1
|
Li Z, Yin S, Liu Y, Jiang M, Lin L. Effect of Porphyromonas gingivalis outer membrane vesicles on renal tubule epithelial-mesenchymal transition. J Periodontol 2025. [PMID: 40298282 DOI: 10.1002/jper.24-0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Studies have shown that Porphyromonas gingivalis (P. gingivalis) can promote the development of chronic kidney disease (CKD). In this study, we explored the epithelial-mesenchymal transition (EMT) process promoted by P. gingivalis outer membrane vesicles (OMVs) in renal interstitial fibrosis (RIF), thereby providing new ideas for the study of the relationship between periodontitis and CKD. METHODS For in vivo experiments, RIF models induced by unilateral ureteral obstruction (UUO) were constructed in 6-week-old C57BL/6 mice, followed by administration of P. gingivalis OMVs (100 µg) through the tail vein once every other day for 2 weeks. For in vitro experiments, the RIF model was established by transforming growth factor-beta (TGF-β)1-induced mouse renal tubular epithelial cells (RTECs), followed by the administration of 100 µg P. gingivalis OMVs. In vivo imaging system (IVIS) imaging and immunofluorescence were used to detect whether peripheral injection of P. gingivalis OMVs through the tail vein could enter mouse kidney tissue. Serum biochemical assays were performed to detect the renal function of the injected mice. Hematoxylin-eosin (HE) staining and Masson's trichrome staining were used to assess tubulointerstitial lesions and fibrosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect gene expression levels of cytokines related to renal inflammation and fibrosis. The expression levels of EMT-related proteins in kidney tissue and RTECs were evaluated by immunofluorescence and Western blotting. The expression levels of EMT-related regulatory factors Snail1 and β-catenin in the renal tissues of mice in each group were detected by qRT-PCR and Western blotting. RESULTS P. gingivalis OMVs successfully entered the kidney tissue of the mice via circulation. P. gingivalis OMVs aggravated renal dysfunction, renal tubulointerstitial lesions, and fibrosis in UUO mice. P. gingivalis OMVs upregulated the gene expression of inflammatory and fibrosis-related factors. P. gingivalis OMVs induced renal tubular EMT exacerbation both in vivo and in vitro. P. gingivalis OMVs upregulated gene and protein expression levels of EMT-related regulatory factors such as β-catenin and Snail1. CONCLUSION P. gingivalis OMVs can aggravate renal dysfunction, tubulointerstitial disease, and RIF and may further aggravate EMT by regulating the expression of β-catenin and Snail1. PLAIN LANGUAGE SUMMARY Porphyromonas gingivalis is the main pathogenic factor of periodontitis. Chronic kidney disease (CKD) is a global epidemic that affects about 10% of the world's population. Renal interstitial fibrosis (RIF) is the common pathway of progression from CKD to end-stage kidney disease (ESKD). During the development of RIF, renal tubular epithelial cells (RTECs), as the most vulnerable intrinsic cells of the kidney, can be transformed into myofibroblasts through epithelial-mesenchymal transition (EMT). P. gingivalis outer membrane vesicles (OMVs) can reach deep tissues and activate host inflammatory response. Several studies have shown that P. gingivalis can increase kidney inflammation and immunosuppression through complex mechanisms, induce renal insufficiency, and affect CKD development. However, there are few reports about P. gingivalis OMVs and EMT. Our study found that P. gingivalis OMVs can aggravate renal dysfunction, tubulointerstitial disease, and RIF and may further aggravate EMT by regulating the expression of β-catenin and Snail1. Therefore, this finding provides a new strategy for preventing CKD/EMT from the perspective of treating periodontitis.
Collapse
Affiliation(s)
- Zhaorong Li
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Shoucheng Yin
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Yanqing Liu
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Muzhou Jiang
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Li Lin
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Chen Y, Xue C. Cross-talk of renal cells through WNT signal transduction in the development of fibrotic kidneys. Front Cell Dev Biol 2025; 12:1517181. [PMID: 40012992 PMCID: PMC11860889 DOI: 10.3389/fcell.2024.1517181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/16/2024] [Indexed: 02/28/2025] Open
Abstract
Chronic kidney disease (CKD) is a progressive condition that can lead to chronic renal failure (CRF), affecting 8%-16% of adults globally and imposing a significant burden on healthcare systems. Renal fibrosis is a key pathological hallmark of CKD progression and is linked to poor prognosis. Multiple signaling pathways, including WNT/β-catenin.Aberrant activation of WNT/β-catenin is implicated in renal fibrosis. The roles of renal macrophages and fibroblasts are pivotal in fibrosis progression and prognosis.
Collapse
Affiliation(s)
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Ma J, Sun Q, Chen Y, Li J, Chen S, Luo L. Exosomes containing miR-148a-3p derived from mesenchymal stem cells suppress epithelial-mesenchymal transition in lens epithelial cells. Stem Cells Transl Med 2025; 14:szae091. [PMID: 40036306 PMCID: PMC11878568 DOI: 10.1093/stcltm/szae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/02/2024] [Indexed: 03/06/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is responsible for the development of fibrotic cataracts, which contribute to severe visual impairment. Recent evidence has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) can attenuate EMT in several tissues. However, the effect of MSC-Exo on EMT in LECs (LECs-EMT) has not been determined. In this study, we isolated exosomes from human umbilical cord MSCs (hucMSC-Exo) and evaluated their effect on LECs-EMT both in vitro and in vivo. HucMSC-Exo application significantly suppressed the expression of mesenchymal cell-associated genes while increasing the expression of epithelial cell-associated genes. Cell proliferation and migration of LECs undergoing EMT were inhibited after hucMSC-Exo treatment. The volume of EMT plaques in mice with injury-induced anterior subcapsular cataract (ASC) was significantly reduced in the hucMSC-Exo-treated group. Furthermore, miR-148a-3p was abundant in hucMSC-Exo. After transfection with miR-148a-3p inhibitor, the anti-fibrotic effect of hucMSC-Exo was attenuated in LECs-EMT. A dual-luciferase reporter assay identified PRNP as a direct target gene of miR-148a-3p. Furthermore, we verified that hucMSC-Exo inhibited LECs-EMT through the miR-148a-3p/PRNP axis and the potential downstream ERK signaling pathway. Taken together, our work reveals the inhibitory effect of hucMSC-Exo on LECs-EMT and the underlying mechanism involved, which may provide potential therapeutic options for fibrotic cataracts.
Collapse
Affiliation(s)
- Jingyu Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Qihang Sun
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong 999077, People’s Republic of China
| | - Yijia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Jinyan Li
- Department of Ophthalmology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People’s Republic of China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People’s Republic of China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People’s Republic of China
| |
Collapse
|
4
|
Zhang Y, Li J, Tan L, Xue J, Shi YG. Understanding the role of ten-eleven translocation family proteins in kidney diseases. Biochem Soc Trans 2024; 52:2203-2214. [PMID: 39377353 DOI: 10.1042/bst20240291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Epigenetic mechanisms play a critical role in the pathogenesis of human diseases including kidney disorders. As the erasers of DNA methylation, Ten-eleven translocation (TET) family proteins can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), thus leading to passive or active DNA demethylation. Similarly, TET family proteins can also catalyze the same reaction on RNA. In addition, TET family proteins can also regulate chromatin structure and gene expression in a catalytic activity-independent manner through recruiting the SIN3A/HDAC co-repressor complex. In 2012, we reported for the first time that the genomic 5-hydroxymethylcytosine level and the mRNA levels of Tet1 and Tet2 were significantly downregulated in murine kidneys upon ischemia and reperfusion injury. Since then, accumulating evidences have eventually established an indispensable role of TET family proteins in not only acute kidney injury but also chronic kidney disease. In this review, we summarize the upstream regulatory mechanisms and the pathophysiological role of TET family proteins in major types of kidney diseases and discuss their potential values in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuelin Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiahui Li
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Xue
- Department of Nephology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yujiang Geno Shi
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Chen S, Li J, Liang Y, Zhang M, Qiu Z, Liu S, Wang H, Zhu Y, Song S, Hou X, Liu C, Wu Q, Zhu M, Shen W, Miao J, Hou FF, Liu Y, Wang C, Zhou L. β-catenin-inhibited Sumoylation modification of LKB1 and fatty acid metabolism is critical in renal fibrosis. Cell Death Dis 2024; 15:769. [PMID: 39438470 PMCID: PMC11496881 DOI: 10.1038/s41419-024-07154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver kinase B1 (LKB1) is a serine/threonine kinase controlling cell homeostasis. Among post-translational modification, Sumoylation is vital for LKB1 activating adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), the key regulator in energy metabolism. Of note, AMPK-regulated fatty acid metabolism is highly involved in maintaining normal renal function. However, the regulative mechanisms of LKB1 Sumoylation remain elusive. In this study, we demonstrated that β-catenin, a notorious signal in renal fibrosis, inhibited the Sumoylation of LKB1, thereby disrupting fatty acid oxidation in renal tubular cells and triggering renal fibrosis. Mechanically, we found that Sumo3 was the key mediator for LKB1 Sumoylation in renal tubular cells, which was transcriptionally inhibited by β-catenin/Transcription factor 4 (TCF4) signaling. Overexpression of Sumo3, not Sumo1 or Sumo2, restored β-catenin-disrupted fatty acid metabolism, and retarded lipid accumulation and fibrogenesis in the kidney. In vivo, conditional knockout of β-catenin in tubular cells effectively preserved fatty acid oxidation and blocked lipid accumulation by maintaining LKB1 Sumoylation and AMPK activation. Furthermore, ectopic expression of Sumo3 strongly inhibited Wnt1-aggravated lipid accumulation and fibrogenesis in unilateral ischemia-reperfusion mice. In patients with chronic kidney disease, we found a loss of Sumo3 expression, and it was highly related to LKB1 repression. This contributes to fatty acid metabolism disruption and lipid accumulation, resulting in renal fibrosis. Overall, our study revealed a new mechanism in fatty acid metabolism dysfunction and provided a new therapeutic target pathway for regulating Sumo modification in renal fibrosis.
