1
|
Coulée M, de la Iglesia A, Blanco M, Gobé C, Lapoujade C, Ialy-Radio C, Alvarez-Gonzalez L, Meurice G, Ruiz-Herrera A, Fouchet P, Cocquet J, El Khattabi L. Chromatin environment-dependent effects of DOT1L on gene expression in male germ cells. Commun Biol 2025; 8:138. [PMID: 39875559 PMCID: PMC11775102 DOI: 10.1038/s42003-024-07393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments. On the other hand, it activates the expression of genes enriched in H3K79me2 and located in H3K27me3-poor/H3K27ac-rich environments, predominantly X chromosome-linked genes, after meiosis I. This coincides with a significant increase in DOT1L expression at this stage and a genome-wide acquisition of H3K79me2, particularly on the sex chromosomes. Taken together, our results show that H3K79me2 positively correlates with male germ cell genetic program throughout spermatogenesis, with DOT1L predominantly inhibiting rather than activating gene expression. Interestingly, while DOT1L appears to directly regulate the (re)activation of X genes following meiotic sex chromosome inactivation, it also controls the timely expression of (autosomal) differentiation genes during spermatogenesis.
Collapse
Affiliation(s)
- Manon Coulée
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | | | - Mélina Blanco
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
- Université Paris Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
- Laboratoire des Cellules Souches Germinales, Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
| | - Clara Gobé
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Clémentine Lapoujade
- Université Paris Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
- Laboratoire des Cellules Souches Germinales, Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
| | - Côme Ialy-Radio
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Lucia Alvarez-Gonzalez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Pierre Fouchet
- Université Paris Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
- Laboratoire des Cellules Souches Germinales, Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
| | - Julie Cocquet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France.
| | - Laïla El Khattabi
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France.
- Sorbonne Université, APHP Hôpital Pitié-Salpêtrière, Paris Brain Institute-ICM, INSERM U1127, CNRS, UMR 7225, Paris, France.
| |
Collapse
|
2
|
Abdelgawad IY, George B, Grant MKO, Huang Y, Shan Y, Huang RS, Zordoky BN. Sex-related differences in delayed doxorubicin-induced cardiac dysfunction in C57BL/6 mice. Arch Toxicol 2024; 98:1191-1208. [PMID: 38244039 DOI: 10.1007/s00204-023-03678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Cancer survivors may experience long-term cardiovascular complications due to chemotherapeutic drugs such as doxorubicin (DOX). The exact mechanism of delayed DOX-induced cardiotoxicity has not been fully elucidated. Sex is an important risk factor for DOX-induced cardiotoxicity. In the current study, we identified sex differences in delayed DOX-induced cardiotoxicity and determined the underlying molecular determinants of the observed sexual dimorphism. Five-week-old male and female mice were administered intraperitoneal injections of DOX (4 mg/kg/week) or saline for 6 weeks. Echocardiography was performed 5 weeks after the last dose of DOX to evaluate cardiac function. Thereafter, mice were sacrificed and gene expression of markers of apoptosis, senescence, and inflammation was measured by PCR in hearts and livers. Proteomic profiling of the heart from both sexes was conducted to determine differentially expressed proteins (DEPs). Only DOX-treated male, but not female, mice demonstrated cardiac dysfunction, cardiac atrophy, and upregulated cardiac expression of Nppb and Myh7. No sex-related differences were observed in DOX-induced expression of most apoptotic, senescence, and pro-inflammatory markers. However, the gene expression of Trp53 was significantly reduced in hearts of DOX-treated female mice only. The anti-inflammatory marker Il-10 was significantly reduced in hearts of DOX-treated male mice only, while the pro-inflammatory marker Il-1α was significantly reduced in livers of DOX-treated female mice only. Gene expression of Tnf-α was reduced in hearts of both DOX-treated male and female mice. Proteomic analysis identified several DEPs after DOX treatment in a sex-specific manner, including anti-inflammatory acute phase proteins. This is the first study to assess sex-specific proteomic changes in a mouse model of delayed DOX-induced cardiotoxicity. Our proteomic analysis identified several sexually dimorphic DEPs, many of which are associated with the anti-inflammatory marker Il-10.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Benu George
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Yuting Shan
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - R Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Herranz S, Través PG, Luque A, Hortelano S. Role of the tumor suppressor ARF in macrophage polarization: Enhancement of the M2 phenotype in ARF-deficient mice. Oncoimmunology 2021; 1:1227-1238. [PMID: 23243586 PMCID: PMC3518495 DOI: 10.4161/onci.21207] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ARF locus is frequently inactivated in human cancer. The oncosuppressor ARF has indeed been described as a general sensor for different situation of cellular stress. We have previously demonstrated that ARF deficiency severely impairs inflammatory responses in vitro and in vivo, establishing a role for ARF in the regulation of innate immunity. The aim of the present work was to get further insights into the immune functions of ARF and to evaluate its possible contribution to the polarization of macrophages toward the M1 or M2 phenotype. Our results demonstrate that resting Arf−/− macrophages express high levels of Ym1 and Fizz-1, two typical markers of alternatively-activated macrophages (M2). Additionally, Arf−/− peritoneal macrophages showed an impaired response to lipopolysaccharide (a classical inducer of M1 polaryzation) and a reduced production of pro-inflammatory cytokines/chemokines. Moreover, upon stimulation with interleukin-4 (IL-4), an inducer of the M2 phenotype, well established M2 markers such as Fizz-1, Ym1 and arginase-1 were upregulated in Arf−/− as compared with wild type macrophages. Accordingly, the cytokine and chemokine profile associated with the M2 phenotype was significantly overexpressed in Arf−/− macrophages responding to IL-4. In addition, multiple pro-angiogenic factors such as VEGF and MMP-9 were also increased. In summary, these results indicate that ARF contributes to the polarization and functional plasticity of macrophages.
Collapse
Affiliation(s)
- Sandra Herranz
- Unidad de Inflamación y Cáncer; Área de Biología Celular y Desarrollo; Centro Nacional de Microbiología; Instituto de Salud Carlos III; Madrid, Spain
| | | | | | | |
Collapse
|
4
|
The ARF tumor suppressor targets PPM1G/PP2Cγ to counteract NF-κB transcription tuning cell survival and the inflammatory response. Proc Natl Acad Sci U S A 2020; 117:32594-32605. [PMID: 33288725 DOI: 10.1073/pnas.2004470117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inducible transcriptional programs mediate the regulation of key biological processes and organismal functions. Despite their complexity, cells have evolved mechanisms to precisely control gene programs in response to environmental cues to regulate cell fate and maintain normal homeostasis. Upon stimulation with proinflammatory cytokines such as tumor necrosis factor-α (TNF), the master transcriptional regulator nuclear factor (NF)-κB utilizes the PPM1G/PP2Cγ phosphatase as a coactivator to normally induce inflammatory and cell survival programs. However, how PPM1G activity is precisely regulated to control NF-κB transcription magnitude and kinetics remains unknown. Here, we describe a mechanism by which the ARF tumor suppressor binds PPM1G to negatively regulate its coactivator function in the NF-κB circuit thereby promoting insult resolution. ARF becomes stabilized upon binding to PPM1G and forms a ternary protein complex with PPM1G and NF-κB at target gene promoters in a stimuli-dependent manner to provide tunable control of the NF-κB transcriptional program. Consistently, loss of ARF in colon epithelial cells leads to up-regulation of NF-κB antiapoptotic genes upon TNF stimulation and renders cells partially resistant to TNF-induced apoptosis in the presence of agents blocking the antiapoptotic program. Notably, patient tumor data analysis validates these findings by revealing that loss of ARF strongly correlates with sustained expression of inflammatory and cell survival programs. Collectively, we propose that PPM1G emerges as a therapeutic target in a variety of cancers arising from ARF epigenetic silencing, to loss of ARF function, as well as tumors bearing oncogenic NF-κB activation.
