1
|
Nikkilä R, Mäkitie A, Joensuu H, Markkanen S, Elenius K, Monni O, Palotie A, Saarentaus E, Salo T, Bizaki-Vallaskangas A. Novel Genetic Risk Variants Associated with Oral Tongue Squamous Cell Carcinoma. Head Neck Pathol 2025; 19:45. [PMID: 40278994 PMCID: PMC12031715 DOI: 10.1007/s12105-025-01784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
PURPOSE Limited data from genome-wide association studies (GWAS) focusing on oral tongue squamous cell carcinoma (OTSCC) are available. The present study was conducted to explore genetic associations for OTSCC. METHODS A GWAS on 376 cases of OTSCC was conducted using the FinnGen Data Freeze-12 dataset. The case-cohort included 205 males and 171 females. Cases with malignancies involving the base of the tongue or lingual tonsil were excluded from the case-cohort. Individuals with no recorded history of malignancy were used as controls (n = 407,067). A Phenome-wide association study (PheWAS) was performed for the lead variants to assess their co-associations with other cancers. RESULTS GWAS analysis identified three genome-wide significant loci associated with OTSCC (p < 5 × 10-8), located at 5p15.33 (rs27067 near gene LINC01511), 10q24 (rs1007771191 near RPS3AP36), and 20p12.3 (rs1438070080 near PLCB1), respectively. PheWAS showed associations of rs27067 mainly with prostate cancer (OR = 1.06, p = 5.41 × 10-7), and seborrheic keratosis (OR = 1.11, p = 1.51 × 10-11). A co-directional effect with melanoma was also observed (OR = 0.93, p = 6.24 × 10-5). CONCLUSION The GWAS detected two novel genetic associations with OTSCC. Further research is needed to identify the genes at these loci that contribute to the molecular pathogenesis of OTSCC.
Collapse
Affiliation(s)
- Rayan Nikkilä
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer and Research, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- Department of Oncology, HUS Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Saara Markkanen
- Department of Otolaryngology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- The Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Klaus Elenius
- Institute of Biomedicine, and MediCity Research Laboratory, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Oncology, Turku University Hospital, Turku, Finland
| | - Outi Monni
- Department of Oncology, HUS Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland and the Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Elmo Saarentaus
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland and the Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Helsinki University Hospital, Helsinki, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Argyro Bizaki-Vallaskangas
- Department of Otolaryngology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- The Wellbeing Services County of Pirkanmaa, Tampere, Finland.
| |
Collapse
|
2
|
Veloso A, Bleuart A, Conrard L, Orban T, Bruyr J, Cabochette P, Germano RFV, Schevenels G, Bernard A, Zindy E, Demeyer S, Vanhollebeke B, Dequiedt F, Martin M. The cytoskeleton adaptor protein Sorbs1 controls the development of lymphatic and venous vessels in zebrafish. BMC Biol 2024; 22:51. [PMID: 38414014 PMCID: PMC10900589 DOI: 10.1186/s12915-024-01850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.
Collapse
Affiliation(s)
- Alexandra Veloso
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Anouk Bleuart
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Louise Conrard
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Tanguy Orban
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Jonathan Bruyr
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Pauline Cabochette
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
- Present Address: Laboratory of Developmental Genetics, ULB Neuroscience Institute, Université Libre de Bruxelles, B-6041, Gosselies, Belgium
| | - Raoul F V Germano
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Giel Schevenels
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Alice Bernard
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, University of Liège (ULiège), Liège, Belgium
| | - Egor Zindy
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Sofie Demeyer
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Benoit Vanhollebeke
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Franck Dequiedt
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Maud Martin
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium.
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium.
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium.
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium.
- WEL Research Institute (WELBIO Department), Avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
3
|
Lee HR, Kang SU, Kim HJ, Ji EJ, Yun JH, Kim S, Jang JY, Shin YS, Kim CH. Liquid plasma as a treatment for cutaneous wound healing through regulation of redox metabolism. Cell Death Dis 2023; 14:119. [PMID: 36781835 PMCID: PMC9925775 DOI: 10.1038/s41419-023-05610-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023]
Abstract
The skin functions as the outermost protective barrier to the internal organs and major vessels; thus, delayed regeneration from acute injury could induce serious clinical complications. For rapid recovery of skin wounds, promoting re-epithelialization of the epidermis at the initial stage of injury is essential, wherein epithelial keratinocytes act as leading cells via migration. This study applied plasma technology, which has been known to enable wound healing in the medical field. Through in vitro and in vivo experiments, the study elucidated the effect and molecular mechanism of the liquid plasma (LP) manufactured by our microwave plasma system, which was found to improve the applicability of existing gas-type plasma on skin cell migration for re-epithelialization. LP treatment promoted the cytoskeletal transformation of keratinocytes and migration owing to changes in the expression of integrin-dependent focal adhesion molecules and matrix metalloproteinases (MMPs). This study also identified the role of increased levels of intracellular reactive oxygen species (ROS) as a driving force for cell migration activation, which was regulated by changes in NADPH oxidases and mitochondrial membrane potential. In an in vivo experiment using a murine dorsal full-thickness acute skin wound model, LP treatment helped improve the re-epithelialization rate, reaffirming the activation of the underlying intracellular ROS-dependent integrin-dependent signaling molecules. These findings indicate that LP could be a valuable wound management material that can improve the regeneration potential of the skin via the activation of migration-related molecular signaling within the epithelial cell itself with plasma-driven oxidative eustress.
Collapse
Affiliation(s)
- Hye Ran Lee
- Department of Otolaryngology-Head and Neck Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, 22711, Republic of Korea
- Department of Medical Sciences, Otolaryngology, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Eun Jong Ji
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungryeal Kim
- Department of Otolaryngology, College of Medicine, Inha University, Incheon, 22332, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
4
|
Advances in the previous two decades in our understanding of the post-translational modifications, functions, and drug perspectives of ArgBP2 and its family members. Biomed Pharmacother 2022; 155:113853. [DOI: 10.1016/j.biopha.2022.113853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
|
5
|
Dincã DM, Lallemant L, González-Barriga A, Cresto N, Braz SO, Sicot G, Pillet LE, Polvèche H, Magneron P, Huguet-Lachon A, Benyamine H, Azotla-Vilchis CN, Agonizantes-Juárez LE, Tahraoui-Boris J, Martinat C, Hernández-Hernández O, Auboeuf D, Rouach N, Bourgeois CF, Gourdon G, Gomes-Pereira M. Myotonic dystrophy RNA toxicity alters morphology, adhesion and migration of mouse and human astrocytes. Nat Commun 2022; 13:3841. [PMID: 35789154 PMCID: PMC9253038 DOI: 10.1038/s41467-022-31594-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells. In line with the cell phenotypes, molecular analyses reveal extensive expression and accumulation of toxic RNA in astrocytes, which result in RNA spliceopathy that is more severe than in neurons. Astrocyte missplicing affects primarily transcripts that regulate cell adhesion, cytoskeleton, and morphogenesis, and it is confirmed in human brain tissue. Our findings demonstrate that DM1 impacts astrocyte cell biology, possibly compromising their support and regulation of synaptic function. Myotonic dystrophy type 1 (DM1) is characterized by debilitating neurological symptoms. Dinca et al. demonstrate the pronounced impact of DM1 on the morphology and RNA metabolism of astrocytes. Their findings suggest astroglial pathology in DM1 brain dysfunction.
Collapse
Affiliation(s)
- Diana M Dincã
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Louison Lallemant
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | | | - Noémie Cresto
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Sandra O Braz
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.,Inserm UMR1163, Institut Imagine, Université Paris Cite, 75015, Paris, France
| | - Géraldine Sicot
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France.,Doctoral School N°562, Paris Descartes University, Paris, 75006, France
| | - Hélène Polvèche
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Paul Magneron
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Aline Huguet-Lachon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Hélène Benyamine
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Cuauhtli N Azotla-Vilchis
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Luis E Agonizantes-Juárez
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Julie Tahraoui-Boris
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Cécile Martinat
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Geneviève Gourdon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Mário Gomes-Pereira
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| |
Collapse
|
6
|
Jin X, Qiu X, Huang Y, Zhang H, Chen K. miR-223-3p carried by cancer-associated fibroblast microvesicles targets SORBS1 to modulate the progression of gastric cancer. Cancer Cell Int 2022; 22:96. [PMID: 35193596 PMCID: PMC8862537 DOI: 10.1186/s12935-022-02513-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/04/2022] [Indexed: 01/26/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) aggravate gastric cancer (GC) development. Methods Combined with bioinformatics analysis and literature review, miR-223-3p had high expression in microvesicles (MVs) derived from GC CAFs, and it could modulate SORBS1. miR-223-3p and SORBS1 mRNA levels were assessed by qRT-PCR. The levels of CAFs markers, MVs markers, epithelial-mesenchymal transition (EMT)-associated proteins, and SORBS1 protein were assessed by western blot. MVs isolated from fibroblasts were observed by transmission electron microscopy. Combined with immunofluorescence and co-culture experiments, GC cells were determined to absorb MVs carrying miR-223-3p. Cell functions were measured using CCK-8, transwell, flow cytometry and colony formation assays. The binding of miR-223-3p and SORBS1 was determined by dual-luciferase assay and RNA immunoprecipitation. The cancer-promoting effect of MVs carrying miR-223-3p on experimental animals was verified in vivo by tumor-bearing experiment in nude mice. Results miR-223-3p was upregulated in the MVs secreted by GC CAFs and could be transmitted to GC cells through MVs, to boost the malignant progression of tumor cells. Additionally, it was also revealed that miR-223-3p targeted SORBS1 and accelerated progression along with EMT in GC. Conclusions CAFs-derived MVs could carry miR-223-3p to GC cells to target SORBS1, thereby promoting the malignant progression of GC.
