1
|
Liao Z, Tang S, Nozawa K, Shimada K, Ikawa M, Monsivais D, Matzuk M. Affinity-tagged SMAD1 and SMAD5 mouse lines reveal transcriptional reprogramming mechanisms during early pregnancy. eLife 2024; 12:RP91434. [PMID: 38536963 PMCID: PMC10972565 DOI: 10.7554/elife.91434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Graduate Program of Genetics and Genomics, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Martin Matzuk
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Graduate Program of Genetics and Genomics, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
2
|
Liao Z, Tang S, Nozawa K, Shimada K, Ikawa M, Monsivais D, Matzuk MM. Affinity-tagged SMAD1 and SMAD5 mouse lines reveal transcriptional reprogramming mechanisms during early pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559321. [PMID: 38106095 PMCID: PMC10723262 DOI: 10.1101/2023.09.25.559321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
3
|
Yang Y, Ding M, Yin H, Chen W, Shen H, Diao W, Yang L, Qin H, Gan W, Qiu X, Guo H. GALNT12 suppresses the bone-specific prostate cancer metastasis by activating BMP pathway via the O-glycosylation of BMPR1A. Int J Biol Sci 2024; 20:1297-1313. [PMID: 38385080 PMCID: PMC10878148 DOI: 10.7150/ijbs.91925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Bone metastasis caused the majority death of prostate cancer (PCa) but the mechanism remains poorly understood. In this present study, we show that polypeptide N-acetylgalactosaminyltransferase 12 (GALNT12) suppresses bone-specific metastasis of PCa. GALNT12 suppresses proliferation, migration, invasion and cell division ability of PCa cells by activating the BMP pathway. Mechanistic investigations showed that GALNT12 augments the O-glycosylation of BMPR1A then actives the BMP pathway. Activated BMP signaling inhibits the expression of integrin αVβ3 to reduce the bone-specific seeding of PCa cells. Furthermore, activated BMP signaling remolds the immune microenvironment by suppressing the STAT3 pathway. Our results of this study illustrate the role and mechanism of GALNT12 in the process of bone metastasis of PCa and identify GALNT12 as a potential therapeutic target for metastatic PCa.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Meng Ding
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Haoli Yin
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Hongwei Shen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Wenli Diao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Lin Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Weidong Gan
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Xuefeng Qiu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, China
| |
Collapse
|
4
|
Gazzaz H, Habchi ME, Feniche ME, Aatik YE, Ouardi AE, Ameur A, Dami A. Diagnostic and Prognostic Value of miR-93 in Prostate Cancer: A Meta-Analysis and Bioinformatics Analysis. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2260-2271. [PMID: 38106826 PMCID: PMC10719693 DOI: 10.18502/ijph.v52i11.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/19/2023] [Indexed: 12/19/2023]
Abstract
Background Accurate and non-invasive diagnostic and prognostic markers are necessary to improve patient outcomes. MicroRNAs have been proposed as relatively non-invasive and pertinent biomarkers. miR-93 has been studied for its potential as a diagnostic and prognostic marker in prostate cancer (PCa), but findings from individual studies are inconsistent. We conducted a meta-analysis of its overall differential expression in 13 PCa studies and a bioinformatics analysis to provide a comprehensive appraisal of its diagnostic and prognostic role. Methods We searched all published papers on miR-93 expression in PCa up to Nov 30, 2022 using PubMed, Science Direct, Web of Science, Cochrane Central Register of Controlled Trials databases. We used RevMan software to Meta-analyze the included literature. A bioinformatics analysis of genes and pathways that might be target to the effect of the mature miR-93-5p was carried out. Results The pooled standardized mean difference (SMD) of miR-93 expression in PCa, its area under the curve (AUC) and hazard ratio (HR) were 1.26, 95% CI [-0.34-2.86], 0.84, 95% CI [0.76 -0.93] and 1.67, 95% CI [0.98, 2.84] respectively. Bioinformatics analysis revealed that mature miR-93-5p may regulate genes such as SMAD1, SMAD7 and MAPK and the PI3K-Akt signaling pathways. Conclusion miR-93 has significant diagnostic and prognostic value in PCa. These findings highlight the potential of miR-93 as a non-invasive biomarker for PCa and may contribute to earlier detection and prognostic assessment. The target genes and signaling pathways regulated by miR-93 may provide insights into the underlying molecular mechanisms of PCa.