Collapse
|
5
|
Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Front Oncol 2020; 10:1533. [PMID: 32984007 PMCID: PMC7479251 DOI: 10.3389/fonc.2020.01533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as well as metastasis deriving from it, are originated from a single subpopulation of cells with self-renewal and differentiation capacities. These cancer stem cells are supposed to be critical for tumor expansion and metastasis, tumor relapse and resistance to conventional therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH, PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways; promote the overexpression of drug transporter proteins; and activate specific stem cell transcription factors. The elimination of CSCs is an important goal in cancer therapeutic approaches because it could decrease relapses and metastatic dissemination, which are main causes of mortality in oncology patients. In this work, we discuss the role of these signaling pathways in CSCs along with their therapeutic potential.
Collapse
Affiliation(s)
- Asunción Espinosa-Sánchez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Laura Sánchez-Díaz
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| |
Collapse
|
6
|
Ortega-García MB, Mesa A, Moya EL, Rueda B, Lopez-Ordoño G, García JÁ, Conde V, Redondo-Cerezo E, Lopez-Hidalgo JL, Jiménez G, Peran M, Martínez-González LJ, del Val C, Zwir I, Marchal JA, García MÁ. Uncovering Tumour Heterogeneity through PKR and nc886 Analysis in Metastatic Colon Cancer Patients Treated with 5-FU-Based Chemotherapy. Cancers (Basel) 2020; 12:379. [PMID: 32045987 PMCID: PMC7072376 DOI: 10.3390/cancers12020379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer treatment has advanced over the past decade. The drug 5-fluorouracil is still used with a wide percentage of patients who do not respond. Therefore, a challenge is the identification of predictive biomarkers. The protein kinase R (PKR also called EIF2AK2) and its regulator, the non-coding pre-mir-nc886, have multiple effects on cells in response to numerous types of stress, including chemotherapy. In this work, we performed an ambispective study with 197 metastatic colon cancer patients with unresectable metastases to determine the relative expression levels of both nc886 and PKR by qPCR, as well as the location of PKR by immunohistochemistry in tumour samples and healthy tissues (plasma and colon epithelium). As primary end point, the expression levels were related to the objective response to first-line chemotherapy following the response evaluation criteria in solid tumours (RECIST) and, as the second end point, with survival at 18 and 36 months. Hierarchical agglomerative clustering was performed to accommodate the heterogeneity and complexity of oncological patients' data. High expression levels of nc886 were related to the response to treatment and allowed to identify clusters of patients. Although the PKR mRNA expression was not associated with chemotherapy response, the absence of PKR location in the nucleolus was correlated with first-line chemotherapy response. Moreover, a relationship between survival and the expression of both PKR and nc886 in healthy tissues was found. Therefore, this work evaluated the best way to analyse the potential biomarkers PKR and nc886 in order to establish clusters of patients depending on the cancer outcomes using algorithms for complex and heterogeneous data.
Collapse
Affiliation(s)
- María Belén Ortega-García
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Alberto Mesa
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Elisa L.J. Moya
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Beatriz Rueda
- Department of Pathology, San Cecilio University Hospital, 18016 Granada, Spain
| | | | - Javier Ángel García
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Verónica Conde
- Department of Oncology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Eduardo Redondo-Cerezo
- Department of Gastroenterology, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | | | - Gema Jiménez
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Macarena Peran
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Health Sciences, University of Jaén, 23071 Jaen, Spain
| | - Luis J. Martínez-González
- GENYO: Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18007 Granada, Spain
| | - Coral del Val
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
| | - Igor Zwir
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - María Ángel García
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, (CIBM) University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
- Department of Biochemistry and Molecular Biology III, University of Granada, 18016 Granada, Spain
| |
Collapse
|
7
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
8
|
Piazzi M, Bavelloni A, Gallo A, Faenza I, Blalock WL. Signal Transduction in Ribosome Biogenesis: A Recipe to Avoid Disaster. Int J Mol Sci 2019; 20:ijms20112718. [PMID: 31163577 PMCID: PMC6600399 DOI: 10.3390/ijms20112718] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | | | - Angela Gallo
- RNA Editing Laboratory, Dipartimento di Oncoematologia, IRCCS, Ospedale Pediatrica Bambino Gesù, 00146 Rome, Italy.
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40126 Bologna, Italy.
| | - William L Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
9
|
Riel JM, Yamauchi Y, Ruthig VA, Malinta QU, Blanco M, Moretti C, Cocquet J, Ward MA. Rescue of Sly Expression Is Not Sufficient to Rescue Spermiogenic Phenotype of Mice with Deletions of Y Chromosome Long Arm. Genes (Basel) 2019; 10:genes10020133. [PMID: 30759861 PMCID: PMC6409976 DOI: 10.3390/genes10020133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 11/16/2022] Open
Abstract
Mice with deletions of the Y-specific (non-PAR) region of the mouse Y chromosome long arm (NPYq) have sperm defects and fertility problems that increase proportionally to deletion size. Mice with abrogated function of NPYq-encoded gene Sly (sh367 Sly-KD) display a phenotype similar to that of NPYq deletion mutants but less severe. The milder phenotype can be due to insufficient Sly knockdown, involvement of another NPYq gene, or both. To address this question and to further elucidate the role of Sly in the infertile phenotype of mice with NPYq deletions, we developed an anti-SLY antibody specifically recognizing SLY1 and SLY2 protein isoforms and used it to characterize SLY expression in NPYq- and Sly-deficient mice. We also carried out transgene rescue by adding Sly1/2 transgenes to mice with NPYq deletions. We demonstrated that SLY1/2 expression in mutant mice decreased proportionally to deletion size, with ~12% of SLY1/2 retained in shSLY sh367 testes. The addition of Sly1/2 transgenes to mice with NPYq deletions rescued SLY1/2 expression but did not ameliorate fertility and testicular/spermiogenic defects. Together, the data suggest that Sly deficiency is not the sole underlying cause of the infertile phenotype of mice with NPYq deletions and imply the involvement of another NPYq gene.
Collapse
Affiliation(s)
- Jonathan M Riel
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI 96822, USA.
| | - Yasuhiro Yamauchi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI 96822, USA.
| | - Victor A Ruthig
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI 96822, USA.
| | - Qushay U Malinta
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI 96822, USA.
| | - Mélina Blanco
- INSERM, U1016, Institut Cochin, 75013 Paris, France.
- CNRS, UMR8104, 75014 Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris 75014, France.
| | - Charlotte Moretti
- INSERM, U1016, Institut Cochin, 75013 Paris, France.
- CNRS, UMR8104, 75014 Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris 75014, France.
| | - Julie Cocquet
- INSERM, U1016, Institut Cochin, 75013 Paris, France.
