1
|
Giambra V, Caldarelli M, Franza L, Rio P, Bruno G, di Iasio S, Mastrogiovanni A, Gasbarrini A, Gambassi G, Cianci R. The Role of Notch Signaling and Gut Microbiota in Autoinflammatory Diseases: Mechanisms and Future Views. Biomedicines 2025; 13:768. [PMID: 40299348 PMCID: PMC12024679 DOI: 10.3390/biomedicines13040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Notch signaling is an evolutionarily conserved, multifunctional pathway involved in cell fate determination and immune modulation and contributes to the pathogenesis of autoinflammatory diseases. Emerging evidence reveals a bidirectional interaction between Notch and the gut microbiota (GM), whereby GM composition is capable of modulating Notch signaling through the binding of microbial elements to Notch receptors, leading to immune modulation. Furthermore, Notch regulates the GM by promoting SCFA-producing bacteria while suppressing proinflammatory strains. Beneficial microbes, such as Lactobacillus and Akkermansia muciniphila, modulate Notch and reduce proinflammatory cytokine production (such as IL-6 and TNF-α). The interaction between GM and Notch can either amplify or attenuate inflammatory pathways in inflammatory bowel diseases (IBDs), Behçet's disease, and PAPA syndrome. Together, these findings provide novel therapeutic perspectives for autoinflammatory diseases by targeting the GM via probiotics or inhibiting Notch signaling. This review focuses on Notch-GM crosstalk and how GM-based and/or Notch-targeted approaches may modulate immune responses and promote better clinical outcomes.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Laura Franza
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
- Department of Emergency Medicine, AOU Modena, 41125 Modena, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Gaja Bruno
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Serena di Iasio
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Andrea Mastrogiovanni
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| |
Collapse
|
2
|
Iluta S, Nistor M, Buruiana S, Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life (Basel) 2025; 15:228. [PMID: 40003637 PMCID: PMC11856057 DOI: 10.3390/life15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these two signaling networks complicates the development of long-term therapies that also minimize adverse effects on healthy tissues and are not overcome by therapy resistance from CSCs. The present work aims to overview the roles of Notch and Hh in cancer outburst and the intersection of the two pathways with one another, as well as with other networks, such as Wnt/β-catenin, TGF, and JAK/STAT3, and to explore the shaping of the tumor microenvironment (TME) with specific influence on CSC development and maintenance.
Collapse
Affiliation(s)
- Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Madalina Nistor
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania
| |
Collapse
|
3
|
Pluetrattanabha N, Direksunthorn T, Ahmad I, Jyothi SR, Shit D, Singh AK, Chauhan AS. Inflammasome activation in melanoma progression: the latest update concerning pathological role and therapeutic value. Arch Dermatol Res 2025; 317:258. [PMID: 39820618 DOI: 10.1007/s00403-025-03802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
The progression of melanoma is a complex process influenced by both internal and external cues which encourage the transition of tumour cells, uncontrolled growth, migration, and metastasis. Additionally, inflammation allows tumours to evade the immune system, contributing to cancer development. The inflammasome, a complex of many proteins, is crucial in enhancing immune responses to external and internal triggers. As a critical inflammatory mechanism, it contributes to the development of melanoma. These mechanisms may be triggered via various internal and external stimuli, causing the induction of specific enzymes such as caspase-1, caspase-11, or caspase-8. This, in turn, leads to the release of interleukin (IL)-1β and IL-18 and cell death by apoptosis and pyroptosis. Proper inflammasome stimulation is crucial for the host to deal with invading pathogens or tissue injury. However, inappropriate inflammasome stimulation can result in unregulated tissue reactions, thus easing many diseases, including melanoma. Hence, keeping a delicate equilibrium between the stimulation and prohibition of inflammasomes is crucial, necessitating meticulous control of the assembly and functional aspects of inflammasomes. This review examines the latest advancements in inflammasome studies, specifically focusing on the molecular processes that control inflammasome formation, signalling, and modulation in melanoma.
Collapse
Affiliation(s)
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Health and Medical Research Center, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, JAIN (Deemed to be University) School of Sciences, Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | | | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
4
|
Lara J, Mastela C, Abd M, Pitstick L, Ventrella R. Tail Tales: What We Have Learned About Regeneration from Xenopus Laevis Tadpoles. Int J Mol Sci 2024; 25:11597. [PMID: 39519148 PMCID: PMC11547152 DOI: 10.3390/ijms252111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the regenerative capacity of Xenopus laevis, focusing on tail regeneration, as a model to uncover cellular, molecular, and developmental mechanisms underlying tissue repair. X. laevis tadpoles provide unique insights into regenerative biology due to their regeneration-competent and -incompetent stages and ability to regrow complex structures in the tail, including the spinal cord, muscle, and skin, after amputation. The review delves into the roles of key signaling pathways, such as those involving reactive oxygen species (ROS) and signaling molecules like BMPs and FGFs, in orchestrating cellular responses during regeneration. It also examines how mechanotransduction, epigenetic regulation, and metabolic shifts influence tissue restoration. Comparisons of regenerative capacity with other species shed light on the evolutionary loss of regenerative abilities and underscore X. laevis as an invaluable model for understanding the constraints of tissue repair in higher organisms. This comprehensive review synthesizes recent findings, suggesting future directions for exploring regeneration mechanisms, with potential implications for advancing regenerative medicine.
Collapse
Affiliation(s)
- Jessica Lara
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Camilla Mastela
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Magda Abd
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
5
|
Abdollahzadeh B, Cantale Aeo NM, Giordano N, Orlando A, Basciani M, Peruzzi G, Grazioli P, Screpanti I, Felli MP, Campese AF. The NF-κB1/p50 Subunit Influences the Notch/IL-6-Driven Expansion of Myeloid-Derived Suppressor Cells in Murine T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:9882. [PMID: 39337370 PMCID: PMC11431874 DOI: 10.3390/ijms25189882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
T-cell acute lymphoblastic leukemia is an aggressive neoplasia due to hyper-proliferation of lymphoid progenitors and lacking a definitive cure to date. Notch-activating mutations are the most common in driving disease onset and progression, often in combination with sustained activity of NF-κB. Myeloid-derived suppressor cells represent a mixed population of immature progenitors exerting suppression of anti-cancer immune responses in the tumor microenvironment of many malignancies. We recently reported that in a transgenic murine model of Notch3-dependent T-cell acute lymphoblastic leukemia there is an accumulation of myeloid-derived suppressor cells, dependent on both Notch signaling deregulation and IL-6 production inside tumor T-cells. However, possible interaction between NF-κB and Notch in this context remains unexplored. Interestingly, we also reported that Notch3 transgenic and NF-κB1/p50 deleted double mutant mice display massive myeloproliferation. Here, we demonstrated that the absence of the p50 subunit in these mice dramatically enhances the induction and suppressive function of myeloid-derived suppressor cells. This runs in parallel with an impressive increase in IL-6 concentration in the peripheral blood serum, depending on IL-6 hyper-production by tumor T-cells from double mutant mice. Mechanistically, IL-6 increase relies on loss of the negative control exerted by the p50 subunit on the IL-6 promoter. Our results reveal the Notch/NF-κB cross-talk in regulating myeloid-derived suppressor cell biology in T-cell leukemia, highlighting the need to consider carefully the pleiotropic effects of NF-κB-based therapy on the tumor microenvironment.