Collapse
Affiliation(s)
- Hassane Gazzaz
- Clinical, Metabolic and Molecular Biochemistry Team, Faculty of Medicine and Pharmacy, Mohammed V University,10100 Rabat, Morocco
- Higher Institute of Nursing Professions and Health Techniques of Marrakech, annex of Safi, Morocco
| | - Maha El Habchi
- Research Laboratory of Psychiatry, Medical Psychology and History of Medicine, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco
| | - Mohammed El Feniche
- Laboratory of Biostatistics, Clinical Research and Epidemiology, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco
| | - Yassine El Aatik
- Research Laboratory of Psychiatry, Medical Psychology and History of Medicine, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco
| | - Abdelghani El Ouardi
- Research Laboratory of Psychiatry, Medical Psychology and History of Medicine, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco
| | - Ahmed Ameur
- Department of Urology, Military Hospital Mohammed V, 10045 Rabat, Morocco
| | - Abdellah Dami
- Clinical, Metabolic and Molecular Biochemistry Team, Faculty of Medicine and Pharmacy, Mohammed V University,10100 Rabat, Morocco
- Department of Biochemistry and Toxicology, Military Hospital Mohammed V, 10045 Rabat, Morocco
| |
Collapse
|
5
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
6
|
Ciller I, Palanisamy S, Ciller U, Al-Ali I, Coumans J, McFarlane J. Steroidogenic enzyme gene expression and testosterone production are developmentally modulated by bone morphogenetic protein receptor-1B in mouse testis. Physiol Res 2023; 72:359-369. [PMID: 37455641 PMCID: PMC10668998 DOI: 10.33549/physiolres.935014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/07/2023] [Indexed: 08/26/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) and receptors (BMPR-1A, BMPR-1B, BMPR-2) have been shown to be vital for female reproduction, while their roles in males are poorly described. Our study was undertaken to specify the function of BMPR-1B in steroidogenic enzyme gene expression, testosterone production and reproductive development in male mice, given that Bmpr1b mRNA is expressed in mouse testis and Bmpr1b knockout results in compromised fertility. Male mice were passively immunized for 6 days with anti-BMPR-1B in the presence or absence of exogenous gonadotrophins. We then measured the effects of anti-BMPR-1B on testicular hydroxysteroid dehydrogenase isoforms (Hsd3b1, Hsd3b6, and Hsd17b3) and aromatase (Cyp19) mRNA expression, testicular and serum testosterone levels, and testis and seminal vesicle weight. In vitro testosterone production in response to anti-BMPR-1B was determined using testicular culture, and Leydig cell culture in the presence or absence of gonadotrophins. In Leydig cell culture the contribution of seminiferous tubules and Leydig cells were examined by preconditioning the media with these testicular constituents. In adult mice, anti-BMPR-1B increased testosterone and Hsd3b1 but decreased Hsd3b6 and Cyp19 mRNA. In adult testicular culture and seminiferous tubule conditioned Leydig cell culture, anti-BMPR-1B reduced testosterone, while in normal and Leydig cell conditioned Leydig cell culture it increased testosterone levels. In pubertal mice, anti-BMPR-1B reduced gonadotrophin stimulated seminal vesicle growth. In conclusion, BMPR-1B has specific developmental functions in the autocrine and paracrine regulation of testicular steroidogenic enzyme gene expression and testosterone production in adults and in the development of seminal vesicles during puberty.
Collapse
Affiliation(s)
- I Ciller
- School of Rural Medicine, University of New England, Armidale, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
7
|
Yu X, Li S, Xu Y, Zhang Y, Ma W, Liang C, Lu H, Ji Y, Liu C, Chen D, Li J. Androgen Maintains Intestinal Homeostasis by Inhibiting BMP Signaling via Intestinal Stromal Cells. Stem Cell Reports 2020; 15:912-925. [PMID: 32916121 PMCID: PMC7561494 DOI: 10.1016/j.stemcr.2020.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/13/2023] Open
Abstract
Research shows a higher incidence of colorectal cancer in men. However, the molecular mechanisms for this gender disparity remain unknown. We report the roles of androgen in proliferation and differentiation of intestinal stem cells via targeting of the androgen receptor (AR) on intestinal stromal cells by negatively regulating BMP signaling. Orchidectomy (ORX) or the AR antagonist promotes expansion of intestinal epithelium but suppresses intestinal stem cell (ISC) proliferation. Conversely, the AR agonist inhibits ISC differentiation but augments proliferation in ovariectomized mice. Mechanistically, activation of the AR increases expression of BMP antagonists but lowers expression of BMP4 and Wnt antagonists in primary stromal cells, which promotes intestinal organoid growth. Interestingly, the BMP pathway inhibitor LDN-193189 reverses the ORX-induced effects. Our results highlight that stromal cells constitute the intestinal stem cell niche and provide a possible explanation for higher incidence rates of colorectal cancer in men.
