, Kaczynski J, Tavares AS, Bradshaw AC, Mills NL, Newby DE, Caporali A, Gould GW, George SJ, Ulitsky I, Sluimer JC, Rodor J, Baker AH. The Human-Specific and Smooth Muscle Cell-Enriched LncRNA SMILR Promotes Proliferation by Regulating Mitotic CENPF mRNA and Drives Cell-Cycle Progression Which Can Be Targeted to Limit Vascular Remodeling. Circ Res 2019; 125:535-551. [PMID: 31339449 PMCID: PMC6693924 DOI: 10.1161/circresaha.119.314876] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
Abstract
RATIONALE In response to blood vessel wall injury, aberrant proliferation of vascular smooth muscle cells (SMCs) causes pathological remodeling. However, the controlling mechanisms are not completely understood. OBJECTIVE We recently showed that the human long noncoding RNA, SMILR, promotes vascular SMCs proliferation by a hitherto unknown mechanism. Here, we assess the therapeutic potential of SMILR inhibition and detail the molecular mechanism of action. METHODS AND RESULTS We used deep RNA-sequencing of human saphenous vein SMCs stimulated with IL (interleukin)-1α and PDGF (platelet-derived growth factor)-BB with SMILR knockdown (siRNA) or overexpression (lentivirus), to identify SMILR-regulated genes. This revealed a SMILR-dependent network essential for cell cycle progression. In particular, we found using the fluorescent ubiquitination-based cell cycle indicator viral system that SMILR regulates the late mitotic phase of the cell cycle and cytokinesis with SMILR knockdown resulting in ≈10% increase in binucleated cells. SMILR pulldowns further revealed its potential molecular mechanism, which involves an interaction with the mRNA of the late mitotic protein CENPF (centromere protein F) and the regulatory Staufen1 RNA-binding protein. SMILR and this downstream axis were also found to be activated in the human ex vivo vein graft pathological model and in primary human coronary artery SMCs and atherosclerotic plaques obtained at carotid endarterectomy. Finally, to assess the therapeutic potential of SMILR, we used a novel siRNA approach in the ex vivo vein graft model (within the 30 minutes clinical time frame that would occur between harvest and implant) to assess the reduction of proliferation by EdU incorporation. SMILR knockdown led to a marked decrease in proliferation from ≈29% in controls to ≈5% with SMILR depletion. CONCLUSIONS Collectively, we demonstrate that SMILR is a critical mediator of vascular SMC proliferation via direct regulation of mitotic progression. Our data further reveal a potential SMILR-targeting intervention to limit atherogenesis and adverse vascular remodeling.
Collapse
MESH Headings
- Cell Cycle/physiology
- Cell Proliferation/physiology
- Cells, Cultured
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Humans
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Mitosis/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Organ Culture Techniques
- RNA, Long Noncoding/biosynthesis
- RNA, Long Noncoding/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Saphenous Vein/cytology
- Saphenous Vein/metabolism
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Amira D. Mahmoud
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - Margaret D. Ballantyne
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - Vladislav Miscianinov
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - Karine Pinel
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - John Hung
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - Jessica P. Scanlon
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - Jean Iyinikkel
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - Jakub Kaczynski
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - Adriana S. Tavares
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - Angela C. Bradshaw
- Institute of Cardiovascular and Medical Sciences, BHF Cardiovascular Research Centre, University of Glasgow, United Kingdom (A.C.B.)
| | - Nicholas L. Mills
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - David E. Newby
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - Andrea Caporali
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - Gwyn W. Gould
- Institute of Molecular Cell and Systems Biology, College of Medicine, Veterinary and Life Sciences, University of Glasgow, United Kingdom (G.W.G.)
| | - Sarah J. George
- School of Clinical Sciences, University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, United Kingdom (S.J.G.)
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (I.U.)
| | - Judith C. Sluimer
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
- Department of Pathology, Maastricht University Medical Center, the Netherlands (J.C.S., A.H.B.)
| | - Julie Rodor
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
| | - Andrew H. Baker
- From the Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom (A.D.M., M.D.B., V.M., K.P., J.H., J.P.S., J.I., J.K., A.S.T., N.L.M., D.E.N., A.C., J.C.S., J.R., A.H.B.)
- Department of Pathology, Maastricht University Medical Center, the Netherlands (J.C.S., A.H.B.)
| |
Collapse
|
23
|
Etemad B, Vertesy A, Kuijt TEF, Sacristan C, van Oudenaarden A, Kops GJPL. Spindle checkpoint silencing at kinetochores with submaximal microtubule occupancy. J Cell Sci 2019; 132:jcs.231589. [PMID: 31138679 DOI: 10.1242/jcs.231589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by monitoring kinetochore-microtubule interactions. SAC proteins are shed from kinetochores once stable attachments are achieved. Human kinetochores consist of hundreds of SAC protein recruitment modules and bind up to 20 microtubules, raising the question of how the SAC responds to intermediate attachment states. We show that one protein module ('RZZS-MAD1-MAD2') of the SAC is removed from kinetochores at low microtubule occupancy and remains absent at higher occupancies, while another module ('BUB1-BUBR1') is retained at substantial levels irrespective of attachment states. These behaviours reflect different silencing mechanisms: while BUB1 displacement is almost fully dependent on MPS1 inactivation, MAD1 (also known as MAD1L1) displacement is not. Artificially tuning the affinity of kinetochores for microtubules further shows that ∼50% occupancy is sufficient to shed MAD2 and silence the SAC. Kinetochores thus respond as a single unit to shut down SAC signalling at submaximal occupancy states, but retain one SAC module. This may ensure continued SAC silencing on kinetochores with fluctuating occupancy states while maintaining the ability for fast SAC re-activation.
