1
|
Fan G, Yu Y, Zhang X, Jiang J, Wang S, Zhou B, Jiang T. Comprehensive analysis of the stress associated protein (SAP) family and the function of PagSAP9 from Populus alba × P. glandulosa in salt stress. PHYTOCHEMISTRY 2025; 232:114367. [PMID: 39701200 DOI: 10.1016/j.phytochem.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Poplar tree growth is frequently hindered by environmental stressors, particularly soil salinization. Enhancing salt tolerance is essential for improving their adaptability and biomass under these conditions. The Stress-Associated Protein (SAP) family, characterized by A20/AN1 zinc finger domains, plays a crucial role in plants' tolerance to abiotic stress. However, functional investigations on SAP proteins in poplar are limited. In our study, we identified 19 SAP members in poplar, distributed unevenly across ten chromosomes and classified them into two major groups based on phylogenetic relationship and structure characteristics. Notably, only three segmental duplications were found, while no tandem duplications were detected. The PagSAP9 gene from Populus alba x P. glandulosa, featured both A20 and AN1 domains, was successfully characterized and localized to both cytoplasm and nucleus. It was predominantly expressed in roots and leaves and showed significantly upregulation under salt stress. And the overexpressing PagSAP9 transgenic poplars enhanced the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), alongside reduced malondialdehyde (MDA) content. Additionally, DAB and NBT histological stainings further confirmed the positive effects of PagSAP9 gene. Collectively, these findings highlight the potential of the PagSAP9 gene to improve salt tolerance in poplar, emphasizing the broader applicability of SAP genes in plant stress resistance and providing valuable genetic resources for developing resilient plant varieties.
Collapse
Affiliation(s)
- Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yingying Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Lee D. Activators of the 26S proteasome when protein degradation increases. Exp Mol Med 2025; 57:41-49. [PMID: 39779978 PMCID: PMC11799193 DOI: 10.1038/s12276-024-01385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied. However, the activities of the 26S proteasome are also stimulated, especially under highly catabolic conditions such as those associated with atrophying skeletal muscle, proteotoxic stress such as heat shock and arsenite, or hormonal cues such as cAMP or cGMP agonists. Among the proteins that enhance proteasomal degradation are the PKA, PKG, UBL-UBA proteins and the Zn finger AN1-type domain (ZFAND) family proteins. ZFAND proteins are of particular interest because of their inducible expression in response to various stimuli and their abilities to control protein quality by stimulating the 26S proteasome and p97/VCP. The regulatory roles of ZFAND proteins appear to be important not only for the control of protein degradation but also for other cellular processes, such as mRNA stability and signaling pathways. This review summarizes the known functions of proteasome activators and discusses their possible roles in regulating proteostasis and other cellular processes.
Collapse
Affiliation(s)
- Donghoon Lee
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
- Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University. 88 Daxue Road, 325060, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Ben Saad R, Ben Romdhane W, Čmiková N, Baazaoui N, Bouteraa MT, Ben Akacha B, Chouaibi Y, Maisto M, Ben Hsouna A, Garzoli S, Wiszniewska A, Kačániová M. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024; 46:e2400097. [PMID: 39248672 DOI: 10.1002/bies.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Collapse
Affiliation(s)
- Rania Ben Saad
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Narjes Baazaoui
- Biology department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Bouthaina Ben Akacha
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Yosra Chouaibi
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anis Ben Hsouna
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, Kraków, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warszawa, Poland
| |
Collapse
|
4
|
Eroglu M, Zocher T, McAuley J, Webster R, Xiao MZX, Yu B, Mok C, Derry WB. Noncanonical inheritance of phenotypic information by protein amyloids. Nat Cell Biol 2024; 26:1712-1724. [PMID: 39223373 DOI: 10.1038/s41556-024-01494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
All known heritable phenotypic information in animals is transmitted by direct inheritance of nucleic acids, their covalent modifications or histone modifications that modulate expression of associated genomic regions. Nonetheless, numerous familial traits and disorders cannot be attributed to known heritable molecular factors. Here we identify amyloid-like protein structures that are stably inherited in wild-type animals and influence traits. Their perturbation by genetic, environmental or pharmacological treatments leads to developmental phenotypes that can be epigenetically passed onto progeny. Injection of amyloids isolated from different phenotypic backgrounds into naive animals recapitulates the associated phenotype in offspring. Genetic and proteomic analyses reveal that the 26S proteasome and its conserved regulators maintain heritable amyloids across generations, which enables proper germ cell sex differentiation. We propose that inheritance of a proteinaceous epigenetic memory coordinates developmental timing and patterning with the environment to confer adaptive fitness.
Collapse
Affiliation(s)
- Matthew Eroglu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Tanner Zocher
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacob McAuley
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rachel Webster
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maggie Z X Xiao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Calvin Mok
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Sorada T, Walinda E, Morimoto D. Cyclization of ubiquitin chains reinforces their recognition by ZNF216. FEBS Lett 2024; 598:2249-2258. [PMID: 38853439 DOI: 10.1002/1873-3468.14951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024]
Abstract
Lys48-linked ubiquitin chains, regulating proteasomal protein degradation, are known to include cyclized forms. This cyclization hinders recognition by many downstream proteins by occluding the Ile44-centered patch. In contrast, the A20-like Znf domain of ZNF216 (a ubiquitin-binding protein, A20 Znf) is expected to bind to cyclic ubiquitin chains via constitutively solvent-exposed surfaces. However, the underlying interaction mechanism remains unclear. Here, our ITC and NMR experiments collectively showed that cyclization did not interfere with and even slightly enhance the molecular recognition of diubiquitin by A20 Znf. This effect is explained by the cyclization-induced repression of conformational dynamics in diubiquitin and an enlarged molecular interface in the complex. Thus, these results suggest that cyclic ubiquitin chains can be involved in regulation of ZNF216-dependent proteasomal protein degradation.
Collapse
Affiliation(s)
- Tomoki Sorada
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Japan
| |
Collapse
|
6
|
Yadav A, Dabur R. Skeletal muscle atrophy after sciatic nerve damage: Mechanistic insights. Eur J Pharmacol 2024; 970:176506. [PMID: 38492879 DOI: 10.1016/j.ejphar.2024.176506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Sciatic nerve injury leads to molecular events that cause muscular dysfunction advancement in atrophic conditions. Nerve damage renders muscles permanently relaxed which elevates intracellular resting Ca2+ levels. Increased Ca2+ levels are associated with several cellular signaling pathways including AMPK, cGMP, PLC-β, CERB, and calcineurin. Also, multiple enzymes involved in the tricarboxylic acid cycle and oxidative phosphorylation are activated by Ca2+ influx into mitochondria during muscle contraction, to meet increased ATP demand. Nerve damage induces mitophagy and skeletal muscle atrophy through increased sensitivity to Ca2+-induced opening of the permeability transition pore (PTP) in mitochondria attributed to Ca2+, ROS, and AMPK overload in muscle. Activated AMPK interacts negatively with Akt/mTOR is a highly prevalent and well-described central pathway for anabolic processes. Over the decade several reports indicate abnormal behavior of signaling machinery involved in denervation-induced muscle loss but end up with some controversial outcomes. Therefore, understanding how the synthesis and inhibitory stimuli interact with cellular signaling to control muscle mass and morphology may lead to new pharmacological insights toward understanding the underlying mechanism of muscle loss after sciatic nerve damage. Hence, the present review summarizes the existing literature on denervation-induced muscle atrophy to evaluate the regulation and expression of differential regulators during sciatic damage.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
7
|
Ebert SM, Nicolas CS, Schreiber P, Lopez JG, Taylor AT, Judge AR, Judge SM, Rasmussen BB, Talley JJ, Rème CA, Adams CM. Ursolic Acid Induces Beneficial Changes in Skeletal Muscle mRNA Expression and Increases Exercise Participation and Performance in Dogs with Age-Related Muscle Atrophy. Animals (Basel) 2024; 14:186. [PMID: 38254356 PMCID: PMC10812546 DOI: 10.3390/ani14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Muscle atrophy and weakness are prevalent and debilitating conditions in dogs that cannot be reliably prevented or treated by current approaches. In non-canine species, the natural dietary compound ursolic acid inhibits molecular mechanisms of muscle atrophy, leading to improvements in muscle health. To begin to translate ursolic acid to canine health, we developed a novel ursolic acid dietary supplement for dogs and confirmed its safety and tolerability in dogs. We then conducted a randomized, placebo-controlled, proof-of-concept efficacy study in older beagles with age-related muscle atrophy, also known as sarcopenia. Animals received placebo or ursolic acid dietary supplements once a day for 60 days. To assess the study's primary outcome, we biopsied the quadriceps muscle and quantified atrophy-associated mRNA expression. Additionally, to determine whether the molecular effects of ursolic acid might have functional correlates consistent with improvements in muscle health, we assessed secondary outcomes of exercise participation and T-maze performance. Importantly, in canine skeletal muscle, ursolic acid inhibited numerous mRNA expression changes that are known to promote muscle atrophy and weakness. Furthermore, ursolic acid significantly improved exercise participation and T-maze performance. These findings identify ursolic acid as a natural dietary compound that inhibits molecular mechanisms of muscle atrophy and improves functional performance in dogs.