Collapse
Affiliation(s)
- Xin Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Shiguang Li
- School of Clinical Medicine, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Yiming Xu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing Dongcheng District, 100730 Beijing, China
| | - Yundi Zhang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Wenlong Ma
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Changchun Liang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Haodong Lu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Yuge Ji
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Dawei Chen
- Laboratory of Medical Chemistry, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, CHU, Sart-Tilman, 4000 Liège, Belgium,Corresponding author
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China,Corresponding author
| |
Collapse
|
8
|
Köseoğlu H. Genetics in the Prostate Cancer. Prostate Cancer 2018. [DOI: 10.5772/intechopen.77259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
9
|
Jaratlerdsiri W, Chan EKF, Petersen DC, Yang C, Croucher PI, Bornman MSR, Sheth P, Hayes VM. Next generation mapping reveals novel large genomic rearrangements in prostate cancer. Oncotarget 2017; 8:23588-23602. [PMID: 28423598 PMCID: PMC5410329 DOI: 10.18632/oncotarget.15802] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/15/2017] [Indexed: 12/27/2022] Open
Abstract
Complex genomic rearrangements are common molecular events driving prostate carcinogenesis. Clinical significance, however, has yet to be fully elucidated. Detecting the full range and subtypes of large structural variants (SVs), greater than one kilobase in length, is challenging using clinically feasible next generation sequencing (NGS) technologies. Next generation mapping (NGM) is a new technology that allows for the interrogation of megabase length DNA molecules outside the detection range of single-base resolution NGS. In this study, we sought to determine the feasibility of using the Irys (Bionano Genomics Inc.) nanochannel NGM technology to generate whole genome maps of a primary prostate tumor and matched blood from a Gleason score 7 (4 + 3), ETS-fusion negative prostate cancer patient. With an effective mapped coverage of 35X and sequence coverage of 60X, and an estimated 43% tumor purity, we identified 85 large somatic structural rearrangements and 6,172 smaller somatic variants, respectively. The vast majority of the large SVs (89%), of which 73% are insertions, were not detectable ab initio using high-coverage short-read NGS. However, guided manual inspection of single NGS reads and de novo assembled scaffolds of NGM-derived candidate regions allowed for confirmation of 94% of these large SVs, with over a third impacting genes with oncogenic potential. From this single-patient study, the first cancer study to integrate NGS and NGM data, we hypothesise that there exists a novel spectrum of large genomic rearrangements in prostate cancer, that these large genomic rearrangements are likely early events in tumorigenesis, and they have potential to enhance taxonomy.
Collapse
Affiliation(s)
- Weerachai Jaratlerdsiri
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Eva K F Chan
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical School, University of New South Wales, Randwick, Australia
| | - Desiree C Petersen
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical School, University of New South Wales, Randwick, Australia
| | - Claire Yang
- Bionano Genomics Inc., San Diego, California, USA
| | - Peter I Croucher
- St Vincent's Clinical School, University of New South Wales, Randwick, Australia.,Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Randwick, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Palak Sheth
- Bionano Genomics Inc., San Diego, California, USA
| | - Vanessa M Hayes
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical School, University of New South Wales, Randwick, Australia.,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Central Clinical School, University of Sydney, Camperdown, Australia
| |
Collapse
|
10
|
Qu F, Zheng J, Gan W, Lian H, He H, Li W, Yuan T, Yang Y, Li X, Ji C, Yan X, Xu L, Guo H. MiR-199a-3p suppresses proliferation and invasion of prostate cancer cells by targeting Smad1. Oncotarget 2017; 8:52465-52473. [PMID: 28881744 PMCID: PMC5581043 DOI: 10.18632/oncotarget.17191] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES This study was intended to analyze effects of miR-199a-3p and Smad1 on proliferation, migration and invasion of prostate cancer (PCa) cells. RESULTS MiR-199a-3p was significantly decreased in PCa tissues in comparison to that in adjacent normal tissues (P < 0.05). Over-expressed miR-199a-3p markedly suppressed proliferation and invasion of PCa cells (P < 0.05). MiR-199a-3p was negatively correlated with Smad1 expression, and overexpression of Smad1 could antagonize the effects of miR-199a-3p on PCa cells. MATERIALS AND METHODS The PCa tissues and their adjacent normal tissues were collected from 54 PCa patients. Expressions of miR-199a-3p and Smad1 mRNA in tissues and cells were evaluated with real-time quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry assay was used to detect Smad1 protein expressions. The target relationship between miR-199a-3p and Smad1 was assessed by luciferase reporter assay. The PCa cell lines (i.e. PC-3 cells) were transfected with miR-199a-3p mimics and Smad1-cDNA. MTT and Transwell assays were applied to detect proliferative, migratory and invasive abilities of PCa cells. CONCLUSIONS MiR-199a-3p suppressed proliferation and invasion of PCa cells by targeting Smad1.
Collapse
Affiliation(s)
- Feng Qu
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jinyu Zheng
- Department of Pathology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Weidong Gan
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Huibo Lian
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Hua He
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Wuping Li
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA.,Department of Lymphoma, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, China
| | - Tian Yuan
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Yaling Yang
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Xiaogong Li
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Changwei Ji
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiang Yan
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Linfeng Xu
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Hongqian Guo
- Department of Urology, The Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.,Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
11
|
Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev 2015; 27:81-92. [PMID: 26678814 DOI: 10.1016/j.cytogfr.2015.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/13/2015] [Indexed: 01/28/2023]
Abstract
The bone morphogenetic proteins (BMPs) play fundamental roles in embryonic development and control differentiation of a diverse set of cell types. It is therefore of no surprise that the BMPs also contribute to the process of tumourigenesis and regulate cancer progression through various stages. We summarise here key roles of BMP ligands, receptors, their signalling mediators, mainly focusing on proteins of the Smad family, and extracellular antagonists, that contribute to the onset of tumourigenesis and to cancer progression in diverse tissues. Overall, the BMP pathways seem to act as tumour suppressors that maintain physiological tissue homeostasis and which are perturbed in cancer either via genetic mutation or via epigenetic misregulation of key gene components. BMPs also control the self-renewal and fate choices made by stem cells in several tissues. By promoting cell differentiation, including inhibition of the process of epithelial-mesenchymal transition, BMPs contribute to the malignant progression of cancer at advanced stages. It is therefore reasonable that pharmaceutical industries continuously develop biological agents and chemical modulators of BMP signalling with the aim to improve therapeutic regimes against several types of cancer.
