1
|
Mishra S, Morshed N, Sidhu SB, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's Disease Gene SORL1 Regulates Lysosome Function in Human Microglia. Glia 2025; 73:1329-1348. [PMID: 40183375 PMCID: PMC12121473 DOI: 10.1002/glia.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/31/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
The SORL1 gene encodes the sortilin-related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed in the central nervous system, including in microglia, the tissue-resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia-like cells (hMGLs). However, how SORLA deficiency contributes to lysosomal dysfunction in microglia and how this contributes to AD pathogenesis is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA-deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. An alternative mechanism of lysosome clearance, lysosomal exocytosis, is also impaired in SORL1-deficient microglia, which may contribute to an altered immune response. Overall, these data suggest that SORLA has an important role in the proper trafficking of lysosomal hydrolases in hMGLs, which is critical for microglial function. This further substantiates the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to the development of AD. Additionally, our findings may inform the development of novel lysosome and microglia-associated drug targets for AD.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| | - Nader Morshed
- Boston Children's Hospital, F.M. Kirby Neurobiology CenterBostonMassachusettsUSA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Sonia Beant Sidhu
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology CenterBostonMassachusettsUSA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Howard Hughes Medical InstituteBostonMassachusettsUSA
| | - Suman Jayadev
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jessica E. Young
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| |
Collapse
|
2
|
Frappaolo A, Zaccagnini G, Riparbelli MG, Colotti G, Callaini G, Giansanti MG. PACS deficiency disrupts Golgi architecture and causes cytokinesis failures and seizure-like phenotype in Drosophila melanogaster. Open Biol 2025; 15:240267. [PMID: 39999877 PMCID: PMC11858789 DOI: 10.1098/rsob.240267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The PACS (phosphofurin acidic cluster sorting protein) proteins are membrane trafficking regulators, required for maintaining cellular homeostasis and preventing disease states. Mutations in human PACS1 and PACS2 cause human neurodevelopmental disorders, characterized by epileptic seizures and neurodevelopmental delay. In vertebrates, functional analysis of PACS proteins is complicated by the presence of two paralogues which can compensate for the loss of each other. Here, we characterize the unique fly homologue of human PACS proteins. We demonstrate that Drosophila PACS (dPACS) is required for cell division in dividing spermatocytes and neuroblasts. In primary spermatocytes, dPACS colocalizes with GOLPH3 at the Golgi stacks and is essential for maintaining Golgi architecture. In dividing cells, dPACS is necessary for central spindle stability and contractile ring constriction. dPACS and GOLPH3 proteins form a complex and are mutually dependent for localization to the cleavage site. We propose that dPACS, by associating with GOLPH3, mediates the flow of vesicle trafficking that supports furrow ingression during cytokinesis. Furthermore, loss of dPACS leads to defects in tubulin acetylation and severe bang sensitivity, a phenotype associated with seizures in flies. Together our findings suggest that a Drosophila PACS disease model may contribute to understanding the molecular mechanisms underpinning human PACS syndromes.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Gianluca Zaccagnini
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | | | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche ‘A. Rossi-Fanelli’, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Giuliano Callaini
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
3
|
Mishra S, Morshed N, Sindhu S, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's disease gene SORL1 regulates lysosome function in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.25.600648. [PMID: 38979155 PMCID: PMC11230436 DOI: 10.1101/2024.06.25.600648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The SORL1 gene encodes the sortilin related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed in the central nervous system, including in microglia, the tissue resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia like cells (hMGLs). However, how SORLA deficiency contributes to lysosomal dysfunction in microglia and how this contributes to AD pathogenesis is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. An alternative mechanism of lysosome clearance, lysosomal exocytosis, is also impaired in SORL1 deficient microglia, which may contribute to an altered immune response. Overall, these data suggest that SORLA has an important role in proper trafficking of lysosomal hydrolases in hMGLs, which is critical for microglial function. This further substantiates the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to development of AD. Additionally, our findings may inform development of novel lysosome and microglia associated drug targets for AD.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Nader Morshed
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonia Sindhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Beth Stevens
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Suman Jayadev
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Neurology, University of Washington, Seattle, WA
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Dong J, Tong W, Liu M, Liu M, Liu J, Jin X, Chen J, Jia H, Gao M, Wei M, Duan Y, Zhong X. Endosomal traffic disorders: a driving force behind neurodegenerative diseases. Transl Neurodegener 2024; 13:66. [PMID: 39716330 DOI: 10.1186/s40035-024-00460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Endosomes are crucial sites for intracellular material sorting and transportation. Endosomal transport is a critical process involved in the selective uptake, processing, and intracellular transport of substances. The equilibrium between endocytosis and circulation mediated by the endosome-centered transport pathway plays a significant role in cell homeostasis, signal transduction, and immune response. In recent years, there have been hints linking endosomal transport abnormalities to neurodegenerative diseases, including Alzheimer's disease. Nonetheless, the related mechanisms remain unclear. Here, we provide an overview of endosomal-centered transport pathways and highlight potential physiological processes regulated by these pathways, with a particular focus on the correlation of endosomal trafficking disorders with common pathological features of neurodegenerative diseases. Additionally, we summarize potential therapeutic agents targeting endosomal trafficking for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jianru Dong
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- Weifang Hospital of Traditional Chinese Medicine, Weifang, 261000, China
| | - Weiwei Tong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110069, China
| | - Mingyan Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mengyu Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jinyue Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ju Chen
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Huachao Jia
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Menglin Gao
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110167, China.
| | - Ying Duan
- Liaoning Maternal and Child Health Hospital, Shenyang, 110005, China.
| | - Xin Zhong
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
5
|
Gautam A, Lalande A, Ritter M, Freitas N, Lerolle S, Canus L, Amirache F, Lotteau V, Legros V, Cosset FL, Mathieu C, Boson B. The PACS-2 protein and trafficking motifs in CCHFV Gn and Gc cytoplasmic domains govern CCHFV assembly. Emerg Microbes Infect 2024; 13:2348508. [PMID: 38661085 PMCID: PMC11159592 DOI: 10.1080/22221751.2024.2348508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
The Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne bunyavirus that causes high mortality in humans. This enveloped virus harbors two surface glycoproteins (GP), Gn and Gc, that are released by processing of a glycoprotein precursor complex whose maturation takes place in the ER and is completed through the secretion pathway. Here, we characterized the trafficking network exploited by CCHFV GPs during viral assembly, envelopment, and/or egress. We identified membrane trafficking motifs in the cytoplasmic domains (CD) of CCHFV GPs and addressed how they impact these late stages of the viral life cycle using infection and biochemical assays, and confocal microscopy in virus-producing cells. We found that several of the identified CD motifs modulate GP transport through the retrograde trafficking network, impacting envelopment and secretion of infectious particles. Finally, we identified PACS-2 as a crucial host factor contributing to CCHFV GPs trafficking required for assembly and release of viral particles.
Collapse
Affiliation(s)
- Anupriya Gautam
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Lalande
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Maureen Ritter
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Natalia Freitas
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Solène Lerolle
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Lola Canus
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Fouzia Amirache
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Vincent Legros
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Campus vétérinaire de Lyon, VetAgro Sup, Université de Lyon, Marcy-l’Etoile, France
| | - François-Loïc Cosset
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyrille Mathieu
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bertrand Boson
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Nishida S, Matovelo SA, Kajimoto T, Nakamura SI, Okada T. Involvement of sphingosine 1-phosphate signaling in insulin-like growth factor-II/mannose 6-phosphate receptor trafficking from endosome to the trans-Golgi network. Commun Biol 2024; 7:1182. [PMID: 39300315 DOI: 10.1038/s42003-024-06828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
The insulin-like growth factor II/mannose 6-phosphate (IGF-II/M6P) receptor is a multifunctional glycoprotein not only play roles in IGF-II degradation and pro-TGFβ activation but binding to and transport M6P-bearing lysosomal enzymes from the trans-Golgi network (TGN) or the cell surface to lysosomes. At present, information regarding a retrograde transport of IGF-II/M6P receptor from endosomes to the TGN is still limited. We show here that a continuous ligand-dependent activation of sphingosine 1-phosphate receptor type 3 (S1P3R) on the endosomal membranes is required for subsequent recycling back of cargo-unloaded IGF-II/M6P receptors to the TGN. We have further clarified that Gq coupled with S1P3R plays a critical role in the activation of casein kinase 2, which phosphorylates and keeps PACS1 connector protein active for the association with IGF-II/M6P receptors, which enables transport carrier formation with the aid of other adaptor proteins toward the TGN. These findings shed light on the molecular mechanism underlying how continuous activation of the S1P receptor and subsequent downstream Gq signaling regulates the retrograde transport of the empty IGF-II/M6P receptors back to the TGN.