Collapse
Affiliation(s)
- Behnaz Abdollahzadeh
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Noemi Martina Cantale Aeo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Nike Giordano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Andrea Orlando
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Basciani
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Giovanna Peruzzi
- Center for Life Nano- and Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy;
| | - Paola Grazioli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Antonio Francesco Campese
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| |
Collapse
|
6
|
Wang YC, Chen RF, Liu KF, Chen WY, Lee CC, Kuo YR. Adipose-derived stem cell modulate tolerogenic dendritic cell-induced T cell regulation is correlated with activation of Notch-NFκB signaling. Cytotherapy 2024; 26:890-898. [PMID: 38625070 DOI: 10.1016/j.jcyt.2024.03.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) are recognized for their potential immunomodulatory properties. In the immune system, tolerogenic dendritic cells (DCs), characterized by an immature phenotype, play a crucial role in inducing regulatory T cells (Tregs) and promoting immune tolerance. Notch1 signaling has been identified as a key regulator in the development and function of DCs. However, the precise involvement of Notch1 pathway in ASC-mediated modulation of tolerogenic DCs and its impact on immune modulation remain to be fully elucidated. This study aims to investigate the interplay between ASCs and DCs, focusing the role of Notch1 signaling and downstream pathways in ASC-modulated tolerogenic DCs. METHODS Rat bone marrow-derived myeloid DCs were directly co-cultured with ASCs to generate ASC-treated DCs (ASC-DCs). Notch signaling was inhibited using DAPT, while NFκB pathways were inhibited by NEMO binding domain peptide and si-NIK. Flow cytometry assessed DC phenotypes. Real-time quantitative PCR, Western blotting and immunofluorescence determined the expression of Notch1, Jagged1 and the p52/RelB complex in ASC- DCs. RESULTS Notch1 and Jagged1 were highly expressed on both DCs and ASCs. ASC-DCs displayed significantly reduced levels of CD80, CD86 and MHC II compared to mature DCs. Inhibiting the Notch pathway with DAPT reversed the dedifferentiation effects. The percentage of induced CD25+/FOXP3+/CD4+ Tregs decreased when ASC-DCs were treated with DAPT (inhibition of the Notch pathway) and si-NIK (inhibition of the non-canonical NFκB pathway). CONCLUSIONS ASCs induce DC tolerogenicity by inhibiting maturation and promoting downstream Treg generation, involving the Notch and NFκB pathways. ASC-induced tolerogenic DCs can be a potential immunomodulatory tool for clinical application.
Collapse
Affiliation(s)
- Yu-Chi Wang
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Rong-Fu Chen
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Keng-Fan Liu
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Yu Chen
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Chun Lee
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yur-Ren Kuo
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Orthopaedic Research Center, Regenerative Medicine, and Cell Therapy Research Center; Department of Surgery, Kaohsiung Ta-Tong Municipal Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan; SingHealth Duke-NUS Musculoskeletal Sciences Academic Clinical Programme, Singapore.
| |
Collapse
|
7
|
Kaveh Zenjanab M, Hashemzadeh N, Alimohammadvand S, Sharifi-Azad M, Dalir Abdolahinia E, Jahanban-Esfahlan R. Notch Signaling Suppression by Golden Phytochemicals: Potential for Cancer Therapy. Adv Pharm Bull 2024; 14:302-313. [PMID: 39206407 PMCID: PMC11347744 DOI: 10.34172/apb.2024.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/09/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is one of the main causes of mortality worldwide. Cancer cells are characterized by unregulated cellular processes, including proliferation, progression, and angiogenesis. The occurrence of these processes is due to the dysregulation of various signaling pathways such as NF-κB (nuclear factor-κB), Wnt/beta-catenin, Notch signaling and MAPK (mitogen-activated protein kinases). Notch signaling pathways cause the progression of various types of malignant tumors. Among the phytochemicals for cancer therapy, several have attracted great interest, including curcumin, genistein, quercetin, silibinin, resveratrol, cucurbitacin and glycyrrhizin. Given the great cellular and molecular heterogeneity within tumors and the high toxicity and side effects of synthetic chemotherapeutics, natural products with pleiotropic effects that simultaneously target numerous signaling pathways appear to be ideal substitutes for cancer therapy. With this in mind, we take a look at the current status, impact and potential of known compounds as golden phytochemicals on key signaling pathways in tumors, focusing on the Notch pathway. This review may be useful for discovering new molecular targets for safe and efficient cancer therapy with natural chemotherapeutics.
Collapse
Affiliation(s)
| | - Nastaran Hashemzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, US
| | - Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Sachan N, Sharma V, Mutsuddi M, Mukherjee A. Notch signalling: multifaceted role in development and disease. FEBS J 2024; 291:3030-3059. [PMID: 37166442 DOI: 10.1111/febs.16815] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Notch pathway is an evolutionarily conserved signalling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. Notch signalling plays important roles in many developmental processes, making it difficult to name a tissue or a developing organ that does not depend on Notch function at one stage or another. Thus, dysregulation of Notch signalling is associated with many developmental defects and various pathological conditions, including cancer. Although many recent advances have been made to reveal different aspects of the Notch signalling mechanism and its intricate regulation, there are still many unanswered questions related to how the Notch signalling pathway functions in so many developmental events. The same pathway can be deployed in numerous cellular contexts to play varied and critical roles in an organism's development and this is only possible because of the complex regulatory mechanisms of the pathway. In this review, we provide an overview of the mechanism and regulation of the Notch signalling pathway along with its multifaceted functions in different aspects of development and disease.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Wang X, Zhou J, Li X, Liu C, Liu L, Cui H. The Role of Macrophages in Lung Fibrosis and the Signaling Pathway. Cell Biochem Biophys 2024; 82:479-488. [PMID: 38536578 DOI: 10.1007/s12013-024-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 08/25/2024]
Abstract
Lung fibrosis is a dysregulated repair process caused by excessive deposition of extracellular matrix that can severely affect respiratory function. Macrophages are a group of immune cells that have multiple functions and can perform a variety of roles. Lung fibrosis develops with the involvement of pro-inflammatory and pro-fibrotic factors secreted by macrophages. The balance between M1 and M2 macrophages has been proposed to play a role in determining the trend and severity of lung fibrosis. New avenues and concepts for preventing and treating lung fibrosis have emerged in recent years through research on mitochondria, Gab proteins, and exosomes. The main topic of this essay is the impact that mitochondria, Gab proteins, and exosomes have on macrophage polarization. In addition, the potential of these factors as targets to enhance lung fibrosis is also explored. We have also collated the functions and mechanisms of signaling pathways associated with the regulation of macrophage polarization such as Notch, TGF-β/Smad, JAK-STAT and cGAS-STING. The goal of this article is to explain the potential benefits of focusing on macrophage polarization as a way to relieve lung fibrosis. We aspire to provide valuable insights that could lead to enhancements in the treatment of this condition.
Collapse
Affiliation(s)
- Xingmei Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Jiaxu Zhou
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Xinrui Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Chang Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, 133002, Jilin, China.
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China.
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China.
| |
Collapse
|
10
|
Zhu J, Park S, Kim SH, Kim CH, Jeong KH, Kim WJ. Sirtuin 3 regulates astrocyte activation by reducing Notch1 signaling after status epilepticus. Glia 2024; 72:1136-1149. [PMID: 38406970 DOI: 10.1002/glia.24520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Sirtuin3 (Sirt3) is a nicotinamide adenine dinucleotide enzyme that contributes to aging, cancer, and neurodegenerative diseases. Recent studies have reported that Sirt3 exerts anti-inflammatory effects in several neuropathophysiological disorders. As epilepsy is a common neurological disease, in the present study, we investigated the role of Sirt3 in astrocyte activation and inflammatory processes after epileptic seizures. We found the elevated expression of Sirt3 within reactive astrocytes as well as in the surrounding cells in the hippocampus of patients with temporal lobe epilepsy and a mouse model of pilocarpine-induced status epilepticus (SE). The upregulation of Sirt3 by treatment with adjudin, a potential Sirt3 activator, alleviated SE-induced astrocyte activation; whereas, Sirt3 deficiency exacerbated astrocyte activation in the hippocampus after SE. In addition, our results showed that Sirt3 upregulation attenuated the activation of Notch1 signaling, nuclear factor kappa B (NF-κB) activity, and the production of interleukin-1β (IL1β) in the hippocampus after SE. By contrast, Sirt3 deficiency enhanced the activity of Notch1/NF-κB signaling and the production of IL1β. These findings suggest that Sirt3 regulates astrocyte activation by affecting the Notch1/NF-κB signaling pathway, which contributes to the inflammatory response after SE. Therefore, therapies targeting Sirt3 may be a worthy direction for limiting inflammatory responses following epileptic brain injury.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soojin Park
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Korea 21 Project, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Hoon Jeong
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
12
|
Zhang Q, Wang C, He L. ORAI Ca 2+ Channels in Cancers and Therapeutic Interventions. Biomolecules 2024; 14:417. [PMID: 38672434 PMCID: PMC11048467 DOI: 10.3390/biom14040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The ORAI proteins serve as crucial pore-forming subunits of calcium-release-activated calcium (CRAC) channels, pivotal in regulating downstream calcium-related signaling pathways. Dysregulated calcium homeostasis arising from mutations and post-translational modifications in ORAI can lead to immune disorders, myopathy, cardiovascular diseases, and even cancers. Small molecules targeting ORAI present an approach for calcium signaling modulation. Moreover, emerging techniques like optogenetics and optochemistry aim to offer more precise regulation of ORAI. This review focuses on the role of ORAI in cancers, providing a concise overview of their significance in the initiation and progression of cancers. Additionally, it highlights state-of-the-art techniques for ORAI channel modulation, including advanced optical tools, potent pharmacological inhibitors, and antibodies. These novel strategies offer promising avenues for the functional regulation of ORAI in research and may inspire innovative approaches to cancer therapy targeting ORAI.