Collapse
Affiliation(s)
- Scott M. Ebert
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Paul Schreiber
- Research & Development—Biopharmacy Department, Virbac SA, 06511 Carros, France
| | - Jaime G. Lopez
- US Petcare Innovation, Virbac NA, Westlake, TX 76262, USA
| | - Alan T. Taylor
- Innovation, Business Development, Virbac NA, Westlake, TX 76262, USA
| | - Andrew R. Judge
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Physical Therapy and Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Sarah M. Judge
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Physical Therapy and Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Blake B. Rasmussen
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Biochemistry and Structural Biology and Center for Metabolic Health, University of Texas Health Science Center, San Antonio, TX 77021, USA
| | - John J. Talley
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
| | | | - Christopher M. Adams
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Dave S, Patel BM. Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting. Fundam Clin Pharmacol 2023; 37:1079-1091. [PMID: 37474262 DOI: 10.1111/fcp.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Cancer cachexia is a debilitating syndrome associated with marked body loss because of muscular atrophy and fat loss. There are several mechanisms contributing to the pathogenesis of cachexia. The presence of the tumor releases cytokines from inflammatory and immune cells, which play a significant role in activating and deactivating certain pathways associated with protein, carbohydrate, and lipid metabolism. This review focuses on various cascades involving an imbalance between protein synthesis and degradation in the skeletal muscles. OBJECTIVES This study aimed to elucidate the mechanisms involved in skeletal muscle wasting phenomenon over the last few years. METHODS This article briefly overviews different pathways responsible for muscle atrophy in cancer cachexia. Studies published up to April 2023 were included. Important findings and study contributions were chosen and compiled using several databases including PubMed, Google Scholar, Science Direct, and ClinicalTrials.gov using relevant keywords. RESULTS Cancer cachexia is a complex disease involving multiple factors resulting in atrophy of skeletal muscles. Systemic inflammation, altered energy balance and carbohydrate metabolism, altered lipid and protein metabolism, and adipose tissue browning are some of the major culprits in cancer cachexia. Increased protein degradation and decreased protein synthesis lead to muscle atrophy. Changes in signaling pathway like ubiquitin-proteasome, autophagy, mTOR, AMPK, and IGF-1 also lead to muscle wasting. Physical exercise, nutritional supplementation, steroids, myostatin inhibitors, and interventions targeting on inflammation have been investigated to treat cancer cachexia. Some therapy showed positive results in preclinical and clinical settings, although more research on the efficacy and safety of the treatment should be done. CONCLUSION Muscle atrophy in cancer cachexia is the result of multiple complex mechanisms; as a result, a lot more research has been done to describe the pathophysiology of the disease. Targeted therapy and multimodal interventions can improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Srusti Dave
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Bhoomika M Patel
- School of Medico-legal Studies, National Forensic Sciences University, Gandhinagar, India
| |
Collapse
|
9
|
Yu F, Deng X, Zhong Y, Guo B, Zhang X, Wu B. Hypoxic papillary thyroid carcinoma cells-secreted exosomes deliver miR-221-3p to normoxic tumor cells to elicit a pro-tumoral effect by regulating the ZFAND5. Exp Cell Res 2023; 431:113716. [PMID: 37488006 DOI: 10.1016/j.yexcr.2023.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
Papillary thyroid cancer (PTC) has seen a worldwide expansion in incidence in the past three decades. Tumor-derived exosomes have been associated with the metastasis of cancer cells and are present within the local hypoxic tumor microenvironment, where they mediate intercellular communication by transferring molecules including microRNAs (miRNAs) between cells. Although miRNAs have been shown to serve as non-invasive biomarkers for cancer diagnosis, the role of hypoxia-induced tumor-derived exosomes in PTC progression remains unclear. Herein, we investigated the differentially expressed miRNA expression profiles from GEO datasets (GSE191117 and GSE151180) by using the DESeq package in R and identified a novel role for miR-221-3p as an oncogene in PTC development. In vivo and in vitro loss and gain assays were used to clarify the mechanism of hypoxic PTC cells derived exosomal-miR-221-3p in PTC. miR-221-3p was upregulated in human PTC plasma exosomes, tissues and cell lines. We found that hypoxic PTC cells derived exosomal-miR-221-3p promoted normoxic PTC cells proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro, while inhibition of miR-221-3p limited PTC tumor growth in our PTC xenograft model in nude mice. We finally identified ZFAND5, to be a miR-221-3p target. Mechanistically, hypoxic PTC cell lines-derived exosomes carrying miR-221-3p promoted PTC tumorigenesis by regulating ZFAND5. Our findings further the understanding of the underlying mechanisms associated with PTC progression and identify exosomal-miR-221-3p as a potential biomarker for the diagnosis and prognosis of PTC patients. Our study also suggests that miR-221-3p inhibitors could be a potential treatment strategy for PTC.
Collapse
Affiliation(s)
- Fan Yu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xianzhao Deng
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yong Zhong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Bomin Guo
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xiaoping Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Bo Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
10
|
Lee D, Zhu Y, Colson L, Wang X, Chen S, Tkacik E, Huang L, Ouyang Q, Goldberg AL, Lu Y. Molecular mechanism for activation of the 26S proteasome by ZFAND5. Mol Cell 2023; 83:2959-2975.e7. [PMID: 37595557 PMCID: PMC10523585 DOI: 10.1016/j.molcel.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Various hormones, kinases, and stressors (fasting, heat shock) stimulate 26S proteasome activity. To understand how its capacity to degrade ubiquitylated proteins can increase, we studied mouse ZFAND5, which promotes protein degradation during muscle atrophy. Cryo-electron microscopy showed that ZFAND5 induces large conformational changes in the 19S regulatory particle. ZFAND5's AN1 Zn-finger domain interacts with the Rpt5 ATPase and its C terminus with Rpt1 ATPase and Rpn1, a ubiquitin-binding subunit. Upon proteasome binding, ZFAND5 widens the entrance of the substrate translocation channel, yet it associates only transiently with the proteasome. Dissociation of ZFAND5 then stimulates opening of the 20S proteasome gate. Using single-molecule microscopy, we showed that ZFAND5 binds ubiquitylated substrates, prolongs their association with proteasomes, and increases the likelihood that bound substrates undergo degradation, even though ZFAND5 dissociates before substrate deubiquitylation. These changes in proteasome conformation and reaction cycle can explain the accelerated degradation and suggest how other proteasome activators may stimulate proteolysis.
Collapse
Affiliation(s)
- Donghoon Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA USA
| | - Yanan Zhu
- Department of Systems Biology, Harvard Medical School, Boston, MA USA; Center for Quantitative Biology, Peking University, Beijing, China; State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Louis Colson
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Xiaorong Wang
- School of Medicine, University of California Irvine, Irvine, Irvine, CA USA
| | - Siyi Chen
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Emre Tkacik
- Department of Systems Biology, Harvard Medical School, Boston, MA USA
| | - Lan Huang
- School of Medicine, University of California Irvine, Irvine, Irvine, CA USA
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing, China; State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA USA.
| |
Collapse
|
11
|
Lee D, Zhu Y, Colson L, Wang X, Chen S, Tkacik E, Huang L, Ouyang Q, Goldberg AL, Lu Y. Molecular mechanisms for activation of the 26S proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540094. [PMID: 37214989 PMCID: PMC10197607 DOI: 10.1101/2023.05.09.540094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Various hormones, kinases, and stressors (fasting, heat shock) stimulate 26S proteasome activity. To understand how its capacity to degrade ubiquitylated protein can increase, we studied ZFAND5, which promotes protein degradation during muscle atrophy. Cryo-electron microscopy showed that ZFAND5 induces large conformational changes in the 19S regulatory particle. ZFAND5's AN1 Zn finger interacts with the Rpt5 ATPase and its C-terminus with Rpt1 ATPase and Rpn1, a ubiquitin-binding subunit. Surprisingly, these C-terminal interactions are sufficient to activate proteolysis. With ZFAND5 bound, entry into the proteasome's protein translocation channel is wider, and ZFAND5 dissociation causes opening of the 20S gate for substrate entry. Using single-molecular microscopy, we showed that ZFAND5 binds ubiquitylated substrates, prolongs their association with proteasomes, and increases the likelihood that bound substrates undergo degradation, even though ZFAND5 dissociates before substrate deubiquitylation. These changes in proteasome conformation and reaction cycle can explain the accelerated degradation and suggest how other proteasome activators may stimulate proteolysis.
Collapse
|
12
|
Coliță CI, Olaru DG, Coliță D, Hermann DM, Coliță E, Glavan D, Popa-Wagner A. Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective. Int J Mol Sci 2023; 24:ijms24065744. [PMID: 36982814 PMCID: PMC10059721 DOI: 10.3390/ijms24065744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
In the clinic, the death certificate is issued if brain electrical activity is no longer detectable. However, recent research has shown that in model organisms and humans, gene activity continues for at least 96 h postmortem. The discovery that many genes are still working up to 48 h after death questions our definition of death and has implications for organ transplants and forensics. If genes can be active up to 48 h after death, is the person technically still alive at that point? We discovered a very interesting parallel between genes that were upregulated in the brain after death and genes upregulated in the brains that were subjected to medically-induced coma, including transcripts involved in neurotransmission, proteasomal degradation, apoptosis, inflammation, and most interestingly, cancer. Since these genes are involved in cellular proliferation, their activation after death could represent the cellular reaction to escape mortality and raises the question of organ viability and genetics used for transplantation after death. One factor limiting the organ availability for transplantation is religious belief. However, more recently, organ donation for the benefit of humans in need has been seen as “posthumous giving of organs and tissues can be a manifestation of love spreading also to the other side of death”.
Collapse
Affiliation(s)
- Cezar-Ivan Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Denissa-Greta Olaru
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Daniela Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Dirk M. Hermann
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Eugen Coliță
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 020276 Bucharest, Romania; (C.-I.C.)
| | - Daniela Glavan
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
- Correspondence: (D.G.); (A.P.-W.)
| | - Aurel Popa-Wagner
- Department of Psychiatry, University for Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
- Correspondence: (D.G.); (A.P.-W.)
| |
Collapse
|
13
|
Sparks A, Kelly CJ, Saville MK. Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2. FEBS Lett 2022; 596:2746-2767. [PMID: 35735670 PMCID: PMC9796813 DOI: 10.1002/1873-3468.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 01/07/2023]
Abstract
Much remains to be determined about the participation of ubiquitin receptors in proteasomal degradation and their potential as therapeutic targets. Suppression of the ubiquitin receptor S5A/PSMD4/hRpn10 alone stabilises p53/TP53 but not the key p53 repressor MDM2. Here, we observed S5A and the ubiquitin receptors ADRM1/PSMD16/hRpn13 and RAD23A and B functionally overlap in MDM2 degradation. We provide further evidence that degradation of only a subset of ubiquitinated proteins is sensitive to S5A knockdown because ubiquitin receptor redundancy is commonplace. p53 can be upregulated by S5A modulation while degradation of substrates with redundant receptors is maintained. Our observations and analysis of Cancer Dependency Map (DepMap) screens show S5A depletion/loss substantially reduces cancer cell line viability. This and selective S5A dependency of proteasomal substrates make S5A a target of interest for cancer therapy.