- CNRS, UMR8104, 75014 Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris 75014, France.
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Rd, Honolulu, HI 96822, USA.
| |
Collapse
|
10
|
Alagu J, Itahana Y, Sim F, Chao SH, Bi X, Itahana K. Tumor Suppressor p14ARF Enhances IFN-γ–Activated Immune Response by Inhibiting PIAS1 via SUMOylation. THE JOURNAL OF IMMUNOLOGY 2018; 201:451-464. [DOI: 10.4049/jimmunol.1800327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022]
|
11
|
Clinical and therapeutic potential of protein kinase PKR in cancer and metabolism. Expert Rev Mol Med 2017; 19:e9. [PMID: 28724458 DOI: 10.1017/erm.2017.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein kinase R (PKR, also called EIF2AK2) is an interferon-inducible double-stranded RNA protein kinase with multiple effects on cells that plays an active part in the cellular response to numerous types of stress. PKR has been extensively studied and documented for its relevance as an antiviral agent and a cell growth regulator. Recently, the role of PKR related to metabolism, inflammatory processes, cancer and neurodegenerative diseases has gained interest. In this review, we summarise and discuss the involvement of PKR in several cancer signalling pathways and the dual role that this kinase plays in cancer disease. We emphasise the importance of PKR as a molecular target for both conventional chemotherapeutics and emerging treatments based on novel drugs, and its potential as a biomarker and therapeutic target for several pathologies. Finally, we discuss the impact that the recent knowledge regarding PKR involvement in metabolism has in our understanding of the complex processes of cancer and metabolism pathologies, highlighting the translational research establishing the clinical and therapeutic potential of this pleiotropic kinase.
Collapse
|
12
|
Abstract
Cellular senescence is often considered a protection mechanism triggered by conditions that impose cellular stress. Continuous proliferation, DNA damaging agents or activated oncogenes are well-known activators of cell senescence. Apart from a characteristic stable cell cycle arrest, this response also involves a proinflammatory phenotype known as senescence-associated secretory phenotype (SASP). This, together with the widely known interference with senescence pathways by some oncoviruses, had led to the hypothesis that senescence may also be part of the host cell response to fight virus. Here, we evaluate this hypothesis using vesicular stomatitis virus (VSV) as a model. Our results show that VSV replication is significantly impaired in both primary and tumor senescent cells in comparison with non-senescent cells, and independently of the stimulus used to trigger senescence. Importantly, we also demonstrate a protective effect of senescence against VSV in vivo. Finally, our results identify the SASP as the major contributor to the antiviral defense exerted by cell senescence in vitro, and points to a role activating and recruiting the immune system to clear out the infection. Thus, our study indicates that cell senescence has also a role as a natural antiviral defense mechanism.
Collapse
|
13
|
Muñoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol 2016; 16:741-750. [PMID: 27667712 DOI: 10.1038/nri.2016.99] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumour-suppressor genes are indispensable for the maintenance of genomic integrity. Recently, several of these genes, including those encoding p53, PTEN, RB1 and ARF, have been implicated in immune responses and inflammatory diseases. In particular, the p53 tumour- suppressor pathway is involved in crucial aspects of tumour immunology and in homeostatic regulation of immune responses. Other studies have identified roles for p53 in various cellular processes, including metabolism and stem cell maintenance. Here, we discuss the emerging roles of p53 and other tumour-suppressor genes in tumour immunology, as well as in additional immunological settings, such as virus infection. This relatively unexplored area could yield important insights into the homeostatic control of immune cells in health and disease and facilitate the development of more effective immunotherapies. Consequently, tumour-suppressor genes are emerging as potential guardians of immune integrity.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149 13th Street, Charlestown, Massachusetts 02129, USA.,Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.,Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149 13th Street, Charlestown, Massachusetts 02129, USA.,Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
14
|
Yamauchi Y, Riel JM, Ruthig VA, Ortega EA, Mitchell MJ, Ward MA. Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction. Science 2016; 351:514-6. [PMID: 26823431 DOI: 10.1126/science.aad1795] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian Y chromosome is considered a symbol of maleness, as it encodes a gene driving male sex determination, Sry, as well as a battery of other genes important for male reproduction. We previously demonstrated in the mouse that successful assisted reproduction can be achieved when the Y gene contribution is limited to only two genes, Sry and spermatogonial proliferation factor Eif2s3y. Here, we replaced Sry by transgenic activation of its downstream target Sox9, and Eif2s3y, by transgenic overexpression of its X chromosome-encoded homolog Eif2s3x. The resulting males with no Y chromosome genes produced haploid male gametes and sired offspring after assisted reproduction. Our findings support the existence of functional redundancy between the Y chromosome genes and their homologs encoded on other chromosomes.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA
| | - Jonathan M Riel
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA
| | - Victor A Ruthig
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA
| | - Eglė A Ortega
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA
| | - Michael J Mitchell
- Aix-Marseille Université, INSERM, GMGF UMR_S 910, 13385 Marseille, France
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
15
|
Alahari SV, Dong S, Alahari SK. Are macrophages in tumors good targets for novel therapeutic approaches? Mol Cells 2014; 38:95-104. [PMID: 25518927 PMCID: PMC4332036 DOI: 10.14348/molcells.2015.2298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/09/2014] [Indexed: 02/08/2023] Open
Abstract
The development of cancer has been an extensively researched topic over the past few decades. Although great strides have been made in cancer prevention, diagnosis, and treatment, there is still much to be learned about cancer's micro-environmental mechanisms that contribute to cancer formation and aggressiveness. Macrophages, lymphocytes which originate from monocytes, are involved in the inflammatory response and often dispersed to areas of infection to fight harmful antigens and mutated cells in tissues. Macrophages have a plethora of roles including tissue development and repair, immune system functions, and inflammation. We discuss various pathways by which macrophages get activated, various approaches that can regulate the function of macrophages, and how these approaches can be helpful in developing new cancer therapies.
Collapse
Affiliation(s)
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, LSU School of Medicine, New Orleans, LA 70112, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSU School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Arikit S, Xia R, Kakrana A, Huang K, Zhai J, Yan Z, Valdés-López O, Prince S, Musket TA, Nguyen HT, Stacey G, Meyers BC. An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes. THE PLANT CELL 2014; 26:4584-601. [PMID: 25465409 PMCID: PMC4311202 DOI: 10.1105/tpc.114.131847] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/01/2014] [Accepted: 11/13/2014] [Indexed: 05/18/2023]
Abstract
Small RNAs are ubiquitous, versatile repressors and include (1) microRNAs (miRNAs), processed from mRNA forming stem-loops; and (2) small interfering RNAs (siRNAs), the latter derived in plants by a process typically requiring an RNA-dependent RNA polymerase. We constructed and analyzed an expression atlas of soybean (Glycine max) small RNAs, identifying over 500 loci generating 21-nucleotide phased siRNAs (phasiRNAs; from PHAS loci), of which 483 overlapped annotated protein-coding genes. Via the integration of miRNAs with parallel analysis of RNA end (PARE) data, 20 miRNA triggers of 127 PHAS loci were detected. The primary class of PHAS loci (208 or 41% of the total) corresponded to NB-LRR genes; some of these small RNAs preferentially accumulate in nodules. Among the PHAS loci, novel representatives of TAS3 and noncanonical phasing patterns were also observed. A noncoding PHAS locus, triggered by miR4392, accumulated preferentially in anthers; the phasiRNAs are predicted to target transposable elements, with their peak abundance during soybean reproductive development. Thus, phasiRNAs show tremendous diversity in dicots. We identified novel miRNAs and assessed the veracity of soybean miRNAs registered in miRBase, substantially improving the soybean miRNA annotation, facilitating an improvement of miRBase annotations and identifying at high stringency novel miRNAs and their targets.
