1
|
Liu M, Xie XJ, Li X, Ren X, Sun JL, Lin Z, Hemba-Waduge RUS, Ji JY. Transcriptional coupling of telomeric retrotransposons with the cell cycle. SCIENCE ADVANCES 2025; 11:eadr2299. [PMID: 39752503 PMCID: PMC11698117 DOI: 10.1126/sciadv.adr2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Unlike most species that use telomerase for telomere maintenance, many dipterans, including Drosophila, rely on three telomere-specific retrotransposons (TRs)-HeT-A, TART, and TAHRE-to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription. Reducing the activity of the Mediator or Sd/dTEAD increases TR expression and telomere length, while overexpressing E2F1-Dp or depleting Rbf1 stimulates TR transcription. The Mediator and Sd/dTEAD regulate this process through E2F1-Dp. CUT&RUN (Cleavage under targets and release using nuclease) analysis shows direct binding of CDK8, Dp, and Sd/dTEAD to telomeric repeats, with motif enrichment revealing E2F- and TEAD-binding sites. These findings uncover the Mediator complex's role in controlling TR transcription and telomere length through E2F1-Dp and Sd, coupling the transcriptional regulation of the TR life cycle with host cell-cycle machinery to protect chromosome ends in Drosophila.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xingjie Ren
- Institute for Human Genetics and Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Zhen Lin
- Department of Pathology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
2
|
Hermida-Carrera C, Vergara A, Cervela-Cardona L, Jin X, Björklund S, Strand Å. CDK8 of the mediator kinase module connects leaf development to the establishment of correct stomata patterning by regulating the levels of the transcription factor SPEECHLESS (SPCH). PLANT, CELL & ENVIRONMENT 2024; 47:5237-5251. [PMID: 39177450 DOI: 10.1111/pce.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The components of the mediator kinase module are highly conserved across all eukaryotic lineages, and cyclin-dependent kinase 8 (CDK8) is essential for correct cell proliferation and differentiation in diverse eukaryotic systems. We show that CDK8 couples leaf development with the establishment of correct stomata patterning for prevailing CO2 conditions. In Arabidopsis, the basic helix-loop-helix (bHLH) transcription factor SPEECHLESS (SPCH) controls cellular entry into the stomatal cell lineage, and CDK8 interacts with and phosphorylates SPCH, controlling SPCH protein levels and thereby also expression of the SPCH target genes encoding key regulators of cell fate and asymmetric cell divisions. The lack of the CDK8-mediated control of SPCH results in an increased number of meristemoid and guard mother cells, and increased stomata index in the cdk8 mutants. Increasing atmospheric CO2 concentrations trigger a developmental programme controlling cell entry into stomatal lineage by limiting the asymmetric divisions. In cdk8, the number of meristemoids and guard mother cells remains the same under ambient and high CO2 concentrations, as the accumulated levels of SPCH caused by the lack of CDK8 appear to override the negative regulation of increased CO2. Thus, our work provides novel mechanistic understanding of how plants alter critical leaf properties in response to increasing atmospheric CO2.