Collapse
Affiliation(s)
| | - Christopher J. Kelly
- School of MedicineUniversity of DundeeUK,Institute of Infection, Immunity and InflammationUniversity of GlasgowUK
| | - Mark K. Saville
- School of MedicineUniversity of DundeeUK,Silver River EditingDundeeUK
| |
Collapse
|
14
|
Genome-Wide Identification of the A20/AN1 Zinc Finger Protein Family Genes in Ipomoea batatas and Its Two Relatives and Function Analysis of IbSAP16 in Salinity Tolerance. Int J Mol Sci 2022; 23:ijms231911551. [PMID: 36232853 PMCID: PMC9570247 DOI: 10.3390/ijms231911551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Stress-associated protein (SAP) genes—encoding A20/AN1 zinc-finger domain-containing proteins—play pivotal roles in regulating stress responses, growth, and development in plants. They are considered suitable candidates to improve abiotic stress tolerance in plants. However, the SAP gene family in sweetpotato (Ipomoea batatas) and its relatives is yet to be investigated. In this study, 20 SAPs in sweetpotato, and 23 and 26 SAPs in its wild diploid relatives Ipomoea triloba and Ipomoea trifida were identified. The chromosome locations, gene structures, protein physiological properties, conserved domains, and phylogenetic relationships of these SAPs were analyzed systematically. Binding motif analysis of IbSAPs indicated that hormone and stress responsive cis-acting elements were distributed in their promoters. RT-qPCR or RNA-seq data revealed that the expression patterns of IbSAP, ItbSAP, and ItfSAP genes varied in different organs and responded to salinity, drought, or ABA (abscisic acid) treatments differently. Moreover, we found that IbSAP16 driven by the 35 S promoter conferred salinity tolerance in transgenic Arabidopsis. These results provided a genome-wide characterization of SAP genes in sweetpotato and its two relatives and suggested that IbSAP16 is involved in salinity stress responses. Our research laid the groundwork for studying SAP-mediated stress response mechanisms in sweetpotato.
Collapse
|
15
|
Liu P, Wang Y, Duan L. ZFAND5 Is an Independent Prognostic Biomarker of Perihilar Cholangiocarcinoma. Front Oncol 2022; 12:955670. [PMID: 35912230 PMCID: PMC9326020 DOI: 10.3389/fonc.2022.955670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCholangiocarcinoma (CCA) is a highly aggressive malignancy with extremely poor prognosis. Perihilar CCA (pCCA) is the most common subtype of CCA, but its biomarker study is much more lagged behind other subtypes. ZFAND5 protein can interact with ubiquitinated proteins and promote protein degradation. However, the function of ZFAND5 in cancer progression is rarely investigated, and the role of ZFAND5 in pCCA is never yielded.Materials and MethodsIn this study, we established a pCCA cohort consisting of 72 patients. The expression of ZFAND5 in pCCAs, and the paired liver tissues, intrahepatic bile duct tissues and common bile ducts (CBD) tissues were detected with IHC. ZFAND5 mRNA in pCCAs and CBDs was detected with qRT-PCR. The pCCA cohort was divided into ZFAND5low and ZFAND5high subsets according to the IHC score. The correlations between ZFAND5 expression and clinicopathological parameters were assessed bychi-square test. The prognostic significance of ZFAND5 expression and clinicopathological parameters was estimated by univariate analysis with Kaplan-Meier method, and by multivariate analysis with Cox-regression model.ResultsExpression of ZFAND5 in pCCAs was substantially higher than that in interlobular bile ducts and common bile ducts, but lower than that in liver tissues. The ZFAND5low and ZFAND5high subsets accounted for 44.4% and 55.6% of all pCCAs respectively. ZFAND5 high patients had much lower survival rates than the ZFAND5low patients, with the average survival time as 31.2 months and 19.5 months respectively. ZFAND5 was identified as an independent unfavorable prognostic biomarker of pCCA with multivariate analysis.ConclusionZFAND5 expression was up-regulated in pCCAs compared with the CBDs. We identified ZFAND5 as an independent biomarker of pCCA, which could provide more evidence for the molecular classification of pCCA, and help stratify the high-risk patients based on the molecular features.
Collapse
Affiliation(s)
- Pei Liu
- Department of Plastic Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Yijia Wang
- Department of Plastic Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Lingling Duan
- Department of Health Care, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Lingling Duan, ;
| |
Collapse
|
16
|
26S proteasomes become stably activated upon heat shock when ubiquitination and protein degradation increase. Proc Natl Acad Sci U S A 2022; 119:e2122482119. [PMID: 35704754 PMCID: PMC9231471 DOI: 10.1073/pnas.2122482119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heat shock (HS) promotes protein unfolding, and cells respond by stimulating HS gene expression, ubiquitination of cell proteins, and proteolysis by the proteasome. Exposing HeLa and other cells to 43 °C for 2 h caused a twofold increase in the 26S proteasomes' peptidase activity assayed at 37 °C. This increase in activity occurred without any change in proteasome amount and did not require new protein synthesis. After affinity-purification from HS cells, 26S proteasomes still hydrolyzed peptides, adenosine 5'-triphosphate, and ubiquitinated substrates more rapidly without any evident change in subunit composition, postsynthetic modification, or association with reported proteasome-activating proteins. After returning HS cells to 37 °C, ubiquitin conjugates and proteolysis fell rapidly, but proteasome activity remained high for at least 16 h. Exposure to arsenite, which also causes proteotoxic stress in the cytosol, but not tunicamycin, which causes endoplasmic reticulum stress, also increased ubiquitin conjugate levels and 26S proteasome activity. Although the molecular basis for the enhanced proteasomal activity remains elusive, we studied possible signaling mechanisms. Proteasome activation upon proteotoxic stress required the accumulation of ubiquitinated proteins since blocking ubiquitination by E1 inhibition during HS or arsenite exposure prevented the stimulation of 26S activity. Furthermore, increasing cellular content of ubiquitin conjugates at 37 °C by inhibiting deubiquitinating enzymes with RA190 or b-AP15 also caused proteasome activation. Thus, cells respond to proteotoxic stresses, apparently in response to the accumulation of ubiquitinated proteins, by activating 26S proteasomes, which should help promote the clearance of damaged cell proteins.
Collapse
|
17
|
Mechanisms That Activate 26S Proteasomes and Enhance Protein Degradation. Biomolecules 2021; 11:biom11060779. [PMID: 34067263 PMCID: PMC8224753 DOI: 10.3390/biom11060779] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Although ubiquitination is widely assumed to be the only regulated step in the ubiquitin–proteasome pathway, recent studies have demonstrated several important mechanisms that regulate the activities of the 26S proteasome. Most proteasomes in cells are inactive but, upon binding a ubiquitinated substrate, become activated by a two-step mechanism requiring an association of the ubiquitin chain with Usp14 and then a loosely folded protein domain with the ATPases. The initial activation step is signaled by Usp14’s UBL domain, and many UBL-domain-containing proteins (e.g., Rad23, Parkin) also activate the proteasome. ZFAND5 is a distinct type of activator that binds ubiquitin conjugates and the proteasome and stimulates proteolysis during muscle atrophy. The proteasome’s activities are also regulated through subunit phosphorylation. Agents that raise cAMP and activate PKA stimulate within minutes Rpn6 phosphorylation and enhance the selective degradation of short-lived proteins. Likewise, hormones, fasting, and exercise, which raise cAMP, activate proteasomes and proteolysis in target tissues. Agents that raise cGMP and activate PKG also stimulate 26S activities but modify different subunit(s) and stimulate also the degradation of long-lived cell proteins. Both kinases enhance the selective degradation of aggregation-prone proteins that cause neurodegenerative diseases. These new mechanisms regulating proteolysis thus have clear physiological importance and therapeutic potential.
Collapse
|
18
|
Wang S, Lee MP, Jones S, Liu J, Waldhaus J. Mapping the regulatory landscape of auditory hair cells from single-cell multi-omics data. Genome Res 2021; 31:1885-1899. [PMID: 33837132 DOI: 10.1101/gr.271080.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Auditory hair cells transduce sound to the brain and in mammals these cells reside together with supporting cells in the sensory epithelium of the cochlea, called the organ of Corti. To establish the organ's delicate function during development and differentiation, spatiotemporal gene expression is strictly controlled by chromatin accessibility and cell type-specific transcription factors, jointly representing the regulatory landscape. Bulk-sequencing technology and cellular heterogeneity obscured investigations on the interplay between transcription factors and chromatin accessibility in inner ear development. To study the formation of the regulatory landscape in hair cells, we collected single-cell chromatin accessibility profiles accompanied by single-cell RNA data from genetically labeled murine hair cells and supporting cells after birth. Using an integrative approach, we predicted cell type-specific activating and repressing functions of developmental transcription factors. Furthermore, by integrating gene expression and chromatin accessibility datasets, we reconstructed gene regulatory networks. Then, using a comparative approach, 20 hair cell-specific activators and repressors, including putative downstream target genes, were identified. Clustering of target genes resolved groups of related transcription factors and was utilized to infer their developmental functions. Finally, the heterogeneity in the single-cell data allowed us to spatially reconstruct transcriptional as well as chromatin accessibility trajectories, indicating that gradual changes in the chromatin accessibility landscape were lagging behind the transcriptional identity of hair cells along the organ's longitudinal axis. Overall, this study provides a strategy to spatially reconstruct the formation of a lineage specific regulatory landscape using a single-cell multi-omics approach.
Collapse
Affiliation(s)
- Shuze Wang
- University of Michigan, Kresge Hearing Research Institute
| | - Mary P Lee
- University of Michigan, Kresge Hearing Research Institute
| | - Scott Jones
- University of Michigan, Kresge Hearing Research Institute
| | | | - Joerg Waldhaus
- University of Michigan, Kresge Hearing Research Institute;
| |
Collapse
|
19
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Schuster A, Klein E, Neirinckx V, Knudsen AM, Fabian C, Hau AC, Dieterle M, Oudin A, Nazarov PV, Golebiewska A, Muller A, Perez-Hernandez D, Rodius S, Dittmar G, Bjerkvig R, Herold-Mende C, Klink B, Kristensen BW, Niclou SP. AN1-type zinc finger protein 3 (ZFAND3) is a transcriptional regulator that drives Glioblastoma invasion. Nat Commun 2020; 11:6366. [PMID: 33311477 PMCID: PMC7732990 DOI: 10.1038/s41467-020-20029-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/04/2020] [Indexed: 01/12/2023] Open
Abstract
The infiltrative nature of Glioblastoma (GBM), the most aggressive primary brain tumor, critically prevents complete surgical resection and masks tumor cells behind the blood brain barrier reducing the efficacy of systemic treatment. Here, we use a genome-wide interference screen to determine invasion-essential genes and identify the AN1/A20 zinc finger domain containing protein 3 (ZFAND3) as a crucial driver of GBM invasion. Using patient-derived cellular models, we show that loss of ZFAND3 hampers the invasive capacity of GBM, whereas ZFAND3 overexpression increases motility in cells that were initially not invasive. At the mechanistic level, we find that ZFAND3 activity requires nuclear localization and integral zinc-finger domains. Our findings indicate that ZFAND3 acts within a nuclear protein complex to activate gene transcription and regulates the promoter of invasion-related genes such as COL6A2, FN1, and NRCAM. Further investigation in ZFAND3 function in GBM and other invasive cancers is warranted. Glioblastomas (GBMs) are highly invasive brain tumours, but the underlying mechanisms of GBM invasion are unclear. Here, the authors perform an RNA interference screen and identify AN1-Type Zinc Finger protein 3 (ZFAND3) as a regulator of GBM invasion, and find that it acts through the transcriptional regulation of invasion-related genes.