Collapse
Affiliation(s)
- Xiaoli Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Xi Qiu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yi Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Hang Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Kaibo Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
7
|
Karlsen A, Gonzalez-Franquesa A, Jakobsen JR, Krogsgaard MR, Koch M, Kjaer M, Schiaffino S, Mackey AL, Deshmukh AS. The proteomic profile of the human myotendinous junction. iScience 2022; 25:103836. [PMID: 35198892 PMCID: PMC8851264 DOI: 10.1016/j.isci.2022.103836] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Proteomics analysis of skeletal muscle has recently progressed from whole muscle tissue to single myofibers. Here, we further focus on a specific myofiber domain crucial for force transmission from muscle to tendon, the myotendinous junction (MTJ). To overcome the anatomical constraints preventing the isolation of pure MTJs, we performed in-depth analysis of the MTJ by progressive removal of the muscle component in semitendinosus muscle-tendon samples. Using detergents with increasing stringency, we quantified >3000 proteins across all samples, and identified 112 significantly enriched MTJ proteins, including 24 known MTJ-enriched proteins. Of the 88 novel MTJ markers, immunofluorescence analysis confirmed the presence of tetraspanin-24 (CD151), kindlin-2 (FERMT2), cartilage intermediate layer protein 1 (CILP), and integrin-alpha10 (ITGA10), at the human MTJ. Together, these human data constitute the first detailed MTJ proteomics resource that will contribute to advance understanding of the biology of the MTJ and its failure in pathological conditions.
Collapse
Affiliation(s)
- Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens R Jakobsen
- Section for Sports Traumatology M51, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark
| | - Michael R Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Denmark and Part of IOC Research Center, Copenhagen, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Dondi C, Bertin B, Da Ponte JP, Wojtowicz I, Jagla K, Junion G. A polarized nucleus-cytoskeleton-ECM connection in migrating cardioblasts controls heart tube formation in Drosophila. Development 2021; 148:271094. [PMID: 34323270 DOI: 10.1242/dev.192146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
The formation of the cardiac tube is a remarkable example of complex morphogenetic processes conserved from invertebrates to humans. It involves coordinated collective migration of contralateral rows of cardiac cells. The molecular processes underlying the specification of cardioblasts (CBs) prior to migration are well established and significant advances have been made in understanding the process of lumen formation. However, the mechanisms of collective cardiac cells migration remain elusive. Here, we have identified CAP and MSP300 as novel actors involved during CB migration. They both exhibit highly similar temporal and spatial expression patterns in Drosophila migrating cardiac cells, and are necessary for the correct number and alignment of CBs, a prerequisite for the coordination of their collective migration. Our data suggest that CAP and MSP300 are part of a protein complex linking focal adhesion sites to nuclei via the actin cytoskeleton that maintains post-mitotic state and correct alignment of CBs.
Collapse
Affiliation(s)
- Cristiana Dondi
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Benjamin Bertin
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Jean-Philippe Da Ponte
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Inga Wojtowicz
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Krzysztof Jagla
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| | - Guillaume Junion
- Université Clermont Auvergne, CNRS 6293, Inserm 1103, GReD institute, F-63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
McInerney-Leo AM, Chew HY, Inglis PL, Leo PJ, Joseph SR, Cooper CL, Okano S, Hassall T, Anderson L, Bowman RV, Gattas M, Harris JE, Marshall MS, Shaw JG, Wheeler L, Yang IA, Brown MA, Fong KM, Simpson F, Duncan EL. Germline ERBB3 mutation in familial non-small cell lung carcinoma: Expanding ErbB's role in oncogenesis. Hum Mol Genet 2021; 30:2393-2401. [PMID: 34274969 PMCID: PMC8643496 DOI: 10.1093/hmg/ddab172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is the commonest cause of cancer deaths worldwide. Although strongly associated with smoking, predisposition to lung cancer is also heritable, with multiple common risk variants identified. Rarely, dominantly inherited non-small-cell lung cancer (NSCLC) has been reported due to somatic mutations in EGFR/ErbB1 and ERBB2. Germline exome sequencing was performed in a multi-generation family with autosomal dominant NSCLC, including an affected child. Tumour samples were also sequenced. Full-length wild-type (wtErbB3) and mutant ERBB3 (mutErbB3) constructs were transfected into HeLa cells. Protein expression, stability, and subcellular localization were assessed, and cellular proliferation, pAkt/Akt and pERK levels determined. A novel germline variant in ERBB3 (c.1946 T > G: p.Iso649Arg), coding for receptor tyrosine-protein kinase erbB-3 (ErbB3), was identified, with appropriate segregation. There was no loss-of-heterozygosity in tumour samples. Both wtErbB3 and mutErbB3 were stably expressed. MutErbB3-transfected cells demonstrated an increased ratio of the 80 kDa form (which enhances proliferation) compared with the full-length (180 kDa) form. MutErbB3 and wtErbB3 had similar punctate cytoplasmic localization pre- and post-epidermal growth factor stimulation; however, epidermal growth factor receptor (EGFR) levels decreased faster post-stimulation in mutErbB3-transfected cells, suggesting more rapid processing of the mutErbB3/EGFR heterodimer. Cellular proliferation was increased in mutErbB3-transfected cells compared with wtErbB3 transfection. MutErbB3-transfected cells also showed decreased pAkt/tAkt ratios and increased pERK/tERK 30 min post-stimulation compared with wtErbB3 transfection, demonstrating altered signalling pathway activation. Cumulatively, these results support this mutation as tumorogenic. This is the first reported family with a germline ERBB3 mutation causing heritable NSCLC, furthering understanding of the ErbB family pathway in oncogenesis.
Collapse
Affiliation(s)
- Aideen M McInerney-Leo
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Hui Yi Chew
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Po-Ling Inglis
- Medical Oncology, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Paul J Leo
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Shannon R Joseph
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Caroline L Cooper
- Department of Anatomical Pathology, Pathology Queensland, Princess Alexandra Hospital, Brisbane.,UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006
| | - Satomi Okano
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Tim Hassall
- Queensland Children's Hospital, South Brisbane, QLD, 4101
| | - Lisa Anderson
- Medical Oncology, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Rayleen V Bowman
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Michael Gattas
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, 4029
| | - Jessica E Harris
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Mhairi S Marshall
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Janet G Shaw
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Lawrie Wheeler
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102
| | - Ian A Yang
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Matthew A Brown
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102.,Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,King's College London NIHR Biomedical Research Centre, King's College London, United Kingdom
| | - Kwun M Fong
- UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Thoracic Medicine, The Prince Charles Hospital, Rode Road, Chermside, QLD, 4032
| | - Fiona Simpson
- The Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102
| | - Emma L Duncan
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent St, Woolloongabba, QLD, 4102.,UQTRC, Faculty of Medicine, The University of Queensland, 288 Herston Road, Herston, QLD, 4006.,Department of Twin Research and Genetic Epidemiology, Faculty of Life Sciences and Medicine, King's College London, United Kingdom
| |
Collapse
|
10
|
Gonçalves J, Sharma A, Coyaud É, Laurent EMN, Raught B, Pelletier L. LUZP1 and the tumor suppressor EPLIN modulate actin stability to restrict primary cilia formation. J Cell Biol 2021; 219:151837. [PMID: 32496561 PMCID: PMC7337498 DOI: 10.1083/jcb.201908132] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Cilia and flagella are microtubule-based cellular projections with important sensory and motility functions. Their absence or malfunction is associated with a growing number of human diseases collectively referred to as ciliopathies. However, the fundamental mechanisms underpinning cilia biogenesis and functions remain only partly understood. Here, we show that depleting LUZP1 or its interacting protein, EPLIN, increases the levels of MyosinVa at the centrosome and primary cilia formation. We further show that LUZP1 localizes to both actin filaments and the centrosome/basal body. Like EPLIN, LUZP1 is an actin-stabilizing protein that regulates actin dynamics, at least in part, by mobilizing ARP2 to the centrosomes. Both LUZP1 and EPLIN interact with known ciliogenesis and cilia-length regulators and as such represent novel players in actin-dependent centrosome to basal body conversion. Ciliogenesis deregulation caused by LUZP1 or EPLIN loss may thus contribute to the pathology of their associated disease states.
Collapse
Affiliation(s)
- João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Amit Sharma
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Vdovenko D, Bachmann M, Wijnen WJ, Hottiger MO, Eriksson U, Valaperti A. The adaptor protein c-Cbl-associated protein (CAP) limits pro-inflammatory cytokine expression by inhibiting the NF-κB pathway. Int Immunopharmacol 2020; 87:106822. [PMID: 32738595 DOI: 10.1016/j.intimp.2020.106822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/15/2020] [Accepted: 07/17/2020] [Indexed: 01/07/2023]
Abstract
C-Cbl-associated protein (CAP), also known as Sorbin and SH3 domain-containing protein 1 (Sorbs1) or ponsin, an adaptor protein of the insulin-signalling pathway, mediates anti-viral and anti-cytotoxic protection in acute viral heart disease. In the present study we describe a novel protective immuno-modulatory function of CAP in inflammation. Among the three members of the Sorbs family of adapter molecules, which include CAP (Sorbs1), ArgBP2 (Sorbs2), and Vinexin (Sorbs3), CAP consistently down-regulated the expression of pro-inflammatory cytokines in mouse fibroblasts, cardiomyocytes, and myeloid-derived leukocytes, after Toll-like receptor (TLR) stimulation. Upon the same TLR stimulation, ArgBP2 partially down-regulated pro-inflammatory cytokine production in mouse fibroblasts and cardiomyocytes, while Vinexin rather promoted their production. Mechanistically, CAP limited pro-inflammatory cytokine expression by suppressing the phosphorylation of Inhibitor of kappa B (IκB) kinase (Iκκ)-α and Iκκ-β and their downstream NF-κB-dependent signalling pathway. Molecular affinity between CAP and Iκκ-α/ Iκκ-β was necessary to block the NF-κB pathway. The CAP-dependent inhibitory mechanism - in vivo exclusively IL-6 inhibition - was confirmed after collecting blood from mice with systemic inflammation induced by lipopolysaccharide (LPS) and in the heart tissue collected from mice infected with the cardiotropic Coxsackievirus B3 (CVB3). Taken together, CAP down-regulates pro-inflammatory cytokines by interfering with the normal function of the NF-κB pathway. The promotion of CAP production could support the development of new strategies aiming to limit excessive and detrimental activation of the immune system.