Collapse
Affiliation(s)
- Shuangqin Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meijia Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziqi Qiu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - HaoRan Wang
- Walter Johnson High School, Bethesda, MD, USA
| | - Ye Zhu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiaotao Hou
- Pathology Department, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, China
| | - Canzhen Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingsheng Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Cai Y, Zhou J, Xu A, Huang J, Zhang H, Xie G, Zhong K, Wu Y, Ye P, Wang H, Niu H. N6-methyladenosine triggers renal fibrosis via enhancing translation and stability of ZEB2 mRNA. J Biol Chem 2024; 300:107598. [PMID: 39059495 PMCID: PMC11381876 DOI: 10.1016/j.jbc.2024.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, a surge in studies investigating N6-methyladenosine (m6A) modification in human diseases has occurred. However, the specific roles and mechanisms of m6A in kidney disease remain incompletely understood. This study revealed that m6A plays a positive role in regulating renal fibrosis (RF) by inducing epithelial-to-mesenchymal phenotypic transition (EMT) in renal tubular cells. Through comprehensive analyses, including m6A sequencing, RNA-seq, and functional studies, we confirmed the pivotal involvement of zinc finger E-box binding homeobox 2 (ZEB2) in m6A-mediated RF and EMT. Notably, the m6A-modified coding sequence of ZEB2 mRNA significantly enhances its translational elongation and mRNA stability by interacting with the YTHDF1/eEF-2 complex and IGF2BP3, respectively. Moreover, targeted demethylation of ZEB2 mRNA using the dm6ACRISPR system substantially decreases ZEB2 expression and disrupts the EMT process in renal tubular epithelial cells. In vivo and clinical data further support the positive influence of m6A/ZEB2 on RF progression. Our findings highlight the m6A-mediated regulation of RF through ZEB2, revealing a novel therapeutic target for RF treatment and enhancing our understanding of the impact of mRNA methylation on kidney disease.
Collapse
Affiliation(s)
- Yating Cai
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinchang Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guoyou Xie
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhong
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - You Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pengfei Ye
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Hongxin Niu
- Department of General Practice, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
8
|
Lichner Z, Ding M, Khare T, Dan Q, Benitez R, Praszner M, Song X, Saleeb R, Hinz B, Pei Y, Szászi K, Kapus A. Myocardin-Related Transcription Factor Mediates Epithelial Fibrogenesis in Polycystic Kidney Disease. Cells 2024; 13:984. [PMID: 38891116 PMCID: PMC11172104 DOI: 10.3390/cells13110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Polycystic kidney disease (PKD) is characterized by extensive cyst formation and progressive fibrosis. However, the molecular mechanisms whereby the loss/loss-of-function of Polycystin 1 or 2 (PC1/2) provokes fibrosis are largely unknown. The small GTPase RhoA has been recently implicated in cystogenesis, and we identified the RhoA/cytoskeleton/myocardin-related transcription factor (MRTF) pathway as an emerging mediator of epithelium-induced fibrogenesis. Therefore, we hypothesized that MRTF is activated by PC1/2 loss and plays a critical role in the fibrogenic reprogramming of the epithelium. The loss of PC1 or PC2, induced by siRNA in vitro, activated RhoA and caused cytoskeletal remodeling and robust nuclear MRTF translocation and overexpression. These phenomena were also manifested in PKD1 (RC/RC) and PKD2 (WS25/-) mice, with MRTF translocation and overexpression occurring predominantly in dilated tubules and the cyst-lining epithelium, respectively. In epithelial cells, a large cohort of PC1/PC2 downregulation-induced genes was MRTF-dependent, including cytoskeletal, integrin-related, and matricellular/fibrogenic proteins. Epithelial MRTF was necessary for the paracrine priming of the fibroblast-myofibroblast transition. Thus, MRTF acts as a prime inducer of epithelial fibrogenesis in PKD. We propose that RhoA is a common upstream inducer of both histological hallmarks of PKD: cystogenesis and fibrosis.
Collapse
Affiliation(s)
- Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Mei Ding
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Tarang Khare
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Enrich Bioscience, Toronto, ON M5B 1T8, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Raquel Benitez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Mercédesz Praszner
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
| | - Xuewen Song
- Division of Nephrology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Rola Saleeb
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Department of Laboratory Medicine and Pathobiology, Temerty School of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Boris Hinz
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Department of Laboratory Medicine and Pathobiology, Temerty School of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (Z.L.); (T.K.); (R.S.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
9
|
Kelam J, Kelam N, Filipović N, Komić L, Racetin A, Komić D, Kostić S, Kuzmić Prusac I, Vukojević K. Expression of Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) Candidate Genes EDA2R, PCDH9, and TRAF7 in Normal Human Kidney Development and CAKUT. Genes (Basel) 2024; 15:702. [PMID: 38927638 PMCID: PMC11203332 DOI: 10.3390/genes15060702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Approximately half of the cases of chronic kidney disease (CKD) in childhood are caused by congenital anomalies of the kidney and urinary tract (CAKUT). Specific genes were identified as having significant importance in regard to the underlying genetic factors responsible for the CAKUT phenotype, and in our research, we focused on analyzing and comparing the expression levels of ectodysplasin A2 receptor (EDA2R), protocadherin9 (PCDH9), and TNF receptor-associated factor 7 (TRAF7) proteins in the cortex and medulla of healthy control kidneys during developmental phases 2, 3, and 4. We also performed an analysis of the area percentages of the mentioned proteins in the cortical and medullary sections of healthy embryonic and fetal kidneys compared to those affected by CAKUT, including duplex kidneys (DK), horseshoe kidneys (HK), hypoplastic kidneys (HYP), and dysplastic kidneys (DYS). We found that the CAKUT candidate gene proteins EDA2R, PCDH9, and TRAF7 are all expressed during normal human kidney development stages. In DYS, the expression of EDA2R was higher than in normal kidneys, likely due to EDA2R's role in apoptosis, which was upregulated in specific cases and could possibly contribute to the formation of DYS. The expression of PCDH9 was lower in HK, which can be attributed to the possible role of PCDH9 in cell migration suppression. Decreased PCDH9 expression is linked to increased cell migration, potentially contributing to the development of HK. The level of TRAF7 expression was reduced in all examined kidney disorders compared to normal kidneys, suggesting that this reduction might be attributed to the crucial role of TRAF7 in the formation of endothelium and ciliogenesis, both of which are essential for normal kidney development. Further research is required to ascertain the function of these proteins in both the typical development of the kidney and in CAKUT.
Collapse
Affiliation(s)
- Jelena Kelam
- Department of Family Medicine, Split-Dalmatia County Health Center, 21000 Split, Croatia; (J.K.); (L.K.)
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (N.F.); (A.R.); (D.K.); (S.K.)
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (N.F.); (A.R.); (D.K.); (S.K.)
| | - Luka Komić
- Department of Family Medicine, Split-Dalmatia County Health Center, 21000 Split, Croatia; (J.K.); (L.K.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (N.F.); (A.R.); (D.K.); (S.K.)
| | - Dora Komić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (N.F.); (A.R.); (D.K.); (S.K.)
| | - Sandra Kostić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (N.F.); (A.R.); (D.K.); (S.K.)
| | - Ivana Kuzmić Prusac
- Department of Pathology, University Hospital Center Split, 21000 Split, Croatia;
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (N.F.); (A.R.); (D.K.); (S.K.)
- Department of Anatomy, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
10
|
Min J, Mashimo C, Nambu T, Maruyama H, Takigawa H, Okinaga T. Resveratrol is an inhibitory polyphenol of epithelial-mesenchymal transition induced by Fusobacterium nucleatum. Arch Oral Biol 2024; 160:105897. [PMID: 38290225 DOI: 10.1016/j.archoralbio.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Resveratrol is a natural phytoalexin that has anti-inflammatory properties, reverses doxorubicin resistance, and inhibits epithelial-mesenchymal transition (EMT) in many types of cancer cells. Fusobacterium nucleatum is reportedly enriched in oral squamous cell carcinoma (OSCC) tissues compared to adjacent normal tissues, sparking interest in the relationship between F. nucleatum and OSCC. Recently, F. nucleatum was shown to be associated with EMT in OSCC. In the present study, we aimed to investigate the effects of the natural plant compound resveratrol on F. nucleatum-induced EMT in OSCC. DESIGN F. nucleatum was co-cultured with OSCC cells, with a multiplicity of infection (MOI) of 300:1. Resveratrol was used at a concentration of 10 μM. Cell Counting Kit-8 and wound healing assays were performed to examine the viability and migratory ability of OSCC cells. Subsequently, real-time RT-PCR was performed to investigate the gene expression of EMT-related markers. Western blotting and immunofluorescence analyses were used to further analyze the expression of the epithelial marker E-cadherin and the EMT transcription factor SNAI1. RESULTS Co-cultivation with F. nucleatum did not significantly enhance cell viability. The co-cultured cells displayed similarities to the positive control of EMT, exhibiting enhanced migration and expression changes in EMT-related markers. SNAI1 was significantly upregulated, whereas E-cadherin, was significantly downregulated. Notably, resveratrol inhibited F. nucleatum-induced cell migration, decreasing the expression of SNAI1. CONCLUSIONS Resveratrol inhibited F. nucleatum-induced EMT by downregulating SNAI1, which may provide a target for OSCC treatment.
Collapse
Affiliation(s)
- Jie Min
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Chiho Mashimo
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Hugo Maruyama
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Hiroki Takigawa
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| |
Collapse
|
11
|
Ng-Blichfeldt JP, Stewart BJ, Clatworthy MR, Williams JM, Röper K. Identification of a core transcriptional program driving the human renal mesenchymal-to-epithelial transition. Dev Cell 2024; 59:595-612.e8. [PMID: 38340720 PMCID: PMC7616043 DOI: 10.1016/j.devcel.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/28/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
During kidney development, nephron epithelia arise de novo from fate-committed mesenchymal progenitors through a mesenchymal-to-epithelial transition (MET). Downstream of fate specification, transcriptional mechanisms that drive establishment of epithelial morphology are poorly understood. We used human iPSC-derived renal organoids, which recapitulate nephrogenesis, to investigate mechanisms controlling renal MET. Multi-ome profiling via snRNA-seq and ATAC-seq of organoids identified dynamic changes in gene expression and chromatin accessibility driven by activators and repressors throughout MET. CRISPR interference identified that paired box 8 (PAX8) is essential for initiation of MET in human renal organoids, contrary to in vivo mouse studies, likely by activating a cell-adhesion program. While Wnt/β-catenin signaling specifies nephron fate, we find that it must be attenuated to allow hepatocyte nuclear factor 1-beta (HNF1B) and TEA-domain (TEAD) transcription factors to drive completion of MET. These results identify the interplay between fate commitment and morphogenesis in the developing human kidney, with implications for understanding both developmental kidney diseases and aberrant epithelial plasticity following adult renal tubular injury.