Collapse
Affiliation(s)
- Anne Schuster
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Eliane Klein
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Virginie Neirinckx
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Arnon Møldrup Knudsen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Carina Fabian
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ann-Christin Hau
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Monika Dieterle
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anais Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Petr V Nazarov
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Arnaud Muller
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Sophie Rodius
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Gunnar Dittmar
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Rolf Bjerkvig
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg.,Functional Tumor Genetics, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg. .,Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
21
|
Vainshtein A, Sandri M. Signaling Pathways That Control Muscle Mass. Int J Mol Sci 2020; 21:ijms21134759. [PMID: 32635462 PMCID: PMC7369702 DOI: 10.3390/ijms21134759] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The loss of skeletal muscle mass under a wide range of acute and chronic maladies is associated with poor prognosis, reduced quality of life, and increased mortality. Decades of research indicate the importance of skeletal muscle for whole body metabolism, glucose homeostasis, as well as overall health and wellbeing. This tissue’s remarkable ability to rapidly and effectively adapt to changing environmental cues is a double-edged sword. Physiological adaptations that are beneficial throughout life become maladaptive during atrophic conditions. The atrophic program can be activated by mechanical, oxidative, and energetic distress, and is influenced by the availability of nutrients, growth factors, and cytokines. Largely governed by a transcription-dependent mechanism, this program impinges on multiple protein networks including various organelles as well as biosynthetic and quality control systems. Although modulating muscle function to prevent and treat disease is an enticing concept that has intrigued research teams for decades, a lack of thorough understanding of the molecular mechanisms and signaling pathways that control muscle mass, in addition to poor transferability of findings from rodents to humans, has obstructed efforts to develop effective treatments. Here, we review the progress made in unraveling the molecular mechanisms responsible for the regulation of muscle mass, as this continues to be an intensive area of research.
Collapse
Affiliation(s)
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padua, Italy
- Department of Biomedical Science, University of Padua, via G. Colombo 3, 35100 Padua, Italy
- Myology Center, University of Padua, via G. Colombo 3, 35100 Padova, Italy
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
22
|
Tuntevski K, Hajira A, Nichols A, Alway SE, Mohamed JS. Muscle-specific sirtuin1 gain-of-function ameliorates skeletal muscle atrophy in a pre-clinical mouse model of cerebral ischemic stroke. FASEB Bioadv 2020; 2:387-397. [PMID: 32676579 PMCID: PMC7354693 DOI: 10.1096/fba.2020-00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/03/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke causes severe long-term disability in patients due to the induction of skeletal muscle atrophy and weakness, but the molecular mechanisms remain elusive. Using a preclinical mouse model of cerebral ischemic stroke, we show that stroke robustly induced atrophy and significantly decreased SirT1 gene expression in the PTA (paralytic tibialis anterior) muscle. Muscle-specific SirT1 gain-of-function mice are resistant to stroke-induced muscle atrophy and this protective effect requires its deacetylase activity. Although SirT1 counteracts the stroke-induced up-regulation of atrogin1, MuRF1 and ZNF216 genes, we found a mechanism that regulates the ZNF216 gene transcription in post-stroke muscle. Stroke increased the expression of the ZNF216 gene in PTA muscle by activating PARP-1, which binds on the ZNF216 promoter. The SirT1 gain-of-function or SirT1 activator, resveratrol, reversed the PARP-1-mediated up-regulation of ZNF216 expression at the promoter level, suggesting a contradicted role for SirT1 and PARP-1 in the regulation of ZNF216 gene. Overall, our study for the first-time demonstrated that (a) stroke causes muscle atrophy, in part, through the SirT1/PARP-1/ZNF216 signaling mechanism; (b) SirT1 can block muscle atrophy in response to different types of atrophic signals via different signaling mechanisms; and (c) SirT1 is a critical regulator of post-stroke muscle mass.
Collapse
Affiliation(s)
- Kiril Tuntevski
- Department of Human PerformanceWest Virginia University School of MedicineMorgantownWVUSA
| | - Ameena Hajira
- Department of Human PerformanceWest Virginia University School of MedicineMorgantownWVUSA
| | - Austin Nichols
- Department of Human PerformanceWest Virginia University School of MedicineMorgantownWVUSA
| | - Stephen E. Alway
- Department of Human PerformanceWest Virginia University School of MedicineMorgantownWVUSA
- Laboratory of Muscle Biology and SarcopeniaDepartment of Physical TherapyCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
- Center for Muscle, Metabolism and NeuropathologyDivision of Rehabilitation SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
| | - Junaith S. Mohamed
- Department of Human PerformanceWest Virginia University School of MedicineMorgantownWVUSA
- Laboratory of Muscle and NerveDepartment of Diagnostic and Health SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
- Center for Muscle, Metabolism and NeuropathologyDivision of Rehabilitation SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
23
|
Ehmsen JT, Höke A. Cellular and molecular features of neurogenic skeletal muscle atrophy. Exp Neurol 2020; 331:113379. [PMID: 32533969 DOI: 10.1016/j.expneurol.2020.113379] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
Neurogenic atrophy refers to the loss of muscle mass and function that results directly from injury or disease of the peripheral nervous system. Individuals with neurogenic atrophy may experience reduced functional status and quality of life and, in some circumstances, reduced survival. Distinct pathological findings on muscle histology can aid in diagnosis of a neurogenic cause for muscle dysfunction, and provide indicators for the chronicity of denervation. Denervation induces pleiotypic responses in skeletal muscle, and the molecular mechanisms underlying neurogenic muscle atrophy appear to share common features with other causes of muscle atrophy, including activation of FOXO transcription factors and corresponding induction of ubiquitin-proteasomal and lysosomal degradation. In this review, we provide an overview of histologic features of neurogenic atrophy and a summary of current understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Jeffrey T Ehmsen
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Muthuramalingam P, Jeyasri R, Selvaraj A, Kalaiyarasi D, Aruni W, Pandian STK, Ramesh M. Global transcriptome analysis of novel stress associated protein ( SAP) genes expression dynamism of combined abiotic stresses in Oryza sativa (L.). J Biomol Struct Dyn 2020; 39:2106-2117. [PMID: 32212961 DOI: 10.1080/07391102.2020.1747548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Genes encoding proteins with A20/AN1 zinc-finger domains, belonging to the stress associated protein (SAP) gene family, are present in all eukaryotes and play a decisive role in plant response to diverse physiological and molecular activities particularly on biotic and abiotic stresses (AbS). In this first and foremost study, global transcriptome analysis of members of the SAP gene family was carried out in C3 model-Oryza sativa (OsSAP) aiming at the identification of OsSAP genes activated in response to unique or Combined AbS (CAbS). Based on the available spatio-temporal and phytohormonal RNA-Seq expression profile datasets, nine OsSAP genes were filtered out and identified by a differential expression signature noted in various tissues as well as plant hormones. Comparative genome ideogram of OsSAP genes confirmed the orthologous collinearity with C4 panicoid genomes. Interactome of these genes, revealed the molecular cross-talks of OsSAP. Thus, the computational expression signature of OsSAP genes led to a better understanding of gene dynamism in diverse developmental tissues/organs. Transcriptional regulation analysis of key OsSAP genes in response to stress (drought and salinity) suggested the novel role of OsSAP1, OsSAP2, OsSAP5, OsSAP7, OsSAP8 and OsSAP11 in AbS. Altogether, the study provides deeper insights on molecular characteristics of OsSAP genes, which could be deployed further to decipher their precise functional roles in AbS responses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Dhamodharan Kalaiyarasi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India.,Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Wilson Aruni
- Division of Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | | | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
25
|
Finley D, Prado MA. The Proteasome and Its Network: Engineering for Adaptability. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033985. [PMID: 30833452 DOI: 10.1101/cshperspect.a033985] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasome, the most complex protease known, degrades proteins that have been conjugated to ubiquitin. It faces the unique challenge of acting enzymatically on hundreds and perhaps thousands of structurally diverse substrates, mechanically unfolding them from their native state and translocating them vectorially from one specialized compartment of the enzyme to another. Moreover, substrates are modified by ubiquitin in myriad configurations of chains. The many unusual design features of the proteasome may have evolved in part to endow this enzyme with a robust ability to process substrates regardless of their identity. The proteasome plays a major role in preserving protein homeostasis in the cell, which requires adaptation to a wide variety of stress conditions. Modulation of proteasome function is achieved through a large network of proteins that interact with it dynamically, modify it enzymatically, or fine-tune its levels. The resulting adaptability of the proteasome, which is unique among proteases, enables cells to control the output of the ubiquitin-proteasome pathway on a global scale.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
26
|
Zheng Y, Yu K, Huang C, Liu L, Zhao H, Huo M, Zhang J. Integrated bioinformatics analysis reveals role of the LINC01093/miR-96-5p/ZFAND5/NF-κB signaling axis in hepatocellular carcinoma. Exp Ther Med 2019; 18:3853-3860. [PMID: 31641376 PMCID: PMC6796351 DOI: 10.3892/etm.2019.8046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant health burden worldwide and its pathogenesis remains to be fully elucidated. One of the means by which long non-coding (lnc)RNAs regulate gene expression is by interacting with micro (mi)RNAs and acting as competing endogenous (ce)RNAs. lncRNAs have important roles in various diseases. The aim of the present study was to examine the potential roles of lncRNAs in HCC. The RNA expression profiles of 21 paired tissues of HCC and adjacent non-tumor tissues were obtained from the Gene Expression Omnibus database. The differentially expressed RNAs were analyzed using the DESeq package in R. Expression validation and survival analysis of selected RNAs were performed using Gene Expression Profile Interactive Analysis and/or Kaplan-Meier Plotter. The target genes of the miRNAs were predicted using lncBase or TargetScan. Functional analyses were performed using the Database for Annotation, Visualization and Integrated Discovery, and regulatory networks were determined using Cytoscape. Long intergenic non-protein coding RNA 1093 (LINC01093) was identified as one of the most significantly downregulated lncRNAs in HCC tissues. Downregulated expression of LINC01093 was associated with poor prognosis. A ceRNA network involving LINC01093, miR-96-5p and zinc finger AN1-type containing 5 (ZFAND5) was established. According to functional analyses, NF-κB signaling was implicated in the regulatory network for HCC. The present study revealed that a LINC01093/miR-96-5p/ZFAND5/NF-κB signaling axis may have an important role in the pathogenesis of HCC, and further investigation of this axis may provide novel insight into the development and progression of HCC.