Collapse
|
12
|
Mechanical regulation of cancer cell apoptosis and autophagy: Roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3124-3133. [DOI: 10.1016/j.bbamcr.2013.08.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 12/15/2022]
|
13
|
Lee GT, Jung YS, Ha YS, Kim JH, Kim WJ, Kim IY. Bone morphogenetic protein-6 induces castration resistance in prostate cancer cells through tumor infiltrating macrophages. Cancer Sci 2013; 104:1027-32. [PMID: 23710822 DOI: 10.1111/cas.12206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 01/16/2023] Open
Abstract
Bone morphogenetic protein (BMP) is a pleiotropic growth factor that has been implicated in inflammation and prostate cancer (CaP) progression. We investigated the potential role of BMP-6 in the context of macrophages and castration-resistant prostate cancer. When the androgen-responsive murine (Tramp-C1 and PTENCaP8) and human (LNCaP) CaP cell lines were cocultured with macrophages in the presence of dihydrotestosterone, BMP-6 increased androgen-responsive promoter activity and cell count significantly. Subsequent studies revealed that BMP-6 increased the expression level of androgen receptor (AR) mRNA and protein in CaP cell lines only in the presence of macrophages. Simultaneously, the AR antagonists bicalutamide and MDV3100 partially or completely blocked BMP-6-induced macrophage-mediated androgen hypersensitivity in CaP cells. Abolishing interleukin-6 signaling with neutralizing antibody in CaP/macrophage cocultures inhibited the BMP-6-mediated AR upregulation in CaP cells. Using Tramp-C1 and PTENCaP8 cells with a tetracycline-inducible expression of BMP-6, the induction of BMP-6 in vivo resulted in a significant resistance to castration. However, this resistance was blocked after the removal of macrophages with clodronate liposomes. Taken together, these results show that BMP-6 induces castration resistance by increasing the expression of AR through macrophage-derived interleukin-6.
Collapse
Affiliation(s)
- Geun Taek Lee
- Section of Urologic Oncology and Dean and Betty Gallo Prostate Cancer Center, The Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | | | | | | | |
Collapse
|
14
|
Functional domains of androgen receptor coactivator p44/Mep50/WDR77and its interaction with Smad1. PLoS One 2013; 8:e64663. [PMID: 23734213 PMCID: PMC3667176 DOI: 10.1371/journal.pone.0064663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/17/2013] [Indexed: 11/20/2022] Open
Abstract
p44/MEP50/WDR77 has been identified as a coactivator of androgen receptor (AR), with distinct growth suppression and promotion function in gender specific endocrine organs and their malignancies. We dissected the functional domains of p44 for protein interaction with transcription factors, transcriptional activation, as well as the functional domains in p44 related to its growth inhibition in prostate cancer. Using a yeast two-hybrid screen, we identified a novel transcription complex AR-p44-Smad1, confirmed for physical interaction by co-immunoprecipitaion and functional interaction with luciferase assays in human prostate cancer cells. Yeast two-hybrid assay revealed that the N-terminal region of p44, instead of the traditional WD40 domain at the C-terminus, mediates the interaction among p44, N-terminus of AR and full length Smad1. Although both N and C terminal domains of p44 are necessary for maximum AR transcriptional activation, the N terminal fragment of p44 alone maintains the basic effect on AR transcriptional activation. Cell proliferation assays with N- and C- terminal deletion mutations indicated that the central portion of p44 is required for nuclear p44 mediated prostate cancer growth inhibition.
Collapse
|
15
|
Fayyaz S, Farooqi AA. miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells. Immunogenetics 2013; 65:315-32. [DOI: 10.1007/s00251-012-0677-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 12/25/2012] [Indexed: 12/19/2022]
|
16
|
Danielpour D. Transforming Growth Factor-Beta in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
17
|
Lawrence MG, Margaryan NV, Loessner D, Collins A, Kerr KM, Turner M, Seftor EA, Stephens CR, Lai J, BioResource APC, Postovit LM, Clements JA, Hendrix MJ. Reactivation of embryonic nodal signaling is associated with tumor progression and promotes the growth of prostate cancer cells. Prostate 2011; 71:1198-209. [PMID: 21656830 PMCID: PMC3234312 DOI: 10.1002/pros.21335] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/07/2010] [Indexed: 11/06/2022]
Abstract
BACKGROUND Nodal is a member of the transforming growth factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity. METHODS Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes. RESULTS Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal's co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. CONCLUSIONS An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells.