Collapse
Affiliation(s)
- Banafsheh Etemad
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Abel Vertesy
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Timo E F Kuijt
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Carlos Sacristan
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
24
|
Shahid M, Kim M, Lee MY, Yeon A, You S, Kim HL, Kim J. Downregulation of CENPF Remodels Prostate Cancer Cells and Alters Cellular Metabolism. Proteomics 2019; 19:e1900038. [PMID: 30957416 PMCID: PMC6633900 DOI: 10.1002/pmic.201900038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/22/2019] [Indexed: 02/04/2023]
Abstract
Metabolic alterations in prostate cancer (PC) are associated with progression and aggressiveness. However, the underlying mechanisms behind PC metabolic functions are unknown. The authors' group recently reported on the important role of centromere protein F (CENPF), a protein associated with the centromere-kinetochore complex and chromosomal segregation during mitosis, in PC MRI visibility. This study focuses on discerning the role of CENPF in metabolic perturbation in human PC3 cells. A series of bioinformatics analyses shows that CENPF is one gene that is strongly associated with aggressive PC and that its expression is positively correlated with metastasis. By identifying and reconstructing the CENPF network, additional associations with lipid regulation are found. Further untargeted metabolomics analysis using gas chromatography-time-of-flight-mass spectrometry reveals that silencing of CENPF alters the global metabolic profiles of PC cells and inhibits cell proliferation, which suggests that CENPF may be a critical regulator of PC metabolism. These findings provide useful scientific insights that can be applied in future studies investigating potential targets for PC treatment.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minhyung Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Austin Yeon
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung L. Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- University of California Los Angeles, CA, USA
- Department of Urology, Ga Cheon University College of Medicine, Incheon, South Korea
| |
Collapse
|
25
|
Peterka M, Kornmann B. Miro-dependent mitochondrial pool of CENP-F and its farnesylated C-terminal domain are dispensable for normal development in mice. PLoS Genet 2019; 15:e1008050. [PMID: 30856164 PMCID: PMC6428352 DOI: 10.1371/journal.pgen.1008050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/21/2019] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
CENP-F is a large, microtubule-binding protein that regulates multiple cellular processes including chromosome segregation and mitochondrial trafficking at cytokinesis. This multiplicity of functions is mediated through the binding of various partners, like Bub1 at the kinetochore and Miro at mitochondria. Due to the multifunctionality of CENP-F, the cellular phenotypes observed upon its depletion are difficult to interpret and there is a need to genetically separate its different functions by preventing binding to selected partners. Here we engineer a CENP-F point-mutant that is deficient in Miro binding and thus is unable to localize to mitochondria, but retains other localizations. We introduce this mutation in cultured human cells using CRISPR/Cas9 system and show it causes a defect in mitochondrial spreading similar to that observed upon Miro depletion. We further create a mouse model carrying this CENP-F variant, as well as truncated CENP-F mutants lacking the farnesylated C-terminus of the protein. Importantly, one of these truncations leads to ~80% downregulation of CENP-F expression. We observe that, despite the phenotypes apparent in cultured cells, mutant mice develop normally. Taken together, these mice will serve as important models to study CENP-F biology at organismal level. In addition, because truncations of CENP-F in humans cause a lethal disease termed Strømme syndrome, they might also be relevant disease models.
Collapse
Affiliation(s)
- Martin Peterka
- Institute of Biochemistry, ETH Zurich, Zürich, Switzerland
- Molecular Life Science Program, Zurich Life-Science Graduate School, Zürich, Switzerland
| | | |
Collapse
|
26
|
Edwards F, Maton G, Gareil N, Canman JC, Dumont J. BUB-1 promotes amphitelic chromosome biorientation via multiple activities at the kinetochore. eLife 2018; 7:40690. [PMID: 30547880 PMCID: PMC6303103 DOI: 10.7554/elife.40690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/13/2018] [Indexed: 12/03/2022] Open
Abstract
Accurate chromosome segregation relies on bioriented amphitelic attachments of chromosomes to microtubules of the mitotic spindle, in which sister chromatids are connected to opposite spindle poles. BUB-1 is a protein of the Spindle Assembly Checkpoint (SAC) that coordinates chromosome attachment with anaphase onset. BUB-1 is also required for accurate sister chromatid segregation independently of its SAC function, but the underlying mechanism remains unclear. Here we show that, in Caenorhabditis elegans embryos, BUB-1 accelerates the establishment of non-merotelic end-on kinetochore-microtubule attachments by recruiting the RZZ complex and its downstream partner dynein-dynactin at the kinetochore. In parallel, BUB-1 limits attachment maturation by the SKA complex. This activity opposes kinetochore-microtubule attachment stabilisation promoted by CLS-2CLASP-dependent kinetochore-microtubule assembly. BUB-1 is therefore a SAC component that coordinates the function of multiple downstream kinetochore-associated proteins to ensure accurate chromosome segregation.
Collapse
Affiliation(s)
- Frances Edwards
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Gilliane Maton
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nelly Gareil
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, United States
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
27
|
Abstract
In metazoans, the assembly of kinetochores on centrometric chromatin and the dismantling of nuclear pore complexes are processes that have to be tightly coordinated to ensure the proper assembly of the mitotic spindle and a successful mitosis. It is therefore noteworthy that these two macromolecular assemblies share a subset of constituents. One of these multifaceted components is Cenp-F, a protein implicated in cancer and developmental pathologies. During the cell cycle, Cenp-F localizes in multiple cellular structures including the nuclear envelope in late G2/early prophase and kinetochores throughout mitosis. We recently characterized the molecular determinants of Cenp-F interaction with Nup133, a structural nuclear pore constituent. In parallel with two other independent studies, we further elucidated the mechanisms governing Cenp-F kinetochore recruitment that mainly relies on its interaction with Bub1, with redundant contribution of Cenp-E upon acute microtubule depolymerisation. Here we synthesize the current literature regarding the dual location of Cenp-F at nuclear pores and kinetochores and extend our discussion to the regulation of these NPC and kinetochore localizations by mitotic kinase and spindle microtubules.