Collapse
Affiliation(s)
- Yahui Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chong Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Lu Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hao Zhao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Meisi Huo
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jubo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
27
|
Ben Saad R, Safi H, Ben Hsouna A, Brini F, Ben Romdhane W. Functional domain analysis of LmSAP protein reveals the crucial role of the zinc-finger A20 domain in abiotic stress tolerance. PROTOPLASMA 2019; 256:1333-1344. [PMID: 31062172 DOI: 10.1007/s00709-019-01390-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 05/13/2023]
Abstract
Stress-associated proteins (SAPs), such as A20/AN1 zinc-finger domain-containing proteins, have emerged as a novel class of proteins involved in abiotic stress signaling, and they are important candidates for preventing the loss of yield caused by exposure to environmental stresses. In a previous report, it was found that the ectopic-expression of Lobularia maritima stress-associated protein, LmSAP, conferred tolerance to abiotic and heavy metal stresses in transgenic tobacco plants. This study aimed to investigate the functions of the A20 and AN1 domains of LmSAP in salt and osmotic stress tolerance. To this end, in addition to the full-length LmSAP gene, we have generated three LmSAP-truncated forms (LmSAPΔA20, LmSAPΔAN1, and LmSAPΔA20-ΔAN1). Heterologous expression in Saccharomyces cerevisiae of different truncated forms of LmSAP revealed that the A20 domain is essential to increase cell tolerance to salt, ionic, and osmotic stresses. Transgenic tobacco plants overexpressing LmSAP and LmSAPΔAN1 constructs exhibited higher tolerance to salt and osmotic stresses in comparison to the non-transgenic plants (NT) and lines transformed with LmSAPΔA20 and LmSAPΔA20-ΔAN1 constructs. Similarly, transgenic plants overexpressing the full-length LmSAP gene and LmSAPΔAN1 truncated domain maintained higher superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) enzymatic activities due to the high expression levels of the genes encoding these key antioxidant enzymes, MnSOD, POD, and CAT1, as well as accumulated lower levels of malondialdehyde (MDA) under salt and osmotic stresses compared to NT and LmSAPΔA20 and LmSAPΔA20-ΔAN1 forms. These findings provide insights into the pivotal role of A20 and AN1 domains of LmSAP protein in salt and osmotic stress tolerance.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Hela Safi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
28
|
Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019; 6:56. [PMID: 31482094 PMCID: PMC6710370 DOI: 10.3389/fmolb.2019.00056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.
Collapse
Affiliation(s)
- Sabine Schipper-Krom
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alicia Sanz Sanz
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emma J. van Bodegraven
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Stress associated protein from Lobularia maritima: Heterologous expression, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in beef meat. Int J Biol Macromol 2019; 132:888-896. [DOI: 10.1016/j.ijbiomac.2019.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022]
|
30
|
Seaborne RA, Hughes DC, Turner DC, Owens DJ, Baehr LM, Gorski P, Semenova EA, Borisov OV, Larin AK, Popov DV, Generozov EV, Sutherland H, Ahmetov II, Jarvis JC, Bodine SC, Sharples AP. UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. J Physiol 2019; 597:3727-3749. [PMID: 31093990 DOI: 10.1113/jp278073] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 01/03/2023] Open
Abstract
KEY POINTS We have recently identified that a HECT domain E3 ubiquitin ligase, named UBR5, is altered epigenetically (via DNA methylation) after human skeletal muscle hypertrophy, where its gene expression is positively correlated with increasing lean leg mass after training and retraining. In the present study we extensively investigate this novel and uncharacterised E3 ubiquitin ligase (UBR5) in skeletal muscle atrophy, recovery from atrophy and injury, anabolism and hypertrophy. We demonstrated that UBR5 was epigenetically altered via DNA methylation during recovery from atrophy. We also determined that UBR5 was alternatively regulated versus well characterised E3 ligases, MuRF1/MAFbx, at the gene expression level during atrophy, recovery from atrophy and hypertrophy. UBR5 also increased at the protein level during recovery from atrophy and injury, hypertrophy and during human muscle cell differentiation. Finally, in humans, genetic variations of the UBR5 gene were strongly associated with larger fast-twitch muscle fibres and strength/power performance versus endurance/untrained phenotypes. ABSTRACT We aimed to investigate a novel and uncharacterized E3 ubiquitin ligase in skeletal muscle atrophy, recovery from atrophy/injury, anabolism and hypertrophy. We demonstrated an alternate gene expression profile for UBR5 vs. well characterized E3-ligases, MuRF1/MAFbx, where, after atrophy evoked by continuous-low-frequency electrical-stimulation in rats, MuRF1/MAFbx were both elevated, yet UBR5 was unchanged. Furthermore, after recovery of muscle mass post TTX-induced atrophy in rats, UBR5 was hypomethylated and increased at the gene expression level, whereas a suppression of MuRF1/MAFbx was observed. At the protein level, we also demonstrated a significant increase in UBR5 after recovery of muscle mass from hindlimb unloading in both adult and aged rats, as well as after recovery from atrophy evoked by nerve crush injury in mice. During anabolism and hypertrophy, UBR5 gene expression increased following acute loading in three-dimensional bioengineered mouse muscle in vitro, and after chronic electrical stimulation-induced hypertrophy in rats in vivo, without increases in MuRF1/MAFbx. Additionally, UBR5 protein abundance increased following functional overload-induced hypertrophy of the plantaris muscle in mice and during differentiation of primary human muscle cells. Finally, in humans, genetic association studies (>700,000 single nucleotide polymorphisms) demonstrated that the A alleles of rs10505025 and rs4734621 single nucleotide polymorphisms in the UBR5 gene were strongly associated with larger cross-sectional area of fast-twitch muscle fibres and favoured strength/power vs. endurance/untrained phenotypes. Overall, we suggest that: (i) UBR5 comprises a novel E3 ubiquitin ligase that is inversely regulated to MuRF1/MAFbx; (ii) UBR5 is epigenetically regulated; and (iii) UBR5 is elevated at both the gene expression and protein level during recovery from skeletal muscle atrophy and hypertrophy.
Collapse
Affiliation(s)
- Robert A Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David C Hughes
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Daniel C Turner
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Leslie M Baehr
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Piotr Gorski
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Hazel Sutherland
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.,Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jonathan C Jarvis
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sue C Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| |
Collapse
|
31
|
Skeletal Muscle Cell Oxidative Stress as a Possible Therapeutic Target in a Denervation-Induced Experimental Sarcopenic Model. Spine (Phila Pa 1976) 2019; 44:E446-E455. [PMID: 30299418 DOI: 10.1097/brs.0000000000002891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A basic study using a rodent model of sarcopenia. OBJECTIVE To elucidate the contribution of oxidative stress to muscle degeneration and the efficacy of antioxidant treatment for sarcopenia using an animal model of neurogenic sarcopenia. SUMMARY OF BACKGROUND DATA Oxidative stress has been reported to be involved in a number of pathologies, including musculoskeletal disorders. Its relationship with sarcopenia, one of the potential origins of lower back pain, however, is not yet fully understood. METHODS Myoblast cell lines (C2C12) were treated with H2O2, an oxidative stress inducer, and N-acetyl-L-cysteine (NAC), an antioxidant. Apoptotic effects induced by oxidative stress and the antioxidant effects of NAC were assessed by western blotting, immunocytochemistry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assays. An animal model of sarcopenia was produced via axotomy of the sciatic nerves to induce muscle atrophy. Twenty-four male Sprague-Dawley rats were divided into sham, sham+NAC, axotomy, and axotomy+NAC groups. Rats were provided water only or water containing NAC (1 g/L) for 4 weeks. The gastrocnemius muscle was isolated and stained with hematoxylin and eosin (H&E) 2 weeks after axotomy, from which muscle cells were harvested and protein extracted for evaluation. RESULTS Mitogen-activated protein kinases (MAPKs) were significantly activated by H2O2 treatment in C2C12 cells, which was ameliorated by NAC pretreatment. Furthermore, H2O2 induced apoptosis and death of C2C12 cells, which was prevented by NAC pretreatment. The weight of the gastrocnemius muscle was reduced in the axotomy group, which was prevented by NAC administration. Lastly, although muscle specimens from the axotomy group showed greater reductions in muscle fiber, the oral administration of NAC significantly inhibited amyotrophy via antioxidant effects. CONCLUSION The current in vitro and in vivo study demonstrated the possible involvement of oxidative stress in sarcopenic pathology. NAC represents a potential anti-sarcopenic drug candidate, preventing amyotrophy and fatty degeneration. LEVEL OF EVIDENCE 4.
Collapse
|
32
|
26S Proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation. Proc Natl Acad Sci U S A 2019; 116:4228-4237. [PMID: 30782827 DOI: 10.1073/pnas.1809254116] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pharmacological agents that raise cAMP and activate protein kinase A (PKA) stimulate 26S proteasome activity, phosphorylation of subunit Rpn6, and intracellular degradation of misfolded proteins. We investigated whether a similar proteasome activation occurs in response to hormones and under various physiological conditions that raise cAMP. Treatment of mouse hepatocytes with glucagon, epinephrine, or forskolin stimulated Rpn6 phosphorylation and the 26S proteasomes' capacity to degrade ubiquitinated proteins and peptides. These agents promoted the selective degradation of short-lived proteins, which are misfolded and regulatory proteins, but not the bulk of cell proteins or lysosomal proteolysis. Proteasome activities and Rpn6 phosphorylation increased similarly in working hearts upon epinephrine treatment, in skeletal muscles of exercising humans, and in electrically stimulated rat muscles. In WT mouse kidney cells, but not in cells lacking PKA, treatment with antidiuretic hormone (vasopressin) stimulated within 5-minutes proteasomal activity, Rpn6 phosphorylation, and the selective degradation of short-lived cell proteins. In livers and muscles of mice fasted for 12-48 hours cAMP levels, Rpn6 phosphorylation, and proteasomal activities increased without any change in proteasomal content. Thus, in vivo cAMP-PKA-mediated proteasome activation is a common cellular response to diverse endocrine stimuli and rapidly enhances the capacity of target tissues to degrade regulatory and misfolded proteins (e.g., proteins damaged upon exercise). The increased destruction of preexistent regulatory proteins may help cells adapt their protein composition to new physiological conditions.