Collapse
Affiliation(s)
- Mitchell G. Lawrence
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 4059
| | - Naira V. Margaryan
- Program in Cancer Biology and Epigenomics, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA, 60614
| | - Daniela Loessner
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 4059
| | - Angus Collins
- Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia, 4068
| | - Kris M. Kerr
- Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia, 4068
| | - Megan Turner
- Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia, 4068
| | - Elisabeth A. Seftor
- Program in Cancer Biology and Epigenomics, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA, 60614
| | - Carson R. Stephens
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 4059
| | - John Lai
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 4059
| | | | - Lynne-Marie Postovit
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Judith A. Clements
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 4059
| | - Mary J.C. Hendrix
- Program in Cancer Biology and Epigenomics, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA, 60614
| |
Collapse
|
18
|
Wahdan-Alaswad RS, Song K, Krebs TL, Shola DT, Gomez JA, Matsuyama S, Danielpour D. Insulin-like growth factor I suppresses bone morphogenetic protein signaling in prostate cancer cells by activating mTOR signaling. Cancer Res 2010; 70:9106-17. [PMID: 21062988 PMCID: PMC3285447 DOI: 10.1158/0008-5472.can-10-1119] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Insulin-like growth factor (IGF) I and bone morphogenetic proteins (BMP) are critical regulators of prostate tumor cell growth. In this report, we offer evidence that a critical support of IGF-I in prostate cancer is mediated by its ability to suppress BMP4-induced apoptosis and Smad-mediated gene expression. Suppression of BMP4 signaling by IGF-I was reversed by chemical inhibitors of phosphoinositide 3-kinase (PI3K), Akt, or mTOR; by enforced expression of wild-type PTEN or dominant-negative PI3K; or by small hairpin RNA-mediated silencing of mTORC1/2 subunits Raptor or Rictor. Similarly, IGF-I suppressed BMP4-induced transcription of the Id1, Id2, and Id3 genes that are crucially involved in prostate tumor progression through PI3K-dependent and mTORC1/2-dependent mechanisms. Immunohistochemical analysis of non-malignant and malignant prostate tissues offered in vivo support for our model that IGF-I-mediated activation of mTOR suppresses phosphorylation of the BMP-activated Smad transcription factors. Our results offer the first evidence that IGF-I signaling through mTORC1/2 is a key homeostatic regulator of BMP4 function in prostate epithelial cells, acting at two levels to repress both the proapoptotic and pro-oncogenic signals of BMP-activated Smads. We suggest that deregulation of this homeostatic control may be pivotal to the development and progression of prostate cancer, providing important implications and new potential targets for the therapeutic intervention of this malignancy.
Collapse
Affiliation(s)
- Reema S. Wahdan-Alaswad
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Kyung Song
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio
| | - Tracy L. Krebs
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio
| | - Dorjee T.N. Shola
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio
| | - Jose A. Gomez
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Shigemi Matsuyama
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
- Department of Hematology-Oncology, Case Western Reserve University, Cleveland, Ohio
| | - David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
- Department of Urology, University Hospitals of Cleveland, Cleveland, Ohio
| |
Collapse
|
19
|
Sogno I, Venè R, Ferrari N, De Censi A, Imperatori A, Noonan DM, Tosetti F, Albini A. Angioprevention with fenretinide: Targeting angiogenesis in prevention and therapeutic strategies. Crit Rev Oncol Hematol 2010; 75:2-14. [DOI: 10.1016/j.critrevonc.2009.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/15/2009] [Accepted: 10/29/2009] [Indexed: 01/01/2023] Open
|
20
|
Benelli R, Monteghirfo S, Venè R, Tosetti F, Ferrari N. The chemopreventive retinoid 4HPR impairs prostate cancer cell migration and invasion by interfering with FAK/AKT/GSK3beta pathway and beta-catenin stability. Mol Cancer 2010; 9:142. [PMID: 20537156 PMCID: PMC2898704 DOI: 10.1186/1476-4598-9-142] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/10/2010] [Indexed: 02/27/2023] Open
Abstract
Background Prostate cancer shows an extremely slow progression, appearing in its metastatic, hormone refractory phenotype mostly in elderly men. The chemopreventive targeting of this tumor could accordingly delay its malignancy over life expectancy. The cancer chemopreventive retinoid N-(4 hydroxyphenyl)retinamide (4HPR) has already been shown to restrain prostate cancer growth in vitro and in vivo, though its mechanisms of action are only partially explained. Results We found that 4HPR impairs DU145 and PC3 prostate cancer cells migration and invasion by down-regulating FAK and AKT activation and by enhancing β-catenin degradation, causing the downregulation of target genes like cyclin D1, survivin and VEGF. This non-migratory phenotype was similarly produced in both cell lines by stable silencing of β-catenin. 4HPR was able to decrease AKT phosphorylation also when powerfully upregulated by IGF-1 and, consequently, to impair IGF-1-stimulated cell motility. Conversely, the expression of constitutively active AKT (myr-AKT) overcame the effects of 4HPR and β-catenin-silencing on cell migration. In addition, we found that BMP-2, a 4HPR target with antiangiogenic activity, decreased prostate cancer cell proliferation, migration and invasion by down-regulating the pathway described involving AKT phosphorylation, β-catenin stability and cyclin D1 expression. Conclusion These data point to 4HPR as a negative regulator of AKT phosphorylation, effectively targeting the β-catenin pathway and inducing a relatively benign phenotype in prostate cancer cells, limiting neoangiogenesis and cell invasion.