Collapse
Affiliation(s)
- Alessandro Berto
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France.,b Ecole Doctorale Structure et Dynamique des Systèmes Vivants (#577) , Univ Paris Sud, Université Paris-Saclay , Orsay , France
| | - Valérie Doye
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
28
|
McIntosh JR. Assessing the Contributions of Motor Enzymes and Microtubule Dynamics to Mitotic Chromosome Motions. Annu Rev Cell Dev Biol 2018; 33:1-22. [PMID: 28992437 DOI: 10.1146/annurev-cellbio-100616-060827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During my graduate work with Keith Porter, I became fascinated by the mitotic spindle, an interest that has motivated much of my scientific work ever since. I began spindle studies by using electron microscopes, instruments that have made significant contributions to our understanding of spindle organization. Such instruments have helped to elucidate the distributions of spindle microtubules, the interactions among them, their molecular polarity, and their associations with both kinetochores and spindle poles. Our lab has also investigated some processes of spindle physiology: microtubule dynamics, the actions of microtubule-associated proteins (including motor enzymes), the character of forces generated by specific spindle components, and factors that control mitotic progression. Here, I give a personal perspective on some of this intellectual history and on what recent discoveries imply about the mechanisms of chromosome motion.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347;
| |
Collapse
|
29
|
Ciossani G, Overlack K, Petrovic A, Huis In 't Veld PJ, Koerner C, Wohlgemuth S, Maffini S, Musacchio A. The kinetochore proteins CENP-E and CENP-F directly and specifically interact with distinct BUB mitotic checkpoint Ser/Thr kinases. J Biol Chem 2018; 293:10084-10101. [PMID: 29748388 PMCID: PMC6028960 DOI: 10.1074/jbc.ra118.003154] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/27/2018] [Indexed: 01/23/2023] Open
Abstract
The segregation of chromosomes during cell division relies on the function of the kinetochores, protein complexes that physically connect chromosomes with microtubules of the spindle. The metazoan proteins, centromere protein E (CENP-E) and CENP-F, are components of a fibrous layer of mitotic kinetochores named the corona. Several of their features suggest that CENP-E and CENP-F are paralogs: they are very large (comprising ∼2700 and 3200 residues, respectively), contain abundant predicted coiled-coil structures, are C-terminally prenylated, and are endowed with microtubule-binding sites at their termini. Moreover, CENP-E contains an ATP-hydrolyzing motor domain that promotes microtubule plus end–directed motion. Here, we show that both CENP-E and CENP-F are recruited to mitotic kinetochores independently of the main corona constituent, the Rod/Zwilch/ZW10 (RZZ) complex. We identified specific interactions of CENP-F and CENP-E with budding uninhibited by benzimidazole 1 (BUB1) and BUB1-related (BUBR1) mitotic checkpoint Ser/Thr kinases, respectively, paralogous proteins involved in mitotic checkpoint control and chromosome alignment. Whereas BUBR1 was dispensable for kinetochore localization of CENP-E, BUB1 was stringently required for CENP-F localization. Through biochemical reconstitution, we demonstrated that the CENP-E/BUBR1 and CENP-F/BUB1 interactions are direct and require similar determinants, a dimeric coiled-coil in CENP-E or CENP-F and a kinase domain in BUBR1 or BUB1. Our findings are consistent with the existence of structurally similar BUB1/CENP-F and BUBR1/CENP-E complexes, supporting the notion that CENP-E and CENP-F are evolutionarily related.
Collapse
Affiliation(s)
- Giuseppe Ciossani
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Katharina Overlack
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Arsen Petrovic
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Pim J Huis In 't Veld
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Carolin Koerner
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Sabine Wohlgemuth
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Stefano Maffini
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and
| | - Andrea Musacchio
- From the Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund and .,the Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany
| |
Collapse
|
30
|
Berto A, Yu J, Morchoisne-Bolhy S, Bertipaglia C, Vallee R, Dumont J, Ochsenbein F, Guerois R, Doye V. Disentangling the molecular determinants for Cenp-F localization to nuclear pores and kinetochores. EMBO Rep 2018; 19:embr.201744742. [PMID: 29632243 DOI: 10.15252/embr.201744742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/09/2022] Open
Abstract
Cenp-F is a multifaceted protein implicated in cancer and developmental pathologies. The Cenp-F C-terminal region contains overlapping binding sites for numerous proteins that contribute to its functions throughout the cell cycle. Here, we focus on the nuclear pore protein Nup133 that interacts with Cenp-F both at nuclear pores in prophase and at kinetochores in mitosis, and on the kinase Bub1, known to contribute to Cenp-F targeting to kinetochores. By combining in silico structural modeling and yeast two-hybrid assays, we generate an interaction model between a conserved helix within the Nup133 β-propeller and a short leucine zipper-containing dimeric segment of Cenp-F. We thereby create mutants affecting the Nup133/Cenp-F interface and show that they prevent Cenp-F localization to the nuclear envelope, but not to kinetochores. Conversely, a point mutation within an adjacent leucine zipper affecting the kinetochore targeting of Cenp-F KT-core domain impairs its interaction with Bub1, but not with Nup133, identifying Bub1 as the direct KT-core binding partner of Cenp-F. Finally, we show that Cenp-E redundantly contributes together with Bub1 to the recruitment of Cenp-F to kinetochores.
Collapse
Affiliation(s)
- Alessandro Berto
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Ecole Doctorale Structure et Dynamique des Systèmes Vivants (#577), Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Chiara Bertipaglia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Richard Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Julien Dumont
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Valérie Doye
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
31
|
Pagotto S, Veronese A, Soranno A, Lanuti P, Di Marco M, Russo MV, Ramassone A, Marchisio M, Simeone P, Guanciali-Franchi PE, Palka G, Costantini RM, Croce CM, Visone R. Hsa-miR-155-5p drives aneuploidy at early stages of cellular transformation. Oncotarget 2018; 9:13036-13047. [PMID: 29560129 PMCID: PMC5849193 DOI: 10.18632/oncotarget.24437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
Hsa-miR-155-5p (miR-155) is overexpressed in most solid and hematological malignancies. It promotes loss of genomic integrity in cancer cells by targeting genes involved in microsatellite instability and DNA repair; however, the link between miR-155 and aneuploidy has been scarcely investigated. Here we describe a novel mechanism by which miR-155 causes chromosomal instability. Using osteosarcoma cells (U2OS) and normal human dermal fibroblast (HDF), two well-established models for the study of chromosome congression, we demonstrate that miR-155 targets the spindle checkpoint proteins BUB1, CENP-F, and ZW10, thus compromising chromosome alignment at the metaphase plate. In U2OS cells, exogenous miR-155 expression reduced the recruitment of BUB1, CENP-F, and ZW10 to the kinetochores which resulted in defective chromosome congression. In contrast, during in vitro transformation of HDF by enforced expression of SV40 Large T antigen and human telomerase (HDFLT/hTERT), inhibition of miR-155 reduced chromosome congression errors and aneuploidy at early passages. Using live-cell imaging we observed that miR-155 delays progression through mitosis, indicating an activated mitotic spindle checkpoint, which likely fails to reduce aneuploidy. Overall, this study provides insight into a mechanism that generates aneuploidy at early stages of cellular transformation, pointing to a role for miR-155 in chromosomal instability at tumor onset.