Collapse
Affiliation(s)
- Daria Vdovenko
- Cardioimmunology, Center for Molecular Cardiology, University of Zurich, Switzerland; GZO - Zurich Regional Health Center, Wetzikon, Switzerland
| | - Marta Bachmann
- Cardioimmunology, Center for Molecular Cardiology, University of Zurich, Switzerland; GZO - Zurich Regional Health Center, Wetzikon, Switzerland
| | - Winandus J Wijnen
- Cardioimmunology, Center for Molecular Cardiology, University of Zurich, Switzerland; GZO - Zurich Regional Health Center, Wetzikon, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Switzerland
| | - Urs Eriksson
- Cardioimmunology, Center for Molecular Cardiology, University of Zurich, Switzerland; GZO - Zurich Regional Health Center, Wetzikon, Switzerland
| | - Alan Valaperti
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Switzerland; Department of Clinical Immunology, University Hospital Zurich, Switzerland.
| |
Collapse
|
12
|
Jammrath J, Reim I, Saumweber H. Cbl-Associated Protein CAP contributes to correct formation and robust function of the Drosophila heart tube. PLoS One 2020; 15:e0233719. [PMID: 32469960 PMCID: PMC7259718 DOI: 10.1371/journal.pone.0233719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
The formation of a tube-like structure is a basic step in the making of functional hearts in vertebrates and invertebrates and therefore, its understanding provides important information on heart development and function. In Drosophila, the cardiac tube originates from two bilateral rows of dorsally migrating cells. On meeting at the dorsal midline, coordinated changes in cell shape and adhesive properties transform the two sheets of cells into a linear tube. ECM and transmembrane proteins linked to the cytoskeleton play an important role during these dynamic processes. Here we characterize the requirement of Cbl-Associated Protein (CAP) in Drosophila heart formation. In embryos, CAP is expressed in late migrating cardioblasts and is located preferentially at their luminal and abluminal periphery. CAP mutations result in irregular cardioblast alignment and imprecisely controlled cardioblast numbers. Furthermore, CAP mutant embryos show a strongly reduced heart lumen and an aberrant shape of lumen forming cardioblasts. Analysis of double heterozygous animals reveals a genetic interaction of CAP with Integrin- and Talin-encoding genes. In post-embryonic stages, CAP closely colocalizes with Integrin near Z-bands and at cell-cell contact sites. CAP mutants exhibit a reduced contractility in larval hearts and show a locally disrupted morphology, which correlates with a reduced pumping efficiency. Our observations imply a function of CAP in linking Integrin signaling with the actin cytoskeleton. As a modulator of the cytoskeleton, CAP is involved in the establishment of proper cell shapes during cardioblast alignment and cardiac lumen formation in the Drosophila embryo. Furthermore, CAP is required for correct heart function throughout development.
Collapse
Affiliation(s)
- Jennifer Jammrath
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Ingolf Reim
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| | - Harald Saumweber
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
13
|
Cho WC, Jang JE, Kim KH, Yoo BC, Ku JL. SORBS1 serves a metastatic role via suppression of AHNAK in colorectal cancer cell lines. Int J Oncol 2020; 56:1140-1151. [PMID: 32319594 PMCID: PMC7115741 DOI: 10.3892/ijo.2020.5006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Cbl-associated protein (CAP) is encoded by the sorbin and SH3 domain-containing 1 (SORBS1) gene. CAP has been reported to be associated with the actin cytoskeleton, receptor tyrosine kinase signaling and cell adhesion through interactions with various proteins. It may be hypothesized that SORBS1 has numerous unknown functions, which may include providing a favorable condition for metastasis. Although CAP has been demonstrated to possess a number of functions, the role of this protein has only been reported in metabolic signaling pathways and its function in cancer remains to be elucidated. In the present study, SORBS1 expression was detected in colorectal cancer cell lines divided into the primary group and the metastatic group by reverse transcription-quantitative PCR and western blot analysis. In addition, SORBS1 expression was manipulated by vector transfection and lentivirus transduction. The metastatic role of SORBS1, as determined by assessing its effects on cell proliferation and migration, was determined by colony formation assay, cell cycle analysis and Boyden chamber assay. To elucidate the SORBS1-binding protein, immunoprecipitation was performed. Co-localization of SORBS1 and AHNAK nucleoprotein (AHNAK) was identified by confocal microscopy. Notably, the protein expression levels of CAP were higher in SNU-769A and SW480 cells than in SNU-769B and SW620 cells. In addition, the number of colonies in the SORBS1-overexpressing group was significantly increased compared with that of the control group, as determined using the colony formation assay; the SORBS1 overexpression group formed >8-fold more colonies than the control group. The proliferative ability of the SORBS1 overexpression group was also significantly increased compared with the control group over the entire incubation period. Cell migration assays revealed that the number of migrated SORBS1-knockdown cells was reduced compared with the control in both HCT-116 and SNU-C4 cell lines; migration area was decreased to 31 and 26% in HCT-116 and SNU-C4 cell lines, respectively. Consequently, it was confirmed that SORBS1 could form a complex with AHNAK, which functions as a tumor suppressor through inhibition of phosphorylated-ERK and Rho-associated coiled-coil containing protein kinase 1. In conclusion, SORBS1 may serve a crucial role in cancer growth and migration via inhibition of AHNAK expression.
Collapse
Affiliation(s)
- Woo-Cheol Cho
- Department of Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jee-Eun Jang
- Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Kyung-Hee Kim
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Byong-Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Ja-Lok Ku
- Department of Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
14
|
Applications of X-ray Powder Diffraction in Protein Crystallography and Drug Screening. CRYSTALS 2020. [DOI: 10.3390/cryst10020054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Providing fundamental information on intra/intermolecular interactions and physicochemical properties, the three-dimensional structural characterization of biological macromolecules is of extreme importance towards understanding their mechanism of action. Among other methods, X-ray powder diffraction (XRPD) has proved its applicability and efficiency in numerous studies of different materials. Owing to recent methodological advances, this method is now considered a respectable tool for identifying macromolecular phase transitions, quantitative analysis, and determining structural modifications of samples ranging from small organics to full-length proteins. An overview of the XRPD applications and recent improvements related to the study of challenging macromolecules and peptides toward structure-based drug design is discussed. This review congregates recent studies in the field of drug formulation and delivery processes, as well as in polymorph identification and the effect of ligands and environmental conditions upon crystal characteristics. These studies further manifest the efficiency of protein XRPD for quick and accurate preliminary structural characterization.
Collapse
|
15
|
Yu W, Li D, Zhang Y, Li C, Zhang C, Wang L. MiR-142-5p Acts as a Significant Regulator Through Promoting Proliferation, Invasion, and Migration in Breast Cancer Modulated by Targeting SORBS1. Technol Cancer Res Treat 2019; 18:1533033819892264. [PMID: 31789129 PMCID: PMC6887818 DOI: 10.1177/1533033819892264] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Numerous researches have demonstrated that miR-142-5p plays significant roles in several cancers, although the functional characteristic of miR-142-5p in breast cancer has not been determined. This study is designed to explore the biological significance of miR-142-5p in breast cancer clinical implication and mechanism of action. Methods: The differential expression patterns of miR-142-5p and Sorbin and SH3 domain-containing protein 1 and correlations between them and clinical significances were analyzed based on data from database. The expression levels of miR-142-5p in breast cancer cells were detected using quantitative real-time polymerase chain reaction. Cell counting kit-8, transwell, and wound healing assays were used to explore the potential functions of miR-142-5p in breast cancer cells. In addition, bioinformatics prediction analysis and luciferase reporter assay were utilized to predict and identify the potential target gene of miR-142-5p. A rescue experiment was conducted by transfecting miR-142-5p inhibitors and si-Sorbin and SH3 domain-containing protein 1 into cells to explore miR-142-5p/Sorbin and SH3 domain-containing protein 1 pairs on breast cancer cells behaviors. Results: The analysis results showed that miR-142-5p was highly expressed in patients with breast cancer, while Sorbin and SH3 domain-containing protein 1 presented a trend of low expression. The clinical significances analysis suggested that the overexpression of miR-142-5p is closely correlated with metastasis, while low expression of Sorbin and SH3 domain-containing protein 1 is correlated with clinicopathological characteristics and poor overall survival in patients with breast cancer. In vitro exploration, the expression of miR-142-5p was upregulated in breast cancer cells and inhibition of miR-142-5p expression significantly reduced the proliferation, invasion, and migration of breast cancer cells. Through rescue experiments, breast cancer cells proliferation, invasion, and migration reduction induced by silencing of miR-142-5p were reversed via knockdown Sorbin and SH3 domain-containing protein 1. Conclusion: Our findings insinuate that miR-142-5p functions as a positive regulator of promoting breast cancer cells biological behaviors and clinical metastasis, possibly regulated by targeting Sorbin and SH3 domain-containing protein 1, thus providing valuable information in the development of preventive or even therapeutic strategies for utilizing miR-142-5p as a promising target.
Collapse
Affiliation(s)
- Weixuan Yu
- Department of General Surgery, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, China
| | - Dongwei Li
- Department of General Surgery, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, China
| | - Yunda Zhang
- Department of General Surgery, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, China
| | - Cheukfai Li
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Libin Wang
- Department of General Surgery, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, China
| |
Collapse
|
16
|
Kuroda M, Ueda K, Kioka N. Vinexin family (SORBS) proteins regulate mechanotransduction in mesenchymal stem cells. Sci Rep 2018; 8:11581. [PMID: 30068914 PMCID: PMC6070524 DOI: 10.1038/s41598-018-29700-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023] Open
Abstract
The stiffness of extracellular matrix (ECM) directs the differentiation of mesenchymal stem cells (MSCs) through the transcriptional co-activators Yes-associated protein (YAP) and transcriptional coactivator with a PDZ-binding motif (TAZ). Although a recent study revealed the involvement of vinexin α and CAP (c-Cbl-associated proteins), two of vinexin (SORBS) family proteins that bind to vinculin, in mechanosensing, it is still unclear whether these proteins regulate mechanotransduction and differentiation of MSCs. In the present study, we show that both vinexin α and CAP are necessary for the association of vinculin with the cytoskeleton and the promotion of YAP/TAZ nuclear localization in MSCs grown on rigid substrates. Furthermore, CAP is involved in the MSC differentiation in a stiffness-dependent manner, whereas vinexin depletion suppresses adipocyte differentiation independently of YAP/TAZ. These observations reveal a critical role of vinexin α and CAP in mechanotransduction and MSC differentiation.