Collapse
|
33
|
McCourt JL, Talsness DM, Lindsay A, Arpke RW, Chatterton PD, Nelson DM, Chamberlain CM, Olthoff JT, Belanto JJ, McCourt PM, Kyba M, Lowe DA, Ervasti JM. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy. Hum Mol Genet 2019; 27:451-462. [PMID: 29194514 DOI: 10.1093/hmg/ddx414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/17/2017] [Indexed: 01/03/2023] Open
Abstract
Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo.
Collapse
Affiliation(s)
| | - Dana M Talsness
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | - Robert W Arpke
- Department of Pediatrics University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | | | - D'anna M Nelson
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | - John T Olthoff
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | | | - Michael Kyba
- Department of Pediatrics University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Dawn A Lowe
- Department of Physical Medicine and Rehabilitation
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics
| |
Collapse
|
34
|
Lee D, Takayama S, Goldberg AL. ZFAND5/ZNF216 is an activator of the 26S proteasome that stimulates overall protein degradation. Proc Natl Acad Sci U S A 2018; 115:E9550-E9559. [PMID: 30254168 PMCID: PMC6187164 DOI: 10.1073/pnas.1809934115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
ZFAND5/ZNF216, a member of the zinc finger AN1-type domain family, is abundant in heart and brain, but is induced in skeletal muscle during atrophy (although not in proteotoxic stress). Because mice lacking ZFAND5 exhibit decreased atrophy, a role in stimulating protein breakdown seemed likely. Addition of recombinant ZFAND5 to purified 26S proteasomes stimulated hydrolysis of ubiquitinated proteins, short peptides, and ATP. Mutating its C-terminal AN1 domain abolished the stimulation of proteasomal peptidase activity. Mutating its N-terminal zinc finger A20 domain, which binds ubiquitin chains, prevented the enhanced degradation of ubiquitinated proteins without affecting peptidase activity. Mouse embryonic fibroblast (MEF) cells lacking ZFAND5 had lower rates of protein degradation and proteasomal activity than WT MEFs. ZFAND5 addition to cell lysates stimulated proteasomal activity and protein degradation. Unlike other proteasome regulators, ZFAND5 enhances multiple 26S activities and overall cellular protein breakdown.
Collapse
Affiliation(s)
- Donghoon Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
35
|
Chang L, Chang HH, Chang JC, Lu HC, Wang TT, Hsu DW, Tzean Y, Cheng AP, Chiu YS, Yeh HH. Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity. PLoS Pathog 2018; 14:e1007288. [PMID: 30212572 PMCID: PMC6155556 DOI: 10.1371/journal.ppat.1007288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/25/2018] [Accepted: 08/21/2018] [Indexed: 12/30/2022] Open
Abstract
Salicylic acid (SA) is a key phytohormone that mediates a broad spectrum of resistance against a diverse range of viruses; however, the downstream pathway of SA governed antiviral immune response remains largely to be explored. Here, we identified an orchid protein containing A20 and AN1 zinc finger domains, designated Pha13. Pha13 is up-regulated upon virus infection, and the transgenic monocot orchid and dicot Arabidopsis overexpressing orchid Pha13 conferred greater resistance to different viruses. In addition, our data showed that Arabidopsis homolog of Pha13, AtSAP5, is also involved in virus resistance. Pha13 and AtSAP5 are early induced by exogenous SA treatment, and participate in the expression of SA-mediated immune responsive genes, including the master regulator gene of plant immunity, NPR1, as well as NPR1-independent virus defense genes. SA also induced the proteasome degradation of Pha13. Functional domain analysis revealed that AN1 domain of Pha13 is involved in expression of orchid NPR1 through its AN1 domain, whereas dual A20/AN1 domains orchestrated the overall virus resistance. Subcellular localization analysis suggested that Pha13 can be found localized in the nucleus. Self-ubiquitination assay revealed that Pha13 confer E3 ligase activity, and the main E3 ligase activity was mapped to the A20 domain. Identification of Pha13 interacting proteins and substrate by yeast two-hybrid screening revealed mainly ubiquitin proteins. Further detailed biochemical analysis revealed that A20 domain of Pha13 binds to various polyubiquitin chains, suggesting that Pha13 may interact with multiple ubiquitinated proteins. Our findings revealed that Pha13 serves as an important regulatory hub in plant antiviral immunity, and uncover a delicate mode of immune regulation through the coordination of A20 and/or AN1 domains, as well as through the modulation of E3 ligase and ubiquitin chain binding activity of Pha13.
Collapse
Affiliation(s)
- Li Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ho-Hsiung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jui-Che Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Chia Lu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Tan-Tung Wang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yuh Tzean
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - An-Po Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Shu Chiu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Isolation of multi-metal tolerant ubiquitin fusion protein from metal polluted soil by metatranscriptomic approach. J Microbiol Methods 2018; 152:119-125. [PMID: 30077694 DOI: 10.1016/j.mimet.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022]
Abstract
Release of heavy metals into the soil pose a significant threat to the environment and public health because of their toxicity accumulation in the food chain and persistence in nature. The potential of soil microbial diversity of cadmium (Cd) contaminated site was exploited through functional metatranscriptomics by construction of cDNA libraries A (0.1-0.5 kb), B (0.5-1.0 kb), and C (1-4 kb) of variable size, from the eukaryotic mRNA. The cDNA library B was further screened for cadmium tolerant transcripts through yeast complementation system. We are reporting one of the transformants ycf1ΔPLBe1 capable of tolerating high concentrations of Cd (40 μM - 80 μM). Sequence analysis revealed that PLBe1 cDNA showed homology with ubiquitin domain containing protein fused with AN1 type zinc finger protein of Acanthameoba castellani. Further, this cDNA was tested for its tolerance towards other heavy metals such as copper (Cu), zinc (Zn) and cobalt (Co). Functional complementation assay of cDNA PLBe1 showed a range of tolerance towards copper (150 μM - 300 μM), zinc (10 mM - 12 mM) and cobalt (2 mM - 4 mM). This study promulgates PLBe1 as credible member of multi-metal tolerant gene in the eukaryotic soil microbial community and can be used as potential member to revitalise the heavy metal contaminated sites or can be used as a biomarker to detect heavy metal contamination in the soil environment.
Collapse
|
37
|
Li J, Wang Z, Qiu W, Yang JJ, Wang Q, Chen S, Pan H. The effect of interaction between EtOH dosage and exposure time on gene expression in DPSC. Genomics 2018; 111:500-507. [PMID: 29596963 DOI: 10.1016/j.ygeno.2018.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/11/2018] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
Alcohol (EtOH) dosage and exposure time can affect gene expression. However, whether there exists synergistic effect is unknown. Here, we analyzed the hDPSC gene microarray dataset GSE57255 downloaded from Gene Expression Omnibus and found that the interaction between EtOH dosage and exposure time on gene expression are statistically significant for two probes: 201917_s_at near gene SLC25A36 and 217649_at near gene ZFAND5. GeneMania showed that SLC25A36 and ZFAND5 were related to 20 genes, three of which had alcohol-related functions. WebGestalt revealed that the 22 genes were enriched in 10 KEGG pathways, four of which are related to alcoholic diseases. We explored the possible nonlinear interaction effect and got 172 gene probes with significant p-values. However, no significantly enriched pathways based on the 172 probes were detected. Our analyses indicated a possible molecular mechanism that could help explain why alcohol consumption has both deleterious and beneficial effects on human health.
Collapse
Affiliation(s)
- Jianqiang Li
- School of Software Engineering, Beijing University of Technology, Beijing, China
| | - Zhirui Wang
- School of Software Engineering, Beijing University of Technology, Beijing, China
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Ji-Jiang Yang
- Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China.