Collapse
Affiliation(s)
- Sara Pagotto
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Angelo Veronese
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Alessandra Soranno
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Paola Lanuti
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Mirco Di Marco
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | | | - Alice Ramassone
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Marco Marchisio
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Pasquale Simeone
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Paolo E Guanciali-Franchi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Giandomenico Palka
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Renato Mariani Costantini
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.,Chronic Lymphocytic Leukemia Research Consortium, San Diego, California 92093, USA
| | - Rosa Visone
- Aging Research Center and Translational Medicine-CeSI-MeT, Chieti, 66100, Italy.,Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
32
|
Eisch V, Lu X, Gabriel D, Djabali K. Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts. Oncotarget 2017; 7:24700-18. [PMID: 27015553 PMCID: PMC5029735 DOI: 10.18632/oncotarget.8267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/04/2016] [Indexed: 01/26/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare premature aging disorder that leads to death at an average age of 14.7 years due to myocardial infarction or stroke. The most common mutation in HGPS is at position G608G (GGC>GGT) within exon 11 of the LMNA gene. This mutation results in the deletion of 50 amino acids at the carboxyl-terminal tail of prelamin A, producing a truncated farnesylated protein called progerin. Lamins play important roles in the organization and structure of the nucleus. The nuclear build-up of progerin causes severe morphological and functional changes in interphase HGPS cells. In this study, we investigated whether progerin elicits spatiotemporal deviations in mitotic processes in HGPS fibroblasts. We analyzed the nuclear distribution of endogenous progerin during mitosis in relation to components of the nuclear lamina, nuclear envelope (NE) and nuclear pores. We found that progerin caused defects in chromosome segregation as early as metaphase, delayed NE reformation and trapped lamina components and inner NE proteins in the endoplasmic reticulum at the end of mitosis. Progerin displaced the centromere protein F (CENP-F) from metaphase chromosome kinetochores, which caused increased chromatin lagging, binucleated cells and genomic instability. This accumulation of progerin-dependent defects with each round of mitosis predisposes cells to premature senescence.
Collapse
Affiliation(s)
- Veronika Eisch
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Xiang Lu
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Diana Gabriel
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| |
Collapse
|
33
|
Kozak RA, Majer A, Biondi MJ, Medina SJ, Goneau LW, Sajesh BV, Slota JA, Zubach V, Severini A, Safronetz D, Hiebert SL, Beniac DR, Booth TF, Booth SA, Kobinger GP. MicroRNA and mRNA Dysregulation in Astrocytes Infected with Zika Virus. Viruses 2017; 9:v9100297. [PMID: 29036922 PMCID: PMC5691648 DOI: 10.3390/v9100297] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
The Zika virus (ZIKV) epidemic is an ongoing public health concern. ZIKV is a flavivirus reported to be associated with microcephaly, and recent work in animal models demonstrates the ability of the virus to cross the placenta and affect fetal brain development. Recent findings suggest that the virus preferentially infects neural stem cells and thereby deregulates gene expression, cell cycle progression, and increases cell death. However, neuronal stem cells are not the only brain cells that are susceptible to ZIKV and infection of other brain cells may contribute to disease progression. Herein, we characterized ZIKV replication in astrocytes, and profiled temporal changes in host microRNAs (miRNAs) and transcriptomes during infection. We observed the deregulation of numerous processes known to be involved in flavivirus infection, including genes involved in the unfolded protein response pathway. Moreover, a number of miRNAs were upregulated, including miR-30e-3p, miR-30e-5p, and, miR-17-5p, which have been associated with other flavivirus infections. This study highlights potential miRNAs that may be of importance in ZIKV pathogenesis.
Collapse
Affiliation(s)
- Robert A Kozak
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Anna Majer
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Mia J Biondi
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada; Winnipeg, MB R3E 3R2, Canada, .
| | - Sarah J Medina
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Lee W Goneau
- Medical Microbiology, Public Health Ontario Laboratory, Toronto, ON M5G 1M1, Canada.
| | - Babu V Sajesh
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Jessy A Slota
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Vanessa Zubach
- Viral Exanthemata and STD, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Alberto Severini
- Viral Exanthemata and STD, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - David Safronetz
- Viral Zoonoses, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Shannon L Hiebert
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Daniel R Beniac
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Stephanie A Booth
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Gary P Kobinger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
- Infectious Diseases Research Centre, Université Laval, Quebec, QC G1V 4G2, Canada.
| |
Collapse
|
34
|
Phengchat R, Takata H, Uchiyama S, Fukui K. Calcium depletion destabilises kinetochore fibres by the removal of CENP-F from the kinetochore. Sci Rep 2017; 7:7335. [PMID: 28779172 PMCID: PMC5544769 DOI: 10.1038/s41598-017-07777-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/03/2017] [Indexed: 12/12/2022] Open
Abstract
The attachment of spindle fibres to the kinetochore is an important process that ensures successful completion of the cell division. The Ca2+ concentration increases during the mitotic phase and contributes microtubule stability. However, its role in the spindle organisation in mitotic cells remains controversial. Here, we investigated the role of Ca2+ on kinetochore fibres in living cells. We found that depletion of Ca2+ during mitosis reduced kinetochore fibre stability. Reduction of kinetochore fibre stability was not due to direct inhibition of microtubule polymerisation by Ca2+-depletion but due to elimination of one dynamic component of kinetochore, CENP-F from the kinetochore. This compromised the attachment of kinetochore fibres to the kinetochore which possibly causes mitotic defects induced by the depletion of Ca2+.
Collapse
Affiliation(s)
- Rinyaporn Phengchat
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Hideaki Takata
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Osaka, Japan. .,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, 563-8577, Osaka, Japan.
| | - Susumu Uchiyama
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Kiichi Fukui
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Osaka, Japan. .,Chromosome Engineering Research Centre, Tottori University, 86 Nishimachi, Yonago, 683-0826, Tottori, Japan.
| |
Collapse
|
35
|
Ozkinay F, Atik T, Isik E, Gormez Z, Sagiroglu M, Sahin OA, Corduk N, Onay H. A further family of Stromme syndrome carrying CENPF
mutation. Am J Med Genet A 2017; 173:1668-1672. [DOI: 10.1002/ajmg.a.38173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Ferda Ozkinay
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine; Ege University; Izmir Turkey
| | - Tahir Atik
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine; Ege University; Izmir Turkey
| | - Esra Isik
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine; Ege University; Izmir Turkey
| | - Zeliha Gormez
- Advanced Genomics and Bioinformatics Research Center; TUBITAK-BILGEM; Kocaeli Turkey
| | - Mahmut Sagiroglu
- Advanced Genomics and Bioinformatics Research Center; TUBITAK-BILGEM; Kocaeli Turkey
| | - Ozlem Atan Sahin
- Biochemistry and Molecular Biology, Institude of Health Sciences; Acibadem University; Istanbul Turkey
| | - Nergul Corduk
- Department of Pediatric Surgery, Faculty of Medicine; Pamukkale University; Denizli Turkey
| | - Huseyin Onay
- Department of Medical Genetics, Faculty of Medicine; Ege University; Izmir Turkey
| |
Collapse
|
36
|
Yim H, Shin SB, Woo SU, Lee PCW, Erikson RL. Plk1-mediated stabilization of 53BP1 through USP7 regulates centrosome positioning to maintain bipolarity. Oncogene 2017; 36:966-978. [PMID: 27477698 DOI: 10.1038/onc.2016.263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/04/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
Although 53BP1 has been established well as a mediator in DNA damage response, its function in mitosis is not clearly understood. We found that 53BP1 is a mitotic-binding partner of the kinases Plk1 and AuroraA, and that the binding with Plk1 increases the stability of 53BP1 by accelerating its interaction with the deubiquitinase USP7. Depletion of 53BP1 induces mitotic defects such as chromosomal missegregation, misorientation of spindle poles and the generation of extra centrosomes, which is similar phenotype to USP7-knockdown cells. In addition, 53BP1 depletion reduces the levels of p53 and centromere protein F (CENPF), interacting proteins of 53BP1. These phenotypes induced by 53BP1 depletion were rescued by expression of wild-type or phosphomimic mutant 53BP1 but not by expression of a dephosphomimic mutant. We propose that phosphorylation of 53BP1 at S380 accelerates complex formation with USP7 and CENPF to regulate their stability, thus having a crucial role in proper centrosome positioning, chromosomal alignment, and centrosome number.