Collapse
Affiliation(s)
- Mito Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto, 606-8507, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto, 606-8507, Japan.
| |
Collapse
|
17
|
Song L, Chang R, Dai C, Wu Y, Guo J, Qi M, Zhou W, Zhan L. SORBS1 suppresses tumor metastasis and improves the sensitivity of cancer to chemotherapy drug. Oncotarget 2018; 8:9108-9122. [PMID: 27791200 PMCID: PMC5354718 DOI: 10.18632/oncotarget.12851] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis and invasion are both hallmarks of cancer malignancy and the leading cause of cancer death. Here we show that the adaptor protein SORBS1 (Sorbin and SH3 domain-containing protein 1, also known as CAP/ponsin) is expressed at low levels in clinical cancer samples. In addition, low-level expression of SORBS1 was significantly associated with poor clinical outcomes and the increased tumor cell invasive capacity in breast cancer patients. We demonstrate that depletion of SORBS1 increases protrusions and filopodium-like protrusions (FLPs) formation, as well as the migratory and invasive abilities of cancer cells, via activation of JNK/cJun. Furthermore, silencing of SORBS1 promotes the epithelial-to-mesenchymal transition (EMT) process and attenuates chemical drug sensitivity especially that to cisplatin, by inhibition of p53 in breast cancer cells. Thus, we illustrate that SORBS1 is a potential inhibitor of metastasis in cancer and may be a promising target in chemotherapy.
Collapse
Affiliation(s)
- Lele Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Renxu Chang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Dai
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanjun Wu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingyu Guo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Meiyan Qi
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wu Zhou
- Department of Medicine, College of Medicine and Health, Lishui University, Lishui 323000, China
| | - Lixing Zhan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
18
|
Loveless T, Qadota H, Benian GM, Hardin J. Caenorhabditis elegans SORB-1 localizes to integrin adhesion sites and is required for organization of sarcomeres and mitochondria in myocytes. Mol Biol Cell 2017; 28:3621-3633. [PMID: 28978740 PMCID: PMC5706990 DOI: 10.1091/mbc.e16-06-0455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023] Open
Abstract
We have identified and characterized sorb-1, the only sorbin and SH3 domain-containing protein family member in Caenorhabditis elegans SORB-1 is strongly localized to integrin adhesion complexes in larvae and adults, including adhesion plaques and dense bodies (Z-disks) of striated muscles and attachment plaques of smooth muscles. SORB-1 is recruited to the actin-binding, membrane-distal regions of dense bodies via its C-terminal SH3 domains in an ATN-1(α-actinin)- and ALP-1(ALP/Enigma)-dependent manner, where it contributes to the organization of sarcomeres. SORB-1 is also found in other tissues known to be under mechanical stress, including stress fibers in migratory distal tip cells and the proximal gonad sheath, where it becomes enriched in response to tissue distention. We provide evidence for a novel role for sorbin family proteins: SORB-1 is required for normal positioning of the mitochondrial network in muscle cells. Finally, we demonstrate that SORB-1 interacts directly with two other dense body components, DEB-1(vinculin) and ZYX-1(zyxin). This work establishes SORB-1 as a bona fide sorbin family protein-one of the late additions to the dense body complex and a conserved regulator of body wall muscle sarcomere organization and organelle positioning.
Collapse
Affiliation(s)
- Timothy Loveless
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Jeff Hardin
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
19
|
Ichikawa T, Kita M, Matsui TS, Nagasato AI, Araki T, Chiang SH, Sezaki T, Kimura Y, Ueda K, Deguchi S, Saltiel AR, Kioka N. Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. J Cell Sci 2017; 130:3517-3531. [PMID: 28864765 DOI: 10.1242/jcs.200691] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Vinexin, c-Cbl associated protein (CAP) and Arg-binding protein 2 (ArgBP2) constitute an adaptor protein family called the vinexin (SORBS) family that is targeted to focal adhesions (FAs). Although numerous studies have focused on each of the SORBS proteins and partially elucidated their involvement in mechanotransduction, a comparative analysis of their function has not been well addressed. Here, we established mouse embryonic fibroblasts that individually expressed SORBS proteins and analysed their functions in an identical cell context. Both vinexin-α and CAP co-localized with vinculin at FAs and promoted the appearance of vinculin-rich FAs, whereas ArgBP2 co-localized with α-actinin at the proximal end of FAs and punctate structures on actin stress fibers (SFs), and induced paxillin-rich FAs. Furthermore, both vinexin-α and CAP contributed to extracellular matrix stiffness-dependent vinculin behaviors, while ArgBP2 stabilized α-actinin on SFs and enhanced intracellular contractile forces. These results demonstrate the differential roles of SORBS proteins in mechanotransduction.
Collapse
Affiliation(s)
- Takafumi Ichikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Masahiro Kita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tsubasa S Matsui
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan.,Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ayaka Ichikawa Nagasato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomohiko Araki
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan
| | - Shian-Huey Chiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takuhito Sezaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Shinji Deguchi
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan.,Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
20
|
Talamillo A, Grande L, Ruiz-Ontañon P, Velasquez C, Mollinedo P, Torices S, Sanchez-Gomez P, Aznar A, Esparis-Ogando A, Lopez-Lopez C, Lafita C, Berciano MT, Montero JA, Vazquez-Barquero A, Segura V, Villagra NT, Pandiella A, Lafarga M, Leon J, Martinez-Climent JA, Sanz-Moreno V, Fernandez-Luna JL. ODZ1 allows glioblastoma to sustain invasiveness through a Myc-dependent transcriptional upregulation of RhoA. Oncogene 2017; 36:1733-1744. [PMID: 27641332 DOI: 10.1038/onc.2016.341] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023]
Abstract
Long-term survival remains low for most patients with glioblastoma (GBM), which reveals the need for markers of disease outcome and novel therapeutic targets. We describe that ODZ1 (also known as TENM1), a type II transmembrane protein involved in fetal brain development, plays a crucial role in the invasion of GBM cells. Differentiation of glioblastoma stem-like cells drives the nuclear translocation of an intracellular fragment of ODZ1 through proteolytic cleavage by signal peptide peptidase-like 2a. The intracellular fragment of ODZ1 promotes cytoskeletal remodelling of GBM cells and invasion of the surrounding environment both in vitro and in vivo. Absence of ODZ1 by gene deletion or downregulation of ODZ1 by small interfering RNAs drastically reduces the invasive capacity of GBM cells. This activity is mediated by an ODZ1-triggered transcriptional pathway, through the E-box binding Myc protein, that promotes the expression and activation of Ras homolog family member A (RhoA) and subsequent activation of Rho-associated, coiled-coil containing protein kinase (ROCK). Overexpression of ODZ1 in GBM cells reduced survival of xenografted mice. Consistently, analysis of 122 GBM tumour samples revealed that the number of ODZ1-positive cells inversely correlated with overall and progression-free survival. Our findings establish a novel marker of invading GBM cells and consequently a potential marker of disease progression and a therapeutic target in GBM.
Collapse
Affiliation(s)
- A Talamillo
- Unidad de Genética, Hospital Valdecilla-IDIVAL, Santander, Spain
| | - L Grande
- Unidad de Genética, Hospital Valdecilla-IDIVAL, Santander, Spain
| | - P Ruiz-Ontañon
- Unidad de Genética, Hospital Valdecilla-IDIVAL, Santander, Spain
| | - C Velasquez
- Servicio de Neurocirugía, Hospital Valdecilla-IDIVAL, Santander, Spain
| | - P Mollinedo
- Unidad de Genética, Hospital Valdecilla-IDIVAL, Santander, Spain
| | - S Torices
- Unidad de Genética, Hospital Valdecilla-IDIVAL, Santander, Spain
| | - P Sanchez-Gomez
- Unidad de Neuro-Oncología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Aznar
- Centro para la Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - A Esparis-Ogando
- Centro de Investigación del Cáncer (CSIC-USAL), Salamanca, Spain
| | - C Lopez-Lopez
- Servicio de Oncología Médica, Hospital Valdecilla-IDIVAL, Santander, Spain
| | - C Lafita
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - M T Berciano
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | - J A Montero
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | | | - V Segura
- Centro para la Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - N T Villagra
- Servicio de Anatomía Patológica, Hospital Valdecilla and Instituto de Investigación Valdecilla (IDIVAL), Santander, Spain
| | - A Pandiella
- Centro de Investigación del Cáncer (CSIC-USAL), Salamanca, Spain
| | - M Lafarga
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | - J Leon
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | | | - V Sanz-Moreno
- Randall Division of Cell and Molecular Biophysics, School of Biomedical and Health Sciences, King's College London, London, UK
| | | |
Collapse
|
21
|
Wei H, Cheng Z, Ouyang C, Zhang Y, Hu Y, Chen S, Wang C, Lu F, Zhang J, Wang Y, Liu X. Glycoprotein screening in colorectal cancer based on differentially expressed Tn antigen. Oncol Rep 2016; 36:1313-24. [DOI: 10.3892/or.2016.4937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/02/2016] [Indexed: 11/06/2022] Open
|
22
|
Braun GS, Kuszka A, Dau C, Kriz W, Moeller MJ. Interaction of atypical cadherin Fat1 with SoHo adaptor proteins CAP/ponsin and ArgBP2. Biochem Biophys Res Commun 2016; 472:88-94. [PMID: 26903299 DOI: 10.1016/j.bbrc.2016.02.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Mammalian Fat1 is a giant atypical cadherin/tumor suppressor involved in the regulation of cellular orientation, migration, and growth. Fat1 is implicated in the development of the brain, eye, and kidney. Altered expression or mutations of FAT1 are also associated with cancer and facioscapulohumeral muscular dystrophy (FSHD). Yet, the mechanistic functions of this pathway remain incompletely understood. Here, we report the identification of Sorbin-homology (SoHo) proteins as novel interaction partners of Fat1 by virtue of a yeast-two-hybrid screen. SoHo proteins play diverse roles as adaptor proteins in cell signaling, cell adhesion and sarcomere architecture, including altered expression in cancer and FSHD. Specifically, we found SoHo proteins CAP/ponsin-1 and -2 (Sorbs1) and ArgBP2 (Sorbs2) to interact with the cytoplasmic domain of Fat1. We mapped the interaction to a prolin-rich classic type II PXXP motif within Fat1 and to the three Src-homology (SH3) domains within SoHo proteins using mutant expression in yeast, pulldown assays, and cell culture. Functionally, endogenous ponsin-2 expression of NRK-52E cells at cellular leading edges was lost upon knockdown of Fat1. In summary, our data point to an interaction of Fat1 with SoHo proteins that is able to recruit SoHo proteins to sites of Fat1 expression.