Collapse
Affiliation(s)
- Susumu Nishida
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shubi Ambwene Matovelo
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Medical Biochemistry, School of Medicine and Dentistry, The University of Dodoma, Dodoma, Tanzania
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
7
|
Thakur S, Paliwal P, Farmania R, Khandelwal V, Garg V. Phosphofurin Acidic Cluster Sorting Protein 1 Syndrome: Insights Gained on the Multisystem Involvement Reviewing Encoded Protein Interactions? J Pediatr Genet 2024; 13:245-249. [PMID: 39086439 PMCID: PMC11288717 DOI: 10.1055/s-0042-1756310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/01/2022] [Indexed: 10/14/2022]
Abstract
Mutations in PACS1 cause moderate-to-severe intellectual disability. Very few cases of PACS1 neurodevelopment disorder have been described in the literature that were identified using whole exome sequencing (WES). We report a case of de novo PACS1 mutation identified through WES after an initial workup for mucopolysaccharidosis. Through this case, we wish to emphasize that most important clinical clue in the facial gestalt is a downturned angle of mouth, thin lips, and wide mouth, giving characteristic wavy appearance of face that can distinguish these cases and can prevent unnecessary workup for the patients.
Collapse
Affiliation(s)
- Seema Thakur
- Department of Genetics and Fetal Diagnosis, Fortis Hospital, New Delhi, India
| | - Preeti Paliwal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Rajni Farmania
- Department of Pediatric Neurology, BLK-MAX Super Speciality Hospital, New Delhi, India
| | - Vipin Khandelwal
- Department of Hemato-oncology, BLK Max Super Specialty Hospital, New Delhi, India
| | - Vivek Garg
- Department of Ophthalmology, BLK Max Super Specialty Hospital, New Delhi, India
| |
Collapse
|
8
|
Villar-Pazos S, Thomas L, Yang Y, Chen K, Lyles JB, Deitch BJ, Ochaba J, Ling K, Powers B, Gingras S, Kordasiewicz HB, Grubisha MJ, Huang YH, Thomas G. Neural deficits in a mouse model of PACS1 syndrome are corrected with PACS1- or HDAC6-targeting therapy. Nat Commun 2023; 14:6547. [PMID: 37848409 PMCID: PMC10582149 DOI: 10.1038/s41467-023-42176-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
PACS1 syndrome is a neurodevelopmental disorder (NDD) caused by a recurrent de novo missense mutation in PACS1 (p.Arg203Trp (PACS1R203W)). The mechanism by which PACS1R203W causes PACS1 syndrome is unknown, and no curative treatment is available. Here, we use patient cells and PACS1 syndrome mice to show that PACS1 (or PACS-1) is an HDAC6 effector and that the R203W substitution increases the PACS1/HDAC6 interaction, aberrantly potentiating deacetylase activity. Consequently, PACS1R203W reduces acetylation of α-tubulin and cortactin, causing the Golgi ribbon in hippocampal neurons and patient-derived neural progenitor cells (NPCs) to fragment and overpopulate dendrites, increasing their arborization. The dendrites, however, are beset with varicosities, diminished spine density, and fewer functional synapses, characteristic of NDDs. Treatment of PACS1 syndrome mice or patient NPCs with PACS1- or HDAC6-targeting antisense oligonucleotides, or HDAC6 inhibitors, restores neuronal structure and synaptic transmission in prefrontal cortex, suggesting that targeting PACS1R203W/HDAC6 may be an effective therapy for PACS1 syndrome.
Collapse
Affiliation(s)
- Sabrina Villar-Pazos
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Yunhan Yang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Kun Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jenea B Lyles
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Bradley J Deitch
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | | | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Melanie J Grubisha
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
9
|
Thi My Nhung T, Phuoc Long N, Diem Nghi T, Suh Y, Hoang Anh N, Jung CW, Minh Triet H, Jung M, Woo Y, Yoo J, Noh S, Kim SJ, Lee SB, Park S, Thomas G, Simmen T, Mun J, Rhee HW, Kwon SW, Park SK. Genome-wide kinase-MAM interactome screening reveals the role of CK2A1 in MAM Ca 2+ dynamics linked to DEE66. Proc Natl Acad Sci U S A 2023; 120:e2303402120. [PMID: 37523531 PMCID: PMC10410754 DOI: 10.1073/pnas.2303402120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria form a unique subcellular compartment called mitochondria-associated ER membranes (MAMs). Disruption of MAMs impairs Ca2+ homeostasis, triggering pleiotropic effects in the neuronal system. Genome-wide kinase-MAM interactome screening identifies casein kinase 2 alpha 1 (CK2A1) as a regulator of composition and Ca2+ transport of MAMs. CK2A1-mediated phosphorylation of PACS2 at Ser207/208/213 facilitates MAM localization of the CK2A1-PACS2-PKD2 complex, regulating PKD2-dependent mitochondrial Ca2+ influx. We further reveal that mutations of PACS2 (E209K and E211K) associated with developmental and epileptic encephalopathy-66 (DEE66) impair MAM integrity through the disturbance of PACS2 phosphorylation at Ser207/208/213. This, in turn, causes the reduction of mitochondrial Ca2+ uptake and the dramatic increase of the cytosolic Ca2+ level, thereby, inducing neurotransmitter release at the axon boutons of glutamatergic neurons. In conclusion, our findings suggest a molecular mechanism that MAM alterations induced by pathological PACS2 mutations modulate Ca2+-dependent neurotransmitter release.
Collapse
Affiliation(s)
- Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan47392, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Cheol Woon Jung
- College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Hong Minh Triet
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Jinyeong Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Sujin Noh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Seongoh Park
- School of Mathematics, Statistics and Data Science, Sungshin Women’s University, Seoul02844, Republic of Korea
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, PA15219
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, ABT6G 2H7, Canada
| | - Jiyoung Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul08826, Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| |
Collapse
|
10
|
Moller-Hansen A, Hejla D, Lee HK, Lyles JB, Yang Y, Chen K, Li WL, Thomas G, Boerkoel CF. Do PACS1 variants impeding adaptor protein binding predispose to syndromic intellectual disability? Am J Med Genet A 2023; 191:2181-2187. [PMID: 37141437 PMCID: PMC10524240 DOI: 10.1002/ajmg.a.63232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
To date, PACS1-neurodevelopmental disorder (PACS1-NDD) has been associated with recurrent variation of Arg203 and is considered diagnostic of PACS1-NDD, an autosomal dominant syndromic intellectual disability disorder. Although incompletely defined, the proposed disease mechanism for this variant is altered PACS1 affinity for its client proteins. Given this proposed mechanism, we hypothesized that PACS1 variants that interfere with binding of adaptor proteins might also give rise to syndromic intellectual disability. Herein, we report a proposita and her mother with phenotypic features overlapping PACS1-NDD and a novel PACS1 variant (NM_018026.3:c.[755C > T];[=], p.(Ser252Phe)) that impedes binding of the adaptor protein GGA3 (Golgi-associated, gamma-adaptin ear-containing, ARF-binding protein 3). We hypothesize that attenuating PACS1 binding of GGA3 also gives rise to a disorder with features overlapping those of PACS1-NDD. This observation better delineates the mechanism by which PACS1 variation predisposes to syndromic intellectual disability.
Collapse
Affiliation(s)
- Ashley Moller-Hansen
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Duha Hejla
- Department of Pediatrics, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Hyun Kyung Lee
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Jenea Barbara Lyles
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yunhan Yang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kun Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cornelius F Boerkoel
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Villar-Pazos S, Thomas L, Yang Y, Chen K, Lyles JB, Deitch BJ, Ochaba J, Ling K, Powers B, Gingras S, Kordasiewicz HB, Grubisha MJ, Huang YH, Thomas G. RNA-targeted therapy corrects neuronal deficits in PACS1 syndrome mice. RESEARCH SQUARE 2023:rs.3.rs-2440581. [PMID: 36747781 PMCID: PMC9901029 DOI: 10.21203/rs.3.rs-2440581/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neurodevelopmental disorders (NDDs) are frequently associated with dendritic abnormalities in pyramidal neurons that affect arbor complexity, spine density, and synaptic communication 1,2. The underlying genetic causes are often complex, obscuring the molecular pathways that drive these disorders 3. Next-generation sequencing has identified recurrent de novo missense mutations in a handful of genes associated with NDDs, offering a unique opportunity to decipher the molecular pathways 4. One such gene is PACS1, which encodes the multi-functional trafficking protein PACS1 (or PACS-1); a single recurrent de novo missense mutation, c607C>T (PACS1R203W), causes developmental delay and intellectual disability (ID) 5,6. The processes by which PACS1R203W causes PACS1 syndrome are unknown, and there is no curative treatment. We show that PACS1R203W increases the interaction between PACS1 and the α-tubulin deacetylase HDAC6, elevating enzyme activity and appropriating control of its posttranscriptional regulation. Consequently, PACS1R203W reduces acetylation of α-tubulin and cortactin, causing the Golgi to fragment and enter developing neurites, leading to increased dendrite arborization. The dendrites, however, are beset with diminished spine density and fewer functional synapses, characteristic of ID pathology. Treatment of PACS1 syndrome mice with PACS1- or HDAC6-targeting antisense oligonucleotides restores neuronal structure and synaptic transmission, suggesting PACS1R203W/HDAC6 may be targeted for treating PACS1 syndrome neuropathology.