Collapse
Affiliation(s)
- H Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - S-B Shin
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - S U Woo
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - P C-W Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Korea
| | - R L Erikson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
37
|
McKinley KL, Cheeseman IM. Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects. Dev Cell 2017; 40:405-420.e2. [PMID: 28216383 DOI: 10.1016/j.devcel.2017.01.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/23/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
Abstract
Defining the genes that are essential for cellular proliferation is critical for understanding organismal development and identifying high-value targets for disease therapies. However, the requirements for cell-cycle progression in human cells remain incompletely understood. To elucidate the consequences of acute and chronic elimination of cell-cycle proteins, we generated and characterized inducible CRISPR/Cas9 knockout human cell lines targeting 209 genes involved in diverse cell-cycle processes. We performed single-cell microscopic analyses to systematically establish the effects of the knockouts on subcellular architecture. To define variations in cell-cycle requirements between cultured cell lines, we generated knockouts across cell lines of diverse origins. We demonstrate that p53 modulates the phenotype of specific cell-cycle defects through distinct mechanisms, depending on the defect. This work provides a resource to broadly facilitate robust and long-term depletion of cell-cycle proteins and reveals insights into the requirements for cell-cycle progression.
Collapse
Affiliation(s)
- Kara L McKinley
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
38
|
ASPP1/2-PP1 complexes are required for chromosome segregation and kinetochore-microtubule attachments. Oncotarget 2016; 6:41550-65. [PMID: 26595804 PMCID: PMC4747173 DOI: 10.18632/oncotarget.6355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/02/2015] [Indexed: 01/01/2023] Open
Abstract
Regulated interactions between kinetochores and spindle microtubules are critical for maintaining genomic stability during chromosome segregation. Defects in chromosome segregation are widespread phenomenon in human cancers that are thought to serve as the fuel for tumorigenic progression. Tumor suppressor proteins ASPP1 and ASPP2, two members of the apoptosis stimulating proteins of p53 (ASPP) family, are frequently down-regulated in human cancers. Here we report that ASPP1/2 are required for proper mitotic progression. In ASPP1/2 co-depleted cells, the persistence of unaligned chromosomes and the reduction of tension across sister kinetochores on aligned chromosomes resulted in persistent spindle assembly checkpoint (SAC) activation. Using protein affinity purification methods, we searched for functional partners of ASPP1/2, and found that ASPP1/2 were associated with a subset of kinetochore proteins (Hec1, KNL-1, and CENP-F). It was found that ASPP1/2 act as PP1-targeting subunits to facilitate the interaction between PP1 and Hec1, and catalyze Hec1 (Ser165) dephosphorylation during late mitosis. These observations revealed a previously unrecognized function of ASPP1/2 in chromosome segregation and kinetochore-microtubule attachments that likely contributes to their roles in chromosome stability and tumor suppression.
Collapse
|
39
|
Mahale SP, Sharma A, Mylavarapu SVS. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint. PLoS One 2016; 11:e0159646. [PMID: 27441562 PMCID: PMC4956306 DOI: 10.1371/journal.pone.0159646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC). However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division.
Collapse
Affiliation(s)
- Sagar P. Mahale
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
- Affiliated to Manipal University, Manipal, Karnataka, India
| | - Amit Sharma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
- Affiliated to Manipal University, Manipal, Karnataka, India
| | - Sivaram V. S. Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana, India
- Affiliated to Manipal University, Manipal, Karnataka, India
- * E-mail:
| |
Collapse
|
40
|
Pfaltzgraff ER, Roth GM, Miller PM, Gintzig AG, Ohi R, Bader DM. Loss of CENP-F results in distinct microtubule-related defects without chromosomal abnormalities. Mol Biol Cell 2016; 27:1990-9. [PMID: 27146114 PMCID: PMC4927273 DOI: 10.1091/mbc.e15-12-0848] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/27/2016] [Indexed: 01/09/2023] Open
Abstract
Microtubule (MT)-binding centromere protein F (CENP-F) was previously shown to play a role exclusively in chromosome segregation during cellular division. Many cell models of CENP-F depletion show a lag in the cell cycle and aneuploidy. Here, using our novel genetic deletion model, we show that CENP-F also regulates a broader range of cellular functions outside of cell division. We characterized CENP-F(+/+) and CENP-F(-/-) mouse embryonic fibroblasts (MEFs) and found drastic differences in multiple cellular functions during interphase, including cell migration, focal adhesion dynamics, and primary cilia formation. We discovered that CENP-F(-/-) MEFs have severely diminished MT dynamics, which underlies the phenotypes we describe. These data, combined with recent biochemical research demonstrating the strong binding of CENP-F to the MT network, support the conclusion that CENP-F is a powerful regulator of MT dynamics during interphase and affects heterogeneous cell functions.
Collapse
Affiliation(s)
- Elise R Pfaltzgraff
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Gretchen M Roth
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Paul M Miller
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Anneelizabeth G Gintzig
- Division of Hematology-Oncology, Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - David M Bader
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
41
|
Dominguez D, Tsai YH, Weatheritt R, Wang Y, Blencowe BJ, Wang Z. An extensive program of periodic alternative splicing linked to cell cycle progression. eLife 2016; 5. [PMID: 27015110 PMCID: PMC4884079 DOI: 10.7554/elife.10288] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 03/24/2016] [Indexed: 12/28/2022] Open
Abstract
Progression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1300 genes with cell cycle-dependent AS changes. These genes are significantly enriched in functions linked to cell cycle control, yet they do not significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level undergoes cell cycle-dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various cancers. These results thus reveal a large program of CLK1-regulated periodic AS intimately associated with cell cycle control.