Collapse
Affiliation(s)
- Carmen Hermida-Carrera
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umea, Sweden
| | - Alexander Vergara
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umea, Sweden
| | - Luis Cervela-Cardona
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umea, Sweden
| | - Xu Jin
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umea, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umea, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umea, Sweden
| |
Collapse
|
3
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. Development 2024; 151:dev203111. [PMID: 39531377 PMCID: PMC11634032 DOI: 10.1242/dev.203111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The Mediator complex plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising CDK8, Cyclin C (CycC), Med12 and Med13, serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes associated with mutations in CKM subunits, but the underlying mechanisms have remained unclear. Using Drosophila as a model, we generated transgenic strains to deplete individually or simultaneously the four CKM subunits in all possible combinations, uncovering unique phenotypes in the eyes and wings. Depletion of CDK8-CycC enhanced E2F1 target gene expression and promoted cell-cycle progression, whereas Med12-Med13 depletion had no significant impact on these processes. Instead, depleting Med12-Med13 altered the expression of ribosomal protein genes and fibrillarin, and reduced nascent protein synthesis, indicating a severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. These findings reveal distinct in vivo roles for CKM subunits, with Med12-Med13 disruption having a more pronounced effect on ribosome biogenesis and protein synthesis than CDK8-CycC loss.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yue Xing
- Department of Pathology and Lab Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ye Niu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yanwu Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Shidlovskii YV, Ulianova YA, Shaposhnikov AV, Kolesnik VV, Pravednikova AE, Stepanov NG, Chetverina D, Saccone G, Lebedeva LA, Chmykhalo VK, Giordano E. Subunits Med12 and Med13 of Mediator Cooperate with Subunits SAYP and Bap170 of SWI/SNF in Active Transcription in Drosophila. Int J Mol Sci 2024; 25:12781. [PMID: 39684492 DOI: 10.3390/ijms252312781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
SAYP and Bap170, subunits of the SWI/SNF remodeling complex, have the ability to support enhancer-dependent transcription when artificially recruited to the promoter on a transgene. We found that the phenomenon critically depends on two subunits of the Mediator kinase module, Med12 and Med13 but does not require the two other subunits of the module (Cdk8 and CycC) or other subunits of the core part of the complex. A cooperation of the above proteins in active transcription was also observed at endogenous loci, but the contribution of the subunits to the activity of a particular gene differed in different loci. The factors SAYP/Bap170 and Med12/Med13 did not form sufficiently stable interactions in the extract, and their cooperation was apparently local at regulatory elements, the presence of SAYP and Bap170 in a locus being necessary for stable recruitment of Med12 and Med13 to the locus. In addition to the above factors, the Nelf-A protein was found to participate in the process. The cooperation of the factors, independent of enzymatic activities of the complexes they are part of, appears to be a novel mechanism that maintains promoter activity and may be used in many loci of the genome. Extended intrinsically disordered regions of the factors were assumed to sustain the mechanism.
Collapse
Affiliation(s)
- Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biology and General Genetics, Sechenov University, 119992 Moscow, Russia
| | - Yulia A Ulianova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander V Shaposhnikov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Valeria V Kolesnik
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anna E Pravednikova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nikita G Stepanov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biology and General Genetics, Sechenov University, 119992 Moscow, Russia
| | - Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Giuseppe Saccone
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Lyubov A Lebedeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ennio Giordano
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| |
Collapse
|
5
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591924. [PMID: 38746212 PMCID: PMC11092604 DOI: 10.1101/2024.04.30.591924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Mediator complex, composed of about 30 conserved subunits, plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising Med12, Med13, CDK8, and CycC (Cyclin C), serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes of CDK8-CycC and Med12-Med13 mutations, yet the underlying mechanism has remained unknown. Here, using Drosophila as a model organism, we show that depleting CDK8-CycC enhances E2F1 target gene expression and promotes cell-cycle progression. Conversely, depletion of Med12-Med13 affects the expression of ribosomal protein genes and fibrillarin, indicating a more severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Moreover, we found that the stability of CDK8 and CycC relies on Med12 and Med13, with a mutually interdependent relationship between Med12 and Med13. Furthermore, CycC stability depends on the other three CKM subunits. These findings reveal distinct roles for CKM subunits in vivo , with Med12-Med13 disruption exerting a more pronounced impact on ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Significance The CDK8 kinase module (CKM), comprising CDK8, CycC, Med12, and Med13, is essential in the Mediator complex for RNA polymerase II-dependent transcription in eukaryotes. While expected to function jointly, CKM subunit mutations result in distinct phenotypes in Drosophila . This study investigates the mechanisms driving these differing effects. Our analysis reveals the role of Med12-Med13 pair in regulating ribosomal biogenesis and cellular growth, contrasting with the involvement of CDK8-CycC in E2F1-dependent cell-cycle progression. Additionally, an asymmetric interdependence in the stability of CDK8-CycC and Med12-Med13 was observed. CKM mutations or overexpression are associated with cancers and cardiovascular diseases. Our findings underscore the distinct impacts of CKM mutations on cellular growth and proliferation, advancing our understanding of their diverse consequences in vivo .