Collapse
Affiliation(s)
- Siwaret Arikit
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711 Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Rui Xia
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711 Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Atul Kakrana
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Kun Huang
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711 Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Jixian Zhai
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711 Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Zhe Yan
- Division of Plant Science, University of Missouri, Columbia, Missouri 65211
| | - Oswaldo Valdés-López
- Unidad de Morfologia y Función, FES Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla 54090,Mexico
| | - Silvas Prince
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Theresa A Musket
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Henry T Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Gary Stacey
- Division of Plant Science, University of Missouri, Columbia, Missouri 65211
| | - Blake C Meyers
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711 Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| |
Collapse
|
17
|
Través PG, Luque A, Hortelano S. Tumor suppressor ARF: The new player of innate immunity. Oncoimmunology 2014; 1:946-947. [PMID: 23162766 PMCID: PMC3489754 DOI: 10.4161/onci.19948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ARF (alternative reading frame) is one of the most important tumor regulator playing critical roles in controlling tumor initiation and progression. Recently, we have demonstrated a novel and unexpected role for ARF as modulator of inflammatory responses.
Collapse
Affiliation(s)
- Paqui G Través
- Molecular Neurobiology Laboratory; The Salk Institute; La Jolla, CA USA
| | | | | |
Collapse
|
18
|
Blalock WL, Piazzi M, Bavelloni A, Raffini M, Faenza I, D'Angelo A, Cocco L. Identification of the PKR nuclear interactome reveals roles in ribosome biogenesis, mRNA processing and cell division. J Cell Physiol 2014; 229:1047-60. [PMID: 24347309 DOI: 10.1002/jcp.24529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 01/08/2023]
Abstract
The double-strand RNA-dependent protein kinase, PKR, plays a central role in inflammatory/chronic stress-mediated pathologies such as cancer, diabetes, and neuro/muscular degenerative diseases. Although a significant amount of research has been conducted to elucidate the role of PKR signaling in the cytosol, only recently has attention been paid to the role of PKR in the nuclear compartment. Previously our group reported that phosphorylated forms of PKR are present in the nucleus of acute leukemic cell lines, representing a reservoir of active kinase that responds to stress. Using the CCRF-CEM acute T-cell leukemia cell line, a PKR-specific inhibitor, co-immunoprecipitation and a proteomics approach, which included affinity purified mass spectrometry analysis (AP/MS), we identified the proteins present in active and inactive PKR nuclear complexes. Of the proteins identified in the PKR complexes, sixty-nine (69) were specific to the active complex, while thirty-eight (38) were specific to the inactive complex. An additional thirteen (13) proteins associated specifically with both complexes. The majority of the proteins identified are involved in, ribosome biogenesis, RNA splicing, mRNA stability, gene expression, cell cycle, or chromatin organization, including several with known significance to normal hematopoiesis and/or hematological disease. In agreement with the AP/MS data, basal- or over-expression of PKR under normal growth conditions favored cell proliferation in the tested cell lines, whereas pharmacological inhibition of PKR or shRNA-mediated knock-down did not. PKR was also found to influence the isoform and the level of expression of the proto-oncogene MYC.
Collapse
Affiliation(s)
- William L Blalock
- CNR-NationalResearch Council of Italy, Institute of Molecular Genetics, Bologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Dichamp I, Séité P, Agius G, Barbarin A, Beby-Defaux A. Human papillomavirus 16 oncoprotein E7 stimulates UBF1-mediated rDNA gene transcription, inhibiting a p53-independent activity of p14ARF. PLoS One 2014; 9:e96136. [PMID: 24798431 PMCID: PMC4010441 DOI: 10.1371/journal.pone.0096136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/03/2014] [Indexed: 11/18/2022] Open
Abstract
High-risk human papillomavirus oncoproteins E6 and E7 play a major role in HPV-related cancers. One of the main functions of E7 is the degradation of pRb, while E6 promotes the degradation of p53, inactivating the p14ARF-p53 pathway. pRb and p14ARF can repress ribosomal DNA (rDNA) transcription in part by targeting the Upstream Binding Factor 1 (UBF1), a key factor in the activation of RNA polymerase I machinery. We showed, through ectopic expression and siRNA silencing of p14ARF and/or E7, that E7 stimulates UBF1-mediated rDNA gene transcription, partly because of increased levels of phosphorylated UBF1, preventing the inhibitory function of p14ARF. Unexpectedly, activation of rDNA gene transcription was higher in cells co-expressing p14ARF and E7, compared to cells expressing E7 alone. We did not find a difference in P-UBF1 levels that could explain this data. However, p14ARF expression induced E7 to accumulate into the nucleolus, where rDNA transcription takes place, providing an opportunity for E7 to interact with nucleolar proteins involved in this process. GST-pull down and co-immunoprecipitation assays showed interactions between p14ARF, UBF1 and E7, although p14ARF and E7 are not able to directly interact. Co-expression of a pRb-binding-deficient mutant (E7C24G) and p14ARF resulted in EC24G nucleolar accumulation, but not in a significant higher activation of rDNA transcription, suggesting that the inactivation of pRb is involved in this phenomenon. Thus, p14ARF fails to prevent E7-mediated UBF1 phosphorylation, but could facilitate nucleolar pRb inactivation by targeting E7 to the nucleolus. While others have reported that p19ARF, the mouse homologue of p14ARF, inhibits some functions of E7, we showed that E7 inhibits a p53-independent function of p14ARF. These results point to a mutually functional interaction between p14ARF and E7 that might partly explain why the sustained p14ARF expression observed in most cervical pre-malignant lesions and malignancies may be ineffective.