Collapse
Affiliation(s)
- John-Poul Ng-Blichfeldt
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Julie M Williams
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Katja Röper
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
12
|
Yi J, Gao H, Wei X, Wang M, Xu W, Yu D, Zhao M, Zhao M, Wang Z, Wei W, Jin S. The transcription factor GATA3 positively regulates NRP1 to promote radiation-induced pulmonary fibrosis. Int J Biol Macromol 2024; 262:130052. [PMID: 38342257 DOI: 10.1016/j.ijbiomac.2024.130052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Radiation-Induced Pulmonary Fibrosis (RIPF) frequently arises as a delayed complication following radiation therapy for thoracic cancers, encompassing lung, breast, and esophageal malignancies. Characterized by a relentless and irreversible accumulation of extracellular matrix (ECM) proteins within the lung parenchyma, RIPF presents a significant clinical challenge. While the modulation of gene expression by transcription factors is a recognized aspect in various pathologies, their specific role in the context of RIPF has been less clear. This study elucidates that ionizing radiation prompts the translocation of the transcription factor GATA3 into the nucleus. This translocation facilitates GATA3's binding to the NRP1 promoter, thereby enhancing the transcription and subsequent translation of NRP1. Further investigations demonstrate that the TGF-β pathway agonist, SRI-011381, can mitigate the effects of NRP1 knockdown on epithelial-mesenchymal transition (EMT) and ECM deposition, suggesting a pivotal role of the GATA3/NRP1/TGF-β axis in the pathogenesis of RIPF. In conclusion, our findings not only underscore the critical involvement of GATA3 in RIPF but also highlight the GATA3/NRP1/TGF-β signaling pathway as a promising target for therapeutic intervention in RIPF management.
Collapse
Affiliation(s)
- Junxuan Yi
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, Jilin, China
| | - Hui Gao
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinfeng Wei
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, Jilin, China
| | - Mingwei Wang
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, Jilin, China
| | - Weiqiang Xu
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, Jilin, China
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, Jilin, China
| | - Mengdie Zhao
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, Jilin, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, Jilin, China
| | - Wei Wei
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China.
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
13
|
Xue B, Kadeerhan G, Sun LB, Chen YQ, Hu XF, Zhang ZK, Wang DW. Circulating exosomal miR-16-5p and let-7e-5p are associated with bladder fibrosis of diabetic cystopathy. Sci Rep 2024; 14:837. [PMID: 38191820 PMCID: PMC10774280 DOI: 10.1038/s41598-024-51451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Diabetic cystopathy (DCP) is a prevalent etiology of bladder dysfunction in individuals with longstanding diabetes, frequently leading to bladder interstitial fibrosis. Research investigating the initial pathological alterations of DCP is notably scarce. To comprehend the development of fibrosis and find effective biomarkers for its diagnosis, we prepared streptozotocin-induced long-term diabetic SD rats exhibiting a type 1 diabetes phenotype and bladder fibrosis in histology detection. After observing myofibroblast differentiation from rats' primary bladder fibroblasts with immunofluorescence, we isolated fibroblasts derived exosomes and performed exosomal miRNA sequencing. The co-differentially expressed miRNAs (DEMis) (miR-16-5p and let-7e-5p) were screened through a joint analysis of diabetic rats and long-term patients' plasma data (GES97123) downloaded from the GEO database. Then two co-DEMis were validated by quantitative PCR on exosomes derived from diabetic rats' plasma. Following with a series of analysis, including target mRNAs and transcription factors (TFs) prediction, hubgenes identification, protein-protein interaction (PPI) network construction and gene enrichment analysis, a miRNA-mediated genetic regulatory network consisting of two miRNAs, nine TFs, and thirty target mRNAs were identified in relation to fibrotic processes. Thus, circulating exosomal miR-16-5p and let-7e-5p are associated with bladder fibrosis of DCP, and the crucial genes in regulatory network might hold immense significance in studying the pathogenesis and molecular mechanisms of fibrosis, which deserves further exploration.
Collapse
Affiliation(s)
- Bo Xue
- Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Gaohaer Kadeerhan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Li-Bin Sun
- Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | | | - Xiao-Feng Hu
- Shanxi Medical University, Taiyuan, 030001, China
| | | | - Dong-Wen Wang
- Shanxi Medical University, Taiyuan, 030001, China.
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
14
|
García de Herreros A. Dual role of Snail1 as transcriptional repressor and activator. Biochim Biophys Acta Rev Cancer 2024; 1879:189037. [PMID: 38043804 DOI: 10.1016/j.bbcan.2023.189037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition, a process that remodels tumor cells increasing their invasion and chemo-resistance as well as reprograms their metabolism and provides stemness properties. During this transition, Snail1 acts as a transcriptional repressor and, as growing evidences have demonstrated, also as a direct activator of mesenchymal genes. In this review, I describe the different proteins that interact with Snail1 and are responsible for these two different functions on gene expression; I focus on the transcriptional factors that associate to Snail1 in their target promoters, both activated and repressed. I also present working models for Snail1 action both as repressor and activator and raise some issues that still need to be investigated.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Unidad Asociada al CSIC, Barcelona, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
15
|
Su X, Li S, Zhang Y, Tie X, Feng R, Guo X, Qiao X, Wang L. Overexpression of Corin Ameliorates Kidney Fibrosis through Inhibition of Wnt/β-Catenin Signaling in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:101-120. [PMID: 37827215 DOI: 10.1016/j.ajpath.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
The Wnt/β-catenin pathway represents a promising therapeutic target for mitigating kidney fibrosis. Corin possesses the homologous ligand binding site [Frizzled-cysteine-rich domain (Fz-CRD)] similar to Frizzled proteins, which act as receptors for Wnt. The Fz-CRD has been found in eight different proteins, all of which, except for corin, are known to bind Wnt and regulate its signal transmission. We hypothesized that corin may inhibit the Wnt/β-catenin signaling pathway and thereby reduce fibrogenesis. Reduced expression of corin along with the increased activity of Wnt/β-catenin signaling was found in unilateral ureteral obstruction (UUO) and ureteral ischemia/reperfusion injury (UIRI) models. In vitro, corin bound to the Wnt1 through its Fz-CRDs and inhibit the Wnt1 function responsible for activating β-catenin. Transforming growth factor-β1 inhibited corin expression, accompanied by activation of β-catenin; conversely, overexpression of corin attenuated the fibrotic effects of transforming growth factor-β1. In vivo, adenovirus-mediated overexpression of corin attenuated the progression of fibrosis, which was potentially associated with the inhibition of Wnt/β-catenin signaling and the down-regulation of its target genes after UUO and UIRI. These results suggest that corin acts as an antagonist that protects the kidney from pathogenic Wnt/β-catenin signaling and from fibrosis following UUO and UIRI.
Collapse
Affiliation(s)
- Xiaole Su
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China.
| | - Sijia Li
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Yanru Zhang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Xuan Tie
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Rongrong Feng
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Xiaojiao Guo
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, China; Shanxi Kidney Disease Institute, Taiyuan, China; Institute of Nephrology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Guo L, Zhang Y, Lu J, Li X, Zhang C, Song W, Dong Y, Zhou X, Li R. Nicotine promotes renal interstitial fibrosis via upregulation of XIAP in an alpha7-nAChR-dependent manner. Mol Cell Endocrinol 2023; 576:111989. [PMID: 37451424 DOI: 10.1016/j.mce.2023.111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Renal fibrosis, characterized by excessive accumulation of the extracellular matrix in the renal tubulointerstitium, can lead to chronic kidney disease (CKD), resulting in a heavy burden on families and society. Clinical studies have shown that smoking is closely associated with CKD deterioration in patients with diabetes, hypertension, polycystic kidney disease, and kidney transplantation. However, the mechanism of action of nicotine in renal fibrosis pathogenesis remains largely unknown. X-linked inhibitor of apoptosis (XIAP), a member of the inhibitor of apoptosis protein (IAP) family, is involved in apoptosis, necroptosis, autophagy, and immune response. Here, the upregulated expression of XIAP and α7 nicotine acetylcholine receptor (α7-nAChR) was determined in the kidneys of the CKD smoking group in human and animal studies. A significant positive correlation between XIAP and cotinine was observed. In addition, the nuclear translocation and transcriptional activity of SP1 were promoted when nicotine bound to α7-nAChR, resulting in XIAP overexpression and renal interstitial fibrosis progression. This phenotype can be reversed by the nicotine receptor subtype α7-nAChR antagonists methyllycaconitine. Our results revealed the complex underlying mechanism of nicotine in promoting renal fibrosis by altering SP1 nucleocytoplasmic translocation and regulating XIAP expression. These results provide novel insights into the pathogenesis and treatment of CKD.
Collapse
Affiliation(s)
- Lili Guo
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China.
| | - Yue Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian Lu
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China; Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyang Li
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Chao Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yafang Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiangyang Zhou
- Preclinical-medicine of Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Taiyuan, China; Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China.
| |
Collapse
|
17
|
Arumi-Planas M, Rodriguez-Baena FJ, Cabello-Torres F, Gracia F, Lopez-Blau C, Nieto MA, Sanchez-Laorden B. Microenvironmental Snail1-induced immunosuppression promotes melanoma growth. Oncogene 2023; 42:2659-2672. [PMID: 37516803 PMCID: PMC10473961 DOI: 10.1038/s41388-023-02793-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Melanoma is an aggressive form of skin cancer due to its high metastatic abilities and resistance to therapies. Melanoma cells reside in a heterogeneous tumour microenvironment that acts as a crucial regulator of its progression. Snail1 is an epithelial-to-mesenchymal transition transcription factor expressed during development and reactivated in pathological situations including fibrosis and cancer. In this work, we show that Snail1 is activated in the melanoma microenvironment, particularly in fibroblasts. Analysis of mouse models that allow stromal Snail1 depletion and therapeutic Snail1 blockade indicate that targeting Snail1 in the tumour microenvironment decreases melanoma growth and lung metastatic burden, extending mice survival. Transcriptomic analysis of melanoma-associated fibroblasts and analysis of the tumours indicate that stromal Snail1 induces melanoma growth by promoting an immunosuppressive microenvironment and a decrease in anti-tumour immunity. This study unveils a novel role of Snail1 in melanoma biology and supports its potential as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Francisco Gracia
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain
| | | | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | | |
Collapse
|
18
|
Jin B, Liu J, Zhu Y, Lu J, Zhang Q, Liang Y, Shao Q, Jiang C. Kunxian capsule alleviates podocyte injury and proteinuria by inactivating β-catenin in db/db mice. Front Med (Lausanne) 2023; 10:1213191. [PMID: 37457567 PMCID: PMC10349331 DOI: 10.3389/fmed.2023.1213191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Background Diabetic kidney disease (DKD) remains the primary cause of end-stage renal disease (ESRD) globally, but treatment options are limited. Kunxian capsule (KXC) has been utilized for the treatment of autoimmune diseases and IgA nephropathy in China. However, its effect on DKD remains poorly investigated. Therefore, this study aimed to explore the protective effect of KXC in db/db mice and elucidate its underlying mechanism. Methods The renoprotective effects of KXC were assessed in a DKD mouse model using male BKS db/db diabetic mice. After 8 weeks of treatment, the urinary albumin-to-creatinine ratio (UACR), blood biochemical parameters, renal histopathological manifestation, and podocyte ultrastructural changes were evaluated. Additionally, the expression of podocyte epithelial-to-mesenchymal transition (EMT) markers [WT1, ZO-1, and collogen I (Col1a1)] was quantitatively analyzed. Furthermore, we explored the role of KXC in the β-catenin signaling pathway to elucidate the underlying mechanism of KXC's renoprotective effect. Results KXC treatment effectively reduced albuminuria and attenuated renal structural abnormalities in db/db mice. Additionally, KXC restored the protein and mRNA expression of WT1 and ZO-1 while suppressing the expression of Col1a1 in db/db mice, indicating its ability to alleviate podocyte EMT. Mechanistically, KXC exerted a significant suppressive effect on the activation of β-catenin signaling in diabetic kidneys. Conclusion KXC has the potential to protect podocytes during DKD by alleviating podocyte EMT through inactivating β-catenin signaling.