Collapse
Affiliation(s)
- Sabrina Villar-Pazos
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yunhan Yang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Kun Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jenea B. Lyles
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Bradley J. Deitch
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Melanie J. Grubisha
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
12
|
Molecular Basis of the Schuurs-Hoeijmakers Syndrome: What We Know about the Gene and the PACS-1 Protein and Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23179649. [PMID: 36077045 PMCID: PMC9456036 DOI: 10.3390/ijms23179649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The Schuurs−Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopment Disorder (PACS1-NDD) is a rare autosomal dominant disease caused by mutations in the PACS1 gene. To date, only 87 patients have been reported and, surprisingly, most of them carry the same variant (c.607C>T; p.R203W). The most relevant clinical features of the syndrome include neurodevelopment delay, seizures or a recognizable facial phenotype. Moreover, some of these characteristics overlap with other syndromes, such as the PACS2 or Wdr37 syndromes. The encoded protein phosphofurin acid cluster sorting 1 (PACS-1) is able to bind to different client proteins and direct them to their subcellular final locations. Therefore, although its main function is protein trafficking, it could perform other roles related to its client proteins. In patients with PACS1-NDD, a gain-of-function or a dominant negative mechanism for the mutated protein has been suggested. This, together with the fact that most of the patients carry the same genetic variant, makes it a good candidate for novel therapeutic approaches directed to decreasing the toxic effect of the mutated protein. Some of these strategies include the use of antisense oligonucleotides (ASOs) or targeting of its client proteins.
Collapse
|
13
|
Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J Lipid Res 2022; 63:100243. [PMID: 35724703 PMCID: PMC9356209 DOI: 10.1016/j.jlr.2022.100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer's disease, prion diseases, Parkinson's disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Trothen SM, Zang RX, Lurie A, Dikeakos JD. PACS-1 contains distinct motifs for nuclear-cytoplasmic transport and interacts with the RNA-binding protein PTBP1 in the nucleus and cytosol. FEBS Lett 2022; 596:232-248. [PMID: 34822171 DOI: 10.1002/1873-3468.14243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Phosphofurin acidic cluster sorting protein 1 (PACS-1) is canonically a cytosolic trafficking protein, yet recent reports have described nuclear roles for PACS-1. Herein, we sought to define the nuclear transport mechanism of PACS-1. We demonstrate that PACS-1 nucleocytoplasmic trafficking is dependent on its interaction with the nuclear transport receptors importin alpha 5 and exportin 1. PACS-1 nuclear entry and exit are defined by a nuclear localization signal (NLS, residues 311-318) and nuclear export signal (NES3, residues 366-375). Mutation of the PACS-1 NLS and NES3 altered the localization of a complex formed between PACS-1 and an RNA-binding protein, polypyrimidine tract-binding protein 1. Overall, we identify the nuclear localization mechanism of PACS-1 and highlight a potential role for PACS-1 in RNA-binding protein trafficking.
Collapse
Affiliation(s)
- Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Rong Xuan Zang
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Antony Lurie
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Nair-Gill E, Bonora M, Zhong X, Liu A, Miranda A, Stewart N, Ludwig S, Russell J, Gallagher T, Pinton P, Beutler B. Calcium flux control by Pacs1-Wdr37 promotes lymphocyte quiescence and lymphoproliferative diseases. EMBO J 2021; 40:e104888. [PMID: 33630350 DOI: 10.15252/embj.2020104888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Endoplasmic reticulum (ER) calcium (Ca2+ ) stores are critical to proteostasis, intracellular signaling, and cellular bioenergetics. Through forward genetic screening in mice, we identified two members of a new complex, Pacs1 and Wdr37, which are required for normal ER Ca2+ handling in lymphocytes. Deletion of Pacs1 or Wdr37 caused peripheral lymphopenia that was linked to blunted Ca2+ release from the ER after antigen receptor stimulation. Pacs1-deficient cells showed diminished inositol triphosphate receptor expression together with increased ER and oxidative stress. Mature Pacs1-/- B cells proliferated and died in vivo under lymphocyte replete conditions, indicating spontaneous loss of cellular quiescence. Disruption of Pacs1-Wdr37 did not diminish adaptive immune responses, but potently suppressed lymphoproliferative disease models by forcing loss of quiescence. Thus, Pacs1-Wdr37 plays a critical role in stabilizing lymphocyte populations through ER Ca2+ handling and presents a new target for lymphoproliferative disease therapy.
Collapse
Affiliation(s)
- Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aijie Liu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amber Miranda
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathan Stewart
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Gallagher
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Ouyang S, Jia B, Xie W, Yang J, Lv Y. Mechanism underlying the regulation of sortilin expression and its trafficking function. J Cell Physiol 2020; 235:8958-8971. [PMID: 32474917 DOI: 10.1002/jcp.29818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
This review summarizes and analyzes the updated information on the regulation of sortilin expression and its trafficking function. Evidence indicates that the expression and function of sortilin are closely regulated at four levels: DNA, messenger RNA (mRNA), protein, and trafficking function. DNA methylation, several mutations, and minor single-nucleotide polymorphisms within DNA fragments affect the expression of SORT1 gene. A few transcription factors and microRNAs modulate its transcription as well as the splicing or stability of the mRNA. Moreover, several translation factors control the synthesis of sortilin protein, and posttranslational modifications affect its degradation processes. Multiple adaptor molecules modulate the sortilin trafficking function in the anterograde or retrograde pathway. Recent advances in the regulation of sortilin expression and function, and its related mechanisms will help the ongoing research related to sortilin and promote future clinical application via sortilin intervention.
Collapse
Affiliation(s)
- Shuhui Ouyang
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Bo Jia
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Xie
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Jing Yang
- Department of Endocrinology of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuncheng Lv
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
17
|
Mani C, Tripathi K, Luan S, Clark DW, Andrews JF, Vindigni A, Thomas G, Palle K. The multifunctional protein PACS-1 is required for HDAC2- and HDAC3-dependent chromatin maturation and genomic stability. Oncogene 2020; 39:2583-2596. [PMID: 31988453 PMCID: PMC7085454 DOI: 10.1038/s41388-020-1167-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
Abstract
Phosphofurin acidic cluster sorting protein-1 (PACS-1) is a multifunctional membrane traffic regulator that plays important roles in organ homeostasis and disease. In this study, we elucidate a novel nuclear function for PACS-1 in maintaining chromosomal integrity. PACS-1 progressively accumulates in the nucleus during cell cycle progression, where it interacts with class I histone deacetylases 2 and 3 (HDAC2 and HDAC3) to regulate chromatin dynamics by maintaining the acetylation status of histones. PACS-1 knockdown results in the proteasome-mediated degradation of HDAC2 and HDAC3, compromised chromatin maturation, as indicated by elevated levels of histones H3K9 and H4K16 acetylation, and, consequently, increased replication stress-induced DNA damage and genomic instability.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Shan Luan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15239, USA.,University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - David W Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Joel F Andrews
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15239, USA.,University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA. .,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA. .,Department of Surgery, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.
| |
Collapse
|
18
|
Takeda T, Komatsu M, Chiwaki F, Komatsuzaki R, Nakamura K, Tsuji K, Kobayashi Y, Tominaga E, Ono M, Banno K, Aoki D, Sasaki H. Upregulation of IGF2R evades lysosomal dysfunction-induced apoptosis of cervical cancer cells via transport of cathepsins. Cell Death Dis 2019; 10:876. [PMID: 31748500 PMCID: PMC6868013 DOI: 10.1038/s41419-019-2117-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022]
Abstract
Cervical cancer is the most common gynecological malignancy in the world; however, the survival rates of advanced-stage and recurrent cervical cancer patients remain poor. The multifaced protein insulin-like growth factor 2 receptor (IGF2R) has various ligands, represented as IGF-2 and mannose-6-phosphate (M6P)-tagged proteins. Regarding its antagonistic activity as an IGF1R signal, IGF2R is currently considered a tumor suppressor gene, whereas its significance as an M6P receptor is still unclear. Here, on the basis of transcriptome analysis of TCGA and GEO open datasets, we show that IGF2R is upregulated and correlated with poor prognosis in cervical cancer. Several experiments using cervical cancer cell lines revealed that IGF2R depletion induced apoptosis, decreased cell viability, and increased vulnerability to certain anticancer drug cisplatin. In contrast to its negligible impact in IGF1R signaling, loss of IGF2R disrupted the Golgi-to-lysosome transport of M6P-tagged cathepsins, resulting in decreased lysosomal activity, with their abnormal accumulation and dysfunction of both autophagy and mitophagy, which cause the accumulation of misfolded proteins and production of reactive oxygen species. Taken together, IGF2R has an oncogenic role through transportation of M6P-tagged cargo in cervical cancer and can be used as a predictive biomarker for prognostic classification.