Collapse
Affiliation(s)
- Isabelle Dichamp
- Unité de Virologie, Centre Hospitalier Universitaire de Poitiers, Faculté de Médecine et Pharmacie, Poitiers, France
| | - Paule Séité
- Equipe Emergente 2RCT «Récepteurs, Régulations, Cellules Tumorales», Université de Poitiers, Poitiers, France
| | - Gérard Agius
- Unité de Virologie, Centre Hospitalier Universitaire de Poitiers, Faculté de Médecine et Pharmacie, Poitiers, France
| | - Alice Barbarin
- Equipe Emergente 2RCT «Récepteurs, Régulations, Cellules Tumorales», Université de Poitiers, Poitiers, France
| | - Agnès Beby-Defaux
- Unité de Virologie, Centre Hospitalier Universitaire de Poitiers, Faculté de Médecine et Pharmacie, Poitiers, France
- Equipe Emergente 2RCT «Récepteurs, Régulations, Cellules Tumorales», Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
20
|
Marchal JA, Lopez GJ, Peran M, Comino A, Delgado JR, García-García JA, Conde V, Aranda FM, Rivas C, Esteban M, Garcia MA. The impact of PKR activation: from neurodegeneration to cancer. FASEB J 2014; 28:1965-74. [PMID: 24522206 DOI: 10.1096/fj.13-248294] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An inverse association between cancer and neurodegeneration is plausible because these biological processes share several genes and signaling pathways. Whereas uncontrolled cell proliferation and decreased apoptotic cell death governs cancer, excessive apoptosis contributes to neurodegeneration. Protein kinase R (PKR), an interferon-inducible double-stranded RNA protein kinase, is involved in both diseases. PKR activation blocks global protein synthesis through eIF2α phosphorylation, leading to cell death in response to a variety of cellular stresses. However, PKR also has the dual role of activating the nuclear factor κ-B pathway, promoting cell proliferation. Whereas PKR is recognized for its negative effects on neurodegenerative diseases, in part, inducing high level of apoptosis, the role of PKR activation in cancer remains controversial. In general, PKR is considered to have a tumor suppressor function, and some clinical data show a correlation between suppressed or inactivated PKR and a poor prognosis for several cancers. However, other studies show high PKR expression and activation levels in various cancers, suggesting that PKR might contribute to neoplastic progression. Understanding the cellular factors and signals involved in the regulation of PKR in these age-related diseases is relevant and may have important clinical implications. The present review highlights the current knowledge on the role of PKR in neurodegeneration and cancer, with special emphasis on its regulation and clinical implications.
Collapse
Affiliation(s)
- Juan A Marchal
- 1University Hospital Virgen de las Nieves, Azpitarte sn., Granada E-18012, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Merkel CA, Medrano RFV, Barauna VG, Strauss BE. Combined p19Arf and interferon-beta gene transfer enhances cell death of B16 melanoma in vitro and in vivo. Cancer Gene Ther 2013; 20:317-25. [PMID: 23618951 DOI: 10.1038/cgt.2013.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/20/2013] [Indexed: 12/19/2022]
Abstract
Approximately 90% of melanomas retain wild-type p53, a characteristic that may help shape the development of novel treatment strategies. Here, we employed an adenoviral vector where transgene expression is controlled by p53 to deliver the p19 alternate reading frame (Arf) and interferon-β (IFNβ) complementary DNAs in the B16 mouse model of melanoma. In vitro, cell death was enhanced by combined gene transfer (63.82±15.30% sub-G0 cells); yet introduction of a single gene resulted in significantly fewer hypoploid cells (37.73±7.3% or 36.96±11.58%, p19Arf or IFNβ, respectively, P<0.05). Annexin V staining and caspase-3 cleavage indicate a cell death mechanism consistent with apoptosis. Using reverse transcriptase quantitative PCR, we show that key transcriptional targets of p53 were upregulated in the presence of p19Arf, although treatment with IFNβ did not alter expression of the genes studied. In situ gene therapy revealed significant inhibition of subcutaneous tumors by IFNβ (571±25 mm3) or the combination of p19Arf and IFNβ (489±124 mm3) as compared with the LacZ control (1875±33 mm3, P<0.001), whereas p19Arf yielded an intermediate result (1053±169 mm3, P<0.01 vs control). However, only the combination was associated with increased cell death and prolonged survival (P<0.01). As shown here, the combined transfer of p19Arf and IFNβ using p53-responsive vectors enhanced cell death both in vitro and in vivo.
Collapse
Affiliation(s)
- C A Merkel
- Viral Vector Laboratory, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | |
Collapse
|
22
|
Macrophages, inflammation, and tumor suppressors: ARF, a new player in the game. Mediators Inflamm 2012; 2012:568783. [PMID: 23316105 PMCID: PMC3538382 DOI: 10.1155/2012/568783] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/07/2012] [Indexed: 01/10/2023] Open
Abstract
The interaction between tumor progression and innate immune system has been well established in the last years. Indeed, several lines of clinical evidence indicate that immune cells such as tumor-associated macrophages (TAMs) interact with tumor cells, favoring growth, angiogenesis, and metastasis of a variety of cancers. In most tumors, TAMs show properties of an alternative polarization phenotype (M2) characterized by the expression of a series of chemokines, cytokines, and proteases that promote immunosuppression, tumor proliferation, and spreading of the cancer cells.
Tumor suppressor genes have been traditionally linked to the regulation of cancer progression; however, a growing body of evidence indicates that these genes also play essential roles in the regulation of innate immunity pathways through molecular mechanisms that are still poorly understood. In this paper, we provide an overview of the immunobiology of TAMs as well as what is known about tumor suppressors in the context of immune responses. Recent advances regarding the role of the tumor suppressor ARF as a regulator of inflammation and macrophage polarization are also reviewed.
Collapse
|
23
|
Riel JM, Yamauchi Y, Sugawara A, Li HYJ, Ruthig V, Stoytcheva Z, Ellis PJI, Cocquet J, Ward MA. Deficiency of the multi-copy mouse Y gene Sly causes sperm DNA damage and abnormal chromatin packaging. J Cell Sci 2012. [PMID: 23178944 DOI: 10.1242/jcs.114488] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mouse and man Y chromosome deletions are frequently associated with spermatogenic defects. Mice with extensive deletions of non-pairing Y chromosome long arm (NPYq) are infertile and produce sperm with grossly misshapen heads, abnormal chromatin packaging and DNA damage. The NPYq-encoded multi-copy gene Sly controls the expression of sex chromosome genes after meiosis and Sly deficiency results in a remarkable upregulation of sex chromosome genes. Sly deficiency has been shown to be the underlying cause of the sperm head anomalies and infertility associated with NPYq gene loss, but it was not known whether it recapitulates sperm DNA damage phenotype. We produced and examined mice with transgenically (RNAi) silenced Sly and demonstrated that these mice have increased incidence of sperm with DNA damage and poorly condensed and insufficiently protaminated chromatin. We also investigated the contribution of each of the two Sly-encoded transcript variants and noted that the phenotype was only observed when both variants were knocked down, and that the phenotype was intermediate in severity compared with mice with severe NPYq deficiency. Our data demonstrate that Sly deficiency is responsible for the sperm DNA damage/chromatin packaging defects observed in mice with NPYq deletions and point to SLY proteins involvement in chromatin reprogramming during spermiogenesis, probably through their effect on the post-meiotic expression of spermiogenic genes. Considering the importance of the sperm epigenome for embryonic and fetal development and the possibility of its inter-generational transmission, our results are important for future investigations of the molecular mechanisms of this biologically and clinically important process.
Collapse
Affiliation(s)
- Jonathan M Riel
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu HI 96822, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li Z, Hou J, Sun L, Wen T, Wang L, Zhao X, Xie Q, Zhang SQ. NMI mediates transcription-independent ARF regulation in response to cellular stresses. Mol Biol Cell 2012; 23:4635-46. [PMID: 23034180 PMCID: PMC3510024 DOI: 10.1091/mbc.e12-04-0304] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ETOC: NMI is a novel ARF-interacting protein identified in a yeast two-hybrid screen. NMI inhibits ULF-induced ubiquitin degradation of ARF protein. It mediates transcription-independent ARF regulation and is required for the stabilization and up-regulation of ARF in response to cellular stresses. The ARF tumor suppressor is a product of the INK4a/ARF locus, which is frequently mutated in human cancer. The expression of ARF is up-regulated in response to certain types of DNA damage, oncogene activation, and interferon stimuli. Through interaction with the p53 negative regulator MDM2, ARF controls a well-described p53/MDM2-dependent checkpoint. However, the mechanism of ARF induction is poorly understood. Using a yeast two-hybrid screen, we identify a novel ARF-interacting protein, N-Myc and STATs interactor (NMI). Previously, NMI was known to be a c-Myc–interacting protein. Here we demonstrate that through competitive binding to the ARF ubiquitin E3 ligase (ubiquitin ligase for ARF [ULF]), NMI protects ARF from ULF-mediated ubiquitin degradation. In response to cellular stresses, NMI is induced, and a fraction of NMI is translocated to the nucleus to stabilize ARF. Thus our work reveals a novel NMI-mediated, transcription-independent ARF induction pathway in response to cellular stresses.