Collapse
|
19
|
CDC20 inhibition alleviates fibrotic response of renal tubular epithelial cells and fibroblasts by regulating nuclear translocation of β-catenin. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166663. [PMID: 36764621 DOI: 10.1016/j.bbadis.2023.166663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Fibrosis is a common pathological phenomenon in progressive kidney disease leading to eventual loss of kidney function. Previous studies demonstrated that CDC20 plays a role in cancers by regulating epithelial-mesenchymal transition (EMT) and the infiltration of fibroblasts, suggesting the potential of CDC20 in regulating fibrotic response. However, the role of CDC20 in renal fibrosis is yet unclear. Herein, we reported that renal CDC20 was remarkably upregulated in renal tubular epithelial cells and fibroblasts in chronic kidney disease (CKD) patients, which was in line with a positive correlation with the severity of kidney fibrosis. In mice with unilateral urinary obstruction, CDC20 was also strikingly enhanced, and treatment with Apcin, an inhibitor of CDC20, ameliorated kidney fibrosis. Consistently, the pharmacological inhibition of CDC20 in mouse proximal tubular epithelial cells and rat fibroblasts attenuated TGF-β1-induced fibrotic responses, while overexpression of CDC20 aggravated such responses. Additional studies revealed that CDC20 induces nuclear translocation of β-catenin, which in turn initiates and promotes the pathological process of fibrosis in CKD. Thus, enhanced CDC20 in renal tubular cells and fibroblasts promotes renal fibrosis by activating β-catenin, and CDC20 inhibition may serve as a promising strategy for the prevention and treatment of renal fibrosis.
Collapse
|
20
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 241] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Das F, Ghosh-Choudhury N, Maity S, Kasinath BS, Ghosh Choudhury G. TGFβ instructs mTORC2 to activate PKCβII for increased TWIST1 expression in proximal tubular epithelial cell injury. FEBS Lett 2023; 597:1300-1316. [PMID: 36775967 DOI: 10.1002/1873-3468.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
The plasticity of proximal tubular epithelial cells in response to TGFβ contributes to the expression of TWIST1 to drive renal fibrosis. The mechanism of TWIST1 expression is not known. We show that both PI3 kinase and its target mTORC2 increase TGFβ-induced TWIST1 expression. TGFβ enhances phosphorylation on Ser-660 in the protein kinase C βII (PKCβII) hydrophobic motif site. Remarkably, phosphorylation-deficient PKCβIIS660A, kinase-dead PKCβII, and PKCβII knockdown blocked TWIST1 expression by TGFβ. Inhibition of TWIST1 arrested TGFβ-induced tubular cell hypertrophy and the expression of fibronectin, collagen I (α2), and α-smooth muscle actin. By contrast, TWIST1 overexpression induced these pathologies. Interestingly, the inhibition of PKCβII reduced these phenomena, which were countered by the expression of TWIST1. These results provide the first evidence for the involvement of the mTORC2-PKCβII axis in TWIST1 expression to promote tubular cell pathology.
Collapse
Affiliation(s)
- Falguni Das
- 1VA Research and 4Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA.,Department of Medicine, UT Health San Antonio, TX, USA
| | | | - Soumya Maity
- Department of Medicine, UT Health San Antonio, TX, USA
| | | | - Goutam Ghosh Choudhury
- 1VA Research and 4Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA.,Department of Medicine, UT Health San Antonio, TX, USA.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
22
|
Quaife NM, Chothani S, Schulz JF, Lindberg EL, Vanezis K, Adami E, O'Fee K, Greiner J, Litviňuková M, van Heesch S, Whiffin N, Hubner N, Schafer S, Rackham O, Cook SA, Barton PJR. LINC01013 Is a Determinant of Fibroblast Activation and Encodes a Novel Fibroblast-Activating Micropeptide. J Cardiovasc Transl Res 2023; 16:77-85. [PMID: 35759180 PMCID: PMC9944705 DOI: 10.1007/s12265-022-10288-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
Myocardial fibrosis confers an almost threefold mortality risk in heart disease. There are no prognostic therapies and novel therapeutic targets are needed. Many thousands of unannotated small open reading frames (smORFs) have been identified across the genome with potential to produce micropeptides (< 100 amino acids). We sought to investigate the role of smORFs in myocardial fibroblast activation.Analysis of human cardiac atrial fibroblasts (HCFs) stimulated with profibrotic TGFβ1 using RNA sequencing (RNA-Seq) and ribosome profiling (Ribo-Seq) identified long intergenic non-coding RNA LINC01013 as TGFβ1 responsive and containing an actively translated smORF. Knockdown of LINC01013 using siRNA reduced expression of profibrotic markers at baseline and blunted their response to TGFβ1. In contrast, overexpression of a codon-optimised smORF invoked a profibrotic response comparable to that seen with TGFβ1 treatment, whilst FLAG-tagged peptide associated with the mitochondria.Together, these data support a novel LINC01013 smORF micropeptide-mediated mechanism of fibroblast activation. TGFβ1 stimulation of atrial fibroblasts induces expression of LINC01013, whose knockdown reduces fibroblast activation. Overexpression of a smORF contained within LINC01013 localises to mitochondria and activates fibroblasts.
Collapse
Affiliation(s)
- N M Quaife
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - S Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
| | - J F Schulz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - E L Lindberg
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - K Vanezis
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - E Adami
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - K O'Fee
- MRC London Institute of Medical Sciences, London, UK
| | - J Greiner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - M Litviňuková
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - S van Heesch
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - N Whiffin
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals, Guy's and St Thomas NHS Foundation Trust, London, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - N Hubner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - S Schafer
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
| | - O Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
| | - S A Cook
- MRC London Institute of Medical Sciences, London, UK
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore, 169857, Singapore
- National Heart Centre Singapore, Singapore, Singapore
| | - P J R Barton
- National Heart and Lung Institute, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, London, UK.
- Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals, Guy's and St Thomas NHS Foundation Trust, London, UK.
| |
Collapse
|
23
|
Rana I, Kataria S, Tan TL, Hajam EY, Kashyap DK, Saha D, Ajnabi J, Paul S, Jayappa S, Ananthan ASHP, Kumar P, Zaarour RF, Haarshaadri J, Kansagara G, Rizvi A, Zirmire RK, Badarinath K, Khedkar SU, Chandra Y, Samuel R, George R, Danda D, Jacob PM, Dey R, Dhandapany PS, He YW, Varga J, Varghese S, Jamora C. Mindin (SPON2) Is Essential for Cutaneous Fibrogenesis in a Mouse Model of Systemic Sclerosis. J Invest Dermatol 2022; 143:699-710.e10. [PMID: 36528128 DOI: 10.1016/j.jid.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis is a fibrotic disease that initiates in the skin and progresses to internal organs, leading to a poor prognosis. Unraveling the etiology of a chronic, multifactorial disease such as systemic sclerosis has been aided by various animal models that recapitulate certain aspects of the human pathology. We found that the transcription factor SNAI1 is overexpressed in the epidermis of patients with systemic sclerosis, and a transgenic mouse recapitulating this expression pattern is sufficient to induce many clinical features of the human disease. Using this mouse model as a discovery platform, we have uncovered a critical role for the matricellular protein Mindin (SPON2) in fibrogenesis. Mindin is produced by SNAI1 transgenic skin keratinocytes and aids fibrogenesis by inducing early inflammatory cytokine production and collagen secretion in resident dermal fibroblasts. Given the dispensability of Mindin in normal tissue physiology, targeting this protein holds promise as an effective therapy for fibrosis.
Collapse
Affiliation(s)
- Isha Rana
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) Deemed University, Thanjavur, India
| | - Sunny Kataria
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; National Centre for Biological Sciences, Bangalore, India
| | - Tuan Lin Tan
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, San Diego, California, USA; School of Chemical & Life Sciences, Singapore Polytechnic, Singapore, Singapore
| | - Edries Yousaf Hajam
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) Deemed University, Thanjavur, India
| | - Deepak Kumar Kashyap
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India; Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Dyuti Saha
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Johan Ajnabi
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Sayan Paul
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Shashank Jayappa
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Akhil S H P Ananthan
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Pankaj Kumar
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Rania F Zaarour
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; Thumbay Research Institute for Precision Medicine (TRIPM), Gulf Medical University, Ajman, United Arab Emirates
| | - J Haarshaadri
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Gaurav Kansagara
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; Animal Care and Resource Centre (ACRC), Bangalore Life Science Cluster, Bangalore, India
| | - Abrar Rizvi
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Ravindra K Zirmire
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) Deemed University, Thanjavur, India
| | - Krithika Badarinath
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; National Centre for Biological Sciences, Bangalore, India
| | - Sneha Uday Khedkar
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Yogesh Chandra
- Animal Care and Resource Centre (ACRC), Bangalore Life Science Cluster, Bangalore, India
| | - Rekha Samuel
- Centre for Stem Cell Research (CSCR), Christian Medical College Vellore, Vellore, India; Department of Pathology, Manipal - Tata Medical College Jamshedpur, Jamshedpur, India
| | - Renu George
- Department of Dermatology, Venereology and Leprosy, Christian Medical College Vellore, Vellore, India
| | - Debashish Danda
- Department of Clinical Immunology & Rheumatology, Christian Medical College Vellore, Vellore, India
| | | | - Rakesh Dey
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | | | - You-Wen He
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - John Varga
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Shyni Varghese
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, San Diego, California, USA; Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India.
| |
Collapse
|
24
|
Brandán YR, Favale NO, Pescio LG, Santacreu BJ, Guaytima EDV, Sterin-Speziale NB, Márquez MG. Influence of sphingomyelin metabolism during epithelial-mesenchymal transition associated with aging in the renal papilla. J Cell Physiol 2022; 237:3883-3899. [PMID: 35908199 DOI: 10.1002/jcp.30842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
The renal collecting ducts (CD) are formed by a fully differentiated epithelium, and their tissue organization and function require the presence of mature cell adhesion structures. In certain circumstances, the cells can undergo de-differentiation by a process called epithelial-mesenchymal transition (EMT), in which the cells lose their epithelial phenotype and acquire the characteristics of the mesenchymal cells, which includes loss of cell-cell adhesion. We have previously shown that in renal papillary CD cells, cell adhesion structures are located in sphingomyelin (SM)-enriched plasma membrane microdomains and the inhibition of SM synthase 1 activity induced CD cells to undergo an EMT process. In the present study, we evaluated the influence of SM metabolism during the EMT of the cells that form the CD of the renal papilla during aging. To this end, primary cultures of renal papillary CD cells from young, middle-, and aged-rats were performed. By combining biochemical and immunofluorescence studies, we found experimental evidence that CD cells undergo an increase in spontaneous and reversible EMT during aging and that at least one of the reasons for this phenomenon is the decrease in SM content due to the combination of decreased SM synthase activity and an increase in SM degradation mediated by neutral sphingomyelinase. Age is a risk factor for many diseases, among which renal fibrosis is included. Our findings highlight the importance of sphingolipids and particularly SM as a modulator of the fate of CD cells and probably contribute to the development of treatments to avoid or reverse renal fibrosis during aging.