Collapse
Affiliation(s)
| | | | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong–Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
13
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens 2024; 13:164. [PMID: 38392902 PMCID: PMC10892479 DOI: 10.3390/pathogens13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Torres HM, Fang F, May DG, Bosshardt P, Hinojosa L, Roux KJ, Tao J. Comprehensive analysis of the proximity-dependent nuclear interactome for the oncoprotein NOTCH1 in live cells. J Biol Chem 2024; 300:105522. [PMID: 38043798 PMCID: PMC10788534 DOI: 10.1016/j.jbc.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
Notch signaling plays a critical role in cell fate decisions in all cell types. Furthermore, gain-of-function mutations in NOTCH1 have been uncovered in many human cancers. Disruption of Notch signaling has recently emerged as an attractive disease treatment strategy. However, the nuclear interaction landscape of the oncoprotein NOTCH1 remains largely unexplored. We therefore employed here a proximity-dependent biotin identification approach to identify in vivo protein associations with the nuclear Notch1 intracellular domain in live cells. We identified a large set of previously reported and unreported proteins that associate with NOTCH1, including general transcription and elongation factors, DNA repair and replication factors, coactivators, corepressors, and components of the NuRD and SWI/SNF chromatin remodeling complexes. We also found that Notch1 intracellular domain associates with protein modifiers and components of other signaling pathways that may influence Notch signal transduction and protein stability such as USP7. We further validated the interaction of NOTCH1 with histone deacetylase 1 or GATAD2B using protein network analysis, proximity-based ligation, in vivo cross-linking and coimmunoprecipitation assays in several Notch-addicted cancer cell lines. Through data mining, we also revealed potential drug targets for the inhibition of Notch signaling. Collectively, these results provide a valuable resource to uncover the mechanisms that fine-tune Notch signaling in tumorigenesis and inform therapeutic targets for Notch-addicted tumors.
Collapse
Affiliation(s)
- Haydee M Torres
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| | - Fang Fang
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Danielle G May
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Paige Bosshardt
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Leetoria Hinojosa
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Jianning Tao
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA.
| |
Collapse
|
16
|
Zhang H, Wang Y, Zhang X, Zhang L, Zhao X, Xu Y, Wang P, Liang X, Xue M, Liang H. Maternal Folic Acid Supplementation during Pregnancy Prevents Hepatic Steatosis in Male Offspring of Rat Dams Fed High-Fat Diet, Which Is Associated with the Regulation of Gut Microbiota. Nutrients 2023; 15:4726. [PMID: 38004120 PMCID: PMC10675082 DOI: 10.3390/nu15224726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Maternal dietary patterns during pregnancy have been demonstrated to impact the structure of the gut microbiota in offspring, altering their susceptibility to diseases. This study is designed to elucidate whether the impact of folic acid supplementation during pregnancy on hepatic steatosis in male offspring of rat dams exposed to a high-fat diet (HFD) is related to gut-liver axis homeostasis. In this study, female rats were administered a HFD and simultaneously supplemented with 5 mg/kg folic acid throughout their pregnancy. Histopathological examination showed that folic acid supplementation effectively ameliorated hepatic lipid accumulation and inflammatory infiltrate in male offspring subjected to a maternal HFD. Maternal folic acid supplementation reduced the abundance of Desulfobacterota and the Firmicutes/Bacteroidota (F/B) ratio in male offspring. The expression of tight junction proteins in the colon was significantly upregulated, and the serum LPS level was significantly reduced. Furthermore, there was a notable reduction in the hepatic expression of the TLR4/NF-κB signaling pathway and subsequent inflammatory mediators. Spearman's correlation analysis revealed significant associations between hepatic inflammation-related indices and several gut microbiota, particularly Desulfobacterota and Lactobacillus. With a reduction in hepatic inflammation, the expression of PPAR-α was upregulated, and the expression of SREBP-1c and its downstream lipid metabolism-related genes was downregulated. In summary, folic acid supplementation during pregnancy modulates gut microbiota and enhances intestinal barrier integrity in male offspring of HFD dams. This helps reduce the LPS leakage and suppress the expression of TLR4/NF-κB pathway in the liver, thereby improving lipid metabolism disorders, and alleviating hepatic steatosis.
Collapse
Affiliation(s)
- Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Yutong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Xinyu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Xuenuo Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Yan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Peng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Xi Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao 266071, China;
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| |
Collapse
|
17
|
Duran CL, Karagiannis GS, Chen X, Sharma VP, Entenberg D, Condeelis JS, Oktay MH. Cooperative NF-κB and Notch1 signaling promotes macrophage-mediated MenaINV expression in breast cancer. Breast Cancer Res 2023; 25:37. [PMID: 37024946 PMCID: PMC10080980 DOI: 10.1186/s13058-023-01628-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently to patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin regulatory protein Mena, encoded by the ENAH gene, that endows tumor cells with transendothelial migration activity, allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer, we further determined that for maximal induction of MenaINV in cancer cells, NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling activation and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - George S Karagiannis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA
| | - Xiaoming Chen
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ved P Sharma
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Bio-Imaging Resource Center, The Rockefeller University, Box 209, 1230 York Avenue, New York City, NY, 10065, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John S Condeelis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Cell Biology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
18
|
O’Donnell A, Pepper C, Mitchell S, Pepper A. NF-kB and the CLL microenvironment. Front Oncol 2023; 13:1169397. [PMID: 37064123 PMCID: PMC10098180 DOI: 10.3389/fonc.2023.1169397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent type of leukemia in the western world. Despite the positive clinical effects of new targeted therapies, CLL still remains an incurable and refractory disease and resistance to treatments are commonly encountered. The Nuclear Factor-Kappa B (NF-κB) transcription factor has been implicated in the pathology of CLL, with high levels of NF-κB associated with disease progression and drug resistance. This aberrant NF-κB activation can be caused by genetic mutations in the tumor cells and microenvironmental factors, which promote NF-κB signaling. Activation can be induced via two distinct pathways, the canonical and non-canonical pathway, which result in tumor cell proliferation, survival and drug resistance. Therefore, understanding how the CLL microenvironment drives NF-κB activation is important for deciphering how CLL cells evade treatment and may aid the development of novel targeting therapeutics. The CLL microenvironment is comprised of various cells, including nurse like cells, mesenchymal stromal cells, follicular dendritic cells and CD4+ T cells. By activating different receptors, including the B cell receptor and CD40, these cells cause overactivity of the canonical and non-canonical NF-κB pathways. Within this review, we will explore the different components of the CLL microenvironment that drive the NF-κB pathway, investigating how this knowledge is being translated in the development of new therapeutics.
Collapse
Affiliation(s)
- Alice O’Donnell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
- Royal Sussex County Hospital, University Hospitals Sussex, Brighton, United Kingdom
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Andrea Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
19
|
Abolhasani S, Hejazian SS, Karpisheh V, Khodakarami A, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of SF3B1 and NOTCH1 in the pathogenesis of leukemia. IUBMB Life 2023; 75:257-278. [PMID: 35848163 DOI: 10.1002/iub.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/18/2022] [Indexed: 11/09/2022]
Abstract
The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.