Collapse
Affiliation(s)
- Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Yi-Hsuan Tsai
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Robert Weatheritt
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Yang Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Benjamin J Blencowe
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zefeng Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
42
|
Moghaddas F, Joshua F, Taylor R, Fritzler MJ, Toh BH. Autoantibodies directed to centromere protein F in a patient with BRCA1 gene mutation. BMC Res Notes 2016; 9:84. [PMID: 26868636 PMCID: PMC4750191 DOI: 10.1186/s13104-016-1908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 02/03/2016] [Indexed: 11/16/2022] Open
Abstract
Background Autoantibodies directed to centromere protein F were first reported in 1993 and their association with malignancy has been well documented. Case We present the case of a 48-year-old Caucasian female with a BRCA1 gene mutation associated with bilateral breast cancer. Antinuclear autoantibody immunofluorescence performed for workup of possible inflammatory arthropathy showed a high titre cell cycle related nuclear speckled pattern, with subsequent confirmation by addressable laser bead immunoassay of the target antigen as an immunodominant epitope at the C-terminus of centromere protein F. Conclusion Here we review the current literature on centromere protein F, its association with breast cancer and present the first case of this antibody being identified in a person with a BRCA1 gene mutation.
Collapse
Affiliation(s)
| | - Fredrick Joshua
- Department of Rheumatology, Prince of Wales Hospital, Sydney, Australia.
| | | | - Marvin J Fritzler
- Department of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Ban Hock Toh
- Australian Clinical Laboratories, Melbourne, Australia. .,Department of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
43
|
Filges I, Bruder E, Brandal K, Meier S, Undlien DE, Waage TR, Hoesli I, Schubach M, de Beer T, Sheng Y, Hoeller S, Schulzke S, Røsby O, Miny P, Tercanli S, Oppedal T, Meyer P, Selmer KK, Strømme P. Strømme Syndrome Is a Ciliary Disorder Caused by Mutations in CENPF. Hum Mutat 2016; 37:359-63. [PMID: 26820108 DOI: 10.1002/humu.22960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/08/2016] [Indexed: 11/10/2022]
Abstract
Strømme syndrome was first described by Strømme et al. (1993) in siblings presenting with "apple peel" type intestinal atresia, ocular anomalies and microcephaly. The etiology remains unknown to date. We describe the long-term clinical follow-up data for the original pair of siblings as well as two previously unreported siblings with a severe phenotype overlapping that of the Strømme syndrome including fetal autopsy results. Using family-based whole-exome sequencing, we identified truncating mutations in the centrosome gene CENPF in the two nonconsanguineous Caucasian sibling pairs. Compound heterozygous inheritance was confirmed in both families. Recently, mutations in this gene were shown to cause a fetal lethal phenotype, the phenotype and functional data being compatible with a human ciliopathy [Waters et al., 2015]. We show for the first time that Strømme syndrome is an autosomal-recessive disease caused by mutations in CENPF that can result in a wide phenotypic spectrum.
Collapse
Affiliation(s)
- Isabel Filges
- Medical Genetics, University Hospital Basel, Basel, Switzerland
| | | | - Kristin Brandal
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Stephanie Meier
- Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Dag Erik Undlien
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Trine Rygvold Waage
- Section of Paediatric Neurohabilitation, Department of Clinical Neurosciences for Children, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Irene Hoesli
- Obstetrics and Gynecology, University Hospital Basel, Basel, Switzerland
| | - Max Schubach
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tjaart de Beer
- Biozentrum and Swiss Institute of Bioinformatics, University of Basel, Basel, Switzerland
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sylvia Hoeller
- Pathology, University Hospital Basel, Basel, Switzerland
| | - Sven Schulzke
- Neonatology, University Children's Hospital Basel, Basel, Switzerland
| | - Oddveig Røsby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Peter Miny
- Medical Genetics, University Hospital Basel, Basel, Switzerland
| | | | - Truls Oppedal
- Department of Ophthalmology, Section for Pediatric Ophthalmology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Peter Meyer
- Pathology, University Hospital Basel, Basel, Switzerland
| | - Kaja Kristine Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Petter Strømme
- Section for Clinical Neurosciences, Department of Pediatrics, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Volkov VA, Grissom PM, Arzhanik VK, Zaytsev AV, Renganathan K, McClure-Begley T, Old WM, Ahn N, McIntosh JR. Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules. J Cell Biol 2015; 209:813-28. [PMID: 26101217 PMCID: PMC4477864 DOI: 10.1083/jcb.201408083] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Both N- and C-terminal microtubule (MT)-binding domains of CENP-F can follow depolymerizing MT ends while bearing a significant load, and the N-terminal domain prefers binding to curled oligomers of tubulin relative to MT walls by approximately fivefold, suggesting that CENP-F may play a role in the firm bonds that form between kinetochores and the flared plus ends of dynamic MTs. Firm attachments between kinetochores and dynamic spindle microtubules (MTs) are important for accurate chromosome segregation. Centromere protein F (CENP-F) has been shown to include two MT-binding domains, so it may participate in this key mitotic process. Here, we show that the N-terminal MT-binding domain of CENP-F prefers curled oligomers of tubulin relative to MT walls by approximately fivefold, suggesting that it may contribute to the firm bonds between kinetochores and the flared plus ends of dynamic MTs. A polypeptide from CENP-F’s C terminus also bound MTs, and either protein fragment diffused on a stable MT wall. They also followed the ends of dynamic MTs as they shortened. When either fragment was coupled to a microbead, the force it could transduce from a shortening MT averaged 3–5 pN but could exceed 10 pN, identifying CENP-F as a highly effective coupler to shortening MTs.
Collapse
Affiliation(s)
- Vladimir A Volkov
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia, 119991 Laboratory of Biophysics, Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia, 117513 N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Moscow, Russia, 123098
| | - Paula M Grissom
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Vladimir K Arzhanik
- Department of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia, 119991
| | - Anatoly V Zaytsev
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kutralanathan Renganathan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Tristan McClure-Begley
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - William M Old
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Natalie Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
45
|
Abstract
A universal feature of mitosis is that all chromosomes become aligned at the spindle equator--the halfway point between the two spindle poles--prior to anaphase onset. This migratory event is called congression, and is powered by centromere-bound protein machines called kinetochores. This Commentary aims to document recent advances concerning the two kinetochore-based force-generating mechanisms that drive mitotic chromosome congression in vertebrate cells: depolymerisation-coupled pulling (DCP) and lateral sliding. We aim to explore how kinetochores can 'read-out' their spatial position within the spindle, and adjust these force-generating mechanisms to ensure chromosomes reach, and then remain, at the equator. Finally, we will describe the 'life history' of a chromosome, and provide a working model for how individual mechanisms are integrated to ensure efficient and successful congression.