Collapse
Affiliation(s)
- Yamila Romina Brandán
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Nicolás Octavio Favale
- Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química y Fisicoquímica Biológicas, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química y Fisicoquímica Biológicas, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bruno Jaime Santacreu
- Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química y Fisicoquímica Biológicas, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Edith Del Valle Guaytima
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, La Rioja, Argentina
| | - Norma B Sterin-Speziale
- Laboratorio Nacional de Investigación y Servicios de Péptidos y Proteínas - Espectrometría de Masa (LANAIS PROEM), Instituto de Química y Fisicoquímica Biológicas, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Gabriela Márquez
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, La Rioja, Argentina
| |
Collapse
|
25
|
Differences in Immunohistochemical and Ultrastructural Features between Podocytes and Parietal Epithelial Cells (PECs) Are Observed in Developing, Healthy Postnatal, and Pathologically Changed Human Kidneys. Int J Mol Sci 2022; 23:ijms23147501. [PMID: 35886848 PMCID: PMC9322852 DOI: 10.3390/ijms23147501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
During human kidney development, cells of the proximal nephron gradually differentiate into podocytes and parietal epithelial cells (PECs). Podocytes are terminally differentiated cells that play a key role in both normal and pathological kidney function. Therefore, the potential of podocytes to regenerate or be replaced by other cell populations (PECs) is of great interest for the possible treatment of kidney diseases. In the present study, we analyzed the proliferation and differentiation capabilities of podocytes and PECs, changes in the expression pattern of nestin, and several early proteins including WNT4, Notch2, and Snail, as well as Ki-67, in tissues of developing, postnatal, and pathologically changed human kidneys by using immunohistochemistry and electron microscopy. Developing PECs showed a higher proliferation rate than podocytes, whereas nestin expression characterized only podocytes and pathologically changed kidneys. In the developing kidneys, WNT4 and Notch2 expression increased moderately in podocytes and strongly in PECs, whereas Snail increased only in PECs in the later fetal period. During human kidney development, WNT4, Notch2, and Snail are involved in early nephrogenesis control. In kidneys affected by congenital nephrotic syndrome of the Finnish type (CNF) and focal segmental glomerulosclerosis (FSGS), WNT4 decreased in both cell populations, whereas Notch2 decreased in FSGS. In contrast, Snail increased both in CNF and FSGS, whereas Notch2 increased only in CNF. Electron microscopy revealed cytoplasmic processes spanning the urinary space between the podocytes and PECs in developing and healthy postnatal kidneys, whereas the CNF and FSGS kidneys were characterized by numerous cellular bridges containing cells with strong expression of nestin and all analyzed proteins. Our results indicate that the mechanisms of gene control in nephrogenesis are reactivated under pathological conditions. These mechanisms could have a role in restoring glomerular integrity by potentially inducing the regeneration of podocytes from PECs.
Collapse
|
26
|
Xu X, Ma C, Wu H, Ma Y, Liu Z, Zhong P, Jin C, Ning W, Wu X, Zhang Y, Han J, Wang J. Fructose Induces Pulmonary Fibrotic Phenotype Through Promoting Epithelial-Mesenchymal Transition Mediated by ROS-Activated Latent TGF-β1. Front Nutr 2022; 9:850689. [PMID: 35711535 PMCID: PMC9197188 DOI: 10.3389/fnut.2022.850689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Fructose is a commonly used food additive and has many adverse effects on human health, but it is unclear whether fructose impacts pulmonary fibrosis. TGF-β1, a potent fibrotic inducer, is produced as latent complexes by various cells, including alveolar epithelial cells, macrophages, and fibroblasts, and must be activated by many factors such as reactive oxygen species (ROS). This study explored the impact of fructose on pulmonary fibrotic phenotype and epithelial-mesenchymal transition (EMT) using lung epithelial cells (A549 or BEAS-2B) and the underlying mechanisms. Fructose promoted the cell viability of lung epithelial cells, while N-Acetyl-l-cysteine (NAC) inhibited such. Co-treatment of fructose and latent TGF-β1 could induce the fibrosis phenotype and the epithelial-mesenchymal transition (EMT)-related protein expression, increasing lung epithelial cell migration and invasion. Mechanism analysis shows that fructose dose-dependently promoted the production of total and mitochondrial ROS in A549 cells, while NAC eliminated this promotion. Notably, post-administration with NAC or SB431542 (a potent TGF-β type I receptor inhibitor) inhibited fibrosis phenotype and EMT process of lung epithelial cells co-treated with fructose and latent TGF-β1. Finally, the fibrosis phenotype and EMT-related protein expression of lung epithelial cells were mediated by the ROS-activated latent TGF-β1/Smad3 signal. This study revealed that high fructose promoted the fibrotic phenotype of human lung epithelial cells by up-regulating oxidative stress, which enabled the latent form of TGF-β1 into activated TGF-β1, which provides help and reference for the diet adjustment of healthy people and patients with fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chuang Ma
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Hang Wu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yuanqiao Ma
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Peijie Zhong
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Wenjuan Ning
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiao Wu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Jichang Han
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Sirtuins and Hypoxia in EMT Control. Pharmaceuticals (Basel) 2022; 15:ph15060737. [PMID: 35745656 PMCID: PMC9228842 DOI: 10.3390/ph15060737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT. On the other hand, hypoxia-dependent HIF-independent EMT has also been described. Recently, a new class of seven proteins with deacylase activity, called sirtuins, have been implicated in the control of both hypoxia responses, HIF-1α and HIF-2α activation, as well as EMT induction. Intriguingly, different sirtuins have different effects on hypoxia and EMT, acting as either activators or inhibitors, depending on the tissue and cell type. Interestingly, sirtuins and HIF can be activated or inhibited with natural or synthetic molecules. Moreover, recent studies have shown that these natural or synthetic molecules can be better conveyed using nanoparticles, representing a valid strategy for EMT modulation. The following review, by detailing the aspects listed above, summarizes the interplay between hypoxia, sirtuins, and EMT, as well as the possible strategies to modulate them by using a nanoparticle-based approach.
Collapse
|
28
|
Induction of mesenchymal-epithelial transition (MET) by epigallocatechin-3-gallate to reverse epithelial-mesenchymal transition (EMT) in SNAI1-overexpressed renal cells: A potential anti-fibrotic strategy. J Nutr Biochem 2022; 107:109066. [DOI: 10.1016/j.jnutbio.2022.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
|
29
|
Lemster AL, Sievers E, Pasternack H, Lazar-Karsten P, Klümper N, Sailer V, Offermann A, Brägelmann J, Perner S, Kirfel J. Histone Demethylase KDM5C Drives Prostate Cancer Progression by Promoting EMT. Cancers (Basel) 2022; 14:cancers14081894. [PMID: 35454801 PMCID: PMC9032772 DOI: 10.3390/cancers14081894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Prostate cancer is the most common cancer in men and is one of the leading causes of cancer-related deaths. During prostate cancer progression and metastasis, the epithelial cells can undergo epithelial–mesenchymal transition (EMT). Here, we show that the histone demethylase KDM5C is highly expressed in metastatic prostate cancer. We establish that stable clones silence KDM5C in prostate cancer cells. Knockdown of KDM5C leads to a reduced migratory and invasion capacity. This is associated with changes by multiple molecular mechanisms. This signaling subsequently modifies the expression of various transcription factors like Snail, Twist, and Zeb1/2, which are also known as master regulators of EMT. Taken together, our results indicate the potential to therapeutically target KDM5C either alone or in combination with Akt/mTOR-inhibitor in prostate cancer patients by targeting the EMT signaling pathways. Abstract Prostate cancer (PCa) poses a major public health problem in men. Metastatic PCa is incurable, and ultimately threatens the life of many patients. Mutations in tumor suppressor genes and oncogenes are important for PCa progression, whereas the role of epigenetic factors in prostate carcinogenesis is insufficiently examined. The histone demethylase KDM5C exerts important roles in tumorigenesis. KDM5C has been reported to be highly expressed in various cancer cell types, particularly in primary PCa. Here, we could show that KDM5C is highly upregulated in metastatic PCa. Functionally, in KDM5C knockdown cells migratory and invasion capacity was reduced. Interestingly, modulation of KDM5C expression influences several EMT signaling pathways (e.g., Akt/mTOR), expression of EMT transcription factors, epigenetic modifiers, and miR-205, resulting in increased expression of E-cadherin and reduced expression of N-cadherin. Mouse xenografts of KDM5C knockdown cells showed reduced tumor growth. In addition, the Akt/mTOR pathway is one of the classic signaling pathways to mediate tumor metabolic homeostasis, which is beneficial for tumor growth and metastasis. Taken together, our findings indicate that a combination of a selective KDM5C- and Akt/mTOR-inhibitor might be a new promising therapeutic strategy to reduce metastatic burden in PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Elisabeth Sievers
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Helen Pasternack
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Pamela Lazar-Karsten
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Johannes Brägelmann
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Correspondence:
| |
Collapse
|
30
|
Morin C, Moyret-Lalle C, Mertani HC, Diaz JJ, Marcel V. Heterogeneity and dynamic of EMT through the plasticity of ribosome and mRNA translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188718. [PMID: 35304296 DOI: 10.1016/j.bbcan.2022.188718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Growing evidence exposes translation and its translational machinery as key players in establishing and maintaining physiological and pathological biological processes. Examining translation may not only provide new biological insight but also identify novel innovative therapeutic targets in several fields of biology, including that of epithelial-to-mesenchymal transition (EMT). EMT is currently considered as a dynamic and reversible transdifferentiation process sustaining the transition from an epithelial to mesenchymal phenotype, known to be mainly driven by transcriptional reprogramming. However, it seems that the characterization of EMT plasticity is challenging, relying exclusively on transcriptomic and epigenetic approaches. Indeed, heterogeneity in EMT programs was reported to depend on the biological context. Here, by reviewing the involvement of translational control, translational machinery and ribosome biogenesis characterizing the different types of EMT, from embryonic and adult physiological to pathological contexts, we discuss the added value of integrating translational control and its machinery to depict the heterogeneity and dynamics of EMT programs.