Collapse
Affiliation(s)
- Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Lam MTY, Duttke SH, Odish MF, Le HD, Hansen EA, Nguyen CT, Trescott S, Kim R, Deota S, Chang MW, Patel A, Hepokoski M, Alotaibi M, Rolfsen M, Perofsky K, Warden AS, Foley J, Ramirez SI, Dan JM, Abbott RK, Crotty S, Crotty Alexander LE, Malhotra A, Panda S, Benner CW, Coufal NG. Dynamic activity in cis-regulatory elements of leukocytes identifies transcription factor activation and stratifies COVID-19 severity in ICU patients. Cell Rep Med 2023; 4:100935. [PMID: 36758547 PMCID: PMC9874047 DOI: 10.1016/j.xcrm.2023.100935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/08/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Transcription factor programs mediating the immune response to coronavirus disease 2019 (COVID-19) are not fully understood. Capturing active transcription initiation from cis-regulatory elements such as enhancers and promoters by capped small RNA sequencing (csRNA-seq), in contrast to capturing steady-state transcripts by conventional RNA-seq, allows unbiased identification of the underlying transcription factor activity and regulatory pathways. Here, we profile transcription initiation in critically ill COVID-19 patients, identifying transcription factor motifs that correlate with clinical lung injury and disease severity. Unbiased clustering reveals distinct subsets of cis-regulatory elements that delineate the cell type, pathway-specific, and combinatorial transcription factor activity. We find evidence of critical roles of regulatory networks, showing that STAT/BCL6 and E2F/MYB regulatory programs from myeloid cell populations are activated in patients with poor disease outcomes and associated with COVID-19 susceptibility genetic variants. More broadly, we demonstrate how capturing acute, disease-mediated changes in transcription initiation can provide insight into the underlying molecular mechanisms and stratify patient disease severity.
Collapse
Affiliation(s)
- Michael Tun Yin Lam
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Laboratory of Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, CA 92161, USA.
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Mazen F Odish
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hiep D Le
- Laboratory of Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emily A Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Celina T Nguyen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Shaunak Deota
- Laboratory of Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Max W Chang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arjun Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Hepokoski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Rolfsen
- Internal Medicine Residency Program, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine Perofsky
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| | - Anna S Warden
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | | | - Sydney I Ramirez
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Robert K Abbott
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shane Crotty
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Laura E Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Pulmonary and Critical Care Section, VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Satchidananda Panda
- Laboratory of Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher W Benner
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Rady Children's Hospital, San Diego, CA 92123, USA
| |
Collapse
|
21
|
Guo M, Niu Y, Xie M, Liu X, Li X. Notch signaling, hypoxia, and cancer. Front Oncol 2023; 13:1078768. [PMID: 36798826 PMCID: PMC9927648 DOI: 10.3389/fonc.2023.1078768] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Notch signaling is involved in cell fate determination and deregulated in human solid tumors. Hypoxia is an important feature in many solid tumors, which activates hypoxia-induced factors (HIFs) and their downstream targets to promote tumorigenesis and cancer development. Recently, HIFs have been shown to trigger the Notch signaling pathway in a variety of organisms and tissues. In this review, we focus on the pro- and anti-tumorigenic functions of Notch signaling and discuss the crosstalk between Notch signaling and cellular hypoxic response in cancer pathogenesis, including epithelia-mesenchymal transition, angiogenesis, and the maintenance of cancer stem cells. The pharmacological strategies targeting Notch signaling and hypoxia in cancer are also discussed in this review.
Collapse
Affiliation(s)
- Mingzhou Guo
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yang Niu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China,*Correspondence: Xiaochen Li,
| |
Collapse
|
22
|
Duran CL, Karagiannis GS, Chen X, Sharma VP, Entenberg D, Condeelis JS, Oktay MH. Cooperative NF-κB and Notch1 signaling promotes macrophage-mediated MenaINV expression in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522642. [PMID: 36711751 PMCID: PMC9881873 DOI: 10.1101/2023.01.03.522642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin-regulatory protein Mena encoded by the ENAH gene that endows tumor cells with transendothelial migration activity allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer we further determined that for maximal induction of MenaINV in cancer cell NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.
Collapse
|
23
|
Transcriptional regulation of Notch1 by nuclear factor-κB during T cell activation. Sci Rep 2023; 13:43. [PMID: 36593298 PMCID: PMC9807580 DOI: 10.1038/s41598-022-26674-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Notch1 plays important roles in T cell development and is highly expressed in activated CD4+ T cells. However, the underlying mechanism of Notch1 transcription in T cells has not been fully characterized. Therefore, we aimed to determine how Notch1 expression is regulated during the activation of CD4+ T cells. Both the surface expression and mRNA transcription of Notch1 were significantly higher in activated CD4+ T cells, but the inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 or deletion of the Pdk1 gene impaired this upregulation of Notch1. Interrogation of the Notch1 promoter region using serially deleted Notch1 promoter reporters revealed that the - 300 to - 270 region is crucial for its transcription in activated T cells. In addition, we found that nuclear factor (NF)-κB subunits containing RelA bind directly to this promoter region, thereby upregulating transcription. In addition, inhibition of NF-κB by SN50 impaired upregulation of Notch1 surface protein and mRNA in activated CD4+ T cells. Thus, we provide evidence that Notch1 transcription in activated CD4+ T cells is upregulated via the PI3K-PDK1-NF-κB signaling pathway.
Collapse
|
24
|
Saini N, Naaz A, Metur SP, Gahlot P, Walvekar A, Dutta A, Davathamizhan U, Sarin A, Laxman S. Methionine uptake via the SLC43A2 transporter is essential for regulatory T-cell survival. Life Sci Alliance 2022; 5:5/12/e202201663. [PMID: 36260753 PMCID: PMC9463494 DOI: 10.26508/lsa.202201663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Regulatory T cells survive after IL-2 withdrawal by taking up and using methionine through the SLC43A2 transporter in a Notch1-dependent manner. Cell death, survival, or growth decisions in T-cell subsets depend on interplay between cytokine-dependent and metabolic processes. The metabolic requirements of T-regulatory cells (Tregs) for their survival and how these are satisfied remain unclear. Herein, we identified a necessary requirement of methionine uptake and usage for Tregs survival upon IL-2 deprivation. Activated Tregs have high methionine uptake and usage to S-adenosyl methionine, and this uptake is essential for Tregs survival in conditions of IL-2 deprivation. We identify a solute carrier protein SLC43A2 transporter, regulated in a Notch1-dependent manner that is necessary for this methionine uptake and Tregs viability. Collectively, we uncover a specifically regulated mechanism of methionine import in Tregs that is required for cells to adapt to cytokine withdrawal. We highlight the need for methionine availability and metabolism in contextually regulating cell death in this immunosuppressive population of T cells.
Collapse
Affiliation(s)
- Neetu Saini
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Afsana Naaz
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Shree Padma Metur
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Pinki Gahlot
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Adhish Walvekar
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Anupam Dutta
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | | | - Apurva Sarin
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bengaluru, India
| |
Collapse
|
25
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
26
|
A “notch” in the cellular communication network in response to anoxia by wood frog (Rana sylvatica). Cell Signal 2022; 93:110305. [DOI: 10.1016/j.cellsig.2022.110305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
27
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
28
|
Singh V, Akash R, Chaudhary G, Singh R, Choudhury S, Shukla A, Prabhu SN, Gangwar N, Garg SK. Sepsis downregulates aortic Notch signaling to produce vascular hyporeactivity in mice. Sci Rep 2022; 12:2941. [PMID: 35190630 PMCID: PMC8861011 DOI: 10.1038/s41598-022-06949-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Inhibition of Notch signaling in macrophages is known to reduce inflammation, however, its role in regulating vascular hyporeactivity in sepsis is unknown. Thus we aimed to evaluate the effect of sepsis on vascular Notch signaling. Polymicrobial sepsis was induced by caecal ligation and puncture (CLP) in mice. mRNA expressions of Notch receptors (Notch1,3) and ligands (Jag1, Dll4), and downstream effector genes (Hey1, MLCK, MYPT1) were assessed by RT-qPCR. Protein level of activated Notch (NICD) was assessed by Western blot and immuno-histochemistry. Isometric tension in isolated aortic rings was measured by wire myography.CLP down-regulated aortic expression of Notch3, Jag1 and Dll4 as compared to control mice. Additionally, the protein level of NICD was found to be lesser in aortic tissue sections from CLP mice. Expression of Hey1 and MLCK were attenuated whereas MYPT1 expression was increased in septic mouse aorta. DAPT pretreatment did not improve CLP-induced vascular hyporeactivity to NA, CaCl2 and high K+ (80 mM), rather significantly attenuated the aortic response to these vasoconstrictors in control mice. Treatment with 1400 W reversed attenuated Notch3 (but not Jag1 and MLCK) expression in septic mouse aorta. In conclusion, sepsis significantly attenuated the Notch (especially Notch3) signaling in mouse aorta along with reduction in contractile gene expression and vasoconstriction response. Further, iNOS/NO pathway was involved in sepsis-induced down-regulation of Notch3 receptor. Thus systemic inhibition of Notch signaling during sepsis may have serious impact on sepsis-induced vascular hyporeactivity.