Collapse
Affiliation(s)
- Gerald S Braun
- Division of Nephrology and Immunology, RWTH Aachen University, Germany.
| | | | - Cécile Dau
- Kaiser-Franz-Josef-Spital mit Gottfried von Preyer'schem Kinderspital, Vienna, Austria
| | - Wilhelm Kriz
- Institute for Neuroanatomy, Medical Faculty Mannheim of the University of Heidelberg, Germany
| | - Marcus J Moeller
- Division of Nephrology and Immunology, RWTH Aachen University, Germany
| |
Collapse
|
23
|
Padmanabhan Iyer R, Chiao YA, Flynn ER, Hakala K, Cates CA, Weintraub ST, de Castro Brás LE. Matrix metalloproteinase-9-dependent mechanisms of reduced contractility and increased stiffness in the aging heart. Proteomics Clin Appl 2015; 10:92-107. [PMID: 26415707 DOI: 10.1002/prca.201500038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/12/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE Matrix metalloproteinases (MMPs) collectively degrade all extracellular matrix (ECM) proteins. Of the MMPs, MMP-9 has the strongest link to the development of cardiac dysfunction. Aging associates with increased MMP-9 expression in the left ventricle (LV) and reduced cardiac function. We investigated the effect of MMP-9 deletion on the cardiac ECM in aged animals. EXPERIMENTAL DESIGN We used male and female middle-aged (10- to16-month old) and old (20- to 24-month old) wild-type (WT) and MMP-9 null mice (n = 6/genotype/age). LVs were decellularized to remove highly abundant mitochondrial proteins that could mask identification of relative lower abundant components, analyzed by shotgun proteomics, and proteins of interest validated by immunoblot. RESULTS Elastin microfibril interface-located protein 1 (EMILIN-1) decreased with age in WT (p < 0.05), but not in MMP-9 null. EMILIN-1 promotes integrin-dependent cell adhesion and EMILIN-1 deficiency has been associated with vascular stiffening. Talin-2, a cytoskeletal protein, was elevated with age in WT (p < 0.05), and MMP-9 deficiency blunted this increase. Talin-2 is highly expressed in adult cardiac myocytes, transduces mechanical force to the ECM, and is activated by increases in substrate stiffness. Our results suggest that MMP-9 deletion may reduce age-related myocardial stiffness, which may explain improved cardiac function in MMP-9 null animals. CONCLUSIONS We identified age-related changes in the cardiac proteome that are MMP-9 dependent, suggesting MMP-9 as a possible therapeutic target for the aging patient.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Ying Ann Chiao
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Elizabeth R Flynn
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Kevin Hakala
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Courtney A Cates
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Susan T Weintraub
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lisandra E de Castro Brás
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
24
|
Zhao D, Wang X, Peng J, Wang C, Li F, Sun Q, Zhang Y, Zhang J, Cai G, Zuo X, Wu J, Shi Y, Zhang Z, Gong Q. Structural investigation of the interaction between the tandem SH3 domains of c-Cbl-associated protein and vinculin. J Struct Biol 2014; 187:194-205. [DOI: 10.1016/j.jsb.2014.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/14/2023]
|
25
|
The carbohydrate-binding domain of overexpressed STBD1 is important for its stability and protein-protein interactions. Biosci Rep 2014; 34:BSR20140053. [PMID: 24837458 PMCID: PMC4076837 DOI: 10.1042/bsr20140053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
STBD1 (starch-binding domain-containing protein 1) belongs to the CBM20 (family 20 carbohydrate binding module) group of proteins, and is implicated in glycogen metabolism and autophagy. However, very little is known about its regulation or interacting partners. Here, we show that the CBM20 of STBD1 is crucial for its stability and ability to interact with glycogen-associated proteins. Mutation of a conserved tryptophan residue (W293) in this domain abolished the ability of STBD1 to bind to the carbohydrate amylose. Compared with the WT (wild-type) protein, this mutant exhibited rapid degradation that was rescued upon inhibition of the proteasome. Furthermore, STBD1 undergoes ubiquitination when expressed in COS cells, and requires the N-terminus for this process. In contrast, inhibition of autophagy did not significantly affect protein stability. In overexpression experiments, we discovered that STBD1 interacts with several glycogen-associated proteins, such as GS (glycogen synthase), GDE (glycogen debranching enzyme) and Laforin. Importantly, the W293 mutant of STBD1 was unable to do so, suggesting an additional role for the CBM20 domain in protein–protein interactions. In HepG2 hepatoma cells, overexpressed STBD1 could associate with endogenous GS. This binding increased during glycogenolysis, suggesting that glycogen is not required to bridge this interaction. Taken together, our results have uncovered new insights into the regulation and binding partners of STBD1. STBD1 is a protein with a carbohydrate-binding domain that is implicated in autophagy and glycogen metabolism. Here we show the carbohydrate-binding domain is crucial for its stability and ability to bind to several glycogen-associated proteins.
Collapse
|
26
|
The adapter protein c-Cbl-associated protein (CAP) protects from acute CVB3-mediated myocarditis through stabilization of type I interferon production and reduced cytotoxicity. Basic Res Cardiol 2014; 109:411. [PMID: 24763933 DOI: 10.1007/s00395-014-0411-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 04/02/2014] [Accepted: 04/14/2014] [Indexed: 12/24/2022]
Abstract
c-Cbl-associated protein (CAP), also called Sorbs1 or ponsin, has been described as an essential adapter protein in the insulin-signalling pathway. Here, we describe for the first time a unique protective role for CAP in viral myocarditis. Mortality and heart failure development were increased in CAP(-/-) mice compared to CAP(+/+) littermates after Coxsackievirus (CVB3) infection. Mechanistically, CAP protected from tissue apoptosis because of reduced CD8(+) T and natural killer cell cytotoxicity. Despite reduced cytotoxic elimination of CVB3-infected cells in CAP(+/+) hearts, however, CAP enhanced interferon regulatory factor 3 (IRF3)-dependent antiviral type I interferon production and decreased viral proliferation in vitro by binding to the cytoplasmic RIG-I-like receptor melanoma differentiation-associated protein 5 (MDA5). Taken together, these findings reveal a novel modulatory role for CAP in the heart as a key protein stabilizing antiviral type I interferon production, while protecting from excessive cytotoxic responses. Our study will help to define future strategies to develop treatments to limit detrimental responses during viral heart inflammation.
Collapse
|
27
|
Roignot J, Bonacci T, Ghigo E, Iovanna JL, Soubeyran P. Oligomerization and phosphorylation dependent regulation of ArgBP2 adaptive capabilities and associated functions. PLoS One 2014; 9:e87130. [PMID: 24475245 PMCID: PMC3903627 DOI: 10.1371/journal.pone.0087130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/11/2013] [Indexed: 11/22/2022] Open
Abstract
ArgBP2 (Arg-Binding Protein 2/SORBS2) is an adaptor protein involved in cytoskeleton associated signal transduction, thereby regulating cell migration and adhesion. These features are associated with its antitumoral role in pancreatic cancer cells. Tyrosine phosphorylation of ArgBP2, mediated by c-Abl kinase and counterbalanced by PTP-PEST phosphatase, regulates many of its interactions. However, the exact mechanisms of action and of regulation of ArgBP2 remain largely unknown. We found that ArgBP2 has the capacity to form oligomers which are destabilized by tyrosine phosphorylation. We could show that ArgBP2 oligomerization involves the binding of one of its SH3 domains to a specific proline rich cluster. ArgBP2 self-association increases its binding to some of its molecular partners and decreased its affinity for others. Hence, the phosphorylation/oligomerization state of ArgBP2 directly regulates its functions by modulating its adaptive capabilities. Importantly, using a human pancreatic cancer cell model (MiaPaCa-2 cells), we could validate that this property of ArgBP2 is critical for its cytoskeleton associated functions. In conclusions, we describe a new mechanism of regulation of ArgBP2 where tyrosine phosphorylation of the protein interfere with a SH3 mediated self-interaction, thereby controlling its panel of interacting partners and related functions.