Collapse
Affiliation(s)
- Zengpeng Li
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Singh M, Patel RC. Increased interaction between PACT molecules in response to stress signals is required for PKR activation. J Cell Biochem 2012; 113:2754-64. [DOI: 10.1002/jcb.24152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Singh M, Castillo D, Patel CV, Patel RC. Stress-induced phosphorylation of PACT reduces its interaction with TRBP and leads to PKR activation. Biochemistry 2011; 50:4550-60. [PMID: 21526770 DOI: 10.1021/bi200104h] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PACT is a stress-modulated activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) and is an important regulator of PKR-dependent signaling pathways. Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation by PACT leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. In addition to positive regulation by PACT, PKR activity in cells is also negatively regulated by TRBP. In this study, we demonstrate for the first time that stress-induced phosphorylation at serine 287 significantly increases PACT's ability to activate PKR by weakening PACT's interaction with TRBP. A non-phosphorylatable alanine substitution mutant at this position causes enhanced interaction of PACT with TRBP and leads to a loss of PKR activation. Furthermore, TRBP overexpression in cells is unable to block apoptosis induced by a phospho-mimetic, constitutively active PACT mutant. These results demonstrate for the first time that stress-induced PACT phosphorylation functions to free PACT from the inhibitory interaction with TRBP and also to enhance its interaction with PKR.
Collapse
Affiliation(s)
- Madhurima Singh
- Department of Biological Sciences, Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The tumour suppressor ARF (alternative reading frame) is one of the most important oncogenic stress sensors. ARF provides an 'oncogenic checkpoint' function through both p53-dependent and p53-independent mechanisms. In the present study, we demonstrate a novel p53-independent interaction between p14(ARF) and the adenovirus oncoprotein E1A. p14(ARF) inhibits E1A transcriptional function and promotes ubiquitination-dependent degradation of E1A. p14(ARF) overexpression relocalizes E1A into the nucleolus and inhibits E1A-induced cellular DNA replication independent of p53. Knockdown of endogenous p14(ARF) increases E1A transactivation. In addition, E1A can competitively inhibit ARF-Mdm2 (murine double minute 2) complex formation. These results identify a novel binding partner of p14(ARF) and reveal a mutually inhibitory interaction between p14(ARF) and E1A. We speculate that the ARF-E1A interaction may represent an additional host defence mechanism to limit viral replication. Alternatively, the interaction may allow adenovirus to sense the functional state of p53 in host cells, and fine-tune its own replication activity to prevent the triggering of a detrimental host response.
Collapse
|
28
|
Abstract
Recent advances in proteomics have been combined with traditional methods for isolation of nucleoli from mammalian and plant cells. This approach has confirmed the growing body of data showing a wide role for the nucleolus in eukaryotic cell biology beyond ribosome generation into many areas of cell function from regulation of the cell cycle, modulation of the cell stress response to innate immune responses. This has been reflected in the growing body of evidence that viruses specifically target the nucleolus by sequestering cellular nucleolar proteins or by targeting viral proteins to the nucleolus in order to maximise viral replication. This review covers those key areas and looks at the latest approaches using high‐throughput quantitative proteomics of the nucleolus in virus infected cells to gain an insight into the role of this fascinating compartment in viral infection.
Collapse
Affiliation(s)
- Julian A Hiscox
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
29
|
Blalock WL, Bavelloni A, Piazzi M, Tagliavini F, Faenza I, Martelli AM, Follo MY, Cocco L. Multiple forms of PKR present in the nuclei of acute leukemia cells represent an active kinase that is responsive to stress. Leukemia 2010; 25:236-45. [PMID: 21072047 DOI: 10.1038/leu.2010.264] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A number of cancers possess constitutive activity of the dsRNA-dependent kinase, PKR. Inhibition of PKR in these cancers leads to tumor cell death. We recently reported the increased presence of PKR phosphorylated on Thr451 (p-T451 PKR) in clinical samples from myelodysplastic syndrome (MDS) patients and acute leukemia cell lines. Whereas p-T451 PKR in low-risk patient samples or PTEN-positive acute leukemia cell lines was mostly cytoplasmic, in high-risk patient samples and acute leukemia cell lines deficient in PTEN, p-T451 PKR was mainly nuclear. As nuclear activity of PKR has not been previously characterized, we examined the status of nuclear PKR in acute leukemia cell lines. Using antibodies to N-terminus, C-terminus and the kinase domain in conjunction with a proteomics approach, we found that PKR exists in diverse molecular weight forms in the nucleus. Analysis of PKR transcripts by reverse transcriptase-PCR, and PKR-derived peptides by MS/MS revealed that these forms were the result of post-translational modifications (PTMs). Biochemical analysis demonstrated that nuclear PKR is an active kinase that can respond to stress. Given the association of PKR with PTEN and the Fanconi complex, these results indicate that PKR likely has other previously unrecognized roles in nuclear signaling that may contribute to leukemic development.
Collapse
Affiliation(s)
- W L Blalock
- Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ozenne P, Eymin B, Brambilla E, Gazzeri S. The ARF tumor suppressor: Structure, functions and status in cancer. Int J Cancer 2010; 127:2239-47. [DOI: 10.1002/ijc.25511] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Blalock WL, Bavelloni A, Piazzi M, Faenza I, Cocco L. A role for PKR in hematologic malignancies. J Cell Physiol 2010; 223:572-91. [PMID: 20232306 DOI: 10.1002/jcp.22092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The double-stranded RNA-dependent kinase PKR has been described for many years as strictly a pro-apoptotic kinase. Recent data suggest that the main purpose of this kinase is damage control and repair following stress and, if all else fails, apoptosis. Aberrant activation of PKR has been reported in numerous neurodegenerative diseases and cancer. Although a subset of myelodysplastic syndromes (MDS) and chronic lymphocytic leukemia contain low levels of PKR expression and activity, elevated PKR activity and/or expression have been detected in a wide range of hematologic malignancies, from bone marrow failure disorders to acute leukemia. With the recent findings that cancers containing elevated PKR activity are highly sensitive to PKR inhibition, we explore the role of PKR in hematologic malignancies, signal transduction pathways affected by PKR, and how PKR may contribute to leukemic transformation.