Collapse
Affiliation(s)
- Takashi Takeda
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.,Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masayuki Komatsu
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
| | - Fumiko Chiwaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Rie Komatsuzaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Kanako Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kosuke Tsuji
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
| |
Collapse
|
19
|
Yasukochi Y, Sakuma J, Takeuchi I, Kato K, Oguri M, Fujimaki T, Horibe H, Yamada Y. Evolutionary history of disease-susceptibility loci identified in longitudinal exome-wide association studies. Mol Genet Genomic Med 2019; 7:e925. [PMID: 31402603 PMCID: PMC6732299 DOI: 10.1002/mgg3.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/12/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Our longitudinal exome‐wide association studies previously detected various genetic determinants of complex disorders using ~26,000 single‐nucleotide polymorphisms (SNPs) that passed quality control and longitudinal medical examination data (mean follow‐up period, 5 years) in 4884–6022 Japanese subjects. We found that allele frequencies of several identified SNPs were remarkably different among four ethnic groups. Elucidating the evolutionary history of disease‐susceptibility loci may help us uncover the pathogenesis of the related complex disorders. Methods In the present study, we conducted evolutionary analyses such as extended haplotype homozygosity, focusing on genomic regions containing disease‐susceptibility loci and based on genotyping data of our previous studies and datasets from the 1000 Genomes Project. Results Our evolutionary analyses suggest that derived alleles of rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs closely located at 12q24.1 associated with type 2 diabetes mellitus, obesity, dyslipidemia, and three complex disorders (hypertension, hyperuricemia, and dyslipidemia), respectively, rapidly expanded after the human dispersion from Africa (Out‐of‐Africa). Allele frequencies of GGA3 and six SNPs at 12q24.1 appeared to have remarkably changed in East Asians, whereas the derived alleles of rs34902660 of SLC17A3 and rs7656604 at 4q13.3 might have spread across Japanese and non‐Africans, respectively, although we cannot completely exclude the possibility that allele frequencies of disease‐associated loci may be affected by demographic events. Conclusion Our findings indicate that derived allele frequencies of nine disease‐associated SNPs (rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs at 12q24.1) identified in the longitudinal exome‐wide association studies largely increased in non‐Africans after Out‐of‐Africa.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
20
|
|
21
|
Cui Y, Carosi JM, Yang Z, Ariotti N, Kerr MC, Parton RG, Sargeant TJ, Teasdale RD. Retromer has a selective function in cargo sorting via endosome transport carriers. J Cell Biol 2018; 218:615-631. [PMID: 30559172 PMCID: PMC6363445 DOI: 10.1083/jcb.201806153] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/22/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
The molecular actions of retromer in the endolysosomal system remain unclear and controversial. Cui et al. demonstrate the essential role of retromer in the selective incorporation of cargo into a specific type of endosome transport carrier and the maintenance of lysosomal function. Retromer is a peripheral membrane protein complex that coordinates multiple vesicular trafficking events within the endolysosomal system. Here, we demonstrate that retromer is required for the maintenance of normal lysosomal morphology and function. The knockout of retromer subunit Vps35 causes an ultrastructural alteration in lysosomal structure and aberrant lysosome function, leading to impaired autophagy. At the whole-cell level, knockout of retromer Vps35 subunit reduces lysosomal proteolytic capacity as a consequence of the improper processing of lysosomal hydrolases, which is dependent on the trafficking of the cation-independent mannose 6-phosphate receptor (CI-M6PR). Incorporation of CI-M6PR into endosome transport carriers via a retromer-dependent process is restricted to those tethered by GCC88 but not golgin-97 or golgin-245. Finally, we show that this retromer-dependent retrograde cargo trafficking pathway requires SNX3, but not other retromer-associated cargo binding proteins, such as SNX27 or SNX-BAR proteins. Therefore, retromer does contribute to the retrograde trafficking of CI-M6PR required for maturation of lysosomal hydrolases and lysosomal function.
Collapse
Affiliation(s)
- Yi Cui
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Julian M Carosi
- Hopwood Centre for Neurobiology, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - Zhe Yang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Ariotti
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Markus C Kerr
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert G Parton
- Institute for Molecular Biosciences and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Timothy J Sargeant
- Hopwood Centre for Neurobiology, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Rohan D Teasdale
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Two novel susceptibility loci for type 2 diabetes mellitus identified by longitudinal exome-wide association studies in a Japanese population. Genomics 2017; 111:34-42. [PMID: 29273463 DOI: 10.1016/j.ygeno.2017.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022]
Abstract
Recent genome-wide association studies identified genetic variants that confer susceptibility to type 2 diabetes mellitus (T2DM). However, few longitudinal genome-wide association studies of this metabolic disorder have been reported to date. Therefore, we performed a longitudinal exome-wide association study of T2DM, using 24,579 single nucleotide polymorphisms (SNPs) and repeated measurements from 6022 Japanese individuals. The generalized estimating equation model was applied to test relations of SNPs to three T2DM-related parameters: prevalence of T2DM, fasting plasma glucose level, and blood glycosylated hemoglobin content. Three SNPs that passed quality control were significantly (P<2.26×10-7) associated with two of the three T2DM-related parameters in additive and recessive models. Of the three SNPs, rs6414624 in EVC and rs78338345 in GGA3 were novel susceptibility loci for T2DM. In the present study, the SNP of GGA3 was predicted to be a genetic variant whose minor allele frequency has recently increased in East Asia.
Collapse
|
23
|
Sun M, Zhang H. Par3 and aPKC regulate BACE1 endosome-to-TGN trafficking through PACS1. Neurobiol Aging 2017; 60:129-140. [PMID: 28946017 PMCID: PMC5653456 DOI: 10.1016/j.neurobiolaging.2017.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
The cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) is the rate-limiting step in beta amyloid generation during Alzheimer's disease (AD) pathogenesis. In AD brains, BACE1 is abnormally accumulated in endocytic compartments, where the acidic pH is optimal for its activity. However, mechanisms regulating the endosome-to-trans-Golgi network (TGN) retrieval of BACE1 remain unclear. Here, we show that partitioning defective 3 (Par3) facilitates BACE1 retrograde trafficking from endosomes to the TGN. Par3 functions through aPKC-mediated phosphorylation of BACE1 on Ser498, which in turn promotes the interaction between BACE1 and phosphofurin acidic cluster sorting protein 1 and facilitates the retrograde trafficking of BACE1 to the TGN. In human AD brains, there is a significant decrease in Ser498 phosphorylation of BACE1 suggesting that defective phosphorylation-dependent retrograde transport of BACE1 is important in AD pathogenesis. Together, our studies provide mechanistic insight into a novel role for Par3 and aPKC in regulating the retrograde endosome-to-TGN trafficking of BACE1 and shed light on the mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Miao Sun
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
24
|
Miyake N, Ozasa S, Mabe H, Kimura S, Shiina M, Imagawa E, Miyatake S, Nakashima M, Mizuguchi T, Takata A, Ogata K, Matsumoto N. A novel missense mutation affecting the same amino acid as the recurrent PACS1 mutation in Schuurs-Hoeijmakers syndrome. Clin Genet 2017; 93:929-930. [PMID: 28975623 DOI: 10.1111/cge.13105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 02/03/2023]
Abstract
A novel causative variant (c.608G>A, p.Arg203Gln) in PACS1.