Collapse
Affiliation(s)
- Julie Roignot
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
| | - Thomas Bonacci
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
| | - Eric Ghigo
- URMITE-IRD198, CNRS UMR7278, INSERM U1095, Aix-Marseille Univ, Marseille, France
| | - Juan L. Iovanna
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
| | - Philippe Soubeyran
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
- * E-mail:
| |
Collapse
|
28
|
Activation of the MEK pathway is required for complete scattering of MCF7 cells stimulated with heregulin-β1. Biochem Biophys Res Commun 2013; 433:311-6. [DOI: 10.1016/j.bbrc.2013.02.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 01/22/2023]
|
29
|
Bharadwaj R, Roy M, Ohyama T, Sivan-Loukianova E, Delannoy M, Lloyd TE, Zlatic M, Eberl DF, Kolodkin AL. Cbl-associated protein regulates assembly and function of two tension-sensing structures in Drosophila. Development 2013; 140:627-38. [PMID: 23293294 DOI: 10.1242/dev.085100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cbl-associated protein (CAP) localizes to focal adhesions and associates with numerous cytoskeletal proteins; however, its physiological roles remain unknown. Here, we demonstrate that Drosophila CAP regulates the organization of two actin-rich structures in Drosophila: muscle attachment sites (MASs), which connect somatic muscles to the body wall; and scolopale cells, which form an integral component of the fly chordotonal organs and mediate mechanosensation. Drosophila CAP mutants exhibit aberrant junctional invaginations and perturbation of the cytoskeletal organization at the MAS. CAP depletion also results in collapse of scolopale cells within chordotonal organs, leading to deficits in larval vibration sensation and adult hearing. We investigate the roles of different CAP protein domains in its recruitment to, and function at, various muscle subcellular compartments. Depletion of the CAP-interacting protein Vinculin results in a marked reduction in CAP levels at MASs, and vinculin mutants partially phenocopy Drosophila CAP mutants. These results show that CAP regulates junctional membrane and cytoskeletal organization at the membrane-cytoskeletal interface of stretch-sensitive structures, and they implicate integrin signaling through a CAP/Vinculin protein complex in stretch-sensitive organ assembly and function.
Collapse
Affiliation(s)
- Rajnish Bharadwaj
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr Biol 2013; 23:271-81. [PMID: 23375895 PMCID: PMC3580286 DOI: 10.1016/j.cub.2013.01.009] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 11/16/2012] [Accepted: 01/02/2013] [Indexed: 01/09/2023]
Abstract
Background Cells sense the extracellular environment using adhesion receptors (integrins) linked to the intracellular actin cytoskeleton through a complex network of regulatory proteins that, all together, form focal adhesions (FAs). The molecular basis of how these sensing units are regulated, how they are implicated in transducing mechanical stimuli, and how this leads to a spatiotemporal coordination of FAs is unclear. Results Here we show that vinculin, through its links to the talin-integrin complex and F-actin, regulates the transmission of mechanical signals from the extracellular matrix to the actomyosin machinery. We demonstrate that the vinculin interaction with the talin-integrin complex drives the recruitment and release of core FA components. The activation state of vinculin is itself regulated by force, as underscored by our observation that vinculin localization to FAs is dependent on actomyosin contraction. Using a variety of vinculin mutants, we establish which components of the cell-matrix adhesion network are coordinated through direct and indirect associations with vinculin. Moreover, using cyclic stretching, we demonstrate that vinculin plays a key role in the transmission of extracellular mechanical stimuli leading to the reorganization of cell polarity. Of particular importance is the actin-binding tail region of vinculin, without which the cell’s ability to repolarize in response to cyclic stretching is perturbed. Conclusions Overall our data promote a model whereby vinculin controls the transmission of intracellular and extracellular mechanical cues that are important for the spatiotemporal assembly, disassembly, and reorganization of FAs to coordinate polarized cell motility.
Collapse
|
31
|
Tomasovic A, Traub S, Tikkanen R. Molecular networks in FGF signaling: flotillin-1 and cbl-associated protein compete for the binding to fibroblast growth factor receptor substrate 2. PLoS One 2012; 7:e29739. [PMID: 22235335 PMCID: PMC3250484 DOI: 10.1371/journal.pone.0029739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/04/2011] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor receptor substrate 2 (FRS2α) is a signaling adaptor protein that regulates downstream signaling of many receptor tyrosine kinases. During signal transduction, FRS2 can be both tyrosine and threonine phosphorylated and forms signaling complexes with other adaptor proteins and tyrosine phosphatases. We have here identified flotillin-1 and the cbl-associated protein/ponsin (CAP) as novel interaction partners of FRS2. Flotillin-1 binds to the phosphotyrosine binding domain (PTB) of FRS2 and competes for the binding with the fibroblast growth factor receptor. Flotillin-1 knockdown results in increased Tyr phosphorylation of FRS2, in line with the inhibition of ERK activity in the absence of flotillin-1. CAP directly interacts with FRS2 by means of its sorbin homology (SoHo) domain, which has previously been shown to interact with flotillin-1. In addition, the third SH3 domain in CAP binds to FRS2. Due to the overlapping binding domains, CAP and flotillin-1 appear to compete for the binding to FRS2. Thus, our results reveal a novel signaling network containing FRS2, CAP and flotillin-1, whose successive interactions are most likely required to regulate receptor tyrosine kinase signaling, especially the mitogen activated protein kinase pathway.
Collapse
Affiliation(s)
- Ana Tomasovic
- Institute of Biochemistry, University of Giessen, Giessen, Germany
- Institute of Biochemistry II, University Clinic of Frankfurt, Frankfurt am Main, Germany
| | - Stephanie Traub
- Institute of Biochemistry II, University Clinic of Frankfurt, Frankfurt am Main, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, University of Giessen, Giessen, Germany
- Institute of Biochemistry II, University Clinic of Frankfurt, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
32
|
Sanger JM, Wang J, Gleason LM, Chowrashi P, Dube DK, Mittal B, Zhukareva V, Sanger JW. Arg/Abl-binding protein, a Z-body and Z-band protein, binds sarcomeric, costameric, and signaling molecules. Cytoskeleton (Hoboken) 2010; 67:808-23. [PMID: 20886612 PMCID: PMC3019100 DOI: 10.1002/cm.20490] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/14/2022]
Abstract
ArgBP2 (Arg/Abl-Binding Protein) is expressed at high levels in the heart and is localized in the Z-bands of mature myofibrils. ArgBP2 is a member of a small family of proteins that also includes vinexin and CAP (c-Cbl-associated protein), all characterized by having one sorbin homology (SOHO) domain and three C-terminal SH3 domains. Antibodies directed against ArgBP2 also react with the Z-bodies of myofibril precursors: premyofibrils and nascent myofibrils. Expression in cardiomyocytes of plasmids encoding Yellow Fluorescent Protein (YFP) fused to either full length ArgBP2, the SOHO, mid-ArgBP or the SH3 domains of ArgBP2 led to Z-band targeting of the fusion proteins, whereas an N-terminal fragment lacking these domains did not target to Z-bands. Although ArgBP2 is not found in skeletal muscle cells, YFP-ArgBP2 did target to Z-bodies and Z-bands in cultured myotubes. GST-ArgBP2-SH3 bound actin, α-actinin and vinculin proteins in blot overlays, cosedimentation assays, and EM negative staining techniques. Over-expression of ArgBP2 and ArgBP2-SH3 domains, but not YFP alone, led to loss of myofibrils in cardiomyocytes. Fluorescence recovery after photobleaching was used to measure the rapid dynamics of both the full length and some truncated versions of ArgBP2. Our results indicate that ArgBP2 may play an important role in the assembly and maintenance of myofibrils in cardiomyocytes.
Collapse
Affiliation(s)
- Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One 2010; 5:e13741. [PMID: 21060791 PMCID: PMC2966423 DOI: 10.1371/journal.pone.0013741] [Citation(s) in RCA: 445] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/24/2010] [Indexed: 01/21/2023] Open
Abstract
The blood-brain barrier (BBB) maintains brain homeostasis and limits the entry of toxins and pathogens into the brain. Despite its importance, little is known about the molecular mechanisms regulating the development and function of this crucial barrier. In this study we have developed methods to highly purify and gene profile endothelial cells from different tissues, and by comparing the transcriptional profile of brain endothelial cells with those purified from the liver and lung, we have generated a comprehensive resource of transcripts that are enriched in the BBB forming endothelial cells of the brain. Through this comparison we have identified novel tight junction proteins, transporters, metabolic enzymes, signaling components, and unknown transcripts whose expression is enriched in central nervous system (CNS) endothelial cells. This analysis has identified that RXRalpha signaling cascade is specifically enriched at the BBB, implicating this pathway in regulating this vital barrier. This dataset provides a resource for understanding CNS endothelial cells and their interaction with neural and hematogenous cells.
Collapse
Affiliation(s)
- Richard Daneman
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | |
Collapse
|
34
|
Carisey A, Ballestrem C. Vinculin, an adapter protein in control of cell adhesion signalling. Eur J Cell Biol 2010; 90:157-63. [PMID: 20655620 PMCID: PMC3526775 DOI: 10.1016/j.ejcb.2010.06.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 01/09/2023] Open
Abstract
Vinculin, discovered in 1979 (Geiger, 1979), is an adapter protein with binding sites for more than 15 proteins. Biochemical and structural analyses have contributed to detailed knowledge about potential binding partners and the understanding of how their binding may be regulated. Despite all this information the molecular basis of how vinculin acts in cells and controls a wide variety of signals remains elusive. This review aims to highlight recent discoveries with an emphasis on how vinculin is involved in the coordination of a network of signals.
Collapse
Affiliation(s)
- Alex Carisey
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | | |
Collapse
|
35
|
Kioka N, Ito T, Yamashita H, Uekawa N, Umemoto T, Motoyoshi S, Imai H, Takahashi K, Watanabe H, Yamada M, Ueda K. Crucial role of vinexin for keratinocyte migration in vitro and epidermal wound healing in vivo. Exp Cell Res 2010; 316:1728-38. [PMID: 20361963 DOI: 10.1016/j.yexcr.2010.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 02/03/2023]
Abstract
In the process of tissue injury and repair, epithelial cells rapidly migrate and form epithelial sheets. Vinexin is a cytoplasmic molecule of the integrin-containing cell adhesion complex localized at focal contacts in vitro. Here, we investigated the roles of vinexin in keratinocyte migration in vitro and wound healing in vivo. Vinexin knockdown using siRNA delayed migration of both HaCaT human keratinocytes and A431 epidermoid carcinoma cells in scratch assay but did not affect cell proliferation. Induction of cell migration by scratching the confluent monolayer culture of these cells activated both EGFR and ERK, and their inhibitors AG1478 and U0126 substantially suppressed scratch-induced keratinocyte migration. Vinexin knockdown in these cells inhibited the scratch-induced activation of EGFR, but not that of ERK, suggesting that vinexin promotes cell migration via activation of EGFR. We further generated vinexin (-/-) mice and isolated their keratinocytes. They similarly showed slow migration in scratch assay. Furthermore, vinexin (-/-) mice exhibited a delay in cutaneous wound healing in both the back skin and tail without affecting the proliferation of keratinocytes. Together, these results strongly suggest a crucial role of vinexin in keratinocyte migration in vitro and cutaneous wound healing in vivo.