Collapse
Affiliation(s)
- Philip Auckland
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew D McAinsh
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
46
|
Holland AJ, Reis RM, Niessen S, Pereira C, Andres DA, Spielmann HP, Cleveland DW, Desai A, Gassmann R. Preventing farnesylation of the dynein adaptor Spindly contributes to the mitotic defects caused by farnesyltransferase inhibitors. Mol Biol Cell 2015; 26:1845-56. [PMID: 25808490 PMCID: PMC4436830 DOI: 10.1091/mbc.e14-11-1560] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/19/2015] [Indexed: 01/01/2023] Open
Abstract
The kinetochore-specific dynein adaptor Spindly is identified as a novel substrate of farnesyltransferase in human cells. Farnesylation is required for Spindly accumulation at kinetochores, and nonfarnesylated Spindly delays chromosome congression, providing new mechanistic insight into the biological effect of farnesyltransferase inhibitors. The clinical interest in farnesyltransferase inhibitors (FTIs) makes it important to understand how these compounds affect cellular processes involving farnesylated proteins. Mitotic abnormalities observed after treatment with FTIs have so far been attributed to defects in the farnesylation of the outer kinetochore proteins CENP-E and CENP-F, which are involved in chromosome congression and spindle assembly checkpoint signaling. Here we identify the cytoplasmic dynein adaptor Spindly as an additional component of the outer kinetochore that is modified by farnesyltransferase (FTase). We show that farnesylation of Spindly is essential for its localization, and thus for the proper localization of dynein and its cofactor dynactin, to prometaphase kinetochores and that Spindly kinetochore recruitment is more severely affected by FTase inhibition than kinetochore recruitment of CENP-E and CENP-F. Molecular replacement experiments show that both Spindly and CENP-E farnesylation are required for efficient chromosome congression. The identification of Spindly as a new mitotic substrate of FTase provides insight into the causes of the mitotic phenotypes observed with FTase inhibitors.
Collapse
Affiliation(s)
- Andrew J Holland
- Ludwig Institute for Cancer Research/Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Rita M Reis
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto 4150-180, Portugal
| | - Sherry Niessen
- Skaggs Institute for Chemical Biology and Department of Chemical Physiology, Center for Physiological Proteomics, Scripps Research Institute, La Jolla, CA 92037
| | - Cláudia Pereira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto 4150-180, Portugal
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, Kentucky Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | - H Peter Spielmann
- Department of Molecular and Cellular Biochemistry, Kentucky Center for Structural Biology, University of Kentucky, Lexington, KY 40536 Department of Chemistry, Markey Cancer Center, Kentucky Center for Structural Biology, University of Kentucky, Lexington, KY 40536
| | - Don W Cleveland
- Ludwig Institute for Cancer Research/Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Arshad Desai
- Ludwig Institute for Cancer Research/Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto 4150-180, Portugal
| |
Collapse
|
47
|
Waters AM, Asfahani R, Carroll P, Bicknell L, Lescai F, Bright A, Chanudet E, Brooks A, Christou-Savina S, Osman G, Walsh P, Bacchelli C, Chapgier A, Vernay B, Bader DM, Deshpande C, O' Sullivan M, Ocaka L, Stanescu H, Stewart HS, Hildebrandt F, Otto E, Johnson CA, Szymanska K, Katsanis N, Davis E, Kleta R, Hubank M, Doxsey S, Jackson A, Stupka E, Winey M, Beales PL. The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes. J Med Genet 2015; 52:147-56. [PMID: 25564561 PMCID: PMC4345935 DOI: 10.1136/jmedgenet-2014-102691] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/02/2022]
Abstract
BACKGROUND Mutations in microtubule-regulating genes are associated with disorders of neuronal migration and microcephaly. Regulation of centriole length has been shown to underlie the pathogenesis of certain ciliopathy phenotypes. Using a next-generation sequencing approach, we identified mutations in a novel centriolar disease gene in a kindred with an embryonic lethal ciliopathy phenotype and in a patient with primary microcephaly. METHODS AND RESULTS Whole exome sequencing data from a non-consanguineous Caucasian kindred exhibiting mid-gestation lethality and ciliopathic malformations revealed two novel non-synonymous variants in CENPF, a microtubule-regulating gene. All four affected fetuses showed segregation for two mutated alleles [IVS5-2A>C, predicted to abolish the consensus splice-acceptor site from exon 6; c.1744G>T, p.E582X]. In a second unrelated patient exhibiting microcephaly, we identified two CENPF mutations [c.1744G>T, p.E582X; c.8692 C>T, p.R2898X] by whole exome sequencing. We found that CENP-F colocalised with Ninein at the subdistal appendages of the mother centriole in mouse inner medullary collecting duct cells. Intraflagellar transport protein-88 (IFT-88) colocalised with CENP-F along the ciliary axonemes of renal epithelial cells in age-matched control human fetuses but did not in truncated cilia of mutant CENPF kidneys. Pairwise co-immunoprecipitation assays of mitotic and serum-starved HEKT293 cells confirmed that IFT88 precipitates with endogenous CENP-F. CONCLUSIONS Our data identify CENPF as a new centriolar disease gene implicated in severe human ciliopathy and microcephaly related phenotypes. CENP-F has a novel putative function in ciliogenesis and cortical neurogenesis.