| | - Qing Wang
- Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
| | - Shi Chen
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Hui Pan
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
38
|
Ben Saad R, Farhat-Khemekhem A, Ben Halima N, Ben Hamed K, Brini F, Saibi W. The LmSAP gene isolated from the halotolerant Lobularia maritima improves salt and ionic tolerance in transgenic tobacco lines. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:378-391. [PMID: 32290960 DOI: 10.1071/fp17202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/29/2017] [Indexed: 06/11/2023]
Abstract
The A20/AN1 zinc-finger domain-containing proteins of the stress-associated proteins (SAPs) family are fast emerging as potential candidates for biotechnological approaches to improve abiotic stress tolerance in plants. We identified LmSAP, one of the SAPs genes in Lobularia maritima (L.) Desv., a halophyte brassicaceae, through its transcript accumulation in response to salinity and ionic stresses. Sequence homology analysis revealed that LmSAP contains two conserved zinc-finger domains A20 and AN1. Phylogeny analyses showed that LmSAP exhibited high amino acid sequence identity to other plant SAPs. Heterologous expression of LmSAP in yeast increased cell tolerance to salt and osmotic stress. In addition, the overexpression of LmSAP conferred high salt and ionic tolerance to transgenic tobacco plants. Transgenic tobacco seedlings showed higher survival rates and antioxidant activities under salt and ionic stresses. Enhanced antioxidant activities paralleled lower malondialdehyde and superoxide anion O2- levels in the LmSAP transgenic seedlings. Overall, our results suggest that overexpression of LmSAP enhanced salt tolerance by maintaining ionic balance and limiting oxidative and osmotic stresses.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| | - Ameny Farhat-Khemekhem
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax - Tunisia
| | - Nihed Ben Halima
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| | - Karim Ben Hamed
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| | - Walid Saibi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| |
Collapse
|
39
|
Zhang N, Yin Y, Liu X, Tong S, Xing J, Zhang Y, Pudake RN, Izquierdo EM, Peng H, Xin M, Hu Z, Ni Z, Sun Q, Yao Y. The E3 Ligase TaSAP5 Alters Drought Stress Responses by Promoting the Degradation of DRIP Proteins. PLANT PHYSIOLOGY 2017; 175:1878-1892. [PMID: 29089392 PMCID: PMC5717742 DOI: 10.1104/pp.17.01319] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 05/22/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana) plants growing under normal conditions, DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) is present at low levels because it is ubiquitinated and destabilized by DREB2A INTERACTING PROTEIN1 (DRIP1) and DRIP2 through 26S proteasome-mediated proteolysis. Drought stress counteracts the ubiquitination and proteolysis of DREB2A, thus allowing the accumulation of sufficient amounts of DREB2A protein to activate downstream gene expression. The mechanisms leading to drought stress-mediated DREB2A accumulation are still unclear. Here, we report that the wheat (Triticum aestivum) TaSAP5 protein, which contains an A20/AN1 domain, acts as an E3 ubiquitin ligase to mediate DRIP degradation and thus increase DREB2A protein levels. Drought induces TaSAP5 expression in wheat, and TaSAP5 overexpression in Arabidopsis and wheat seedlings increased their drought tolerance, as measured by survival rate and grain yield under severe drought stress. TaSAP5 can interact with and ubiquitinate TaDRIP, as well as AtDRIP1 and AtDRIP2, leading to their subsequent degradation through the 26S proteasome pathway. Consistent with this, TaSAP5 overexpression enhances DRIP degradation and increases the levels of DREB2A protein and its downstream targets. These results suggest that TaSAP5 acts to link drought with DREB2A accumulation and illustrate the molecular mechanisms involved in this process.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yujing Yin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shaoming Tong
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yuan Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ramesh N Pudake
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Edenys Miranda Izquierdo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
40
|
Regulating protein breakdown through proteasome phosphorylation. Biochem J 2017; 474:3355-3371. [PMID: 28947610 DOI: 10.1042/bcj20160809] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
Abstract
The ubiquitin proteasome system degrades the great majority of proteins in mammalian cells. Countless studies have described how ubiquitination promotes the selective degradation of different cell proteins. However, there is a small but the growing literature that protein half-lives can also be regulated by post-translational modifications of the 26S proteasome. The present study reviews the ability of several kinases to alter proteasome function through subunit phosphorylation. For example, PKA (protein kinase A) and DYRK2 (dual-specificity tyrosine-regulated kinase 2) stimulate the proteasome's ability to degrade ubiquitinated proteins, peptides, and adenosine triphosphate, while one kinase, ASK1 (apoptosis signal-regulating kinase 1), inhibits proteasome function during apoptosis. Proteasome phosphorylation is likely to be important in regulating protein degradation because it occurs downstream from many hormones and neurotransmitters, in conditions that raise cyclic adenosine monophosphate or cyclic guanosine monophosphate levels, after calcium influx following synaptic depolarization, and during phases of the cell cycle. Beyond its physiological importance, pharmacological manipulation of proteasome phosphorylation has the potential to combat various diseases. Inhibitors of phosphodiesterases by activating PKA or PKG (protein kinase G) can stimulate proteasomal degradation of misfolded proteins that cause neurodegenerative or myocardial diseases and even reduce the associated pathology in mouse models. These observations are promising since in many proteotoxic diseases, aggregation-prone proteins impair proteasome function, and disrupt protein homeostasis. Conversely, preventing subunit phosphorylation by DYRK2 slows cell cycle progression and tumor growth. However, further research is essential to determine how phosphorylation of different subunits by these (or other) kinases alters the properties of this complex molecular machine and thus influence protein degradation rates.
Collapse
|
41
|
The Logic of the 26S Proteasome. Cell 2017; 169:792-806. [PMID: 28525752 DOI: 10.1016/j.cell.2017.04.023] [Citation(s) in RCA: 656] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/14/2022]
Abstract
The ubiquitin proteasome pathway is responsible for most of the protein degradation in mammalian cells. Rates of degradation by this pathway have generally been assumed to be determined by rates of ubiquitylation. However, recent studies indicate that proteasome function is also tightly regulated and determines whether a ubiquitylated protein is destroyed or deubiquitylated and survives longer. This article reviews recent advances in our understanding of the proteasome's multistep ATP-dependent mechanism, its biochemical and structural features that ensure efficient proteolysis and ubiquitin recycling while preventing nonselective proteolysis, and the regulation of proteasome activity by interacting proteins and subunit modifications, especially phosphorylation.
Collapse
|
42
|
Kang M, Lee S, Abdelmageed H, Reichert A, Lee HK, Fokar M, Mysore KS, Allen RD. Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway. PLANT, CELL & ENVIRONMENT 2017; 40:702-716. [PMID: 28039858 DOI: 10.1111/pce.12892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/19/2016] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana Stress Associated Protein 9 (AtSAP9) is a member of the A20/AN1 zinc finger protein family known to play important roles in plant stress responses and in the mammalian immune response. Although SAPs of several plant species were shown to be involved in abiotic stress responses, the underlying molecular mechanisms are largely unknown, and little is known about the involvement of SAPs in plant disease responses. Expression of SAP9 in Arabidopsis is up-regulated in response to dehydration, cold, salinity and abscisic acid (ABA), as well as pathogen infection. Constitutive expression of AtSAP9 in Arabidopsis leads to increased sensitivity to ABA and osmotic stress during germination and post-germinative development. Plants that overexpress AtSAP9 also showed increased susceptibility to infection by non-host pathogen Pseudomonas syringae pv. phaseolicola, indicating a potential role of AtSAP9 in disease resistance. AtSAP9 was found to interact with RADIATION SENSITIVE23d (Rad23d), a shuttle factor for the transport of ubiquitinated substrates to the proteasome, and it is co-localized with Rad23d in the nucleus. Thus, AtSAP9 may promote the protein degradation process by mediating the interaction of ubiquitinated targets with Rad23d. Taken together, these results indicate that AtSAP9 regulates abiotic and biotic stress responses, possibly via the ubiquitination/proteasome pathway.
Collapse
Affiliation(s)
- Miyoung Kang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Seonghee Lee
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
- Current address: Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Balm, FL, 33598, USA
| | - Haggag Abdelmageed
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Agricultural Botany, Cairo University, Giza, 12613, Egypt
| | - Angelika Reichert
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
- Weitkampweg 81, 49084, Osnabrück, Germany
| | - Hee-Kyung Lee
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Mohamed Fokar
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Randy D Allen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
- Weitkampweg 81, 49084, Osnabrück, Germany
| |
Collapse
|
43
|
Ubiquitinated proteins promote the association of proteasomes with the deubiquitinating enzyme Usp14 and the ubiquitin ligase Ube3c. Proc Natl Acad Sci U S A 2017; 114:E3404-E3413. [PMID: 28396413 DOI: 10.1073/pnas.1701734114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In mammalian cells, the 26S proteasomes vary in composition. In addition to the standard 28 subunits in the 20S core particle and 19 subunits in each 19S regulatory particle, a small fraction (about 10-20% in our preparations) also contains the deubiquitinating enzyme Usp14/Ubp6, which regulates proteasome activity, and the ubiquitin ligase, Ube3c/Hul5, which enhances proteasomal processivity. When degradation of ubiquitinated proteins in cells was inhibited, levels of Usp14 and Ube3c on proteasomes increased within minutes. Conversely, when protein ubiquitination was prevented, or when purified proteasomes hydrolyzed the associated ubiquitin conjugates, Usp14 and Ube3c dissociated rapidly (unlike other 26S subunits), but the inhibitor ubiquitin aldehyde slowed their dissociation. Recombinant Usp14 associated with purified proteasomes preferentially if they contained ubiquitin conjugates. In cells or extracts, adding Usp14 inhibitors (IU-1 or ubiquitin aldehyde) enhanced Usp14 and Ube3c binding further. Thus, in the substrate- or the inhibitor-bound conformations, Usp14 showed higher affinity for proteasomes and surprisingly enhanced Ube3c binding. Moreover, adding ubiquitinated proteins to cell extracts stimulated proteasome binding of both enzymes. Thus, Usp14 and Ube3c cycle together on and off proteasomes, and the presence of ubiquitinated substrates promotes their association. This mechanism enables proteasome activity to adapt to the supply of substrates.
Collapse
|
44
|
Lloret A, Conejero A, Leida C, Petri C, Gil-Muñoz F, Burgos L, Badenes ML, Ríos G. Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Sci Rep 2017; 7:332. [PMID: 28336950 PMCID: PMC5428470 DOI: 10.1038/s41598-017-00471-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/27/2017] [Indexed: 01/21/2023] Open
Abstract
We have identified a gene (PpSAP1) of Prunus persica coding for a stress-associated protein (SAP) containing Zn-finger domains A20 and AN1. SAPs have been described as regulators of the abiotic stress response in plant species, emerging as potential candidates for improvement of stress tolerance in plants. PpSAP1 was highly expressed in leaves and dormant buds, being down-regulated before bud dormancy release. PpSAP1 expression was moderately induced by water stresses and heat in buds. In addition, it was found that PpSAP1 strongly interacts with polyubiquitin proteins in the yeast two-hybrid system. The overexpression of PpSAP1 in transgenic plum plants led to alterations in leaf shape and an increase of water retention under drought stress. Moreover, we established that leaf morphological alterations were concomitant with a reduced cell size and down-regulation of genes involved in cell growth, such as GROWTH-REGULATING FACTOR (GRF)1-like, TONOPLAST INTRINSIC PROTEIN (TIP)-like, and TARGET OF RAPAMYCIN (TOR)-like. Especially, the inverse expression pattern of PpSAP1 and TOR-like in transgenic plum and peach buds suggests a role of PpSAP1 in cell expansion through the regulation of TOR pathway.