Collapse
|
6
|
Liu M, Xie XJ, Li X, Ren X, Sun J, Lin Z, Hemba-Waduge RUS, Ji JY. Transcriptional coupling of telomeric retrotransposons with the cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560321. [PMID: 37808851 PMCID: PMC10557779 DOI: 10.1101/2023.09.30.560321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Instead of employing telomerases to safeguard chromosome ends, dipteran species maintain their telomeres by transposition of telomeric-specific retrotransposons (TRs): in Drosophila , these are HeT-A , TART , and TAHRE . Previous studies have shown how these TRs create tandem repeats at chromosome ends, but the exact mechanism controlling TR transcription has remained unclear. Here we report the identification of multiple subunits of the transcription cofactor Mediator complex and transcriptional factors Scalloped (Sd, the TEAD homolog in flies) and E2F1-Dp as novel regulators of TR transcription and telomere length in Drosophila . Depletion of multiple Mediator subunits, Dp, or Sd increased TR expression and telomere length, while over-expressing E2F1-Dp or knocking down the E2F1 regulator Rbf1 (Retinoblastoma-family protein 1) stimulated TR transcription, with Mediator and Sd affecting TR expression through E2F1-Dp. The CUT&RUN analysis revealed direct binding of CDK8, Dp, and Sd to telomeric repeats. These findings highlight the essential role of the Mediator complex in maintaining telomere homeostasis by regulating TR transcription through E2F1-Dp and Sd, revealing the intricate coupling of TR transcription with the host cell-cycle machinery, thereby ensuring chromosome end protection and genomic stability during cell division.
Collapse
|
7
|
Prieto S, Dubra G, Camasses A, Aznar AB, Begon‐Pescia C, Simboeck E, Pirot N, Gerbe F, Angevin L, Jay P, Krasinska L, Fisher D. CDK8 and CDK19 act redundantly to control the CFTR pathway in the intestinal epithelium. EMBO Rep 2023; 24:e54261. [PMID: 36545778 PMCID: PMC10549226 DOI: 10.15252/embr.202154261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
CDK8 and CDK19 form a conserved cyclin-dependent kinase subfamily that interacts with the essential transcription complex, Mediator, and also phosphorylates the C-terminal domain of RNA polymerase II. Cells lacking either CDK8 or CDK19 are viable and have limited transcriptional alterations, but whether the two kinases redundantly control cell proliferation and differentiation is unknown. Here, we find in mice that CDK8 is dispensable for regulation of gene expression, normal intestinal homeostasis, and efficient tumourigenesis, and is largely redundant with CDK19 in the control of gene expression. Their combined deletion in intestinal organoids reduces long-term proliferative capacity but is not lethal and allows differentiation. However, double-mutant organoids show mucus accumulation and increased secretion by goblet cells, as well as downregulation of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) and functionality of the CFTR pathway. Pharmacological inhibition of CDK8/19 kinase activity in organoids and in mice recapitulates several of these phenotypes. Thus, the Mediator kinases are not essential for cell proliferation and differentiation in an adult tissue, but they cooperate to regulate specific transcriptional programmes.