Collapse
Affiliation(s)
- Vandana Singh
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Raut Akash
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Gaurav Chaudhary
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Rajneesh Singh
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Soumen Choudhury
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India.
| | - Amit Shukla
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Shyama N Prabhu
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, 281001, India
| | - Neeraj Gangwar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, 281001, India
| | - Satish K Garg
- Smooth Muscle Pharmacology and Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| |
Collapse
|
29
|
Zeng J, Bao T, Yang K, Zhu X, Wang S, Xiang W, Ge A, Zeng L, Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front Immunol 2022; 13:1047550. [PMID: 36818470 PMCID: PMC9933144 DOI: 10.3389/fimmu.2022.1047550] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
30
|
Dai L, Shen Y. Insights into T-cell dysfunction in Alzheimer's disease. Aging Cell 2021; 20:e13511. [PMID: 34725916 PMCID: PMC8672785 DOI: 10.1111/acel.13511] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
T cells, the critical immune cells of the adaptive immune system, are often dysfunctional in Alzheimer's disease (AD) and are involved in AD pathology. Reports highlight neuroinflammation as a crucial modulator of AD pathogenesis, and aberrant T cells indirectly contribute to neuroinflammation by secreting proinflammatory mediators via direct crosstalk with glial cells infiltrating the brain. However, the mechanisms underlying T‐cell abnormalities in AD appear multifactorial. Risk factors for AD and pathological hallmarks of AD have been tightly linked with immune responses, implying the potential regulatory effects of these factors on T cells. In this review, we discuss how the risk factors for AD, particularly Apolipoprotein E (ApoE), Aβ, α‐secretase, β‐secretase, γ‐secretase, Tau, and neuroinflammation, modulate T‐cell activation and the association between T cells and pathological AD hallmarks. Understanding these associations is critical to provide a comprehensive view of appropriate therapeutic strategies for AD.
Collapse
Affiliation(s)
- Linbin Dai
- Institute on Aging and Brain Disorders The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Sciences and Technology of China Hefei China
- Neurodegenerative Disease Research Center University of Science and Technology of China Hefei China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei China
| | - Yong Shen
- Institute on Aging and Brain Disorders The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Sciences and Technology of China Hefei China
- Neurodegenerative Disease Research Center University of Science and Technology of China Hefei China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei China
| |
Collapse
|
31
|
Allen F, Maillard I. Therapeutic Targeting of Notch Signaling: From Cancer to Inflammatory Disorders. Front Cell Dev Biol 2021; 9:649205. [PMID: 34124039 PMCID: PMC8194077 DOI: 10.3389/fcell.2021.649205] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, the Notch signaling pathway has been investigated as a therapeutic target for the treatment of cancers, and more recently in the context of immune and inflammatory disorders. Notch is an evolutionary conserved pathway found in all metazoans that is critical for proper embryonic development and for the postnatal maintenance of selected tissues. Through cell-to-cell contacts, Notch orchestrates cell fate decisions and differentiation in non-hematopoietic and hematopoietic cell types, regulates immune cell development, and is integral to shaping the amplitude as well as the quality of different types of immune responses. Depriving some cancer types of Notch signals has been shown in preclinical studies to stunt tumor growth, consistent with an oncogenic function of Notch signaling. In addition, therapeutically antagonizing Notch signals showed preclinical potential to prevent or reverse inflammatory disorders, including autoimmune diseases, allergic inflammation and immune complications of life-saving procedures such allogeneic bone marrow and solid organ transplantation (graft-versus-host disease and graft rejection). In this review, we discuss some of these unique approaches, along with the successes and challenges encountered so far to target Notch signaling in preclinical and early clinical studies. Our goal is to emphasize lessons learned to provide guidance about emerging strategies of Notch-based therapeutics that could be deployed safely and efficiently in patients with immune and inflammatory disorders.
Collapse
Affiliation(s)
- Frederick Allen
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Maillard
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
32
|
Role of Notch Receptors in Hematologic Malignancies. Cells 2020; 10:cells10010016. [PMID: 33374160 PMCID: PMC7823720 DOI: 10.3390/cells10010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Notch receptors are single-pass transmembrane proteins that play a critical role in cell fate decisions and have been implicated in the regulation of many developmental processes. The human Notch family comprises of four receptors (Notch 1 to 4) and five ligands. Their signaling can regulate extremely basic cellular processes such as differentiation, proliferation and death. Notch is also involved in hematopoiesis and angiogenesis, and increasing evidence suggests that these genes are involved and frequently deregulated in several human malignancies, contributing to cell autonomous activities that may be either oncogenic or tumor suppressive. It was recently proposed that Notch signaling could play an active role in promoting and sustaining a broad spectrum of lymphoid malignancies as well as mutations in Notch family members that are present in several disorders of T- and B-cells, which could be responsible for altering the related signaling. Therefore, different Notch pathway molecules could be considered as potential therapeutic targets for hematological cancers. In this review, we will summarize and discuss compelling evidence pointing to Notch receptors as pleiotropic regulators of hematologic malignancies biology, first describing the physiological role of their signaling in T- and B-cell development and homeostasis, in order to fully understand the pathological alterations reported.
Collapse
|
33
|
Isolation of nocobactin NAs as Notch signal inhibitors from Nocardia farcinica, a possibility of invasive evolution. J Antibiot (Tokyo) 2020; 74:255-259. [PMID: 33318622 DOI: 10.1038/s41429-020-00393-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
Notch signaling inhibitors with the potential of immune suppressor production by pathogenic bacteria for easy host infection were searched from extracts of Nocardia sp. Nocobactin NA-a (compound 1) and nocobactin NA-b (compound 2), which have been suggested as pathogenesis factors, were isolated from N. farcinica IFM 11523 isolated from the sputum of a Japanese patient with chronic bronchitis. Compounds 1 and 2 showed Notch inhibitory activities with IC50 values of 12.4 and 17.6 μM, respectively. Compound 1 and 2 decreased of Notch1 protein, Notch intracellular domain, and hairy and enhancer of split 1, which is a Notch signaling target protein. In addition, compounds 1 and 2 showed cytotoxicity against mouse macrophage-like cell line RAW264.7 with IC50 values of 18.9 and 21.1 μM, respectively. These results suggested that the Notch inhibitors production by pathogenic bacteria may increase pathogen infectivity.
Collapse
|
34
|
Kottaiswamy A, Kizhakeyil A, Padmanaban AM, Mirza FB, Vijay VR, Lee PS, Verma NK, Kalaiselvan P, Samuel S. The Citrus Flavanone Hesperetin Induces Apoptosis in CTCL Cells via STAT3/Notch1/NFκB-Mediated Signaling Axis. Anticancer Agents Med Chem 2020; 20:1459-1468. [DOI: 10.2174/1871521409666200324110031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022]
Abstract
Background:
Hesperetin is a natural compound known for its cholesterol-lowering effect and a wide
range of pharmacological activities.
Objectives:
Investigating the potential anticancer activities of Hesperetin in malignant hematolymphoid cell
lines HuT78 and MJ, derived from patients with Cutaneous T-Cell Lymphomas (CTCL).
Methods:
The cytotoxic effect of Hesperetin on two different CTCL cell lines, HuT78 and MJ, was assessed by
MTS-based colorimetric assay. Apoptosis, cell cycle, ROS (Reactive Oxygen Species) and molecular analysis
were performed using flow-cytometry and immunoblotting.