Collapse
Affiliation(s)
- Roberto Benelli
- Oncologia Molecolare e Angiogenesi, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova, Italy
| | | | | | | | | |
Collapse
|
21
|
Bone morphogenetic protein 7 is expressed in prostate cancer metastases and its effects on prostate tumor cells depend on cell phenotype and the tumor microenvironment. Neoplasia 2010; 12:192-205. [PMID: 20126477 DOI: 10.1593/neo.91836] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/08/2009] [Accepted: 12/08/2009] [Indexed: 01/17/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling is important in prostate development and prostate cancer (PCa) progression. However, because of the multiple effects of different BMPs, no final conclusions have been made as to the role of BMPs in PCa. In our studies, we have focused on BMP-7 because it is involved in prostate morphogenesis, and its expression is regulated by androgens. The objective of our study was to determine BMP-7 expression in PCa metastases and investigate the effects of BMP-7 on PCa cells. Our results show that BMP-7 is expressed in metastatic PCa and its levels are increased in castration-resistant PCa versus androgen-dependent PCa, whereas the expression of BMP-7 is decreased in primary PCa versus normal prostate. Our in vitro results show that BMP-7 inhibits proliferation of androgen-sensitive LNCaP cells, stimulates androgen receptor signaling, increases the expression of differentiation-associated genes, and decreases the levels of some wingless-regulated transcripts. Interestingly, these effects were not detected in C4-2 castration-resistant PCa cells. In vivo expression of BMP-7 in castration-resistant C4-2 cells did not alter proliferation when these cells were grown subcutaneously, but their growth was inhibited in the bone environment. In summary, our results show that BMP-7 is expressed at the highest level in advanced castration-resistant PCa cells and that the inhibitory effects of BMP-7 are dependent on the differentiation status of PCa cells and the tumor microenvironment. Further studies are needed to identify changes in BMP-7 signaling that lead to the loss of its control of proliferation during PCa progression.
Collapse
|
22
|
Qiu T, Wu X, Zhang F, Clemens TL, Wan M, Cao X. TGF-beta type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat Cell Biol 2010; 12:224-34. [PMID: 20139972 PMCID: PMC3704184 DOI: 10.1038/ncb2022] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/14/2010] [Indexed: 12/24/2022]
Abstract
Parathyroid hormone (PTH) regulates calcium homeostasis and bone metabolism by activating PTH type I receptor (PTH1R). Here we show that transforming growth factor (TGF)-beta type II receptor (TbetaRII) forms an endocytic complex with PTH1R in response to PTH and regulates signalling by PTH and TGF-beta. TbetaRII directly phosphorylates the PTH1R cytoplasmic domain, which modulates PTH-induced endocytosis of the PTH1R-TbetaRII complex. Deletion of TbetaRII in osteoblasts increases the cell-surface expression of PTH1R and augments PTH signalling. Conditional knockout of TbetaRII in osteoblasts in mice results in a high bone mass with increased trabecular bone and decreased cortical bone, similar to the bone phenotype in mice expressing a constitutively active PTH1R. Disruption of PTH signalling by injection of PTH(7-34) or ablation of PTH1R rescues the bone phenotype of TbetaRII knockout mice. These studies reveal a previously unrecognized function for TbetaRII and a mechanism for integration of PTH and local growth factor at the membrane receptor level.
Collapse
MESH Headings
- Animals
- Arrestins/genetics
- Arrestins/metabolism
- Bone Density/genetics
- Bone Remodeling/drug effects
- Bone Remodeling/physiology
- Cell Count
- Cells, Cultured
- Collagen Type I/blood
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Endocytosis/drug effects
- Endocytosis/genetics
- Gene Expression/genetics
- Humans
- Leg Bones/drug effects
- Leg Bones/pathology
- Male
- Mice
- Mice, Knockout
- Mutation/physiology
- Osteoblasts/metabolism
- Osteoblasts/pathology
- Osteocalcin/blood
- Osteoclasts/pathology
- Parathyroid Hormone/antagonists & inhibitors
- Parathyroid Hormone/metabolism
- Parathyroid Hormone/pharmacology
- Peptide Fragments/pharmacology
- Peptides/blood
- Phosphorylation/drug effects
- Phosphorylation/physiology
- Protein Binding/drug effects
- Protein Binding/physiology
- Protein Interaction Domains and Motifs/physiology
- Protein Multimerization/drug effects
- Protein Multimerization/physiology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RANK Ligand/metabolism
- RNA, Small Interfering/genetics
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Smad Proteins/metabolism
- beta-Arrestins
Collapse
Affiliation(s)
- Tao Qiu
- Department of Orthopaedic Surgery, Johns Hopkins Medical Institution, 720 Rutland Avenue, Ross Building 232, Baltimore, Maryland 21205, USA
| | - Xiangwei Wu
- Department of Orthopaedic Surgery, Johns Hopkins Medical Institution, 720 Rutland Avenue, Ross Building 232, Baltimore, Maryland 21205, USA
- School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Fengjie Zhang
- School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Thomas L. Clemens
- Department of Orthopaedic Surgery, Johns Hopkins Medical Institution, 720 Rutland Avenue, Ross Building 232, Baltimore, Maryland 21205, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins Medical Institution, 720 Rutland Avenue, Ross Building 232, Baltimore, Maryland 21205, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins Medical Institution, 720 Rutland Avenue, Ross Building 232, Baltimore, Maryland 21205, USA
| |
Collapse
|
23
|
Zhang F, Qiu T, Wu X, Wan C, Shi W, Wang Y, Chen JG, Wan M, Clemens TL, Cao X. Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J Bone Miner Res 2009; 24:1224-33. [PMID: 19257813 PMCID: PMC2697625 DOI: 10.1359/jbmr.090204] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/24/2008] [Accepted: 02/11/2009] [Indexed: 11/18/2022]
Abstract