Collapse
Affiliation(s)
- William L Blalock
- Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
32
|
|
33
|
The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis. PLoS Biol 2009; 7:e1000244. [PMID: 19918361 PMCID: PMC2770110 DOI: 10.1371/journal.pbio.1000244] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 10/08/2009] [Indexed: 11/23/2022] Open
Abstract
Small-interfering RNAs have been used to disrupt the function of the more than 100 copies of the Sly gene on the mouse Y chromosome, leading to defective sex chromosome repression during spermatid differentiation and, as a consequence, sperm malformations and near-sterility. Studies of mice with Y chromosome long arm deficiencies suggest that the male-specific region (MSYq) encodes information required for sperm differentiation and postmeiotic sex chromatin repression (PSCR). Several genes have been identified on MSYq, but because they are present in more than 40 copies each, their functions cannot be investigated using traditional gene targeting. Here, we generate transgenic mice producing small interfering RNAs that specifically target the transcripts of the MSYq-encoded multicopy gene Sly (Sycp3-like Y-linked). Microarray analyses performed on these Sly-deficient males and on MSYq-deficient males show a remarkable up-regulation of sex chromosome genes in spermatids. SLY protein colocalizes with the X and Y chromatin in spermatids of normal males, and Sly deficiency leads to defective repressive marks on the sex chromatin, such as reduced levels of the heterochromatin protein CBX1 and of histone H3 methylated at lysine 9. Sly-deficient mice, just like MSYq-deficient mice, have severe impairment of sperm differentiation and are near sterile. We propose that their spermiogenesis phenotype is a consequence of the change in spermatid gene expression following Sly deficiency. To our knowledge, this is the first successful targeted disruption of the function of a multicopy gene (or of any Y gene). It shows that SLY has a predominant role in PSCR, either via direct interaction with the spermatid sex chromatin or via interaction with sex chromatin protein partners. Sly deficiency is the major underlying cause of the spectrum of anomalies identified 17 y ago in MSYq-deficient males. Our results also suggest that the expansion of sex-linked spermatid-expressed genes in mouse is a consequence of the enhancement of PSCR that accompanies Sly amplification. During meiosis in the male mouse, the X and Y chromosomes are transcriptionally silenced, and retain a significant degree of repression after meiosis. Postmeiotically, X and Y chromosome–encoded genes are consequently expressed at a low level, with the exception of genes present in many copies, which can achieve a higher level of expression. Gene amplification is a notable feature of the X and Y chromosomes, and it has been proposed that this serves to compensate for the postmeiotic repression. The long arm of the mouse Y chromosome (MSYq) has multicopy genes organized in clusters over several megabases. On the basis of analysis of mice carrying MSYq deletions, we proposed that MSYq encodes genetic information that is crucial for postmeiotic repression of the sex chromosomes and for sperm differentiation. The gene(s) responsible for these functions were, however, unknown. In this study, using transgenically delivered small interfering RNA, we disrupted the function of Sly, a gene that is present in more than 100 copies on MSYq. Sly-deficient males have major sperm differentiation problems together with a remarkable postmeiotic derepression of genes encoded on the X and Y chromosomes. Furthermore, the epigenetic modifications normally associated with sex chromosome repression are altered. Our data thus show that the SLY protein is required to mediate postmeiotic repression of the X and Y chromosomes. It is likely that the sperm differentiation problems in Sly-deficient males are largely a consequence of the derepression of the sex chromosomes in spermatids. We propose that the postmeiotic repressive effect of Sly on genes encoded on the X and Y chromosomes drove their massive amplification in the mouse.
Collapse
|
34
|
Activation of NF-kB pathway by virus infection requires Rb expression. PLoS One 2009; 4:e6422. [PMID: 19649275 PMCID: PMC2713421 DOI: 10.1371/journal.pone.0006422] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 06/08/2009] [Indexed: 12/02/2022] Open
Abstract
The retinoblastoma protein Rb is a tumor suppressor involved in cell cycle control, differentiation, and inhibition of oncogenic transformation. Besides these roles, additional functions in the control of immune response have been suggested. In the present study we investigated the consequences of loss of Rb in viral infection. Here we show that virus replication is increased by the absence of Rb, and that Rb is required for the activation of the NF-kB pathway in response to virus infection. These results reveal a novel role for tumor suppressor Rb in viral infection surveillance and further extend the concept of a link between tumor suppressors and antiviral activity.
Collapse
|
35
|
Pollice A, Vivo M, La Mantia G. The promiscuity of ARF interactions with the proteasome. FEBS Lett 2008; 582:3257-62. [PMID: 18805416 DOI: 10.1016/j.febslet.2008.09.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/03/2008] [Accepted: 09/06/2008] [Indexed: 11/30/2022]
Abstract
The tumor suppressor ARF is one of the most important oncogenic stress sensors in mammalian cells. Its effect is exerted through the interaction with different cellular partners, often resulting in their functional inactivation. This review focuses on the role played by the proteasome in ARF regulation of protein turnover and the function of most of its interacting partners. Specific proteasome components appear to be involved in the regulation of ARF turnover, bringing to light a complex network of interactions between ARF and the proteasome.
Collapse
Affiliation(s)
- Alessandra Pollice
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
36
|
Mittelstadt M, Frump A, Khuu T, Fowlkes V, Handy I, Patel CV, Patel RC. Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. Nucleic Acids Res 2007; 36:998-1008. [PMID: 18096616 PMCID: PMC2241914 DOI: 10.1093/nar/gkm1129] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PKR is an interferon (IFN)-induced protein kinase, which is involved in regulation of antiviral innate immunity, stress signaling, cell proliferation and programmed cell death. Although a low amount of PKR is expressed ubiquitously in all cell types in the absence of IFNs, PKR expression is induced at transcriptional level by IFN. PKR's enzymatic activity is activated by its binding to one of its activators. Double-stranded (ds) RNA, protein activator PACT and heparin are the three known activators of PKR. Activation of PKR in cells leads to a general block in protein synthesis due to phosphorylation of eIF2α on serine 51 by PKR. PKR activation is regulated very tightly in mammalian cells and a prolonged activation of PKR leads to apoptosis. Thus, positive and negative regulation of PKR activation is important for cell viability and function. The studies presented here describe human dihydrouridine synthase-2 (hDUS2) as a novel regulator of PKR. We originally identified hDUS2 as a protein interacting with PACT in a yeast two-hybrid screen. Further characterization revealed that hDUS2 also interacts with PKR through its dsRNA binding/dimerization domain and inhibits its kinase activity. Our results suggest that hDUS2 may act as a novel inhibitor of PKR in cells.
Collapse
Affiliation(s)
- Megan Mittelstadt
- Department of Biological Sciences, University of South Carolina Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Meenakshi K Doma
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
38
|
Garcia MA, Muñoz-Fontela C, Collado M, Marcos-Villar L, Esteban M, Rivas C. Novel and unexpected role for the tumor suppressor ARF in viral infection surveillance. Future Virol 2007. [DOI: 10.2217/17460794.2.6.625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Virus infection induces the synthesis of interferons which, in turn, stimulate the expression of hundreds of cellular genes, any of those denominated viral-stress-inducible genes. Among interferon-upregulated genes, also triggered by oncogenic viruses, several tumor-suppressor genes can also be listed. A correlation between the tumor suppressor alternative reading frame (ARF) and virus replication was noted some time ago. Yang and colleagues in 2001 demonstrated that p14ARF modulated the cytolytic effect of the E1B-deleted adenovirus ONYX-015 in mesothelioma cells with wild-type p53, and expression of p14ARF attenuated the cytolytic effect of the virus. Later, in 2006, Garcia and colleagues identified ARF as a gene product with a role in reducing the sensitivity of cells to infection by several viruses, showing an inverse relationship between doses of ARF and levels of virus replication. Additionally, the same authors presented a number of experiments designed to illustrate the molecular mechanisms underlying the decrease of virus replication upon ARF overexpression, demonstrating a p53-independent ARF function. ARF is the latest tumor suppressor added to the list of the cellular genes upregulated by type I interferon that possesses antiviral activity. The antiviral role of other tumor suppressor pathways targeted by both interferons and oncogenic viruses requires further investigation.