Collapse
Affiliation(s)
- Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gehmlich K, Hayess K, Legler C, Haebel S, Van der Ven PFM, Ehler E, Fürst DO. Ponsin interacts with Nck adapter proteins: implications for a role in cytoskeletal remodelling during differentiation of skeletal muscle cells. Eur J Cell Biol 2010; 89:351-64. [PMID: 20129698 DOI: 10.1016/j.ejcb.2009.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/26/2009] [Accepted: 10/29/2009] [Indexed: 10/19/2022] Open
Abstract
Skeletal muscle differentiation is a complex process: It is characterised by changes in gene expression and protein composition. Simultaneously, a dramatic remodelling of the cytoskeleton and associated cell-matrix contacts, the costameres, occurs. The expression and localisation of the protein ponsin at cell-matrix contacts marks the establishment of costameres. In this report we show that skeletal muscle cells are characterised by a novel ponsin isoform, which contains a large insertion in its carboxy-terminus. This skeletal muscle-specific module binds the adapter proteins Nck1 and Nck2, and increased co-localisation of ponsin with Nck2 is observed at remodelling cell-matrix contacts of differentiating skeletal muscle cells. Since this ponsin insertion can be phosphorylated, it may adjust the interaction affinity with Nck adapter proteins. The novel ponsin isoform and its interaction with Nck1/2 provide exciting insight into the convergence of signalling pathways at the costameres, and its crucial role for skeletal muscle differentiation and re-generation.
Collapse
Affiliation(s)
- Katja Gehmlich
- Institute of Biochemistry and Biology, Cell Biology, University of Potsdam, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Fernow I, Tomasovic A, Siehoff-Icking A, Tikkanen R. Cbl-associated protein is tyrosine phosphorylated by c-Abl and c-Src kinases. BMC Cell Biol 2009; 10:80. [PMID: 19891780 PMCID: PMC2777869 DOI: 10.1186/1471-2121-10-80] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 11/05/2009] [Indexed: 01/07/2023] Open
Abstract
Background The c-Cbl-associated protein (CAP), also known as ponsin, localizes to focal adhesions and stress fibers and is involved in signaling events. Phosphorylation has been described for the other two members of the sorbin homology family, vinexin and ArgBP2, but no data exist about the putative phosphorylation of CAP. According to previous findings, CAP binds to tyrosine kinase c-Abl. However, it is not known if CAP is a substrate of c-Abl or other tyrosine kinases or if phosphorylation regulates its localization. Results We here show that CAP is Tyr phosphorylated by and interacts with both c-Abl and c-Src. One major phosphorylation site, Tyr360, and two minor contributors Tyr326 and Tyr632 were identified as Abl phosphorylation sites, whereas Src preferentially phosphorylates Tyr326 and Tyr360. Phosphorylation of CAP was not necessary for its localization to focal adhesions and stress fibers, but Tyr326Phe substitution alters the function of CAP during cell spreading. Conclusion This is the first demonstration of phosphorylation of CAP by any kinase. Our findings suggest that coordinated action of Src and Abl might regulate the function of CAP and reveal a functional role especially for the Src-mediated Tyr phosphorylation of CAP in cell spreading.
Collapse
Affiliation(s)
- Inga Fernow
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | | | | | | |
Collapse
|
38
|
Umemoto T, Inomoto T, Ueda K, Hamaguchi M, Kioka N. v-Src-mediated transformation suppresses the expression of focal adhesion protein vinexin. Cancer Lett 2009; 279:22-9. [DOI: 10.1016/j.canlet.2009.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 01/10/2023]
|
39
|
Roignot J, Soubeyran P. ArgBP2 and the SoHo family of adapter proteins in oncogenic diseases. Cell Adh Migr 2009; 3:167-70. [PMID: 19262174 DOI: 10.4161/cam.3.2.7576] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ArgBP2, a member of the SoHo family of adapter proteins, is a regulator of actin-dependent processes such as cell adhesion and migration. Recent data from our lab revealed that by regulating adhesion and migration of pancreatic cancer cells, ArgBP2 is endowed with an anti-tumoral function. We could show that part of the molecular mechanism involved the interaction of ArgBP2 with the Arp2/3 activator WAVE1, the tyrosine phosphatase PTP-PEST, and the tyrosine kinase c-Abl. As ArgBP2 shares common structural organization and overlapping functions with the two other members of this protein family, CAP and Vinexin, it raises the question whether these two other proteins could also be involved in cancer diseases. The control of cell migration being an important issue in tumor treatment, these recent findings suggest that ArgBP2 family-dependent signaling pathways represents potential targets for the development of therapeutic strategies, and highlight the importance of elucidating their molecular mechanisms of cytoskeletal regulation.
Collapse
Affiliation(s)
- Julie Roignot
- INSERM U, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | |
Collapse
|
40
|
Rao PV, Maddala R. Abundant expression of ponsin, a focal adhesion protein, in lens and downregulation of its expression by impaired cytoskeletal signaling. Invest Ophthalmol Vis Sci 2009; 50:1769-77. [PMID: 19029030 PMCID: PMC2716002 DOI: 10.1167/iovs.08-2909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE This study was undertaken to improve understanding of the defective lens developmental changes induced by the transgenic overexpression of the Rho GDP dissociation inhibitor RhoGDIalpha. The study was focused on a single differentially expressed gene encoding ponsin, a cell adhesion interacting signaling adaptor protein. METHODS Total RNA extracted from the P7 lenses of Rho GDIalpha transgenic mice was subjected to cDNA microarray analysis. Ponsin distribution in the mouse lenses was determined by immunofluorescence and immunoblot analyses. Interactions among ponsin, actin, and Rho GTPase signaling pathways were explored in lens epithelial cells. RESULTS The RhoGDIalpha transgenic mouse lenses revealed a marked downregulation of expression of multiple splice variants of ponsin. Expression of one of the ponsins (U58883) was found to be abundant in normal mouse lenses. Although ponsin was localized predominantly to the focal adhesions in lens epithelial cells, it was distributed to both the epithelium and fibers, with some isoforms being enriched primarily in the Triton X-100-insoluble fraction in lens tissue. Further, whereas constitutively active RhoA induced ponsin clustering at the leading edges, inhibition of Rho kinase and latrunculin treatment were noted to lead to decreases in ponsin protein levels in lens epithelial cells. CONCLUSIONS Abundant expression of ponsin, a focal adhesion protein in the lens tissue indicates a potential role for this protein in lens fiber cell migration and adhesion. Ponsin expression appears to be closely dependent on Rho GTPase-regulated integrity of actin cytoskeletal organization.
Collapse
Affiliation(s)
- P Vasantha Rao
- Departments of Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
41
|
Cheng A, Zhang M, Okubo M, Omichi K, Saltiel AR. Distinct mutations in the glycogen debranching enzyme found in glycogen storage disease type III lead to impairment in diverse cellular functions. Hum Mol Genet 2009; 18:2045-52. [PMID: 19299494 DOI: 10.1093/hmg/ddp128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycogen storage disease type III (GSDIII) is a metabolic disorder characterized by a deficiency in the glycogen debranching enzyme, amylo-1,6-glucosidase,4-alpha-glucanotransferase (AGL). Patients with GSDIII commonly exhibit hypoglycemia, along with variable organ dysfunction of the liver, muscle or heart tissues. The AGL protein binds to glycogen through its C-terminal region, and possesses two separate domains for the transferase and glucosidase activities. Most causative mutations are nonsense, and how they affect the enzyme is not well understood. Here we investigated four rare missense mutations to determine the molecular basis of how they affect AGL function leading to GSDIII. The L620P mutant primarily abolishes transferase activity while the R1147G variant impairs glucosidase function. Interestingly, mutations in the carbohydrate-binding domain (CBD; G1448R and Y1445ins) are more severe in nature, leading to significant loss of all enzymatic activities and carbohydrate binding ability, as well as enhancing targeting for proteasomal degradation. This region (Y1445-G1448R) displays virtual identity across human and bacterial species, suggesting an important role that has been conserved throughout evolution. Our results clearly indicate that inactivation of either enzymatic activity is sufficient to cause GSDIII disease and suggest that the CBD of AGL plays a major role to coordinate its functions and regulation by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Alan Cheng
- Department of Internal Medicine, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Paxillin is a multi-domain scaffold protein that localizes to the intracellular surface of sites of cell adhesion to the extracellular matrix. Through the interactions of its multiple protein-binding modules, many of which are regulated by phosphorylation, paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. In particular, paxillin plays a central role in coordinating the spatial and temporal action of the Rho family of small GTPases, which regulate the actin cytoskeleton, by recruiting an array of GTPase activator, suppressor and effector proteins to cell adhesions. When paxillin was first described 18 years ago, the amazing complexity of cell-adhesion organization, dynamics and signaling was yet to be realized. Herein we highlight our current understanding of how the multiple protein interactions of paxillin contribute to the coordination of cell-adhesion function.