Collapse
Affiliation(s)
- Chloé Morin
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Caroline Moyret-Lalle
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Hichem C Mertani
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France
| | - Virginie Marcel
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard, F-69373 Lyon Cedex 08, France; Institut Convergence PLAsCAN, 69373 Lyon cedex 08, France; DevWeCan Labex Laboratory, 69373 Lyon cedex 08, France.
| |
Collapse
|
31
|
Chemokine (C-C Motif) Ligand 8 and Tubulo-Interstitial Injury in Chronic Kidney Disease. Cells 2022; 11:cells11040658. [PMID: 35203308 PMCID: PMC8869891 DOI: 10.3390/cells11040658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Kidney fibrosis has been accepted to be a common pathological outcome of chronic kidney disease (CKD). We aimed to examine serum levels and tissue expression of chemokine (C-C motif) ligand 8 (CCL8) in patients with CKD and to investigate their association with kidney fibrosis in CKD model. Serum levels and tissue expression of CCL8 significantly increased with advancing CKD stage, proteinuria level, and pathologic deterioration. In Western blot analysis of primary cultured human tubular epithelial cells after induction of fibrosis with rTGF-β, CCL8 was upregulated by rTGF-β treatment and the simultaneous treatment with anti-CCL8 mAb mitigated the rTGF-β-induced an increase in fibronectin and a decrease E-cadherin and BCL-2 protein levels. The antiapoptotic effect of the anti-CCL8 mAb was also demonstrated by Annexin V/propidium iodide staining assay. In qRT-PCR analysis, mRNA expression levels of the markers for fibrosis and apoptosis showed similar expression patterns to those observed by western blotting. The immunohistochemical analysis revealed CCL8 and fibrosis- and apoptosis-related markers significantly increased in the unilateral ureteral obstruction model, which agrees with our in vitro findings. In conclusion, CCL8 pathway is associated with increased risk of kidney fibrosis and that CCL8 blockade can ameliorate kidney fibrosis and apoptosis.
Collapse
|
32
|
Hu L, Ding M, He W. Emerging Therapeutic Strategies for Attenuating Tubular EMT and Kidney Fibrosis by Targeting Wnt/β-Catenin Signaling. Front Pharmacol 2022; 12:830340. [PMID: 35082683 PMCID: PMC8784548 DOI: 10.3389/fphar.2021.830340] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a process in which differentiated epithelial cells undergo phenotypic transformation into myofibroblasts capable of producing extracellular matrix, and is generally regarded as an integral part of fibrogenesis after tissue injury. Although there is evidence that the complete EMT of tubular epithelial cells (TECs) is not a major contributor to interstitial myofibroblasts in kidney fibrosis, the partial EMT, a status that damaged TECs remain inside tubules, and co-express both epithelial and mesenchymal markers, has been demonstrated to be a crucial stage for intensifying fibrogenesis in the interstitium. The process of tubular EMT is governed by multiple intracellular pathways, among which Wnt/β-catenin signaling is considered to be essential mainly because it controls the transcriptome associated with EMT, making it a potential therapeutic target against kidney fibrosis. A growing body of data suggest that reducing the hyperactivity of Wnt/β-catenin by natural compounds, specific inhibitors, or manipulation of genes expression attenuates tubular EMT, and interstitial fibrogenesis in the TECs cultured under profibrotic environments and in animal models of kidney fibrosis. These emerging therapeutic strategies in basic researches may provide beneficial ideas for clinical prevention and treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lichao Hu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mengyuan Ding
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Extracellular Vesicles Derived from Human Liver Stem Cells Attenuate Chronic Kidney Disease Development in an In Vivo Experimental Model of Renal Ischemia and Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23031485. [PMID: 35163409 PMCID: PMC8835844 DOI: 10.3390/ijms23031485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
The potential therapeutic effect of extracellular vesicles (EVs) that are derived from human liver stem cells (HLSCs) has been tested in an in vivo model of renal ischemia and reperfusion injury (IRI), that induce the development of chronic kidney disease (CKD). EVs were administered intravenously immediately after the IRI and three days later, then their effect was tested at different time points to evaluate how EV-treatment might interfere with fibrosis development. In IRI-mice that were sacrificed two months after the injury, EV- treatment decreased the development of interstitial fibrosis at the histological and molecular levels. Furthermore, the expression levels of pro-inflammatory genes and of epithelial-mesenchymal transition (EMT) genes were significantly reverted by EV-treatment. In IRI-mice that were sacrificed at early time points (two and three days after the injury), functional and histological analyses showed that EV-treatment induced an amelioration of the acute kidney injury (AKI) that was induced by IRI. Interestingly, at the molecular level, a reduction of pro-fibrotic and EMT-genes in sacrificed IRI-mice was observed at days two and three after the injury. These data indicate that in renal IRI, treatment with HLSC-derived EVs improves AKI and interferes with the development of subsequent CKD by modulating the genes that are involved in fibrosis and EMT.
Collapse
|
34
|
Huang C, Jing X, Wu Q, Ding K. Novel pectin-like polysaccharide from Panax notoginseng attenuates renal tubular cells fibrogenesis induced by TGF-β. Carbohydr Polym 2022; 276:118772. [PMID: 34823789 DOI: 10.1016/j.carbpol.2021.118772] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is the final common result of a variety of progressive injuries leading to chronic renal failure. However, there are no effective clinical available drugs for the treatment. Notoginsenoside from Panax notoginseng could ameliorate renal fibrosis. We hypothesized that polysaccharide from this herb might have similar bioactivity. Here, we elucidated structure of a novel pectin-like polysaccharide designed SQD4S2 with a netty antenna backbone of glucogalacturonan substituted by glucoarabinan, glucurogalactan and galactose residues from this herb. Interestingly, SQD4S2 could reverse the morphological changes of human renal tubular HK-2 cells induced by TGF-β. Mechanism study suggested that this bioactivity might associate with N-cadherin (CDH2), Snail (SNAI1), Slug (SNAI2) depression and E-cadherin (CDH1) enhancement. In addition, SQD4S2 could impede critical fibrogenesis associated molecules such as α-SMA, fibronectin, vimentin, COL1A1, COL3A1, FN1 and ACTA2 expression induced by TGF-β in HK-2 cells. Current findings outline a novel leading polysaccharide for against renal fibrosis new drug development.
Collapse
Affiliation(s)
- Chunfan Huang
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Glycochemistry and Glycobiology Lab, Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; Zhenjiang the Third People's Hospital, 300 Daijiamen Avenue, Zhenjiang, Jiangsu Province 212021, China
| | - Xiaoqi Jing
- Glycochemistry and Glycobiology Lab, Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qianhu Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Zhenjiang the Third People's Hospital, 300 Daijiamen Avenue, Zhenjiang, Jiangsu Province 212021, China.
| | - Kan Ding
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, China; Glycochemistry and Glycobiology Lab, Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, China; Henan Polysaccharide Research Center, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, Guangdong, China.
| |
Collapse
|
35
|
Metastatic EMT Phenotype Is Governed by MicroRNA-200-Mediated Competing Endogenous RNA Networks. Cells 2021; 11:cells11010073. [PMID: 35011635 PMCID: PMC8749983 DOI: 10.3390/cells11010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a fundamental physiologically relevant process that occurs during morphogenesis and organ development. In a pathological setting, the transition from epithelial toward mesenchymal cell phenotype is hijacked by cancer cells, allowing uncontrolled metastatic dissemination. The competing endogenous RNA (ceRNA) hypothesis proposes a competitive environment resembling a large-scale regulatory network of gene expression circuits where alterations in the expression of both protein-coding and non-coding genes can make relevant contributions to EMT progression in cancer. The complex regulatory diversity is exerted through an array of diverse epigenetic factors, reaching beyond the transcriptional control that was previously thought to single-handedly govern metastatic dissemination. The present review aims to unravel the competitive relationships between naturally occurring ceRNA transcripts for the shared pool of the miRNA-200 family, which play a pivotal role in EMT related to cancer dissemination. Upon acquiring more knowledge and clinical evidence on non-genetic factors affecting neoplasia, modulation of the expression levels of diverse ceRNAs may allow for the development of novel prognostic/diagnostic markers and reveal potential targets for the disruption of cancer-related EMT.