Collapse
Affiliation(s)
- Maria Angel Garcia
- Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - Cesar Muñoz-Fontela
- Mount Sinai School of Medicine, Dept of Oncological Sciences, One Gustave L. Levy Place. Box 1130, NY 10029, USA
| | - Manuel Collado
- Spanish National Cancer Centre (CNIO), 3 Melchor Fernández Almagro, Madrid 28029, Spain
| | - Laura Marcos-Villar
- Universidad Complutense de Madrid, Departamento de Microbiología II, Plaza Ramón y Cajal s/n, Madrid 28040, Spain
| | - Mariano Esteban
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| | - Carmen Rivas
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid 28049, Spain
| |
Collapse
|
39
|
Forrest JC, Paden CR, Allen RD, Collins J, Speck SH. ORF73-null murine gammaherpesvirus 68 reveals roles for mLANA and p53 in virus replication. J Virol 2007; 81:11957-71. [PMID: 17699571 PMCID: PMC2168792 DOI: 10.1128/jvi.00111-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses establish lifelong, latent infections in host lymphocytes, during which a limited subset of viral gene products facilitates maintenance of the viral episome. Among the gamma-2-herpesvirus (rhadinovirus) subfamily, this includes expression of the conserved ORF73-encoded LANA proteins. We previously demonstrated by loss-of-function mutagenesis that the murine gammaherpesvirus 68 (MHV68) ORF73 gene product, mLANA, is required for the establishment of latency following intranasal inoculation of mice (N. J. Moorman, D. O. Willer, and S. H. Speck, J. Virol. 77:10295-10303, 2003). mLANA-deficient viruses also exhibited a defect in acute virus replication in the lungs of infected mice. The latter observation led us to examine the role of mLANA in productive viral replication. We assessed the capacity of mLANA-deficient virus (73.Stop) to replicate in cell culture at low multiplicities of infection (MOIs) and found that 73.Stop growth was impaired in murine fibroblasts but not in Vero cells. A recombinant virus expressing an mLANA-green fluorescent protein (GFP) fusion revealed that mLANA is expressed throughout the virus replication cycle. In addition, 73.Stop infection of murine fibroblasts at high MOIs was substantially more cytotoxic than infection with a genetically repaired marker rescue virus (73.MR), a phenotype that correlated with enhanced kinetics of viral gene expression and increased activation of p53. Notably, augmented cell death, viral gene expression, and p53 induction were independent of viral DNA replication. Expression of a mLANA-GFP fusion protein in fibroblasts correlated with both reduced p53 stabilization and reduced cell death following treatment with p53-inducing agonists. In agreement, accentuated cell death associated with 73.Stop infection was reduced in p53-deficient murine embryonic fibroblasts. Additionally, replication of 73.Stop in p53-deficient cells was restored to levels comparable to those of 73.MR. More remarkably, the absence of p53 led to an overall delay in replication for both 73.Stop and 73.MR viruses, which correlated with delayed viral gene expression, indicating a role for p53 in MHV68 replication. Consistent with these findings, the expression of replication-promoting viral genes was positively influenced by p53 overexpression or treatment with the p53 agonist etoposide. Overall, these data demonstrate the importance of mLANA in MHV68 replication and suggest that LANA proteins limit the induction of cellular stress responses to regulate the viral gene expression cascade and limit host cell injury.
Collapse
Affiliation(s)
- J Craig Forrest
- Department of Microbiology and immunology, Emory Vaccine Center, Emory University School of Medicine, 1462 Clifton Rd., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
40
|
García MA, Meurs EF, Esteban M. The dsRNA protein kinase PKR: virus and cell control. Biochimie 2007; 89:799-811. [PMID: 17451862 DOI: 10.1016/j.biochi.2007.03.001] [Citation(s) in RCA: 491] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
The IFN-induced double-stranded RNA-dependent protein kinase (PKR) is one of the four mammalian serine-threonine kinases (the three others being HRI, GCN2 and PERK) that phosphorylate the eIF2 alpha translation initiation factor, in response to stress signals, mainly as a result of viral infections. eIF2 alpha phosphorylation results in arrest of translation of both cellular and viral mRNAs, an efficient way to inhibit virus replication. The particularity of PKR is to activate by binding to dsRNA through two N terminal dsRNA binding motifs (dsRBM). PKR activation during a viral infection represents a threat for several viruses, which have therefore evolved to express PKR inhibitors, such as the Vaccinia E3L and K3L proteins. The function of PKR can also be regulated by cellular proteins, either positively (RAX/PACT; Mda7) or negatively (p58IPK, TRBP, nucleophosmin, Hsp90/70). PKR can provoke apoptosis, in part through its ability to control protein translation, but the situation appears to be more complex, as NF-kappaB, ATF-3 and p53 have also been implicated. PKR-induced apoptosis involves mainly the FADD/caspase 8 pathway, while the mitochondrial APAF/caspase 9 pathway is also engaged. As a consequence of the effects of PKR on translation, transcription and apoptosis, PKR can function to control cell growth and cell differentiation, and its activity can be controlled by the action of several oncogenes.
Collapse
Affiliation(s)
- M A García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
41
|
García MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2006; 70:1032-60. [PMID: 17158706 PMCID: PMC1698511 DOI: 10.1128/mmbr.00027-06] [Citation(s) in RCA: 620] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase PKR is a critical mediator of the antiproliferative and antiviral effects exerted by interferons. Not only is PKR an effector molecule on the cellular response to double-stranded RNA, but it also integrates signals in response to Toll-like receptor activation, growth factors, and diverse cellular stresses. In this review, we provide a detailed picture on how signaling downstream of PKR unfolds and what are the ultimate consequences for the cell fate. PKR activation affects both transcription and translation. PKR phosphorylation of the alpha subunit of eukaryotic initiation factor 2 results in a blockade on translation initiation. However, PKR cannot avoid the translation of some cellular and viral mRNAs bearing special features in their 5' untranslated regions. In addition, PKR affects diverse transcriptional factors such as interferon regulatory factor 1, STATs, p53, activating transcription factor 3, and NF-kappaB. In particular, how PKR triggers a cascade of events involving IKK phosphorylation of IkappaB and NF-kappaB nuclear translocation has been intensively studied. At the cellular and organism levels PKR exerts antiproliferative effects, and it is a key antiviral agent. A point of convergence in both effects is that PKR activation results in apoptosis induction. The extent and strength of the antiviral action of PKR are clearly understood by the findings that unrelated viral proteins of animal viruses have evolved to inhibit PKR action by using diverse strategies. The case for the pathological consequences of the antiproliferative action of PKR is less understood, but therapeutic strategies aimed at targeting PKR are beginning to offer promising results.
Collapse
Affiliation(s)
- M A García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|