Collapse
Affiliation(s)
- Nicholas O. Deakin
- Dept of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, Phone 315 464 8598, Fax 315 464 8535
| | - Christopher E. Turner
- Dept of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, Phone 315 464 8598, Fax 315 464 8535
| |
Collapse
|
43
|
Cheng A, Zhang M, Gentry MS, Worby CA, Dixon JE, Saltiel AR. A role for AGL ubiquitination in the glycogen storage disorders of Lafora and Cori's disease. Genes Dev 2007; 21:2399-409. [PMID: 17908927 PMCID: PMC1993871 DOI: 10.1101/gad.1553207] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 08/15/2007] [Indexed: 12/20/2022]
Abstract
Cori's disease is a glycogen storage disorder characterized by a deficiency in the glycogen debranching enzyme, amylo-1,6-glucosidase,4-alpha-glucanotransferase (AGL). Here, we demonstrate that the G1448R genetic variant of AGL is unable to bind to glycogen and displays decreased stability that is rescued by proteasomal inhibition. AGL G1448R is more highly ubiquitinated than its wild-type counterpart and forms aggresomes upon proteasome impairment. Furthermore, the E3 ubiquitin ligase Malin interacts with and promotes the ubiquitination of AGL. Malin is known to be mutated in Lafora disease, an autosomal recessive disorder clinically characterized by the accumulation of polyglucosan bodies resembling poorly branched glycogen. Transfection studies in HepG2 cells demonstrate that AGL is cytoplasmic whereas Malin is predominately nuclear. However, after depletion of glycogen stores for 4 h, approximately 90% of transfected cells exhibit partial nuclear staining for AGL. Furthermore, stimulation of cells with agents that elevate cAMP increases Malin levels and Malin/AGL complex formation. Refeeding mice for 2 h after an overnight fast causes a reduction in hepatic AGL levels by 48%. Taken together, these results indicate that binding to glycogen crucially regulates the stability of AGL and, further, that its ubiquitination may play an important role in the pathophysiology of both Lafora and Cori's disease.
Collapse
Affiliation(s)
- Alan Cheng
- Department of Internal Medicine and Department of Physiology, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Mei Zhang
- Department of Internal Medicine and Department of Physiology, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Matthew S. Gentry
- Department of Pharmacology, Department of Cellular and Molecular Medicine, School of Medicine, and Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | - Carolyn A. Worby
- Department of Pharmacology, Department of Cellular and Molecular Medicine, School of Medicine, and Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | - Jack E. Dixon
- Department of Pharmacology, Department of Cellular and Molecular Medicine, School of Medicine, and Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | - Alan R. Saltiel
- Department of Internal Medicine and Department of Physiology, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
44
|
Zhang M, Liu J, Cheng A, DeYoung SM, Saltiel AR. Identification of CAP as a costameric protein that interacts with filamin C. Mol Biol Cell 2007; 18:4731-40. [PMID: 17898075 PMCID: PMC2096606 DOI: 10.1091/mbc.e07-06-0628] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cbl-associated protein (CAP) is an adaptor protein that interacts with both signaling and cytoskeletal proteins. Here, we characterize the expression, localization and potential function of CAP in striated muscle. CAP is markedly induced during myoblast differentiation, and colocalizes with vinculin during costamerogenesis. In adult mice, CAP is enriched in oxidative muscle fibers, and it is found in membrane anchorage complexes, including intercalated discs, costameres, and myotendinous junctions. Using both yeast two-hybrid and proteomic approaches, we identified the sarcomeric protein filamin C (FLNc) as a binding partner for CAP. When overexpressed, CAP recruits FLNc to cell-extracellular matrix adhesions, where the two proteins cooperatively regulate actin reorganization. Moreover, overexpression of CAP inhibits FLNc-induced cell spreading on fibronectin. In dystrophin-deficient mdx mice, the expression and membrane localization of CAP is increased, concomitant with the elevated plasma membrane content of FLNc, suggesting that CAP may compensate for the reduced membrane linkage of the myofibrils due to the loss of the dystroglycan-sarcoglycan complex in these mice. Thus, through its interaction with FLNc, CAP provides another link between the myofibril cytoskeleton and the plasma membrane of muscle cells, and it may play a dynamic role in the regulation and maintenance of muscle structural integrity.
Collapse
Affiliation(s)
- Mei Zhang
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jun Liu
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Alan Cheng
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Stephanie M. DeYoung
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Alan R. Saltiel
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
45
|
Gehmlich K, Pinotsis N, Hayess K, van der Ven PFM, Milting H, El Banayosy A, Körfer R, Wilmanns M, Ehler E, Fürst DO. Paxillin and ponsin interact in nascent costameres of muscle cells. J Mol Biol 2007; 369:665-82. [PMID: 17462669 DOI: 10.1016/j.jmb.2007.03.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 11/30/2022]
Abstract
Muscle differentiation requires the transition from motile myoblasts to sessile myotubes and the assembly of a highly regular contractile apparatus. This striking cytoskeletal remodelling is coordinated with a transformation of focal adhesion-like cell-matrix contacts into costameres. To assess mechanisms underlying this differentiation process, we searched for muscle specific-binding partners of paxillin. We identified an interaction of paxillin with the vinexin adaptor protein family member ponsin in nascent costameres during muscle differentiation, which is mediated by an interaction of the second src homology domain 3 (SH3) domain of ponsin with the proline-rich region of paxillin. To understand the molecular basis of this interaction, we determined the structure of this SH3 domain at 0.83 A resolution, as well as its complex with the paxillin binding peptide at 1.63 A resolution. Upon binding, the paxillin peptide adopts a polyproline-II helix conformation in the complex. Contrary to the charged SH3 binding interface, the peptide contains only non-polar residues and for the first time such an interaction was observed structurally in SH3 domains. Fluorescence titration confirmed the ponsin/paxillin interaction, characterising it further by a weak binding affinity. Transfection experiments revealed further characteristics of ponsin functions in muscle cells: All three SH3 domains in the C terminus of ponsin appeared to synergise in targeting the protein to force-transducing structures. The overexpression of ponsin resulted in altered muscle cell-matrix contact morphology, suggesting its involvement in the establishment of mature costameres. Further evidence for the role of ponsin in the maintenance of mature mechanotransduction sites in cardiomyocytes comes from the observation that ponsin expression was down-regulated in end-stage failing hearts, and that this effect was reverted upon mechanical unloading. These results provide new insights in how low affinity protein-protein interactions may contribute to a fine tuning of cytoskeletal remodelling processes during muscle differentiation and in adult cardiomyocytes.
Collapse
Affiliation(s)
- Katja Gehmlich
- Institute of Biochemistry and Biology, University of Potsdam, Germany. <>
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Limpert AS, Karlo JC, Landreth GE. Nerve growth factor stimulates the concentration of TrkA within lipid rafts and extracellular signal-regulated kinase activation through c-Cbl-associated protein. Mol Cell Biol 2007; 27:5686-98. [PMID: 17548467 PMCID: PMC1952120 DOI: 10.1128/mcb.01109-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nerve growth factor (NGF) acts through its receptor, TrkA, to elicit the neuronal differentiation of PC12 cells through the action of extracellular signal-regulated kinase 1 (ERK1) and ERK2. Upon NGF binding, TrkA translocates and concentrates in cholesterol-rich membrane microdomains or lipid rafts, facilitating formation of receptor-associated signaling complexes, activation of downstream signaling pathways, and internalization into endosomes. We have investigated the mechanisms responsible for the localization of TrkA within lipid rafts and its ability to activate ERK1 and ERK2. We report that NGF treatment results in the translocation of activated forms of TrkA to lipid rafts, and this localization is important for efficient activation of the ERKs. TrkA is recruited and retained within lipid rafts through its association with flotillin, an intrinsic constituent of these membrane microdomains, via the adapter protein, c-Cbl associated protein (CAP). Mutant forms of CAP that lack protein interaction domains block TrkA localization to lipid rafts and attenuate ERK activation. Importantly, suppression of endogenous CAP expression inhibited NGF-stimulated neurite outgrowth from primary dorsal root ganglion neurons. These data provide a mechanism for the lipid raft localization of TrkA and establish the importance of the CAP adaptor protein for NGF activation of the ERKs and neuronal differentiation.
Collapse
Affiliation(s)
- Allison S Limpert
- Department of Neurosciences, Alzheimer Research Laboratory, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4928, USA
| | | | | |
Collapse
|
47
|
Ruggiero T, Trabucchi M, Ponassi M, Corte G, Chen CY, al-Haj L, Khabar KSA, Briata P, Gherzi R. Identification of a set of KSRP target transcripts upregulated by PI3K-AKT signaling. BMC Mol Biol 2007; 8:28. [PMID: 17437629 PMCID: PMC1858702 DOI: 10.1186/1471-2199-8-28] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 04/16/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND KSRP is a AU-rich element (ARE) binding protein that causes decay of select sets of transcripts in different cell types. We have recently described that phosphatidylinositol 3-kinase/AKT (PI3K-AKT) activation induces stabilization and accumulation of the labile beta-catenin mRNA through an impairment of KSRP function. RESULTS Aim of this study was to identify additional KSRP targets whose stability and steady-state levels are enhanced by PI3K-AKT activation. First, through microarray analyses of the AU-rich transcriptome in pituitary alphaT3-1 cells, we identified 34 ARE-containing transcripts upregulated in cells expressing a constitutively active form of AKT1. In parallel, by an affinity chromatography-based technique followed by microarray analyses, 12 mRNAs target of KSRP, additional to beta-catenin, were identified. Among them, seven mRNAs were upregulated in cells expressing activated AKT1. Both steady-state levels and stability of these new KSRP targets were consistently increased by either KSRP knock-down or PI3K-AKT activation. CONCLUSION Our study identified a set of transcripts that are targets of KSRP and whose expression is increased by PI3K-AKT activation. These mRNAs encode RNA binding proteins, signaling molecules and a replication-independent histone. The increased expression of these gene products upon PI3K-AKT activation could play a role in the cellular events initiated by this signaling pathway.
Collapse
Affiliation(s)
- Tina Ruggiero
- Istituto Nazionale per la Ricerca sul Cancro (IST), 16132 Genova, Italy
| | - Michele Trabucchi
- Istituto Nazionale per la Ricerca sul Cancro (IST), 16132 Genova, Italy
| | - Marco Ponassi
- Istituto Nazionale per la Ricerca sul Cancro (IST), 16132 Genova, Italy
| | - Giorgio Corte
- Istituto Nazionale per la Ricerca sul Cancro (IST), 16132 Genova, Italy
- DOBIG, University of Genova, 16132 Genova, Italy
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Latifa al-Haj
- Program in Biomolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Khalid SA Khabar
- Program in Biomolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Paola Briata
- Istituto Nazionale per la Ricerca sul Cancro (IST), 16132 Genova, Italy
| | - Roberto Gherzi
- Istituto Nazionale per la Ricerca sul Cancro (IST), 16132 Genova, Italy
| |
Collapse
|