Collapse
Affiliation(s)
- N Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - S Ozasa
- Department of Pediatrics, Kumamoto University, Kumamoto, Japan
| | - H Mabe
- Department of Pediatrics, Kumamoto University, Kumamoto, Japan
| | - S Kimura
- Kumamoto City Child Development Support Center, Kumamoto, Japan
| | - M Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - E Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - S Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - M Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - T Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - A Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - K Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - N Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
25
|
Obesity-Linked Phosphorylation of SIRT1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver. Mol Cell Biol 2017; 37:MCB.00006-17. [PMID: 28533219 DOI: 10.1128/mcb.00006-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/05/2017] [Indexed: 12/15/2022] Open
Abstract
Sirtuin1 (SIRT1) deacetylase delays and improves many obesity-related diseases, including nonalcoholic fatty liver disease (NAFLD) and diabetes, and has received great attention as a drug target. SIRT1 function is aberrantly low in obesity, so understanding the underlying mechanisms is important for drug development. Here, we show that obesity-linked phosphorylation of SIRT1 inhibits its function and promotes pathological symptoms of NAFLD. In proteomic analysis, Ser-164 was identified as a major serine phosphorylation site in SIRT1 in obese, but not lean, mice, and this phosphorylation was catalyzed by casein kinase 2 (CK2), the levels of which were dramatically elevated in obesity. Mechanistically, phosphorylation of SIRT1 at Ser-164 substantially inhibited its nuclear localization and modestly affected its deacetylase activity. Adenovirus-mediated liver-specific expression of SIRT1 or a phosphor-defective S164A-SIRT1 mutant promoted fatty acid oxidation and ameliorated liver steatosis and glucose intolerance in diet-induced obese mice, but these beneficial effects were not observed in mice expressing a phosphor-mimic S164D-SIRT1 mutant. Remarkably, phosphorylated S164-SIRT1 and CK2 levels were also highly elevated in liver samples of NAFLD patients and correlated with disease severity. Thus, inhibition of phosphorylation of SIRT1 by CK2 may serve as a new therapeutic approach for treatment of NAFLD and other obesity-related diseases.
Collapse
|
26
|
Progida C, Bakke O. Bidirectional traffic between the Golgi and the endosomes - machineries and regulation. J Cell Sci 2016; 129:3971-3982. [PMID: 27802132 DOI: 10.1242/jcs.185702] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The bidirectional transport between the Golgi complex and the endocytic pathway has to be finely regulated in order to ensure the proper delivery of newly synthetized lysosomal enzymes and the return of sorting receptors from degradative compartments. The high complexity of these routes has led to experimental difficulties in properly dissecting and separating the different pathways. As a consequence, several models have been proposed during the past decades. However, recent advances in our understanding of endosomal dynamics have helped to unify these different views. We provide here an overview of the current insights into the transport routes between Golgi and endosomes in mammalian cells. The focus of the Commentary is on the key molecules involved in the trafficking pathways between these intracellular compartments, such as Rab proteins and sorting receptors, and their regulation. A proper understanding of the bidirectional traffic between the Golgi complex and the endolysosomal system is of uttermost importance, as several studies have demonstrated that mutations in the factors involved in these transport pathways result in various pathologies, in particular lysosome-associated diseases and diverse neurological disorders, such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Farinha CM, Swiatecka-Urban A, Brautigan DL, Jordan P. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity. Front Chem 2016; 4:1. [PMID: 26835446 PMCID: PMC4718993 DOI: 10.3389/fchem.2016.00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.
Collapse
Affiliation(s)
- Carlos M Farinha
- Faculty of Sciences, Biosystems and Integrative Sciences Institute, University of Lisboa Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Cell Biology, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Peter Jordan
- Faculty of Sciences, Biosystems and Integrative Sciences Institute, University of LisboaLisbon, Portugal; Department of Human Genetics, National Health Institute Dr Ricardo JorgeLisbon, Portugal
| |
Collapse
|
28
|
Dombernowsky SL, Samsøe-Petersen J, Petersen CH, Instrell R, Hedegaard AMB, Thomas L, Atkins KM, Auclair S, Albrechtsen R, Mygind KJ, Fröhlich C, Howell M, Parker P, Thomas G, Kveiborg M. The sorting protein PACS-2 promotes ErbB signalling by regulating recycling of the metalloproteinase ADAM17. Nat Commun 2015; 6:7518. [PMID: 26108729 PMCID: PMC4481878 DOI: 10.1038/ncomms8518] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 05/16/2015] [Indexed: 01/07/2023] Open
Abstract
The metalloproteinase ADAM17 activates ErbB signalling by releasing ligands from the cell surface, a key step underlying epithelial development, growth and tumour progression. However, mechanisms acutely controlling ADAM17 cell-surface availability to modulate the extent of ErbB ligand release are poorly understood. Here, through a functional genome-wide siRNA screen, we identify the sorting protein PACS-2 as a regulator of ADAM17 trafficking and ErbB signalling. PACS-2 loss reduces ADAM17 cell-surface levels and ADAM17-dependent ErbB ligand shedding, without apparent effects on related proteases. PACS-2 co-localizes with ADAM17 on early endosomes and PACS-2 knockdown decreases the recycling and stability of internalized ADAM17. Hence, PACS-2 sustains ADAM17 cell-surface activity by diverting ADAM17 away from degradative pathways. Interestingly, Pacs2-deficient mice display significantly reduced levels of phosphorylated EGFR and intestinal proliferation. We suggest that this mechanism controlling ADAM17 cell-surface availability and EGFR signalling may play a role in intestinal homeostasis, with potential implications for cancer biology.
Collapse
Affiliation(s)
- Sarah Louise Dombernowsky
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jacob Samsøe-Petersen
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Camilla Hansson Petersen
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Rachael Instrell
- High Throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Anne-Mette Bornhardt Hedegaard
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 507 Bridgeside Point II, 450 Technolohy Drive, Pittsburgh, PA 15219, USA
| | - Katelyn Mae Atkins
- Department of Cell and Developmental Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Sylvain Auclair
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 507 Bridgeside Point II, 450 Technolohy Drive, Pittsburgh, PA 15219, USA
| | - Reidar Albrechtsen
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Kasper Johansen Mygind
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Camilla Fröhlich
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Michael Howell
- High Throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Peter Parker
- Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
- Division of Cancer Studies, King’s College London, New Hunts House, Guy’s Campus, London SE1 1UL, UK
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 507 Bridgeside Point II, 450 Technolohy Drive, Pittsburgh, PA 15219, USA
- Department of Cell and Developmental Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Marie Kveiborg
- Department of Biomedical Sciences & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
29
|
Hu CT, Cheng CC, Wu JR, Pan SM, Wu WS. PKCε-mediated c-Met endosomal processing directs fluctuant c-Met-JNK-paxillin signaling for tumor progression of HepG2. Cell Signal 2015; 27:1544-55. [PMID: 25778903 DOI: 10.1016/j.cellsig.2015.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/28/2015] [Indexed: 12/16/2022]
Abstract
Hepatocyte growth factor (HGF) induced c-Met signaling play critical roles in the progression of hepatocellular carcinoma (HCC). However, c-Met targeting approaches suffered resistance and side effect, thus identification of more suitable downstream targets is needed. Recently, we demonstrated HGF-induced fluctuant ERK/paxillin signaling within 24h. We further examined the underlying mechanisms for fluctuant c-Met/JNK/paxillin signal cascade within 12h. HGF-induced phosphorylation of c-Met, JNK, and paxillin (Ser178) shared a common fluctuation pattern characterized by an initial peak at 0.5h, a middle drop at 4h, and a later peak at 10h. Dynasore, the inhibitor of dynamin, suppressed HGF-induced c-Met internalization and phosphorylation of JNK and paxillin (Ser178) at 0.5h, indicating that endosome formation is required for initial signal enhancement. Further, depletion of PKCε not only enhanced HGF-induced phosphorylation of JNK and paxillin (Ser178) but also prevented c-Met degradation at 0.5h, suggesting that PKCε mediated c-Met degradation for signal declination. On the other hand, HGF induced colocalizations of both phosphorylated JNK and paxillin with the endosomal recycling protein GGA3 at 10h and depletion of GGA3 abolished membrane recycling of c-Met and phosphorylation of JNK/paxillin at the same time point. Interestingly, HGF induced GGA3 phosphorylation in a PKCε-dependent manner during 0.5-4h, which is associated with c-Met degradation in the same period. Finally, HGF-induced cell migration, invasion and intrahepatic metastasis of HepG2 were prevented by the inhibitors of endocytosis. Our results suggest that critical endosomal components are promising therapeutic targets for preventing HGF-induced progression of HCC.