Angiogenesis and bone formation are tightly coupled during the formation of the skeleton. Bone morphogenetic protein (BMP) signaling is required for both bone development and angiogenesis. We recently identified endosome-associated FYVE-domain protein (endofin) as a Smad anchor for BMP receptor activation. Endofin contains a protein-phosphatase pp1c binding domain, which negatively modulates BMP signals through dephosphorylation of the BMP type I receptor. A single point mutation of endofin (F872A) disrupts interaction between the catalytic subunit pp1c and sensitizes BMP signaling in vitro. To study the functional impact of this mutation in vivo, we targeted expression of an endofin (F872A) transgene to osteoblasts. Mice expressing this mutant transgene had increased levels of phosphorylated Smad1 in osteoblasts and showed increased bone formation. Trabecular bone volume was significantly increased in the transgenic mice compared with the wildtype littermates with corresponding increases in trabecular bone thickness and number. Interestingly, the transgenic mice also had a pronounced increase in the density of the bone vasculature measured using contrast-enhanced microCT imaging of Microfil-perfused bones. The vessel surface and volume were both increased in association with elevated levels of vascular endothelial growth factor (VEGF) in osteoblasts. Endothelial sprouting from the endofin (F872A) mutant embryonic metatarsals cultured ex vivo was increased compared with controls and was abolished by an addition of a VEGF neutralizing antibody. In conclusion, osteoblast targeted expression of a mutant endofin protein lacking the pp1c binding activity results in sustained signaling of the BMP type I receptor, which increases bone formation and skeletal angiogenesis.
Collapse
Affiliation(s)
- Fengjie Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shihezi Medical College, Shihezi University, Xinjiang, China
| | - Tao Qiu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiangwei Wu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Shihezi Medical College, Shihezi University, Xinjiang, China
| | - Chao Wan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Weibin Shi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ying Wang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jian-guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Wan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas L. Clemens
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xu Cao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
24
|
Chattopadhyay I, Phukan R, Singh A, Vasudevan M, Purkayastha J, Hewitt S, Kataki A, Mahanta J, Kapur S, Saxena S. Molecular profiling to identify molecular mechanism in esophageal cancer with familial clustering. Oncol Rep 2009; 21:1135-46. [PMID: 19360286 PMCID: PMC7556320 DOI: 10.3892/or_00000333] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify the genes and molecular functional pathways involved in esophageal cancer, we analyzed the gene expression profile of esophageal tumor tissue from patients having family history of esophageal cancer by cDNA microarray. Three hundred and fifty differentially expressed genes (26 up-regulated and 324 down-regulated) were identified. Genes involved in humoral immune response (PF4), extracellular matrix organization (COL4A4), metabolism of xenobiotics (EPHX1), TGF-beta signaling (SMAD1) and calcium signaling pathways (VDAC1) were down-regulated and genes involved in regulation of actin cytoskeleton (WASL), neuroactive ligand receptor interaction (GRM3), Toll-like receptor (CD14), B-cell receptor (IFITM1) and insulin signaling pathways (FOXO1A) were up-regulated. Validation of differential expression of subset of genes by QRT-PCR and tissue microarray in familial and non-familial cases showed no significant difference in expression of these genes in two groups suggesting familial clustering occurs as result of sharing of common environmental factors. Gene expression profiling of clinical specimens from well characterized populations that have familial clustering of cancer identified molecular mechanism associated with progression of esophageal cancer.
Collapse
|
25
|
Abstract
Transforming growth factor-beta (TGF-beta)/bone morphogenic protein (BMP) signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of all metazoans. Deregulation of TGF-beta/BMP activity almost invariably leads to developmental defects and/or diseases, including cancer. The proper functioning of the TGF-beta/BMP pathway depends on its constitutive and extensive communication with other signaling pathways, leading to synergistic or antagonistic effects and eventually desirable biological outcomes. The nature of such signaling cross-talk is overwhelmingly complex and highly context-dependent. Here we review the different modes of cross-talk between TGF-beta/BMP and the signaling pathways of Mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, Wnt, Hedgehog, Notch, and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines, with an emphasis on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xing Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
26
|
Cassar L, Li H, Pinto AR, Nicholls C, Bayne S, Liu JP. Bone morphogenetic protein-7 inhibits telomerase activity, telomere maintenance, and cervical tumor growth. Cancer Res 2008; 68:9157-66. [PMID: 19010887 DOI: 10.1158/0008-5472.can-08-1323] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Telomere maintenance is critical in tumor cell immortalization. Here, we report that the cytokine bone morphogenetic protein-7 (BMP7) inhibits telomerase activity that is required for telomere maintenance in cervical cancer cells. Application of human recombinant BMP7 triggers a repression of the human telomerase reverse transcriptase (hTERT) gene, shortening of telomeres, and hTERT repression-dependent cervical cancer cell death. Continuous treatment of mouse xenograft tumors with BMP7, or silencing the hTERT gene, results in sustained inhibition of telomerase activity, shortening of telomeres, and tumor growth arrest. Overexpression of hTERT lengthens telomeres and blocks BMP7-induced tumor growth arrest. Thus, BMP7 negatively regulates telomere maintenance, inducing cervical tumor growth arrest by a mechanism of inducing hTERT gene repression.