Results:
Hesperetin-treated CTCL cells were arrested at the sub-G1 phase of cell cycle with the concomitant
decrease in the expression of the cell cycle regulator protein cyclin B. In addition, the study found that the cellular
treatment with Hesperetin caused an induction of apoptosis, which was independent of ROS generation. Hesperetin
caused a significant decrease in the expression level of anti-apoptotic protein Bcl-xL and an increase in cleaved
caspase-3 and PARP proteins in CTCL cells. Furthermore, Hesperetin treatment in CTCL cells down-regulated
the expression of Notch1 and phosphorylation of STAT3 (Tyr705) and inhibited NFκBp65.
Conclusion:
This study highlights the anticancer properties of Hesperetin. Which induces apoptosis in CTCL
cells via STAT3/Notch1/NFκB mediated signaling pathway, suggesting that further development of this novel
class of flavonoid may contribute to new drug discovery for certain hematolymphoid malignancies.
Collapse
Affiliation(s)
| | - Atish Kizhakeyil
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | | | - Fathima B. Mirza
- VRR Institute of Biomedical Science, University of Madras, Chennai, India
| | - Venkatesh R. Vijay
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | - Pin S. Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | - Navin K. Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | | | - Shila Samuel
- VRR Institute of Biomedical Science, University of Madras, Chennai, India
| |
Collapse
|
35
|
Zhai Z, Samson JM, Yamauchi T, Vaddi PK, Matsumoto Y, Dinarello CA, Ravindran Menon D, Fujita M. Inflammasome Sensor NLRP1 Confers Acquired Drug Resistance to Temozolomide in Human Melanoma. Cancers (Basel) 2020; 12:E2518. [PMID: 32899791 PMCID: PMC7563249 DOI: 10.3390/cancers12092518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Cancer cells gain drug resistance through a complex mechanism, in which nuclear factor-κB (NF-κB) and interleukin-1β (IL-1β) are critical contributors. Because NACHT, LRR and PYD domains-containing protein (NLRP) inflammasomes mediate IL-1β maturation and NF-κB activation, we investigated the role of inflammasome sensor NLRP1 in acquired drug resistance to temozolomide (TMZ) in melanoma. The sensitivity of melanoma cells to TMZ was negatively correlated with the expression levels of O6-methylguanine-DNA methyltransferase (MGMT), the enzyme to repair TMZ-induced DNA lesions. When MGMT-low human melanoma cells (1205Lu and HS294T) were treated with TMZ for over two months, MGMT was upregulated, and cells became resistant. However, the resistance mechanism was independent of MGMT, and the cells that acquired TMZ resistance showed increased NLRP1 expression, NLRP inflammasome activation, IL-1β secretion, and NF-κB activity, which contributed to the acquired resistance to TMZ. Finally, blocking IL-1 receptor (IL-1R) signaling with IL-1R antagonist decreased TMZ-resistant 1205Lu tumor growth in vivo. Although inflammation has been associated with drug resistance in various cancers, our paper is the first to demonstrate the involvement of NLRP in the development of acquired drug resistance. Because drug-tolerant cancer cells become cross-tolerant to other classes of cancer drugs, NLRP1 might be a suitable therapeutic target in drug-resistant melanoma, as well as in other cancers.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Jenny Mae Samson
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Prasanna K. Vaddi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Yuko Matsumoto
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Kunze B, Wein F, Fang HY, Anand A, Baumeister T, Strangmann J, Gerland S, Ingermann J, Münch NS, Wiethaler M, Sahm V, Hidalgo-Sastre A, Lange S, Lightdale CJ, Bokhari A, Falk GW, Friedman RA, Ginsberg GG, Iyer PG, Jin Z, Nakagawa H, Shawber CJ, Nguyen T, Raab WJ, Dalerba P, Rustgi AK, Sepulveda AR, Wang KK, Schmid RM, Wang TC, Abrams JA, Quante M. Notch Signaling Mediates Differentiation in Barrett's Esophagus and Promotes Progression to Adenocarcinoma. Gastroenterology 2020; 159:575-590. [PMID: 32325086 PMCID: PMC7484392 DOI: 10.1053/j.gastro.2020.04.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 03/19/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Studies are needed to determine the mechanism by which Barrett's esophagus (BE) progresses to esophageal adenocarcinoma (EAC). Notch signaling maintains stem cells in the gastrointestinal tract and is dysregulated during carcinogenesis. We explored the relationship between Notch signaling and goblet cell maturation, a feature of BE, during EAC pathogenesis. METHODS We measured goblet cell density and levels of Notch messenger RNAs in BE tissues from 164 patients, with and without dysplasia or EAC, enrolled in a multicenter study. We analyzed the effects of conditional expression of an activated form of NOTCH2 (pL2.Lgr5.N2IC), conditional deletion of NOTCH2 (pL2.Lgr5.N2fl/fl), or loss of nuclear factor κB (NF-κB) (pL2.Lgr5.p65fl/fl), in Lgr5+ (progenitor) cells in L2-IL1B mice (which overexpress interleukin 1 beta in esophagus and squamous forestomach and are used as a model of BE). We collected esophageal and stomach tissues and performed histology, immunohistochemistry, flow cytometry, transcriptome, and real-time polymerase chain reaction analyses. Cardia and forestomach tissues from mice were cultured as organoids and incubated with inhibitors of Notch or NF-kB. RESULTS Progression of BE to EAC was associated with a significant reduction in goblet cell density comparing nondysplastic regions of tissues from patients; there was an inverse correlation between goblet cell density and levels of NOTCH3 and JAG2 messenger RNA. In mice, expression of the activated intracellular form of NOTCH2 in Lgr5+ cells reduced goblet-like cell maturation, increased crypt fission, and accelerated the development of tumors in the squamocolumnar junction. Mice with deletion of NOTCH2 from Lgr5+ cells had increased maturation of goblet-like cells, reduced crypt fission, and developed fewer tumors. Esophageal tissues from in pL2.Lgr5.N2IC mice had increased levels of RelA (which encodes the p65 unit of NF-κB) compared to tissues from L2-IL1B mice, and we found evidence of increased NF-κB activity in Lgr5+ cells. Esophageal tissues from pL2.Lgr5.p65fl/fl mice had lower inflammation and metaplasia scores than pL2.Lgr5.N2IC mice. In organoids derived from pL2-IL1B mice, the NF-κB inhibitor JSH-23 reduced cell survival and proliferation. CONCLUSIONS Notch signaling contributes to activation of NF-κB and regulates differentiation of gastric cardia progenitor cells in a mouse model of BE. In human esophageal tissues, progression of BE to EAC was associated with reduced goblet cell density and increased levels of Notch expression. Strategies to block this pathway might be developed to prevent EAC in patients with BE.
Collapse
Affiliation(s)
- Bettina Kunze
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Frederik Wein
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Hsin-Yu Fang
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Akanksha Anand
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Theresa Baumeister
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Julia Strangmann
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Sophie Gerland
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Jonas Ingermann
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | | | - Maria Wiethaler
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Vincenz Sahm
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Ana Hidalgo-Sastre
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Sebastian Lange
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Charles J Lightdale
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Aqiba Bokhari
- Yosemite Pathology Medical Group, Modesto, California
| | - Gary W Falk
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Richard A Friedman
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Gregory G Ginsberg
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Prasad G Iyer
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Zhezhen Jin
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | - Hiroshi Nakagawa
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Carrie J Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - TheAnh Nguyen
- Oregon Health and Science University, Portland, Oregon
| | - William J Raab
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Piero Dalerba
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York
| | - Anil K Rustgi
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Antonia R Sepulveda
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Kenneth K Wang
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Roland M Schmid
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Timothy C Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Julian A Abrams
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York.
| | - Michael Quante
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany.
| |
Collapse
|
37
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2020; 10:a035246. [PMID: 31570389 PMCID: PMC7050584 DOI: 10.1101/cshperspect.a035246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.