Collapse
Affiliation(s)
- Chi-Tan Hu
- Research Centre for Hepatology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and School of Medicine Tzu Chi University, Taiwan
| | - Chuan-Chu Cheng
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jia-Ru Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Siou-Mei Pan
- Research Centre for Hepatology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital and School of Medicine Tzu Chi University, Taiwan
| | - Wen-Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
30
|
Chen J, Wang Y, Wang F, Yang J, Gao M, Li C, Liu Y, Liu Y, Yamaji N, Ma JF, Paz-Ares J, Nussaume L, Zhang S, Yi K, Wu Z, Wu P. The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels. THE PLANT CELL 2015; 27:711-23. [PMID: 25724641 PMCID: PMC4558666 DOI: 10.1105/tpc.114.135335] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/07/2015] [Indexed: 05/03/2023]
Abstract
Phosphate transporters (PTs) mediate phosphorus uptake and are regulated at the transcriptional and posttranslational levels. In one key mechanism of posttranslational regulation, phosphorylation of PTs affects their trafficking from the endoplasmic reticulum (ER) to the plasma membrane. However, the kinase(s) mediating PT phosphorylation and the mechanism leading to ER retention of phosphorylated PTs remain unclear. In this study, we identified a rice (Oryza sativa) kinase subunit, CK2β3, which interacts with PT2 and PT8 in a yeast two-hybrid screen. Also, the CK2α3/β3 holoenzyme phosphorylates PT8 under phosphate-sufficient conditions. This phosphorylation inhibited the interaction of PT8 with PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1, a key cofactor regulating the exit of PTs from the ER to the plasma membrane. Additionally, phosphorus starvation promoted CK2β3 degradation, relieving the negative regulation of PT phosphorus-insufficient conditions. In accordance, transgenic expression of a nonphosphorylatable version of OsPT8 resulted in elevated levels of that protein at the plasma membrane and enhanced phosphorus accumulation and plant growth under various phosphorus regimes. Taken together, these results indicate that CK2α3/β3 negatively regulates PTs and phosphorus status regulates CK2α3/β3.
Collapse
Affiliation(s)
- Jieyu Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingxing Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Changying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Javier Paz-Ares
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Laurent Nussaume
- Unité Mixte de Recherche 7265 Commissariat à l'Energie Atomique/CNRS/University of Aix-Marseille, Institute for Biotechnology and Environmental Biology/SBVME/Laboratory of Plant Development Biology, Commissariat à l'Energie Atomique, Cadarache, St. Paul lez Durance F-13108, France
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Keke Yi
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Zhang J, Naslavsky N, Caplan S. EHDs meet the retromer: Complex regulation of retrograde transport. CELLULAR LOGISTICS 2014. [PMID: 23181199 PMCID: PMC3498075 DOI: 10.4161/cl.20582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Retrograde trafficking mediates the transport of endocytic membranes from endosomes to the trans-Golgi network (TGN). Dysregulation of these pathways can result in multiple ailments, including late-onset Alzheimer disease. One of the key retrograde transport regulators, the retromer complex, is tightly controlled by many factors, including the C-terminal Eps15 homology domain (EHD) proteins. This mini-review focuses on recent findings and discusses the regulation of the retromer complex by EHD proteins and the novel EHD1 interaction partner, Rabankyrin-5 (Rank-5).
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center; University of Nebraska Medical Center; Omaha, NE USA
| | | | | |
Collapse
|
32
|
Anitei M, Chenna R, Czupalla C, Esner M, Christ S, Lenhard S, Korn K, Meyenhofer F, Bickle M, Zerial M, Hoflack B. A high-throughput siRNA screen identifies genes that regulate mannose 6-phosphate receptor trafficking. J Cell Sci 2014; 127:5079-92. [PMID: 25278553 DOI: 10.1242/jcs.159608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The delivery of newly synthesized soluble lysosomal hydrolases to the endosomal system is essential for lysosome function and cell homeostasis. This process relies on the proper trafficking of the mannose 6-phosphate receptors (MPRs) between the trans-Golgi network (TGN), endosomes and the plasma membrane. Many transmembrane proteins regulating diverse biological processes ranging from virus production to the development of multicellular organisms also use these pathways. To explore how cell signaling modulates MPR trafficking, we used high-throughput RNA interference (RNAi) to target the human kinome and phosphatome. Using high-content image analysis, we identified 127 kinases and phosphatases belonging to different signaling networks that regulate MPR trafficking and/or the dynamic states of the subcellular compartments encountered by the MPRs. Our analysis maps the MPR trafficking pathways based on enzymes regulating phosphatidylinositol phosphate metabolism. Furthermore, it reveals how cell signaling controls the biogenesis of post-Golgi tubular carriers destined to enter the endosomal system through a SRC-dependent pathway regulating ARF1 and RAC1 signaling and myosin II activity.
Collapse
Affiliation(s)
- Mihaela Anitei
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Ramu Chenna
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Cornelia Czupalla
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Milan Esner
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Building A1, 62500 Brno, Czech Republic
| | - Sara Christ
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Steffi Lenhard
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Kerstin Korn
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Felix Meyenhofer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Bernard Hoflack
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| |
Collapse
|
33
|
Protein kinase CK2 is required for Wntless internalization and Wnt secretion. Cell Signal 2014; 26:2601-5. [PMID: 25178265 DOI: 10.1016/j.cellsig.2014.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 11/23/2022]
Abstract
Wnt proteins are lipid modified signaling molecules that have essential functions in development and adult tissue homeostasis. Secretion of Wnt is mediated by the transmembrane protein Wntless, which binds Wnt and transports it from the endoplasmic reticulum to the cell surface for release. To maintain efficient Wnt secretion, Wntless is recycled back to the Golgi and the endoplasmic reticulum through endocytosis and retromer dependent endosome to Golgi transport. We have previously identified protein kinase CK2 (CK2) in a genome-wide screen for regulators of Wnt signaling in Caenorhabditis elegans. Here, we show that CK2 function is required in Wnt producing cells for Wnt secretion. This function is evolutionarily conserved, as inhibition of CK2 activity interferes with Wnt5a secretion from mammalian cells. Mechanistically, we show that inhibition of CK2 function results in enhanced plasma membrane localization of Wls in C. elegans and mammalian cells, consistent with the notion that CK2 is involved in the regulation of Wls internalization.
Collapse
|
34
|
Yin RH, Yu JT, Tan L. The Role of SORL1 in Alzheimer's Disease. Mol Neurobiol 2014; 51:909-18. [PMID: 24833601 DOI: 10.1007/s12035-014-8742-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/05/2014] [Indexed: 11/29/2022]
Abstract
Genetic variation in SORL1 gene, also known as LR11, has been identified to associate with Alzheimer's disease (AD) through replicated genetic studies. As a type I transmembrane protein, SORL1 is composed of several distinct domains and belongs to both the low-density lipoprotein receptor (LDLR) family and the vacuolar protein sorting 10 (VPS10) domain receptor family. The level of SORL1 was found to be decreased in the AD brain which positively correlated with β-amyloid (Aβ) accumulation. Emerging data suggests that SORL1 contributes to AD through various pathways, including emerging as a central regulator of the trafficking and processing of amyloid precursor protein (APP), involvement in Aβ destruction, and interaction with ApoE and tau protein. Primarily, SORL1 interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network (TGN) and early endosomes, thereby restricting the delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. In this article, we review recent epidemiological and genetical findings of SORL1 that related with AD and speculate the possible roles of SORL1 in the progression of this disease. Finally, given the potential contributions of SORL1 to AD pathogenesis, targeting SORL1 might present novel opportunities for AD therapy.
Collapse
Affiliation(s)
- Rui-Hua Yin
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | | | | |
Collapse
|
35
|
SORLA-dependent and -independent functions for PACS1 in control of amyloidogenic processes. Mol Cell Biol 2013; 33:4308-20. [PMID: 24001769 DOI: 10.1128/mcb.00628-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sorting-related receptor with A-type repeats (SORLA) is a sorting receptor for the amyloid precursor protein (APP) that prevents breakdown of APP into Aβ peptides, a hallmark of Alzheimer's disease (AD). Several cytosolic adaptors have been shown to interact with the cytoplasmic domain of SORLA, thereby controlling intracellular routing of SORLA/APP complexes in cell lines. However, the relevance of adaptor-mediated sorting of SORLA for amyloidogenic processes in vivo remained unexplored. We focused on the interaction of SORLA with phosphofurin acidic cluster sorting protein 1 (PACS1), an adaptor that shuttles proteins between the trans-Golgi network (TGN) and endosomes. By studying PACS1 knockdown in neuronal cell lines and investigating transgenic mice expressing a PACS1-binding-defective mutant form of SORLA, we found that disruption of SORLA and PACS1 interaction results in the inability of SORLA/APP complexes to sort to the TGN in neurons and in increased APP processing in the brain. Loss of PACS1 also impairs the proper expression of the cation-independent mannose 6-phosphate receptor and its target cathepsin B, a protease that breaks down Aβ. Thus, our data identified the importance of PACS1-dependent protein sorting for amyloidogenic-burden control via both SORLA-dependent and SORLA-independent mechanisms.