Collapse
Affiliation(s)
- Lucy Cassar
- Department of Immunology, Central Eastern Clinical School, Monash University, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Tyagi A, Sharma Y, Agarwal C, Agarwal R. Silibinin impairs constitutively active TGFalpha-EGFR autocrine loop in advanced human prostate carcinoma cells. Pharm Res 2008; 25:2143-50. [PMID: 18253818 DOI: 10.1007/s11095-008-9545-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE Epidermal growth factor (EGF) and transformation growth factor-alpha (TGFalpha) are potent mitogens that regulate proliferation of prostate cancer cells via autocrine and paracrine loops, and promote tumor metastasis. They exert their action through binding to the cell surface receptor, epidermal growth factor receptor (EGFR), and cause activation of Erk1/2 mediated mitogenic signaling in human prostate cancer (PCA) at both advanced and androgen-independent stages. Thus, we rationalized that inhibiting this mitogenic pathway could be useful in controlling advanced PCA growth. METHODS LNCaP and DU145 human PCA cells were treated with silibinin (100-200 microM) for different time points, and the levels of TGFalpha, activated signaling molecules (EGFR, Erk1/2 and Jnk1/2) and Erk1/2 kinase activity were analyzed employing ELISA, immunoprecipitation and/or immunoblotting techniques. The mRNA levels of TGFalpha were analyzed by RT-PCR. RESULTS Treatment of cells (LNCaP and DU145) with silibinin resulted in a decrease in TGFalpha protein at both secreted and cellular levels together with a decrease in its mRNA level. Silibinin also caused an inhibition of EGFR activation followed by that of Erk1/2 without any change in their protein levels. The kinase activity of Erk1/2 to Elk1 was also inhibited by silibinin at least in DU145 cells. In other study, silibinin caused strong inhibition of Jnk1/2 activation in LNCaP cells while in DU145 cells, a strong induction in Jnk1/2 activation was observed. These results suggest that silibinin impairs TGFalpha-EGFR-Erk1/2 signaling in both androgen-dependent (LNCaP) and -independent (DU145) advanced human prostate carcinoma cells. CONCLUSIONS This study, for the first time, identifies the inhibitory effect of silibinin on constitutively active TGFalpha-EGFR autocrine loop in advanced human PCA cells, which plausible contributes to the strong efficacy of silibinin in PCA prevention and intervention, as reported in recent studies.
Collapse
Affiliation(s)
- Alpna Tyagi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
28
|
Joly-Pharaboz MO, Kalach JJ, Pharaboz J, Chantepie J, Nicolas B, Baille ML, Ruffion A, Benahmed M, André J. Androgen inhibits the growth of carcinoma cell lines established from prostate cancer xenografts that escape androgen treatment. J Steroid Biochem Mol Biol 2008; 111:50-9. [PMID: 18550362 DOI: 10.1016/j.jsbmb.2008.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 02/04/2008] [Indexed: 11/20/2022]
Abstract
Most prostate cancers escape endocrine therapy by diverse mechanisms. One of them might be growth repression by androgen. We reported that androgen represses the growth in culture of MOP cells (a sub-line of LNCaP cells) and that of MOP cell xenografts, although tumor growth becomes androgen-independent (AI). Here we explore whether AI tumors contain androgen-responsive cells. ME carcinoma cells were established from AI tumors. The responses to androgen were examined by cell counting, DAPI labeling, flow cytometry, PSA immunoassay and tumor size follow-up. Androgen receptors (AR) were analyzed by western blotting and DNA sequencing. The pattern of responses of these cells to androgen was compared to that of MOP cells and that of JAC cells established from LNCaP-like MOP cells. R1881, a synthetic androgen: (1) repressed the growth of all the six ME cell lines obtained, MOP and JAC cells, (2) augmented the secretion of PSA, (3) induced spectacular cell bubbling/fragmentation and (4) blocked the cell cycle and induced a modest increase of apoptosis. All the androgen-repressed cells expressed the same level of mutated AR as LNCaP cells. In nude mice, the growth of ME-2 cell xenografts displayed transient androgen repression similar to that of MOP cells. In culture neither fibroblasts nor extra-cellular matrix altered the effects of R1881 on cell proliferation. These results demonstrate that androgen-independent tumors contain androgen-responsive cells. The apparent discrepancy between the responses to androgen of tumors and those of carcinoma cells in culture suggests that microenvironmental factors contribute to the androgen responsiveness of tumor cells in vivo. These modifications, albeit unspecified, could be suitable targets for restoring the androgen responsiveness of AI tumors.
Collapse
|
29
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|