Collapse
Affiliation(s)
- Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
39
|
Tsaouli G, Barbarulo A, Vacca A, Screpanti I, Felli MP. Molecular Mechanisms of Notch Signaling in Lymphoid Cell Lineages Development: NF-κB and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:145-164. [PMID: 32072504 DOI: 10.1007/978-3-030-36422-9_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Notch is a ligand-receptor interaction-triggered signaling cascade highly conserved, that influences multiple lineage decisions within the hematopoietic and the immune system. It is a recognized model of intercellular communication that plays an essential role in embryonic as well as in adult immune cell development and homeostasis. Four members belong to the family of Notch receptors (Notch1-4), and each of them plays nonredundant functions at several developmental stages. Canonical and noncanonical pathways of Notch signaling are multifaceted drivers of immune cells biology. In fact, increasing evidence highlighted Notch as an important modulator of immune responses, also in cancer microenvironment. In these contexts, multiple transduction signals, including canonical and alternative NF-κB pathways, play a relevant role. In this chapter, we will first describe the critical role of Notch and NF-κB signals in lymphoid lineages developing in thymus: natural killer T cells, thymocytes, and thymic T regulatory cells. We will address also the role played by ligand expressing cells. Given the importance of Notch/NF-κB cross talk, its role in T-cell leukemia development and progression will be discussed.
Collapse
Affiliation(s)
- G Tsaouli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - A Barbarulo
- Department of Immunology, Institute of Immunity and Transplantation, Royal Free Hospital, London, UK
| | - A Vacca
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - I Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| | - M P Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
40
|
Xie H, Shen CY, Jiang JG. The sources of salidroside and its targeting for multiple chronic diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
41
|
Rickert V, Kramer D, Schubert AL, Sommer C, Wischmeyer E, Üçeyler N. Globotriaosylceramide-induced reduction of K Ca1.1 channel activity and activation of the Notch1 signaling pathway in skin fibroblasts of male Fabry patients with pain. Exp Neurol 2019; 324:113134. [PMID: 31778662 DOI: 10.1016/j.expneurol.2019.113134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 11/24/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Fabry disease (FD) is an X-linked lysosomal storage disorder that leads to cellular globotriaosylceramide (Gb3) accumulation due to mutations in the gene encoding α-galactosidase A. Trigger-induced acral burning pain is an early FD symptom of unknown pathophysiology. We aimed at investigating the potential role of skin fibroblasts in nociceptor sensitization. PATIENTS AND METHODS We enrolled 40 adult FD patients and ten healthy controls, who underwent a 6-mm skin punch biopsy at the lower leg. Dermal fibroblasts were cultivated and analyzed for Gb3 load. Fibroblast electrical activity was assessed using patch-clamp analysis at baseline and upon incubation with agalsidase-α for 24 h. We investigated gene expression of CC motif chemokine ligand 2 (CCL2), Ca2+activated K+-channel 1.1 (KCa1.1), interferone-γ (IFN-γ), transforming growth factor-β1 (TGF-β1), and transmembrane receptor notch homolog 1 (Notch1) using quantitative real-time-PCR, and protein levels of KCa1.1 by ELISA. Gene expression was determined at baseline and after fibroblast stimulation with tumor necrosis factor-α (TNF), modeling inflammation as a common pain trigger in FD. RESULTS Total Gb3 load was higher in FD fibroblasts than in control fibroblasts (p < .01). Upon increase of intracellular Ca2+ concentrations, we detected differential electrical activity of KCa1.1 in fibroblasts obtained from patients with FD. Gene expression (p < .05) and protein levels of KCa1.1 (p < .05) were higher in fibroblasts from FD patients compared to control fibroblasts, whereas electric channel activity was lower in FD fibroblasts. After incubation with agalsidase-α, we observed an over-proportionate increase of KCa1.1 activity in FD fibroblasts reaching 7-fold the currents of control cells (p < .01). Gene expression studies revealed higher mRNA levels of CCL2, INF-γ, and Notch1 in FD fibroblasts compared to controls at baseline and after TNF incubation (p < .05 each), while TGF-β1 was higher in FD fibroblasts only after incubation with TNF (p < .05). CONCLUSIONS Gb3 deposition in skin fibroblasts may impair KCa1.1 activity and activate the Notch1 signaling pathway. The resulting increase in pro-inflammatory mediator expression may contribute to cutaneous nociceptor sensitization as a potential mechanism of FD-associated pain.
Collapse
Affiliation(s)
| | - Daniela Kramer
- Department of Neurology, University of Würzburg, Germany
| | | | - Claudia Sommer
- Department of Neurology, University of Würzburg, Germany; Fabry Center for Interdisciplinary Therapy Würzburg (FAZIT), University of Würzburg, Germany
| | - Erhard Wischmeyer
- Molecular Electrophysiology, Institute of Physiology, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Germany; Fabry Center for Interdisciplinary Therapy Würzburg (FAZIT), University of Würzburg, Germany.
| |
Collapse
|
42
|
Inflammation-induced colon cancer in uPA-deficient mice is associated with a deregulated expression of Notch signaling pathway components. Mol Cell Biochem 2019; 464:181-191. [PMID: 31758376 DOI: 10.1007/s11010-019-03659-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022]
Abstract
Notch is an evolutionarily conserved signaling pathway with an important role in development and cell fate determination. Deregulation of Notch signaling has been associated with several pathological conditions, including cancer. Acting as an oncogene in some types of cancers and as a tumor suppressor in other, Notch effects seem to be highly context-dependent in solid tumors. In the present study, we aimed to investigate gene expression levels of Notch pathway constituents, including ligands, receptors, and target genes, during the early stages of inflammation-associated intestinal carcinogenesis. To achieve so, we used our recently developed mouse model, in which colon cancer arises in the absence of urokinase-type plasminogen activator (uPA) due to colitis induced by dextran sodium sulfate (DSS) treatment. Among the cell surface components, ligands Jag1/Jag2 and receptors Notch1/Notch2 were found to be significantly upregulated in the uPA-deficient protumorigenic inflammatory microenvironment. Moreover, several intracellular Notch modulators, i.e. Hes1, Hey1, and Klf4, were also shown to be deregulated with inflammation, yet irrespective of uPA status. Sox9 transcription factor, however, was significantly downregulated in the uPA-deficient/DSS-treated mice that developed colon adenomas as compared to the wild-type/DSS-treated group with no neoplasia identified. The latter finding supports a tumor suppressive role of Sox9 in intestinal carcinogenesis. Our results point towards an early activation of Notch signaling pathway at the receptor-ligand level in inflammation-associated colon neoplasmatogenesis developed in the absence of uPA. Interestingly, such activation may not be accompanied by deregulation of downstream Notch-target genes, possibly due to the effects of other inter-related signaling pathways.
Collapse
|
43
|
Abstract
The evolutionarily conserved Notch signalling pathway regulates the differentiation and function of mature T lymphocytes with major context-dependent consequences in host defence, autoimmunity and alloimmunity. The emerging effects of Notch signalling in T cell responses build upon a more established role for Notch in T cell development. Here, we provide a critical review of this burgeoning literature to make sense of what has been learned so far and highlight the experimental strategies that have been most useful in gleaning physiologically relevant information. We outline the functional consequences of Notch signalling in mature T cells in addition to key specific Notch ligand–receptor interactions and downstream molecular signalling pathways. Our goal is to help clarify future directions for this expanding body of work and the best approaches to answer important open questions.