Collapse
Affiliation(s)
- Susana Prieto
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Geronimo Dubra
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Alain Camasses
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Ana Bella Aznar
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Christina Begon‐Pescia
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Present address:
LPHIUniversity of MontpellierMontpellierFrance
| | - Elisabeth Simboeck
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- Present address:
UAS Technikum WienViennaAustria
| | - Nelly Pirot
- IRCM, University of Montpellier, ICM, INSERMMontpellierFrance
- BioCampus, RHEMUniversity of Montpellier, CNRS, INSERMMontpellierFrance
| | - François Gerbe
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Lucie Angevin
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Philippe Jay
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Liliana Krasinska
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Daniel Fisher
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| |
Collapse
|
8
|
Jullien D, Guillou E, Bernat-Fabre S, Payet A, Bourbon HMG, Boube M. Inducible degradation of the Drosophila Mediator subunit Med19 reveals its role in regulating developmental but not constitutively-expressed genes. PLoS One 2022; 17:e0275613. [PMID: 36445897 PMCID: PMC9707739 DOI: 10.1371/journal.pone.0275613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
The multi-subunit Mediator complex plays a critical role in gene expression by bridging enhancer-bound transcription factors and the RNA polymerase II machinery. Although experimental case studies suggest differential roles of Mediator subunits, a comprehensive view of the specific set of genes regulated by individual subunits in a developing tissue is still missing. Here we address this fundamental question by focusing on the Med19 subunit and using the Drosophila wing imaginal disc as a developmental model. By coupling auxin-inducible degradation of endogenous Med19 in vivo with RNA-seq, we got access to the early consequences of Med19 elimination on gene expression. Differential gene expression analysis reveals that Med19 is not globally required for mRNA transcription but specifically regulates positively or negatively less than a quarter of the expressed genes. By crossing our transcriptomic data with those of Drosophila gene expression profile database, we found that Med19-dependent genes are highly enriched with spatially-regulated genes while the expression of most constitutively expressed genes is not affected upon Med19 loss. Whereas globally downregulation does not exceed upregulation, we identified a functional class of genes encoding spatially-regulated transcription factors, and more generally developmental regulators, responding unidirectionally to Med19 loss with an expression collapse. Moreover, we show in vivo that the Notch-responsive wingless and the E(spl)-C genes require Med19 for their expression. Combined with experimental evidences suggesting that Med19 could function as a direct transcriptional effector of Notch signaling, our data support a model in which Med19 plays a critical role in the transcriptional activation of developmental genes in response to cell signaling pathways.
Collapse
Affiliation(s)
- Denis Jullien
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit UMR 5077, Federal University of Toulouse, Toulouse, France
- * E-mail: (MB); (DJ)
| | - Emmanuelle Guillou
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit UMR 5077, Federal University of Toulouse, Toulouse, France
| | - Sandra Bernat-Fabre
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit UMR 5077, Federal University of Toulouse, Toulouse, France
| | - Adeline Payet
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit UMR 5077, Federal University of Toulouse, Toulouse, France
| | - Henri-Marc G. Bourbon
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit UMR 5077, Federal University of Toulouse, Toulouse, France
| | - Muriel Boube
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit UMR 5077, Federal University of Toulouse, Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
- * E-mail: (MB); (DJ)
| |
Collapse
|
9
|
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Microorganisms 2021; 9:microorganisms9102152. [PMID: 34683473 PMCID: PMC8540245 DOI: 10.3390/microorganisms9102152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways.
Collapse
|
10
|
Ostalé CM, Esteban N, López-Varea A, de Celis JF. Functional requirements of protein kinases and phosphatases in the development of the Drosophila melanogaster wing. G3-GENES GENOMES GENETICS 2021; 11:6380433. [PMID: 34599799 PMCID: PMC8664455 DOI: 10.1093/g3journal/jkab348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022]
Abstract
Protein kinases and phosphatases constitute a large family of conserved enzymes that control a variety of biological processes by regulating the phosphorylation state of target proteins. They play fundamental regulatory roles during cell cycle progression and signaling, among other key aspects of multicellular development. The complement of protein kinases and phosphatases includes approximately 326 members in Drosophila, and they have been the subject of several functional screens searching for novel components of signaling pathways and regulators of cell division and survival. These approaches have been carried out mostly in cell cultures using RNA interference to evaluate the contribution of each protein in different functional assays, and have contributed significantly to assign specific roles to the corresponding genes. In this work we describe the results of an evaluation of the Drosophila complement of kinases and phosphatases using the wing as a system to identify their functional requirements in vivo. We also describe the results of several modifying screens aiming to identify among the set of protein kinases and phosphatases additional components or regulators of the activities of the Epidermal Growth Factor and Insulin receptors signaling pathways.