Collapse
|
36
|
Liu Y, Guo G, Lu Y, Chen X, Zhu L, Zhao L, Li C, Zhang Z, Jin X, Dong J, Yang X, Huang Q. Silencing IKBKE inhibits the migration and invasion of glioblastoma by promoting Snail1 degradation. Clin Transl Oncol 2021; 24:816-828. [PMID: 34741724 DOI: 10.1007/s12094-021-02726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors in adults and has high mortality and relapse rates. Over the past few years, great advances have been made in the diagnosis and treatment of GBM, but unfortunately, the five-year overall survival rate of GBM patients is approximately 5.1%. Inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE) is a major oncogenic protein in tumors and can promote evil development of GBM. Snail1, a key inducer of the epithelial-mesenchymal transition (EMT) transcription factor, is subjected to ubiquitination and degradation, but the mechanism by which Snail1 is stabilized in tumors remains unclear. Our study aimed to investigate the mechanism of IKBKE regulating Snail1 in GBM. METHODS First, we analyzed the correlation between the expression of IKBKE and the tumor grade and prognosis through public databases and laboratory specimen libraries. Second, immunohistochemistry (IHC) and western blot were used to detect the correlation between IKBKE and Snail expression in glioma samples and cell lines. Western blot and immunofluorescence (IF) experiments were used to detect the quality and distribution of IKBKE and Snail1 proteins. Third, In situ animal model of intracranial glioma to detect the regulatory effect of IKBKE on intracranial tumors. RESULTS In this study, Our study reveals a new connection between IKBKE and Snail1, where IKBKE can directly bind to Snail1, translocate Snail1 into the nucleus from the cytoplasm. Downregulation of IKBKE results in Snail1 destabilization and impairs the tumor cell migration and invasion capabilities. CONCLUSION Our studies suggest that the IKBKE-Snail1 axis may serve as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Y Liu
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - G Guo
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Y Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - X Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - L Zhu
- Department of Pathology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - L Zhao
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - C Li
- Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, Zhengzhou, 450003, Henan, China.,Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Z Zhang
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, 315000, Zhejiang, China
| | - X Jin
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300052, China
| | - J Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - X Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Q Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China. .,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
37
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
38
|
Razmara E, Bitaraf A, Karimi B, Babashah S. Functions of the SNAI family in chondrocyte-to-osteocyte development. Ann N Y Acad Sci 2021; 1503:5-22. [PMID: 34403146 DOI: 10.1111/nyas.14668] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Different cellular mechanisms contribute to osteocyte development. And while critical roles for members of the zinc finger protein SNAI family (SNAIs) have been discussed in cancer-related models, there are few reviews summarizing their importance for chondrocyte-to-osteocyte development. To help fill this gap, we review the roles of SNAIs in the development of mature osteocytes from chondrocytes, including the regulation of chondro- and osteogenesis through different signaling pathways and in programmed cell death. We also discuss how epigenetic factors-including DNA methylation, histone methylation and acetylation, and noncoding RNAs-contribute differently to both chondrocyte and osteocyte development. To better grasp the important roles of SNAIs in bone development, we also review genotype-phenotype correlations in different animal models. We end with comments about the possible importance of the SNAI family in cartilage/bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnaz Karimi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
39
|
Durant F, Whited JL. Finding Solutions for Fibrosis: Understanding the Innate Mechanisms Used by Super-Regenerator Vertebrates to Combat Scarring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100407. [PMID: 34032013 PMCID: PMC8336523 DOI: 10.1002/advs.202100407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Indexed: 05/08/2023]
Abstract
Soft tissue fibrosis and cutaneous scarring represent massive clinical burdens to millions of patients per year and the therapeutic options available are currently quite limited. Despite what is known about the process of fibrosis in mammals, novel approaches for combating fibrosis and scarring are necessary. It is hypothesized that scarring has evolved as a solution to maximize healing speed to reduce fluid loss and infection. This hypothesis, however, is complicated by regenerative animals, which have arguably the most remarkable healing abilities and are capable of scar-free healing. This review explores the differences observed between adult mammalian healing that typically results in fibrosis versus healing in regenerative animals that heal scarlessly. Each stage of wound healing is surveyed in depth from the perspective of many regenerative and fibrotic healers so as to identify the most important molecular and physiological variances along the way to disparate injury repair outcomes. Understanding how these powerful model systems accomplish the feat of scar-free healing may provide critical therapeutic approaches to the treatment or prevention of fibrosis.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMA02138USA
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMA02138USA
- The Harvard Stem Cell InstituteCambridgeMA02138USA
| |
Collapse
|
40
|
Höving AL, Windmöller BA, Knabbe C, Kaltschmidt B, Kaltschmidt C, Greiner JFW. Between Fate Choice and Self-Renewal-Heterogeneity of Adult Neural Crest-Derived Stem Cells. Front Cell Dev Biol 2021; 9:662754. [PMID: 33898464 PMCID: PMC8060484 DOI: 10.3389/fcell.2021.662754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Stem cells of the neural crest (NC) vitally participate to embryonic development, but also remain in distinct niches as quiescent neural crest-derived stem cell (NCSC) pools into adulthood. Although NCSC-populations share a high capacity for self-renewal and differentiation resulting in promising preclinical applications within the last two decades, inter- and intrapopulational differences exist in terms of their expression signatures and regenerative capability. Differentiation and self-renewal of stem cells in developmental and regenerative contexts are partially regulated by the niche or culture condition and further influenced by single cell decision processes, making cell-to-cell variation and heterogeneity critical for understanding adult stem cell populations. The present review summarizes current knowledge of the cellular heterogeneity within NCSC-populations located in distinct craniofacial and trunk niches including the nasal cavity, olfactory bulb, oral tissues or skin. We shed light on the impact of intrapopulational heterogeneity on fate specifications and plasticity of NCSCs in their niches in vivo as well as during in vitro culture. We further discuss underlying molecular regulators determining fate specifications of NCSCs, suggesting a regulatory network including NF-κB and NC-related transcription factors like SLUG and SOX9 accompanied by Wnt- and MAPK-signaling to orchestrate NCSC stemness and differentiation. In summary, adult NCSCs show a broad heterogeneity on the level of the donor and the donors' sex, the cell population and the single stem cell directly impacting their differentiation capability and fate choices in vivo and in vitro. The findings discussed here emphasize heterogeneity of NCSCs as a crucial parameter for understanding their role in tissue homeostasis and regeneration and for improving their applicability in regenerative medicine.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Cornelius Knabbe
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| |
Collapse
|
41
|
Abstract
Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of diabetes. In addition to the characteristic clinical manifestations of proteinuria, it also has a complex pathological process that results from the combined effects of multiple factors involving the whole renal structure such as glomeruli, renal tubules, and blood vessels. Non-coding RNAs (ncRNA) are transcripts with no or low coding potential, among which micro RNA (miRNA) has been widely studied as a functional miRNA involved in regulation and a potential biomarker for disease prediction. The abundance of long coding RNA (lncRNA) in vivo is highly expressed with a certain degree of research progress, but the structural similarity makes the research still challenging. The research of circular RNA (circRNA) is still in its early stages. It is more relevant to the study to provide a more relevant link between diseases in the kidney and other tissues or organs. This classification review mainly summarized the biogenesis characteristics, the pathological mechanism of ncRNA-regulating diseases, the ways of ncRNA in the clinical prediction as a potential biomarker, and the interaction networks of ncRNA.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiuyue Wang
- Department of Endocrinology, the First Hospital Affiliated of China Medical University, Shenyang, China
| |
Collapse
|
42
|
Čepcová D, Kema IP, Sandovici M, Deelman LE, Šišková K, Klimas J, Vavrinec P, Vavrincová-Yaghi D. The protective effect of 1-methyltryptophan isomers in renal ischemia-reperfusion injury is not exclusively dependent on indolamine 2,3-dioxygenase inhibition. Biomed Pharmacother 2021; 135:111180. [PMID: 33433354 DOI: 10.1016/j.biopha.2020.111180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Indolamine 2,3-dioxygenase (IDO), an enzyme that catalyses the metabolism of tryptophan, may play a detrimental role in ischemia-reperfusion injury (IRI). IDO can be inhibited by 1-methyl-tryptophan, which exists in a D (D-MT) or L (L-MT) isomer. These forms show different pharmacological effects besides IDO inhibition. Therefore, we sought to investigate whether these isomers can play a protective role in renal IRI, either IDO-dependent or independent. EXPERIMENTAL APPROACH We studied the effect of both isomers in a rat renal IRI model with a focus on IDO-dependent and independent effects. KEY RESULTS Both MT isomers reduced creatinine and BUN levels, with D-MT having a faster onset of action but shorter duration and L-MT a slower onset but longer duration (24 h and 48 h vs 48 h and 96 h reperfusion time). Interestingly, this effect was not exclusively dependent on IDO inhibition, but rather from decreased TLR4 signalling, mimicking changes in renal function. Additionally, L-MT increased the overall survival of rats. Moreover, both MT isomers interfered with TGF-β signalling and epithelial-mesenchymal transition. In order to study the effect of isomers in all mechanisms involved in IRI, a series of in vitro experiments was performed. The isomers affected signalling pathways in NK cells and tubular epithelial cells, as well as in dendritic cells and T cells. CONCLUSION AND IMPLICATIONS This study shows that both MT isomers have a renoprotective effect after ischemia-reperfusion injury, mostly independent of IDO inhibition, involving mutually different mechanisms. We bring novel findings in the pharmacological properties and mechanism of action of MT isomers, which could become a novel therapeutic target of renal IRI.
Collapse
Affiliation(s)
- Diana Čepcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic.
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Leo E Deelman
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Katarína Šišková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic.
| | - Ján Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic.
| | - Peter Vavrinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic.
| | - Diana Vavrincová-Yaghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovak Republic.
| |
Collapse
|
43
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
44
|
Jiang Y, Xie F, Lv X, Wang S, Liao X, Yu Y, Dai Q, Zhang Y, Meng J, Hu G, Peng Z, Tao L. Mefunidone ameliorates diabetic kidney disease in STZ and db/db mice. FASEB J 2020; 35:e21198. [PMID: 33225469 DOI: 10.1096/fj.202001138rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Diabetic kidney disease (DKD) is a major cause of end stage renal diseases worldwide. Despite successive interventions for delaying the progression of DKD, current treatments cannot reverse the pathological progression. Mefunidone (MFD) is a new compound with potent antifibrotic properties, but the effect of MFD on DKD remains unknown. Therefore, we investigated the protective effects of MFD in both models of the db/db type 2 diabetes (T2D) and streptozotocin (STZ)-induced type 1 diabetes (T1D) models. Compared with the model group, MFD treatment significantly reduced pathological changes observed by PAS staining, PASM staining, and Masson staining in vivo. To further elucidate the potential mechanisms, we discovered MFD treatment notably restored podocyte function, alleviated inflammation, abated ROS generation, inhibited the TGF-β1/SAMD2/3 pathway, suppressed the phosphorylation levels of MAPKs (ERK1/2, JNK, and P38), and reduced epithelial-to-mesenchymal transition(EMT). In conclusion, these findings demonstrate the effectiveness of MFD in diabetic nephropathy and elucidate its possible mechanism.
Collapse
Affiliation(s)
- Yupeng Jiang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Feifei Xie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Shuting Wang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Yue Yu
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Qin Dai
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Gaoyun Hu
- Faculty of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
45
|
You E, Ko P, Jeong J, Keum S, Kim JW, Seo YJ, Song WK, Rhee S. Dynein-mediated nuclear translocation of yes-associated protein through microtubule acetylation controls fibroblast activation. Cell Mol Life Sci 2020; 77:4143-4161. [PMID: 31912196 PMCID: PMC11105004 DOI: 10.1007/s00018-019-03412-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
Abstract
Myofibroblasts are the major cell type that is responsible for increase in the mechanical stiffness in fibrotic tissues. It has well documented that the TGF-β/Smad axis is required for myofibroblast differentiation under the rigid substrate condition. However, the mechanism driving myofibroblast differentiation in soft substrates remains unknown. In this research, we demonstrated that interaction of yes-associated protein (YAP) and acetylated microtubule via dynein, a microtubule motor protein drives nuclear localization of YAP in the soft matrix, which in turn increased TGF-β1-induced transcriptional activity of Smad for myofibroblast differentiation. Pharmacological and genetical disruption of dynein impaired the nuclear translocation of YAP and decreased the TGF-β1-induced Smad activity even though phosphorylation and nuclear localization of Smad occurred normally in α-tubulin acetyltransferase 1 (α-TAT1) knockout cell. Moreover, microtubule acetylation prominently appeared in the fibroblast-like cells nearby the blood vessel in the fibrotic liver induced by CCl4 administration, which was conversely decreased by TGF-β receptor inhibitor. As a result, quantitative inhibition of microtubule acetylation may be suggested as a new target for overcoming fibrotic diseases.