Collapse
|
36
|
Chia PZC, Gunn P, Gleeson PA. Cargo trafficking between endosomes and the trans-Golgi network. Histochem Cell Biol 2013; 140:307-15. [PMID: 23851467 DOI: 10.1007/s00418-013-1125-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2013] [Indexed: 01/03/2023]
Abstract
The retrograde membrane transport pathways from endosomes to the trans-Golgi network (TGN) are now recognized as critical intracellular pathways to recycle and shuttle a selective subgroup of membrane proteins, including sorting receptors, membrane-bound enzymes, transporters, as well as providing an avenue for the intracellular transport of various bacterial toxins. Multiple pathways from endosomes to the TGN have now been defined which differ between the cargo transported and the machinery used. Here, we review advances in these pathways and the requirement for TGN organization, and also discuss the development of unbiased analytical approaches to quantitatively track cargo that use these endosome-to-TGN pathways.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | |
Collapse
|
37
|
Koreishi M, Yu S, Oda M, Honjo Y, Satoh A. CK2 phosphorylates Sec31 and regulates ER-To-Golgi trafficking. PLoS One 2013; 8:e54382. [PMID: 23349870 PMCID: PMC3548793 DOI: 10.1371/journal.pone.0054382] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 12/11/2012] [Indexed: 01/09/2023] Open
Abstract
Protein export from the endoplasmic reticulum (ER) is an initial and rate-limiting step of molecular trafficking and secretion. This is mediated by coat protein II (COPII)-coated vesicles, whose formation requires small GTPase Sar1 and 6 Sec proteins including Sec23 and Sec31. Sec31 is a component of the outer layer of COPII coat and has been identified as a phosphoprotein. The initiation and promotion of COPII vesicle formation is regulated by Sar1; however, the mechanism regulating the completion of COPII vesicle formation followed by vesicle release is largely unknown. Hypothesizing that the Sec31 phosphorylation may be such a mechanism, we identified phosphorylation sites in the middle linker region of Sec31. Sec31 phosphorylation appeared to decrease its association with ER membranes and Sec23. Non-phosphorylatable mutant of Sec31 stayed longer at ER exit sites and bound more strongly to Sec23. We also found that CK2 is one of the kinases responsible for Sec31 phosphorylation because CK2 knockdown decreased Sec31 phosphorylation, whereas CK2 overexpression increased Sec31 phosphorylation. Furthermore, CK2 knockdown increased affinity of Sec31 for Sec23 and inhibited ER-to-Golgi trafficking. These results suggest that Sec31 phosphorylation by CK2 controls the duration of COPII vesicle formation, which regulates ER-to-Golgi trafficking.
Collapse
Affiliation(s)
- Mayuko Koreishi
- The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Sidney Yu
- School of Biomedical Sciences and Epithelial Cell Biology Research Center, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Mayumi Oda
- The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yasuko Honjo
- The Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, Japan
| | - Ayano Satoh
- The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
38
|
Willnow TE, Andersen OM. Sorting receptor SORLA – a trafficking path to avoid Alzheimer disease. J Cell Sci 2013; 126:2751-60. [DOI: 10.1242/jcs.125393] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Excessive proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid β peptides (Aβ) by secretases in the brain is a molecular cause of Alzheimer disease (AD). According to current concepts, the complex route whereby APP moves between the secretory compartment, the cell surface and endosomes to encounter the various secretases determines its processing fate. However, the molecular mechanisms that control the intracellular trafficking of APP in neurons and their contribution to AD remain poorly understood. Here, we describe the functional elucidation of a new sorting receptor SORLA that emerges as a central regulator of trafficking and processing of APP. SORLA interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network and early endosomes, thereby restricting delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. Defects in SORLA and its interacting adaptors result in transport defects and enhanced amyloidogenic processing of APP, and represent important risk factors for AD in patients. As discussed here, these findings uncovered a unique regulatory pathway for the control of neuronal protein transport, and provide clues as to why defects in this pathway cause neurodegenerative disease.
Collapse
|
39
|
Bonnemaison ML, Eipper BA, Mains RE. Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol (Lausanne) 2013; 4:101. [PMID: 23966980 PMCID: PMC3743005 DOI: 10.3389/fendo.2013.00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022] Open
Abstract
In the regulated secretory pathway, secretory granules (SGs) store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins (APs), which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A) is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by Phosphofurin Acidic Cluster Sorting protein 1 (PACS-1), a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The Golgi-localized, γ-ear containing, ADP-ribosylation factor binding (GGA) family of APs serve a similar role. We review the functions of AP-1A, PACS-1, and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by APs.
Collapse
Affiliation(s)
- Mathilde L. Bonnemaison
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A. Eipper
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence: Richard E. Mains, Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA e-mail:
| |
Collapse
|
40
|
Schuurs-Hoeijmakers J, Oh E, Vissers L, Swinkels M, Gilissen C, Willemsen M, Holvoet M, Steehouwer M, Veltman J, de Vries B, van Bokhoven H, de Brouwer A, Katsanis N, Devriendt K, Brunner H. Recurrent de novo mutations in PACS1 cause defective cranial-neural-crest migration and define a recognizable intellectual-disability syndrome. Am J Hum Genet 2012; 91:1122-7. [PMID: 23159249 DOI: 10.1016/j.ajhg.2012.10.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/05/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022] Open
Abstract
We studied two unrelated boys with intellectual disability (ID) and a striking facial resemblance suggestive of a hitherto unappreciated syndrome. Exome sequencing in both families identified identical de novo mutations in PACS1, suggestive of causality. To support these genetic findings and to understand the pathomechanism of the mutation, we studied the protein in vitro and in vivo. Altered PACS1 forms cytoplasmic aggregates in vitro with concomitant increased protein stability and shows impaired binding to an isoform-specific variant of TRPV4, but not the full-length protein. Furthermore, consistent with the human pathology, expression of mutant PACS1 mRNA in zebrafish embryos induces craniofacial defects most likely in a dominant-negative fashion. This phenotype is driven by aberrant specification and migration of SOX10-positive cranial, but not enteric, neural-crest cells. Our findings suggest that PACS1 is necessary for the formation of craniofacial structures and that perturbation of its functions results in a specific syndromic ID phenotype.
Collapse
|
41
|
Sortilin and SorLA regulate neuronal sorting of trophic and dementia-linked proteins. Mol Neurobiol 2012; 45:379-87. [PMID: 22297619 DOI: 10.1007/s12035-012-8236-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/12/2012] [Indexed: 12/24/2022]
Abstract
Sortilin and SorLA are members of the Vps10p domain receptor family, the Sortilins, which comprise five type I transmembrane receptors differentially expressed in neuronal tissues of the central and peripheral nervous system. Since the identification of sortilin in 1997, members of this receptor family are recognized as sorting receptors primarily in the trans-Golgi network, interacting with a wide range of ligands comprising other transmembrane receptors as well as soluble proteins from neurotrophic factors to enzymes targeted for lysosomes. Specifically, the involvement of sortilin in neutrophin signaling in healthy and injured neurons is increasingly recognized, as well as the impact of SorLA on the cellular processing of amyloid precursor protein, an important component in Alzheimer's disease. The current understanding of these issues as well as the recent recognition of a molecular link between sortilin and frontotemporal dementia is addressed in this present review.
Collapse
|
42
|
Cancino J, Luini A. Signaling Circuits on the Golgi Complex. Traffic 2012; 14:121-34. [DOI: 10.1111/tra.12022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 01/21/2023]
|
43
|
Myung JK, Sadar MD. Large scale phosphoproteome analysis of LNCaP human prostate cancer cells. MOLECULAR BIOSYSTEMS 2012; 8:2174-82. [PMID: 22699815 DOI: 10.1039/c2mb25151e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Prostate cancer is the most frequently diagnosed cancer among men in the western world. The androgen receptor, a phosphoprotein, is suspected to be involved in all stages of the prostate cancer. Androgen receptor activity can be modulated by various kinases such as PKA, MAPK, AKT, and Src. Phosphorylation is an important post-translational modification and serves as a molecular on-off switch to regulate signaling. Disruptions of cellular phosphorylation are associated with various diseases such as cancer and kinases provide important drug targets. Here we present an analysis of the phosphoproteome in LNCaP human prostate cancer cells. The analytical strategy employed here used proteomics based methodologies with a combination of detergents and chaotropic reagents during trypsin digestion followed by titanium dioxide enrichment of phosphopeptides. Over the course of multiple analyses by mass spectrometry we identified a total of 746 phosphorylation sites in 540 phosphopeptides corresponding to 116 phosphoproteins, of which 56 had not been previously reported. Phosphoproteins identified included transcription factors, co-regulators of the androgen receptor, and cancer-related proteins that include β-catenin, USP10, and histone deacetylase-2. The information of signaling pathways, motifs of phosphorylated peptides, biological processes, molecular functions, cellular components, and protein interactions from the identified phosphoproteins established a map of phosphoproteome and signaling pathways in LNCaP cells.