Collapse
Affiliation(s)
- Cristina M Ostalé
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Nuria Esteban
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana López-Varea
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jose F de Celis
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
11
|
Bruter AV, Rodionova MD, Varlamova EA, Shtil AA. Super-Enhancers in the Regulation of Gene Transcription: General Aspects and Antitumor Targets. Acta Naturae 2021; 13:4-15. [PMID: 33959383 PMCID: PMC8084300 DOI: 10.32607/actanaturae.11067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023] Open
Abstract
Super-enhancers (genome elements that activate gene transcription) are DNA regions with an elevated concentration of transcriptional complexes. These multiprotein structures contain, among other components, the cyclin-dependent kinases 8 and 19. These and other transcriptional protein kinases are regarded as novel targets for pharmacological inhibition by antitumor drug candidates.
Collapse
Affiliation(s)
- A. V. Bruter
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| | | | - E. A. Varlamova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| | - A. A. Shtil
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| |
Collapse
|
12
|
Wu D, Zhang Z, Chen X, Yan Y, Liu X. Angel or Devil ? - CDK8 as the new drug target. Eur J Med Chem 2020; 213:113043. [PMID: 33257171 DOI: 10.1016/j.ejmech.2020.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays an momentous role in transcription regulation by forming kinase module or transcription factor phosphorylation. A large number of evidences have identified CDK8 as an important factor in cancer occurrence and development. In addition, CDK8 also participates in the regulation of cancer cell stress response to radiotherapy and chemotherapy, assists tumor cell invasion, metastasis, and drug resistance. Therefore, CDK8 is regarded as a promising target for cancer therapy. Most studies in recent years supported the role of CDK8 as a carcinogen, however, under certain conditions, CDK8 exists as a tumor suppressor. The functional diversity of CDK8 and its exceptional role in different types of cancer have aroused great interest from scientists but even more controversy during the discovery of CDK8 inhibitors. In addition, CDK8 appears to be an effective target for inflammation diseases and immune system disorders. Therefore, we summarized the research results of CDK8, involving physiological/pathogenic mechanisms and the development status of compounds targeting CDK8, provide a reference for the feasibility evaluation of CDK8 as a therapeutic target, and guidance for researchers who are involved in this field for the first time.
Collapse
Affiliation(s)
- Dan Wu
- School of Biological Engineering, Hefei Technology College, Hefei, 238000, PR China
| | - Zhaoyan Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
13
|
Stieg DC, Cooper KF, Strich R. The extent of cyclin C promoter occupancy directs changes in stress-dependent transcription. J Biol Chem 2020; 295:16280-16291. [PMID: 32934007 DOI: 10.1074/jbc.ra120.015215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Cdk8 kinase module (CKM) is a detachable Mediator subunit composed of cyclin C and one each of paralogs Cdk8/Cdk19, Med12/Med12L, and Med13/Med13L. Our previous RNA-Seq studies demonstrated that cyclin C represses a subset of hydrogen peroxide-induced genes under normal conditions but is involved in activating other loci following stress. Here, we show that cyclin C directs this transcriptional reprograming through changes in its promoter occupancy. Following peroxide stress, cyclin C promoter occupancy increased for genes it activates while decreasing at loci it represses under normal conditions. Promoter occupancy of other CKM components generally mirrored cyclin C, indicating that the CKM moves as a single unit. It has previously been shown that some cyclin C leaves the nucleus following cytotoxic stress to induce mitochondrial fragmentation and apoptosis. We observed that CKM integrity appeared compromised at a subset of repressed promoters, suggesting a source of cyclin C that is targeted for nuclear release. Interestingly, mTOR inhibition induced a new pattern of cyclin C promoter occupancy indicating that this control is fine-tuned to the individual stress. Using inhibitors, we found that Cdk8 kinase activity is not required for CKM movement or repression but was necessary for full gene activation. In conclusion, this study revealed that different stress stimuli elicit specific changes in CKM promoter occupancy correlating to altered transcriptional outputs. Finally, although CKM components were recruited or expelled from promoters as a unit, heterogeneity was observed at individual promoters, suggesting a mechanism to generate gene- and stress-specific responses.