Collapse
Affiliation(s)
- Aoife M Waters
- Institute of Child Health, University College London, London, UK Department of Nephrology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Rowan Asfahani
- Institute of Child Health, University College London, London, UK
| | - Paula Carroll
- Institute of Genetics & Molecular Medicine, Edinburgh, UK
| | | | - Francesco Lescai
- Institute of Child Health, University College London, London, UK
| | | | - Estelle Chanudet
- Institute of Child Health, University College London, London, UK
| | - Anthony Brooks
- Institute of Child Health, University College London, London, UK
| | | | - Guled Osman
- Institute of Child Health, University College London, London, UK
| | - Patrick Walsh
- Institute of Child Health, University College London, London, UK
| | - Chiara Bacchelli
- Institute of Child Health, University College London, London, UK
| | - Ariane Chapgier
- Institute of Child Health, University College London, London, UK
| | - Bertrand Vernay
- Institute of Child Health, University College London, London, UK
| | - David M Bader
- Department of Cell and Developmental Biology, Vanderbilt University, USA
| | - Charu Deshpande
- Department of Clinical Genetics, Evelina Children's Hospital, London, UK
| | - Mary O' Sullivan
- Institute of Child Health, University College London, London, UK
| | - Louise Ocaka
- Institute of Child Health, University College London, London, UK
| | - Horia Stanescu
- Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - Helen S Stewart
- Department of Clinical Genetics, Oxford Radcliffe Hospitals NHS Trust, Churchill Hospital, Oxford, UK
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, USA
| | - Edgar Otto
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Colin A Johnson
- Department of Pediatrics, Leeds Institute of Biomedical and Clinical Sciences, Leeds, UK
| | - Katarzyna Szymanska
- Department of Pediatrics, Leeds Institute of Biomedical and Clinical Sciences, Leeds, UK
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center
| | - Erica Davis
- Center for Human Disease Modeling, Department of Cell Biology, Duke University Medical Center
| | - Robert Kleta
- Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - Mike Hubank
- Institute of Child Health, University College London, London, UK
| | | | - Andrew Jackson
- Institute of Genetics & Molecular Medicine, Edinburgh, UK MRC Human Genetics, University of Edinburgh, Edinburgh, UK
| | - Elia Stupka
- Institute of Child Health, University College London, London, UK
| | - Mark Winey
- Molecular, Ceullular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Philip L Beales
- Institute of Child Health, University College London, London, UK
| |
Collapse
|
48
|
Zhuo YJ, Xi M, Wan YP, Hua W, Liu YL, Wan S, Zhou YL, Luo HW, Wu SL, Zhong WD, Wu CL. Enhanced expression of centromere protein F predicts clinical progression and prognosis in patients with prostate cancer. Int J Mol Med 2015; 35:966-72. [PMID: 25647485 DOI: 10.3892/ijmm.2015.2086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/22/2015] [Indexed: 11/05/2022] Open
Abstract
Centromere protein F (CENPF) is a protein associated with the centromere-kinetochore complex and chromosomal segregation during mitosis. Previous studies have demonstrated that the upregulation of CENPF may be used as a proliferation marker of malignant cell growth in tumors. The overexpression of CENPF has also been reported to be associated with a poor prognosis in human cancers. However, the clinical significance of CENPF in prostate cancer (PCa) has not yet been fully elucidated. Thus, the aim of the present study was to determine the association of CENPF with tumor progression and prognosis in patients with PCa. The expression of CENPF at the protein level in human PCa and non-cancerous prostate tissues was detected by immunohistochemical analysis, which was further validated using a microarray-based dataset (NCBI GEO accession no: GSE21032) at the mRNA level. Subsequently, the association of CENPF expression with the clinicopathological characteristics of the patients with PCa was statistically analyzed. Immunohistochemistry and dataset analysis revealed that CENPF expression was significantly increased in the PCa tissues compared with the non-cancerous prostate tissues [immunoreactivity score (IRS): PCa, 177.98 ± 94.096 vs. benign, 121.30 ± 89.596, P < 0.001; mRNA expression in the dataset: PCa, 5.67 ± 0.47 vs. benign, 5.40 ± 0.11; P < 0.001]. Additionally, as revealed by the dataset, the upregulation of CENPF mRNA expression in the PCa tissues significantly correlated with a higher Gleason score (GS, P = 0.005), an advanced pathological stage (P = 0.008), the presence of metastasis (P < 0.001), a shorter overall survival (P=0.003) and prostate-specific antigen (PSA) failure (P < 0.001). Furthermore, both univariate and multivariate analyses revealed that the upregulation of CENPF was an independent predictor of poor biochemical recurrence (BCR)-free survival (P < 0.001 and P = 0.012, respectively). Our data suggest that the increased expression of CENPF plays an important role in the progression of PCa. More importantly, the increased expression of CENPF may efficiently predict poor BCR-free survival in patients with PCa.
Collapse
Affiliation(s)
- Yang-Jia Zhuo
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Yue-Ping Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Wei Hua
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Yuan-Ling Liu
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Song Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Yu-Lin Zhou
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Hong-Wei Luo
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shu-Lin Wu
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Wei-De Zhong
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
49
|
The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion. Nat Commun 2014; 5:5826. [PMID: 25518808 PMCID: PMC4284802 DOI: 10.1038/ncomms6826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023] Open
Abstract
Dividing epithelial cells need to coordinate spindle positioning with shape changes to maintain cell–cell adhesion. Microtubule interactions with the cell cortex regulate mitotic spindle positioning within the plane of division. How the spindle crosstalks with the actin cytoskeleton to ensure faithful mitosis and spindle positioning is unclear. Here we demonstrate that the tumour suppressor DLC2, a negative regulator of Cdc42, and the interacting kinesin Kif1B coordinate cell junction maintenance and planar spindle positioning by regulating microtubule growth and crosstalk with the actin cytoskeleton. Loss of DLC2 induces the mislocalization of Kif1B, increased Cdc42 activity and cortical recruitment of the Cdc42 effector mDia3, a microtubule stabilizer and promoter of actin dynamics. Accordingly, DLC2 or Kif1B depletion promotes microtubule stabilization, defective spindle positioning, chromosome misalignment and aneuploidy. The tumour suppressor DLC2 and Kif1B are thus central components of a signalling network that guides spindle positioning, cell–cell adhesion and mitotic fidelity. Epithelial cells must position their mitotic spindle correctly to maintain cell–cell adhesion. Here Vitiello et al. show that the tumour suppressor DLC2 and the mitotic kinesin Kif1b coordinate microtubule–actin interactions upstream of mDia3, guiding spindle positioning and mitotic fidelity.
Collapse
|
50
|
Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol 2014; 16:1257-64. [PMID: 25402682 PMCID: PMC6485516 DOI: 10.1038/ncb3065] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022]
Abstract
Kinetochores are specialised multi-protein complexes that play a crucial role in maintaining genome stability 1. They bridge attachments between chromosomes and microtubules during mitosis and they activate the spindle assembly checkpoint (SAC) to arrest division until all chromosomes are attached 2. Kinetochores are able to efficiently integrate these two processes because they can rapidly respond to changes in microtubule occupancy by switching localised SAC signalling ON or OFF 2–4. We show that this responsiveness arises because the SAC primes kinetochore phosphatases to induce negative feedback and silence its own signal. Active SAC signalling recruits PP2A-B56 to kinetochores where it antagonises Aurora B to promote PP1 recruitment. PP1 in turn silences the SAC and delocalises PP2A-B56. Preventing or bypassing key regulatory steps demonstrates that this spatiotemporal control of phosphatase feedback underlies rapid signal switching at the kinetochore by; 1) allowing the SAC to quickly transition to the ON state in the absence of antagonising phosphatase activity, and 2) ensuring phosphatases are then primed to rapidly switch the SAC signal OFF when kinetochore kinase activities are diminished by force-producing microtubule attachments.
Collapse
|