Collapse
Affiliation(s)
- Alba Lloret
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Ana Conejero
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Carmen Leida
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - César Petri
- Department of Plant Production, Instituto de Biotecnología Vegetal-Universidad Politécnita de Cartagena (IBV-UPCT), 30202, Cartagena, Murcia, Spain
| | - Francisco Gil-Muñoz
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Lorenzo Burgos
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, 30100, Murcia, Spain
| | - María Luisa Badenes
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|
45
|
Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L. Mol Genet Genomics 2017; 292:619-633. [PMID: 28247040 DOI: 10.1007/s00438-017-1295-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/30/2017] [Indexed: 01/11/2023]
Abstract
Crocus sativus belongs to Iridaceae family and is the only plant species which produces apocarotenoids like crocin, picrocrocin, and safranal in significant quantities. Besides their organoleptic properties, Crocus apocarotenoids have been found to possess remarkable pharmacological potential. Although apocarotenoid biosynthetic pathway has been worked out to a great degree, but the mechanism that regulates the tissue and developmental stage-specific production of Crocus apocarotenoids is not known. To identify the genes regulating apocarotenoid biosynthesis in Crocus, transcriptome wide identification of zinc-finger transcription factors was undertaken. 81 zinc-finger transcription factors were identified which grouped into eight subfamilies. C2H2, C3H, and AN20/AN1 were the major subfamilies with 29, 20, and 14 members, respectively. Expression profiling revealed CsSAP09 as a potential candidate for regulation of apocarotenoid biosynthesis. CsSAP09 was found to be highly expressed in stigma at anthesis stage corroborating with the accumulation pattern of apocarotenoids. CsSAP09 was nuclear localized and activated reporter gene transcription in yeast. It was highly induced in response to oxidative, salt and dehydration stresses, ABA and methyl jasmonate. Furthermore, upstream region of CsSAP09 was found to contain stress and light responsive elements. To our knowledge, this is the first report on the study of a gene family in C. sativus and may provide basic insights into the putative role of zinc finger genes. It may also serve as a valuable resource for functional characterization of these genes aimed towards unraveling their role in regulation of apocarotenoid biosynthesis.
Collapse
|
46
|
Mincione G, Di Marcantonio MC, Tarantelli C, Savino L, Ponti D, Marchisio M, Lanuti P, Sancilio S, Calogero A, Di Pietro R, Muraro R. Identification of the zinc finger 216 (ZNF216) in human carcinoma cells: a potential regulator of EGFR activity. Oncotarget 2016; 7:74947-74965. [PMID: 27732953 PMCID: PMC5342714 DOI: 10.18632/oncotarget.12509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/25/2016] [Indexed: 02/05/2023] Open
Abstract
Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling.
Collapse
Affiliation(s)
- Gabriella Mincione
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio” Chieti-Pescara, Italy
- Center for Aging Science and Translational Medicine (CeSI-MeT), Chieti, Italy
| | | | - Chiara Tarantelli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio” Chieti-Pescara, Italy
- Current Address: Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
| | - Luca Savino
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio” Chieti-Pescara, Italy
| | - Donatella Ponti
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Marco Marchisio
- Center for Aging Science and Translational Medicine (CeSI-MeT), Chieti, Italy
- Department of Medicine and Ageing Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Paola Lanuti
- Center for Aging Science and Translational Medicine (CeSI-MeT), Chieti, Italy
- Department of Medicine and Ageing Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Silvia Sancilio
- Department of Pharmacy, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Antonella Calogero
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, University “G. d'Annunzio”, Chieti-Pescara, Italy
| | - Raffaella Muraro
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio” Chieti-Pescara, Italy
- Center for Aging Science and Translational Medicine (CeSI-MeT), Chieti, Italy
| |
Collapse
|
47
|
Kothari KS, Dansana PK, Giri J, Tyagi AK. Rice Stress Associated Protein 1 (OsSAP1) Interacts with Aminotransferase (OsAMTR1) and Pathogenesis-Related 1a Protein (OsSCP) and Regulates Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:1057. [PMID: 27486471 PMCID: PMC4949214 DOI: 10.3389/fpls.2016.01057] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/06/2016] [Indexed: 05/19/2023]
Abstract
Stress associated proteins (SAPs) are the A20/AN1 zinc-finger containing proteins which can regulate the stress signaling in plants. The rice SAP protein, OsSAP1 has been shown to confer abiotic stress tolerance to plants, when overexpressed, by modulating the expression of endogenous stress-related genes. To further understand the mechanism of OsSAP1-mediated stress signaling, OsSAP1 interacting proteins were identified using yeast two-hybrid analysis. Two novel proteins, aminotransferase (OsAMTR1) and a SCP/TAPS or pathogenesis-related 1 class of protein (OsSCP) were found to interact with OsSAP1. The genes encoding OsAMTR1 and OsSCP were stress-responsive and showed higher expression upon abiotic stress treatments. The role of OsAMTR1 and OsSCP under stress was analyzed by overexpressing them constitutively in Arabidopsis and responses of transgenic plants were assessed under salt and water-deficit stress. The OsAMTR1 and OsSCP overexpressing plants showed higher seed germination, root growth and fresh weight than wild-type plants under stress conditions. Overexpression of OsAMTR1 and OsSCP affected the expression of many known stress-responsive genes which were not affected by the overexpression of OsSAP1. Moreover, the transcript levels of OsSCP and OsAMTR1 were also unaffected by the overexpression of OsSAP1. Hence, it was concluded that OsSAP1 regulates the stress responsive signaling by interacting with these proteins which further regulate the downstream stress responsive gene expression.
Collapse
Affiliation(s)
| | - Prasant K. Dansana
- Department of Plant Molecular Biology, University of Delhi South Campus, New DelhiIndia
| | - Jitender Giri
- National Institute of Plant Genome Research, New DelhiIndia
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research, New DelhiIndia
- Department of Plant Molecular Biology, University of Delhi South Campus, New DelhiIndia
- *Correspondence: Akhilesh K. Tyagi,
| |
Collapse
|
48
|
Sharma G, Giri J, Tyagi AK. Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water-deficit stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:80-92. [PMID: 26089154 DOI: 10.1016/j.plantsci.2015.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 05/19/2023]
Abstract
Stress associated protein (SAP) genes in plants regulate abiotic stress responses. SAP gene family consists of 18 members in rice. Although their abiotic stress responsiveness is well established, the mechanism of their action is poorly understood. OsiSAP7 was chosen to investigate the mechanism of its action based on the dual nature of its sub-cellular localization preferentially in the nucleus or sub-nuclear speckles upon transient expression in onion epidermal cells. Its expression was down-regulated in rice seedlings under abiotic stresses. OsiSAP7 was localized evenly in the nucleus under unstressed conditions and in sub-nuclear speckles on MG132 treatment. OsiSAP7 exhibits E3 ubiquitin ligase activity in vitro. Abiotic stress responses of OsiSAP7 were assessed by its overexpression in Arabidopsis under the control of a stress inducible promoter rd29A. Stress response assessment was done at seed germination and advanced stages of development. Transgenics were ABA insensitive at seed germination stage and sensitive to water-deficit stress at advanced stage as compared to wild type (WT). They were also impaired in ABA and stress-responsive gene expression. Our study suggests that OsiSAP7 acts as a negative regulator of ABA and water-deficit stress signalling by acting as an E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Gunjan Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| |
Collapse
|
49
|
Polge C, Attaix D, Taillandier D. Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy. Front Physiol 2015; 6:59. [PMID: 25805999 PMCID: PMC4354305 DOI: 10.3389/fphys.2015.00059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/14/2015] [Indexed: 01/05/2023] Open
Abstract
The Ubiquitin Proteasome System (UPS) is a major actor of muscle wasting during various physio-pathological situations. In the past 15 years, increasing amounts of data have depicted a picture, although incomplete, of the mechanisms implicated in myofibrillar protein degradation, from the discovery of muscle-specific E3 ligases to the identification of the signaling pathways involved. The targeting specificity of the UPS relies on the capacity of the system to first recognize and then label the proteins to be degraded with a poly-ubiquitin (Ub) chain. It is fairly assumed that the recognition of the substrate is accomplished by the numerous E3 ligases present in mammalian cells. However, most E3s do not possess any catalytic activity and E2 enzymes may be more than simple Ub-providers for E3s since they are probably important actors in the ubiquitination machinery. Surprisingly, most authors have tried to characterize E3 substrates, but the exact role of E2s in muscle protein degradation is largely unknown. A very limited number of the 35 E2s described in humans have been studied in muscle protein breakdown experiments and the vast majority of studies were only descriptive. We review here the role of E2 enzymes in skeletal muscle and the difficulties linked to their study and provide future directions for the identification of muscle E2s responsible for the ubiquitination of contractile proteins.
Collapse
Affiliation(s)
- Cecile Polge
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Didier Attaix
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| | - Daniel Taillandier
- UMR 1019 Nutrition Humaine, Institut National de la Recherche Agronomique Saint Genès Champanelle, France
| |
Collapse
|
50
|
Bongers KS, Fox DK, Kunkel SD, Stebounova LV, Murry DJ, Pufall MA, Ebert SM, Dyle MC, Bullard SA, Dierdorff JM, Adams CM. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy. Am J Physiol Endocrinol Metab 2015; 308:E144-58. [PMID: 25406264 PMCID: PMC4297781 DOI: 10.1152/ajpendo.00472.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 01/02/2023]
Abstract
Skeletal muscle atrophy is a common and debilitating condition that remains poorly understood at the molecular level. To better understand the mechanisms of muscle atrophy, we used mouse models to search for a skeletal muscle protein that helps to maintain muscle mass and is specifically lost during muscle atrophy. We discovered that diverse causes of muscle atrophy (limb immobilization, fasting, muscle denervation, and aging) strongly reduced expression of the enzyme spermine oxidase. Importantly, a reduction in spermine oxidase was sufficient to induce muscle fiber atrophy. Conversely, forced expression of spermine oxidase increased muscle fiber size in multiple models of muscle atrophy (immobilization, fasting, and denervation). Interestingly, the reduction of spermine oxidase during muscle atrophy was mediated by p21, a protein that is highly induced during muscle atrophy and actively promotes muscle atrophy. In addition, we found that spermine oxidase decreased skeletal muscle mRNAs that promote muscle atrophy (e.g., myogenin) and increased mRNAs that help to maintain muscle mass (e.g., mitofusin-2). Thus, in healthy skeletal muscle, a relatively low level of p21 permits expression of spermine oxidase, which helps to maintain basal muscle gene expression and fiber size; conversely, during conditions that cause muscle atrophy, p21 expression rises, leading to reduced spermine oxidase expression, disruption of basal muscle gene expression, and muscle fiber atrophy. Collectively, these results identify spermine oxidase as an important positive regulator of muscle gene expression and fiber size, and elucidate p21-mediated repression of spermine oxidase as a key step in the pathogenesis of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Kale S Bongers
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine
| | - Daniel K Fox
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine
| | - Steven D Kunkel
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine
| | | | - Daryl J Murry
- College of Pharmacy, Roy J. and Lucille A. Carver College of Medicine
| | - Miles A Pufall
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, and
| | - Scott M Ebert
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine
| | - Michael C Dyle
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine
| | - Steven A Bullard
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa
| | - Jason M Dierdorff
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine
| | - Christopher M Adams
- Departments of Internal Medicine and Molecular Physiology and Biophysics and Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|