Collapse
Affiliation(s)
- David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey, USA
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey, USA
| | - Randy Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
14
|
Immarigeon C, Bernat-Fabre S, Guillou E, Verger A, Prince E, Benmedjahed MA, Payet A, Couralet M, Monte D, Villeret V, Bourbon HM, Boube M. Mediator complex subunit Med19 binds directly GATA transcription factors and is required with Med1 for GATA-driven gene regulation in vivo. J Biol Chem 2020; 295:13617-13629. [PMID: 32737196 DOI: 10.1074/jbc.ra120.013728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/21/2020] [Indexed: 02/02/2023] Open
Abstract
The evolutionarily conserved multiprotein Mediator complex (MED) serves as an interface between DNA-bound transcription factors (TFs) and the RNA Pol II machinery. It has been proposed that each TF interacts with a dedicated MED subunit to induce specific transcriptional responses. But are these binary partnerships sufficient to mediate TF functions? We have previously established that the Med1 Mediator subunit serves as a cofactor of GATA TFs in Drosophila, as shown in mammals. Here, we observe mutant phenotype similarities between another subunit, Med19, and the Drosophila GATA TF Pannier (Pnr), suggesting functional interaction. We further show that Med19 physically interacts with the Drosophila GATA TFs, Pnr and Serpent (Srp), in vivo and in vitro through their conserved C-zinc finger domains. Moreover, Med19 loss of function experiments in vivo or in cellulo indicate that it is required for Pnr- and Srp-dependent gene expression, suggesting general GATA cofactor functions. Interestingly, Med19 but not Med1 is critical for the regulation of all tested GATA target genes, implying shared or differential use of MED subunits by GATAs depending on the target gene. Lastly, we show a direct interaction between Med19 and Med1 by GST pulldown experiments indicating privileged contacts between these two subunits of the MED middle module. Together, these findings identify Med19/Med1 as a composite GATA TF interface and suggest that binary MED subunit-TF partnerships are probably oversimplified models. We propose several mechanisms to account for the transcriptional regulation of GATA-targeted genes.
Collapse
Affiliation(s)
- Clément Immarigeon
- Centre de Biologie Integrative CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse Cedex, France
| | - Sandra Bernat-Fabre
- Centre de Biologie Integrative CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse Cedex, France
| | - Emmanuelle Guillou
- Centre de Biologie Integrative CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse Cedex, France
| | - Alexis Verger
- Inserm, CHU Lille, Institut Pasteur de Lille, CNRS ERL 9002 Integrative Structural Biology, Université Lille, Lille, France
| | - Elodie Prince
- Centre de Biologie Integrative CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse Cedex, France
| | - Mohamed A Benmedjahed
- Centre de Biologie Integrative CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse Cedex, France
| | - Adeline Payet
- Centre de Biologie Integrative CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse Cedex, France
| | - Marie Couralet
- Centre de Biologie Integrative CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse Cedex, France
| | - Didier Monte
- Inserm, CHU Lille, Institut Pasteur de Lille, CNRS ERL 9002 Integrative Structural Biology, Université Lille, Lille, France
| | - Vincent Villeret
- Inserm, CHU Lille, Institut Pasteur de Lille, CNRS ERL 9002 Integrative Structural Biology, Université Lille, Lille, France
| | - Henri-Marc Bourbon
- Centre de Biologie Integrative CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse Cedex, France
| | - Muriel Boube
- Centre de Biologie Integrative CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse Cedex, France.