Collapse
Affiliation(s)
- Joshua D Brandstadter
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Zhao C, Li J, Yang J, Yang L, Chen P, Dou J, Zhao S. Inhibitor of γ-secretase alleviates middle ear inflammation by regulating Th2 response in OVA-mediated allergic OME in vivo. Immunobiology 2019; 224:765-773. [DOI: 10.1016/j.imbio.2019.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022]
|
45
|
Vujovic F, Hunter N, Farahani RM. Notch pathway: a bistable inducer of biological noise? Cell Commun Signal 2019; 17:133. [PMID: 31640734 PMCID: PMC6805690 DOI: 10.1186/s12964-019-0453-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Notch signalling pathway is central to development of metazoans. The pathway codes a binary fate switch. Upon activation, downstream signals contribute to resolution of fate dichotomies such as proliferation/differentiation or sub-lineage differentiation outcome. There is, however, an interesting paradox in the Notch signalling pathway. Despite remarkable predictability of fate outcomes instructed by the Notch pathway, the associated transcriptome is versatile and plastic. This inconsistency suggests the presence of an interface that compiles input from the plastic transcriptome of the Notch pathway but communicates only a binary output in biological decisions. Herein, we address the interface that determines fate outcomes. We provide an alternative hypothesis for the Notch pathway as a biological master switch that operates by induction of genetic noise and bistability in order to facilitate resolution of dichotomous fate outcomes in development.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| |
Collapse
|
46
|
Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Front Genet 2019; 10:711. [PMID: 31552081 PMCID: PMC6736567 DOI: 10.3389/fgene.2019.00711] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Constitutive activation of the Hedgehog (Hh) signaling pathway is associated with increased risk of developing several malignancies. The biological and pathogenic importance of Hh signaling emphasizes the need to control its action tightly, both physiologically and therapeutically. Evidence of crosstalk between Hh and other signaling pathways is reported in many tumor types. Here, we provide an overview of the current knowledge about the communication between Hh and major signaling pathways, such as Notch, Wnt, and transforming growth factor β (TGF-β), which play critical roles in both embryonic and adult life. When these pathways are unbalanced, impaired crosstalk contributes to disease development. It is reported that more than one of these pathways are active in different type of tumors, at the same time. Therefore, starting from a plethora of stimuli that activate multiple signaling pathways, we describe the signals that preferentially converge on the Hh signaling cascade that influence its activity. Moreover, we highlight several connection points between Hh and Notch, Wnt, or TGF-β pathways, showing a reciprocal synergism that contributes to tumorigenesis, supporting a more malignant behavior by tumor cells, such as in leukemia and brain tumors. Understanding the importance of these molecular interlinking networks will provide a rational basis for combined anticancer drug development.
Collapse
Affiliation(s)
- Maria Pelullo
- Center of Life Nano Science Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sabrina Zema
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
47
|
Mendonca P, Taka E, Soliman KFA. Proteomic analysis of the effect of the polyphenol pentagalloyl glucose on proteins involved in neurodegenerative diseases in activated BV‑2 microglial cells. Mol Med Rep 2019; 20:1736-1746. [PMID: 31257500 PMCID: PMC6625426 DOI: 10.3892/mmr.2019.10400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/09/2019] [Indexed: 01/24/2023] Open
Abstract
Neuroinflammation and microglial activation are two important hallmarks of neurodegenerative diseases. Continuous microglial activation may cause the release of several cytotoxic molecules, including many cytokines that are involved in the inflammatory process. Therefore, attenuating inflammation caused by activated microglia may be an approach for the therapeutic management of neurodegenerative diseases. In addition, many studies have reported that polyphenol pentagalloyl glucose (1,2,3,4,6-penta-O-galloyl-β-D-glucose; PGG) is a molecule with potent anti-inflammatory effects, such as inhibiting the release of proinflammatory cytokines. Our previous studies revealed that PGG attenuated the expression of two inflammatory cytokines (murine monocyte chemoattractant protein-5 and pro-metalloproteinase-9) in lipopolysaccharide/interferon γ-activated BV-٢ microglial cells. Additionally, PGG modulated the NF-κB and MAPK signaling pathways by altering genes and proteins, which may affect the MAPK cascade and NF-κB activation. The aim of the present study was to investigate the ability of PGG to modulate the expression of proteins released in activated BV-2 microglial cells, which may be involved in the pathological process of inflammation and neurodegeneration. Proteomic analysis of activated BV-2 cells identified 17 proteins whose expression levels were significantly downregulated by PGG, including septin-7, ataxin-2, and adenylosuccinate synthetase isozyme 2 (ADSS). These proteins were previously described as being highly expressed in neurodegenerative diseases and/or involved in the signaling pathways associated with the formation and growth of neuronal connections and the control of Alzheimer's disease pathogenesis. The inhibitory effect of PGG on ataxin-2, septin-7 and ADSS was further confirmed at the protein and transcriptional levels. Therefore, the obtained results suggest that PGG, with its potent inhibitory effects on ataxin-2, septin-7 and ADSS, may have potential use in the therapeutic management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Patricia Mendonca
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
48
|
Ballester-López C, Conlon TM, Ertüz Z, Greiffo FR, Irmler M, Verleden SE, Beckers J, Fernandez IE, Eickelberg O, Yildirim AÖ. The Notch ligand DNER regulates macrophage IFNγ release in chronic obstructive pulmonary disease. EBioMedicine 2019; 43:562-575. [PMID: 31060902 PMCID: PMC6562022 DOI: 10.1016/j.ebiom.2019.03.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of death worldwide with no curative therapy. A non-canonical Notch ligand, DNER, has been recently identified in GWAS to associate with COPD severity, but its function and contribution to COPD is unknown. METHODS DNER localisation was assessed in lung tissue from healthy and COPD patients, and cigarette smoke (CS) exposed mice. Microarray analysis was performed on WT and DNER deficient M1 and M2 bone marrow-derived macrophages (BMDM), and gene set enrichment undertaken. WT and DNER deficient mice were exposed to CS or filtered air for 3 day and 2 months to assess IFNγ-expressing macrophages and emphysema development. Notch and NFKB active subunits were quantified in WT and DNER deficient LPS-treated and untreated BMDM. FINDINGS Immunofluorescence staining revealed DNER localised to macrophages in lung tissue from COPD patients and mice. Human and murine macrophages showed enhanced DNER expression in response to inflammation. Interestingly, pro-inflammatory DNER deficient BMDMs exhibited impaired NICD1/NFKB dependent IFNγ signalling and reduced nuclear NICD1/NFKB translocation. Furthermore, decreased IFNγ production and Notch1 activation in recruited macrophages from CS exposed DNER deficient mice were observed, protecting against emphysema and lung dysfunction. INTERPRETATION DNER is a novel protein induced in COPD patients and 6 months CS-exposed mice that regulates IFNγ secretion via non-canonical Notch in pro-inflammatory recruited macrophages. These results provide a new pathway involved in COPD immunity that could contribute to the discovery of innovative therapeutic targets. FUNDING This work was supported from the Helmholtz Alliance 'Aging and Metabolic Programming, AMPro'.
Collapse
Affiliation(s)
- Carolina Ballester-López
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thomas M Conlon
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Zeynep Ertüz
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Flavia R Greiffo
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München, Munich, Germany
| | | | - Johannes Beckers
- Institute of Experimental Genetics (IEG), Helmholtz Zentrum München, Munich, Germany; Chair of Experimental Genetics, Technische Universität München, Freising, Germany; German Center for Diabetes Research (DZD), Germany
| | - Isis E Fernandez
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
49
|
Chen X, Chen X, Zhou Z, Qin A, Wang Y, Fan B, Xu W, Zhang S. LY411575, a potent γ-secretase inhibitor, suppresses osteoclastogenesis in vitro and LPS-induced calvarial osteolysis in vivo. J Cell Physiol 2019; 234:20944-20956. [PMID: 31020651 DOI: 10.1002/jcp.28699] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/11/2023]
Abstract
A series of osteolytic bone diseases are usually related to excessive bone resorption and osteoclast formation. Thus, agents or drugs which can target osteoclast development and attenuate bone loss are potentially considerable in preventing and treating of bone lytic diseases. In recent years, many studies have reported that Notch signaling has substantial impacts on the process of osteoclast differentiation, maturation, and bone destruction. In the present study, we showed that LY411575, a γ-secretase inhibitor, could potently suppress osteoclast differentiation, osteoclast-specific gene expression, and bone resorption via suppressing Notch/HES1/MAPK (ERK and p38)/Akt-mediated NFATc1 induction in vitro. Consistent with in vitro results, LY411575 exhibited protective effects in lipopolysaccharides-induced calvarial bone destruction in vivo. Collectively, these results indicate that LY411575 may have therapeutic potential in the treatment of osteoclast-mediated osteolytic bone diseases.
Collapse
Affiliation(s)
- Xinwei Chen
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xuzhuo Chen
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhihang Zhou
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yexin Wang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Baoting Fan
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Weifeng Xu
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shanyong Zhang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
50
|
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q, Belmonte JCI, Wang Z, Qu J, Yuan Y, Liu GH. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 2019; 10:249-271. [PMID: 30778920 PMCID: PMC6418078 DOI: 10.1007/s13238-019-0608-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Chen Ling
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|