Collapse
Affiliation(s)
- Jae-Kyung Myung
- Genome Sciences Centre, BC Cancer Agency, 675 W 10th Ave, Vancouver, BC V5Z 1L3, Canada
| | | |
Collapse
|
44
|
Nakada-Tsukui K, Tsuboi K, Furukawa A, Yamada Y, Nozaki T. A novel class of cysteine protease receptors that mediate lysosomal transport. Cell Microbiol 2012; 14:1299-317. [PMID: 22486861 PMCID: PMC3465781 DOI: 10.1111/j.1462-5822.2012.01800.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transport of lysosomal proteins is, in general, mediated by mannose 6-phosphate receptors via carbohydrate modifications. Here, we describe a novel class of receptors that regulate the transport of lysosomal hydrolases in the enteric protozoan Entamoeba histolytica, which is a good model organism to investigate membrane traffic. A novel 110 kDa cysteine protease (CP) receptor (CP-binding protein family 1, CPBF1) was initially discovered by affinity co-precipitation of the major CP (EhCP-A5), which plays a pivotal role in the pathogenesis of E. histolytica. We demonstrated that CPBF1 regulates EhCP-A5 transport from the endoplasmic reticulum to lysosomes and its binding to EhCP-A5 is independent of carbohydrate modifications. Repression of CPBF1 by gene silencing led to the accumulation of the unprocessed form of EhCP-A5 in the non-acidic compartment and the mis-secretion of EhCP-A5, suggesting that CPBF1 is involved in the trafficking and processing of EhCP-A5. The CPBF represents a new class of transporters that bind to lysosomal hydrolases in a carbohydrate-independent fashion and regulate their trafficking, processing and activation and, thus, regulate the physiology and pathogenesis of E. histolytica.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | |
Collapse
|
45
|
Dikeakos JD, Thomas L, Kwon G, Elferich J, Shinde U, Thomas G. An interdomain binding site on HIV-1 Nef interacts with PACS-1 and PACS-2 on endosomes to down-regulate MHC-I. Mol Biol Cell 2012; 23:2184-97. [PMID: 22496420 PMCID: PMC3364181 DOI: 10.1091/mbc.e11-11-0928] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 Nef pirates PACS-1 and PACS-2 to downregulate MHC-I, but little is known about the Nef–PACS interaction. The sites on Nef and the PACS proteins required for their interaction are identified, and their importance for Nef trafficking and Nef-induced MHC-I downregulation is discussed. The results provide insight into the molecular basis of Nef action. The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef directs virus escape from immune surveillance by subverting host cell intracellular signaling and membrane traffic to down-regulate cell-surface major histocompatibility complex class I (MHC-I). The interaction of Nef with the sorting proteins PACS-1 and PACS-2 mediates key signaling and trafficking steps required for Nef-mediated MHC-I down-regulation. Little is known, however, about the molecular basis underlying the Nef–PACS interaction. Here we identify the sites on Nef and the PACS proteins required for their interaction and describe the consequences of disrupting this interaction for Nef action. A previously unidentified cargo subsite on PACS-1 and PACS-2 interacted with a bipartite site on Nef formed by the EEEE65 acidic cluster on the N-terminal domain and W113 in the core domain. Mutation of these sites prevented the interaction between Nef and the PACS proteins on Rab5 (PACS-2 and PACS-1)- or Rab7 (PACS-1)-positive endosomes as determined by bimolecular fluorescence complementation and caused a Nef mutant defective in PACS binding to localize to distorted endosomal compartments. Consequently, disruption of the Nef–PACS interaction repressed Nef-induced MHC-I down-regulation in peripheral blood mononuclear cells. Our results provide insight into the molecular basis of Nef action and suggest new strategies to combat HIV-1.
Collapse
Affiliation(s)
- Jimmy D Dikeakos
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
46
|
Structural determinants for rCNT2 sorting to the plasma membrane of polarized and non-polarized cells. Biochem J 2012; 442:517-25. [DOI: 10.1042/bj20110605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
rCNT2 (rat concentrative nucleoside transporter 2) (Slc28a2) is a purine-preferring concentrative nucleoside transporter. It is expressed in both non-polarized and polarized cells, where it is localized in the brush border membrane. Since no information about the domains implicated in the plasma membrane sorting of rCNT2 is available, the present study aimed to identify structural and functional requirements for rCNT2 trafficking. The comprehensive topological mapping of the intracellular N-terminal tail revealed two main features: (i) a glutamate-enriched region (NPGLELME) between residues 21 and 28 that seems to be implicated in the stabilization of rCNT2 in the cell surface, since mutagenesis of these conserved glutamates resulted in enhanced endocytosis; and (ii) mutation of a potential protein kinase CK2 domain that led to a loss of brush border-specific sorting. Although the shortest proteins assayed (rCNT2-74AA, -48AA and -37AA) accumulated intracellularly and lost their brush border membrane preference, they were still functional. A deeper analysis of CK2 implication in CNT2 trafficking, using a CK2-specific inhibitor [DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)] and other complementary mutations mimicking the negative charge provided by phosphorylation (S46D and S46E), demonstrated an effect of this kinase on rCNT2 activity. In summary, the N-terminal tail of rCNT2 contains dual sorting signals. An acidic region is responsible for its proper stabilization at the plasma membrane, whereas the putative CK2 domain (Ser46) is implicated in the apical sorting of the transporter.
Collapse
|
47
|
Abstract
Some proteins and lipids traffic from the plasma membrane to the trans Golgi network (TGN)/Golgi apparatus and the endoplasmic reticulum, via the retrograde transport route. Endosomes are an obligatory through station. Whether early, recycling and late endosomes all hand off material to the TGN have remained a matter of debate. In this review, we give a short historical overview on how retrograde transport was discovered and explored. We then summarize and critically discuss data that have been put forward in favour of the existence of trafficking interfaces between each of the different endocytic localizations and the TGN. We finally point out some conceptual and technological challenges that will have to be met to establish definite conclusions for each of these scenarios.
Collapse
Affiliation(s)
- Ludger Johannes
- Traffic, Signaling, and Delivery Laboratory, Centre de Recherche, Institut Curie, CNRS UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
48
|
Chia PZC, Gleeson PA. The Regulation of Endosome-to-Golgi Retrograde Transport by Tethers and Scaffolds. Traffic 2011; 12:939-47. [DOI: 10.1111/j.1600-0854.2011.01185.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Liebau MC, Höpker K, Müller RU, Schmedding I, Zank S, Schairer B, Fabretti F, Höhne M, Bartram MP, Dafinger C, Hackl M, Burst V, Habbig S, Zentgraf H, Blaukat A, Walz G, Benzing T, Schermer B. Nephrocystin-4 regulates Pyk2-induced tyrosine phosphorylation of nephrocystin-1 to control targeting to monocilia. J Biol Chem 2011; 286:14237-45. [PMID: 21357692 PMCID: PMC3077625 DOI: 10.1074/jbc.m110.165464] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nephronophthisis is the most common genetic cause of end-stage renal failure during childhood and adolescence. Genetic studies have identified disease-causing mutations in at least 11 different genes (NPHP1–11), but the function of the corresponding nephrocystin proteins remains poorly understood. The two evolutionarily conserved proteins nephrocystin-1 (NPHP1) and nephrocystin-4 (NPHP4) interact and localize to cilia in kidney, retina, and brain characterizing nephronophthisis and associated pathologies as result of a ciliopathy. Here we show that NPHP4, but not truncating patient mutations, negatively regulates tyrosine phosphorylation of NPHP1. NPHP4 counteracts Pyk2-mediated phosphorylation of three defined tyrosine residues of NPHP1 thereby controlling binding of NPHP1 to the trans-Golgi sorting protein PACS-1. Knockdown of NPHP4 resulted in an accumulation of NPHP1 in trans-Golgi vesicles of ciliated retinal epithelial cells. These data strongly suggest that NPHP4 acts upstream of NPHP1 in a common pathway and support the concept of a role for nephrocystin proteins in intracellular vesicular transport.
Collapse
Affiliation(s)
- Max C Liebau
- Renal Division, Department of Medicine and Center for Molecular Medicine, University of Cologne, 50937 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hsu VW, Prekeris R. Transport at the recycling endosome. Curr Opin Cell Biol 2010; 22:528-34. [PMID: 20541925 PMCID: PMC2910225 DOI: 10.1016/j.ceb.2010.05.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 12/11/2022]
Abstract
The recycling endosome (RE) has long been considered as a sub-compartment of the early endosome that recycles internalized cargoes to the plasma membrane. The RE is now appreciated to participate in a more complex set of intracellular itineraries. Key cargo molecules and transport factors that act in these pathways are being identified. These advancements are beginning to reveal complexities in pathways involving the RE, and also suggest ways of further delineating functional domains of this compartment.
Collapse
Affiliation(s)
- Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|