| |
Collapse
|
15
|
Chung HL, Mao X, Wang H, Park YJ, Marcogliese PC, Rosenfeld JA, Burrage LC, Liu P, Murdock DR, Yamamoto S, Wangler MF, Chao HT, Long H, Feng L, Bacino CA, Bellen HJ, Xiao B. De Novo Variants in CDK19 Are Associated with a Syndrome Involving Intellectual Disability and Epileptic Encephalopathy. Am J Hum Genet 2020; 106:717-725. [PMID: 32330417 PMCID: PMC7212481 DOI: 10.1016/j.ajhg.2020.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022] Open
Abstract
We identified three unrelated individuals with de novo missense variants in CDK19, encoding a cyclin-dependent kinase protein family member that predominantly regulates gene transcription. These individuals presented with hypotonia, global developmental delay, epileptic encephalopathy, and dysmorphic features. CDK19 is conserved between vertebrate and invertebrate model organisms, but currently abnormalities in CDK19 are not known to be associated with a human disorder. Loss of Cdk8, the fly homolog of CDK19, causes larval lethality, which is suppressed by expression of human CDK19 reference cDNA. In contrast, the CDK19 p.Tyr32His and p.Thr196Ala variants identified in the affected individuals fail to rescue the loss of Cdk8 and behave as null alleles. Additionally, neuronal RNAi-mediated knockdown of Cdk8 in flies results in semi-lethality. The few eclosing flies exhibit severe seizures and a reduced lifespan. Both phenotypes are fully suppressed by moderate expression of the CDK19 reference cDNA but not by expression of the two variants. Finally, loss of Cdk8 causes an obvious loss of boutons and synapses at larval neuromuscular junctions (NMJs). Together, our findings demonstrate that human CDK19 fully replaces the function of Cdk8 in the fly, the human disease-associated CDK19 variants behave as strong loss-of-function variants, and deleterious CDK19 variants underlie a syndromic neurodevelopmental disorder.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China; Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Hua Wang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China; Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 22021, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX 77030, USA
| | - Hongyu Long
- Neurology Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li Feng
- Neurology Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bo Xiao
- Neurology Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
16
|
Li X, Liu M, Ren X, Loncle N, Wang Q, Hemba-Waduge RUS, Yu SH, Boube M, Bourbon HMG, Ni JQ, Ji JY. The Mediator CDK8-Cyclin C complex modulates Dpp signaling in Drosophila by stimulating Mad-dependent transcription. PLoS Genet 2020; 16:e1008832. [PMID: 32463833 PMCID: PMC7282676 DOI: 10.1371/journal.pgen.1008832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/09/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022] Open
Abstract
Dysregulation of CDK8 (Cyclin-Dependent Kinase 8) and its regulatory partner CycC (Cyclin C), two subunits of the conserved Mediator (MED) complex, have been linked to diverse human diseases such as cancer. Thus, it is essential to understand the regulatory network modulating the CDK8-CycC complex in both normal development and tumorigenesis. To identify upstream regulators or downstream effectors of CDK8, we performed a dominant modifier genetic screen in Drosophila based on the defects in vein patterning caused by specific depletion or overexpression of CDK8 or CycC in developing wing imaginal discs. We identified 26 genomic loci whose haploinsufficiency can modify these CDK8- or CycC-specific phenotypes. Further analysis of two overlapping deficiency lines and mutant alleles led us to identify genetic interactions between the CDK8-CycC pair and the components of the Decapentaplegic (Dpp, the Drosophila homolog of TGFβ, or Transforming Growth Factor-β) signaling pathway. We observed that CDK8-CycC positively regulates transcription activated by Mad (Mothers against dpp), the primary transcription factor downstream of the Dpp/TGFβ signaling pathway. CDK8 can directly interact with Mad in vitro through the linker region between the DNA-binding MH1 (Mad homology 1) domain and the carboxy terminal MH2 (Mad homology 2) transactivation domain. Besides CDK8 and CycC, further analyses of other subunits of the MED complex have revealed six additional subunits that are required for Mad-dependent transcription in the wing discs: Med12, Med13, Med15, Med23, Med24, and Med31. Furthermore, our analyses confirmed the positive roles of CDK9 and Yorkie in regulating Mad-dependent gene expression in vivo. These results suggest that CDK8 and CycC, together with a few other subunits of the MED complex, may coordinate with other transcription cofactors in regulating Mad-dependent transcription during wing development in Drosophila.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Xingjie Ren
- School of Medicine, Tsinghua University, Beijing, China
| | - Nicolas Loncle
- Centre de Biologie Intégrative, Centre de Biologie du Développement, UMR5544 du CNRS, Université de Toulouse, Toulouse, France
| | - Qun Wang
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Stephen H. Yu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Muriel Boube