Collapse
Affiliation(s)
- Eunae You
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Woo Keun Song
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-Gu, Gwangju, 61005, Republic of Korea.
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
46
|
Gu LF, Ge HT, Zhao L, Wang YJ, Zhang F, Tang HT, Cao ZY, Yu BY, Chai CZ. Huangkui Capsule Ameliorates Renal Fibrosis in a Unilateral Ureteral Obstruction Mouse Model Through TRPC6 Dependent Signaling Pathways. Front Pharmacol 2020; 11:996. [PMID: 32719603 PMCID: PMC7350529 DOI: 10.3389/fphar.2020.00996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Renal fibrosis is the final common pathological manifestation of almost all progressive chronic kidney diseases (CKD). Transient receptor potential canonical (TRPC) channels, especially TRPC3/6, were proposed to be essential therapeutic targets for kidney injury. Huangkui capsule (HKC), an important adjuvant therapy for CKD, showed superior efficacy for CKD at stages 1–2 in clinical practice. However, its anti-fibrotic effect and the underlying mechanisms remain to be investigated. In the present study, we evaluated the efficacy of HKC on renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO) and explored the potential underlying mechanism. Administration of HKC by intragastric gavage dose-dependently suppressed UUO-induced kidney injury and tubulointerstitial fibrosis. Similarly, HKC suppressed the expression level of α-smooth muscle actin (α-SMA), increased the expression of E-cadherin, and suppressed the mRNA expression of a plethora of proinflammatory mediators that are necessary for the progression of renal fibrosis. Mechanistically, HKC suppressed both canonical and non-canonical TGF-β signaling pathways in UUO mice as well as the TRPC6/calcineurin A (CnA)/nuclear factor of activated T cells (NFAT) signaling axis. In addition, TRPC6 knockout mice and HKC treated wild type mice displayed comparable protection on UUO-triggered kidney tubulointerstitial injury, interstitial fibrosis, and α-SMA expression. More importantly, HKC had no additional protective effect on UUO-triggered kidney tubulointerstitial injury and interstitial fibrosis in TRPC6 knockout mouse. Further investigation demonstrated that HKC could directly suppress TRPC3/6 channel activities. Considered together, these data demonstrated that the protective effect of HKC on renal injury and interstitial fibrosis is dependent on TRPC6, possibly through direct inhibition of TRPC6 channel activity and indirect suppression of TRPC6 expression.
Collapse
Affiliation(s)
- Li-Fei Gu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hai-Tao Ge
- Institute of Huanghui, Jiangsu Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Lei Zhao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jing Wang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hai-Tao Tang
- Institute of Huanghui, Jiangsu Suzhong Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Zheng-Yu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo-Yang Yu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-Zhi Chai
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
47
|
Elk-1 transcriptionally regulates ZC3H4 expression to promote silica-induced epithelial-mesenchymal transition. J Transl Med 2020; 100:959-973. [PMID: 32218530 DOI: 10.1038/s41374-020-0419-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) process is a key priming activity of fibroblasts in pulmonary fibrosis during silicosis. Ets-like protein-1 (Elk-1) is a critical modulator that promotes functional changes in cells, and the effects are mediated by oxidative stress (OS). However, whether ELK-1 is involved in EMT of silicosis remains unclear. In addition, researchers have found that Elk-1 is involved in the expression of the gene zc3h12a, which encodes the protein MCPIP1, and MCPIP1 is a member of the zinc finger Cys-Cys-Cys-His (CCCH)-type protein family. A previous study from our lab showed that ZC3H4, which is also a member of the CCCH-type protein family, critically affected the regulation of EMT during silicosis. However, it has not yet been elucidated if ELK-1 acts at the promoter for zc3h4 to increase its expression in a mechanism that is similar to that of the zc3h12a gene and whether such regulation ultimately controls EMT. Therefore, we explored the correlation between ELK-1 and ZC3H4 expression and tested the underlying mechanisms affecting ELK-1 activation induced by silica. Our study identifies that SiO2-mediated EMT via ELK-1, with the upstream activity of OS and the downstream signaling of ZC3H4 expression resulting in enhanced EMT. These findings suggest that the nuclear transcription factor ELK-1 may be useful as a novel target for the treatment of pulmonary fibrosis.
Collapse
|
48
|
Wang Y, Wei C, Yang Y, Luo A, Zhang X, Zheng D, Lu X, Zhang K, Duan X, Xu X. Hepatocyte nuclear factor-1β suppresses the stemness and migration of colorectal cancer cells through promoting miR-200b activity. Mol Carcinog 2020; 59:989-999. [PMID: 32495507 DOI: 10.1002/mc.23229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 05/20/2020] [Indexed: 01/23/2023]
Abstract
The effects of hepatocyte nuclear factors (HNFs) have been established in various tumors; however, the roles of HNF-1β in colorectal cancer progression are never been found. In the present study, HNF-1β expression was initially detected in clinical tissue samples and online datasets and HNF-1β was found to be highly expressed in colorectal cancer tissues. In addition, a positive correlation existed between HNF-1β expression and the overall survival of patients with colorectal cancer. In vitro and in vivo experiments revealed that HNF-1β suppressed the stemness and migration of colorectal cancer cells. Combined with microRNAs (miRNAs) based on transcriptome-sequencing analysis, mechanistic studies showed that HNF-1β directly bound to miR-200b promoter and thus promoted miR-200b expression, this HNF-1β/miR-200b resulted in the downregulation of the expression of miR-200b downstream effectors. Furthermore, HNF-1β inhibits the stemness and migration of colorectal cancer cells through miR-200b. This study reveals a novel HNF-1β/miR-200b axis responsible for the stemness of colorectal cancer cells.
Collapse
Affiliation(s)
- Yuhui Wang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, China
| | - Chengqiong Wei
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, China
| | - Yingying Yang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, China
| | - Ailin Luo
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, China
| | - Xiyang Zhang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, China
| | - Dongxuan Zheng
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, China
| | - Xi Lu
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, China
| | - Kefeng Zhang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, China
| | - Xiaoqun Duan
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, China
| | - Xiaotian Xu
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, China
| |
Collapse
|
49
|
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, Dedhar S, Derynck R, Ford HL, Fuxe J, García de Herreros A, Goodall GJ, Hadjantonakis AK, Huang RYJ, Kalcheim C, Kalluri R, Kang Y, Khew-Goodall Y, Levine H, Liu J, Longmore GD, Mani SA, Massagué J, Mayor R, McClay D, Mostov KE, Newgreen DF, Nieto MA, Puisieux A, Runyan R, Savagner P, Stanger B, Stemmler MP, Takahashi Y, Takeichi M, Theveneau E, Thiery JP, Thompson EW, Weinberg RA, Williams ED, Xing J, Zhou BP, Sheng G. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2020; 21:341-352. [PMID: 32300252 PMCID: PMC7250738 DOI: 10.1038/s41580-020-0237-9] [Citation(s) in RCA: 1307] [Impact Index Per Article: 261.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Epithelial–mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by ‘the EMT International Association’ (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT. In this Consensus Statement, the authors (on behalf of the EMT International Association) propose guidelines to define epithelial–mesenchymal transition, its phenotypic plasticity and the associated multiple intermediate epithelial–mesenchymal cell states. Clarification of nomenclature and definitions will help reduce misinterpretation of research data generated in different experimental model systems and promote cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Jing Yang
- Departments of Pharmacology and Pediatrics, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Parker Antin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Geert Berx
- Molecular and Cellular Oncology Lab, Department of Biomedical Molecular Biology, Ghent University, Cancer Research Institute Ghent (CRIG), VIB Center for Inflammation Research, Ghent, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kyra Campbell
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, UK
| | - Amparo Cano
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPAZ & Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jordi Casanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology/Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | - Shoukat Dedhar
- Department of Biochemistry and Molecular Biology, University of British Columbia and British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Rik Derynck
- Departments of Cell and Tissue Biology, and Anatomy, University of California at San Francisco, San Francisco, CA, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jonas Fuxe
- Department of Laboratory Medicine (LABMED), Division of Pathology, Karolinska University Hospital and Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM) and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gregory J Goodall
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruby Y J Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute for medical Research Israel-Canada and the Safra Center for Neurosciences, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, MD Anderson Cancer Center, Houston, TX, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, an Alliance of SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Herbert Levine
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jinsong Liu
- Department of Anatomic Pathology, The Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory D Longmore
- Department of Medicine (Oncology) and Department of Cell Biology and Physiology, ICCE Institute, Washington University, St. Louis, MO, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| | - David McClay
- Department of Biology, Duke University, Durham, NC, USA
| | - Keith E Mostov
- Departments of Anatomy and Biochemistry/Biophysics, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Donald F Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH) Avda Ramon y Cajal s/n, Sant Joan d´Alacant, Spain
| | - Alain Puisieux
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Institut Curie, PSL Research University, Paris, France
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, University Paris-Saclay, Villejuif, France
| | - Ben Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yoshiko Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Erik W Thompson
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Department of Biology, MIT Ludwig Center for Molecular Oncology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Jianhua Xing
- Department of Computational and Systems Biology and UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry and UK Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.
| | | |
Collapse
|
50
|
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT Factors and Metabolic Pathways in Cancer. Front Oncol 2020; 10:499. [PMID: 32318352 PMCID: PMC7154126 DOI: 10.3389/fonc.2020.00499] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) represents a biological program during which epithelial cells lose their cell identity and acquire a mesenchymal phenotype. EMT is normally observed during organismal development, wound healing and tissue fibrosis. However, this process can be hijacked by cancer cells and is often associated with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell characteristics, and cancer treatment resistance. It is becoming evident that EMT is a complex, multifactorial spectrum, often involving episodic, transient or partial events. Multiple factors have been causally implicated in EMT including transcription factors (e.g., SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and more recently, long non-coding RNAs. However, the relevance of metabolic pathways in EMT is only recently being recognized. Importantly, alterations in key metabolic pathways affect cancer development and progression. In this review, we report the roles of key EMT factors and describe their interactions and interconnectedness. We introduce metabolic pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino acid metabolism, and characterize the relationship between EMT factors and cancer metabolism. Finally, we present therapeutic opportunities involving EMT, with particular focus on cancer metabolic pathways.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Venetsana Kyriazopoulou
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Apostolos Zaravinos
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.,Department of Life Sciences European University Cyprus, Nicosia, Cyprus
| |
Collapse
|