- Centre de Biologie Intégrative, Centre de Biologie du Développement, UMR5544 du CNRS, Université de Toulouse, Toulouse, France
| | - Henri-Marc G. Bourbon
- Centre de Biologie Intégrative, Centre de Biologie du Développement, UMR5544 du CNRS, Université de Toulouse, Toulouse, France
| | - Jian-Quan Ni
- School of Medicine, Tsinghua University, Beijing, China
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
- Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
17
|
Kuang Y, Golan O, Preusse K, Cain B, Christensen CJ, Salomone J, Campbell I, Okwubido-Williams FV, Hass MR, Yuan Z, Eafergan N, Moberg KH, Kovall RA, Kopan R, Sprinzak D, Gebelein B. Enhancer architecture sensitizes cell specific responses to Notch gene dose via a bind and discard mechanism. eLife 2020; 9:53659. [PMID: 32297857 PMCID: PMC7213981 DOI: 10.7554/elife.53659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/15/2020] [Indexed: 11/13/2022] Open
Abstract
Notch pathway haploinsufficiency can cause severe developmental syndromes with highly variable penetrance. Currently, we have a limited mechanistic understanding of phenotype variability due to gene dosage. Here, we unexpectedly found that inserting an enhancer containing pioneer transcription factor sites coupled to Notch dimer sites can induce a subset of Notch haploinsufficiency phenotypes in Drosophila with wild type Notch gene dose. Using Drosophila genetics, we show that this enhancer induces Notch phenotypes in a Cdk8-dependent, transcription-independent manner. We further combined mathematical modeling with quantitative trait and expression analysis to build a model that describes how changes in Notch signal production versus degradation differentially impact cellular outcomes that require long versus short signal duration. Altogether, these findings support a 'bind and discard' mechanism in which enhancers with specific binding sites promote rapid Cdk8-dependent Notch turnover, and thereby reduce Notch-dependent transcription at other loci and sensitize tissues to gene dose based upon signal duration.
Collapse
Affiliation(s)
- Yi Kuang
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States
| | - Ohad Golan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Kristina Preusse
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Brittany Cain
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, United States
| | - Collin J Christensen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, United States.,Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Ian Campbell
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, United States
| | | | - Matthew R Hass
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Nathanel Eafergan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University and Emory University School of Medicine, Atlanta, United States
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
18
|
Hasan ASMM, Vander Schoor JK, Hecht V, Weller JL. The CYCLIN-DEPENDENT KINASE Module of the Mediator Complex Promotes Flowering and Reproductive Development in Pea. PLANT PHYSIOLOGY 2020; 182:1375-1386. [PMID: 31964799 PMCID: PMC7054868 DOI: 10.1104/pp.19.01173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/26/2019] [Indexed: 05/22/2023]
Abstract
Control of flowering time has been a major focus of comparative genetic analyses in plant development. This study reports on a forward genetic approach to define previously uncharacterized components of flowering control pathways in the long-day legume, pea (Pisum sativum). We isolated two complementation groups of late-flowering mutants in pea that define two uncharacterized loci, LATE BLOOMER3 (LATE3) and LATE4, and describe their diverse effects on vegetative and reproductive development. A map-based comparative approach was employed to identify the underlying genes for both loci, revealing that that LATE3 and LATE4 are orthologs of CYCLIN DEPENDENT KINASE8 (CDK8) and CYCLIN C1 (CYCC1), components of the CDK8 kinase module of the Mediator complex, which is a deeply conserved regulator of transcription in eukaryotes. We confirm the genetic and physical interaction of LATE3 and LATE4 and show that they contribute to the transcriptional regulation of key flowering genes, including the induction of the florigen gene FTa1 and repression of the floral repressor LF Our results establish the conserved importance of the CDK8 module in plants and provide evidence for the function of CYCLIN C1 orthologs in the promotion of flowering and the maintenance of normal reproductive development.
Collapse
Affiliation(s)
- A S M Mainul Hasan
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | - Valerie Hecht
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
19
|
Mao X, Weake VM, Chapple C. Mediator function in plant metabolism revealed by large-scale biology. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5995-6003. [PMID: 31504746 DOI: 10.1093/jxb/erz372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/07/2019] [Indexed: 05/16/2023]
Abstract
Mediator is a multisubunit transcriptional co-regulator that is involved in the regulation of an array of processes including plant metabolism. The pathways regulated by Mediator-dependent processes include those for the synthesis of phenylpropanoids (MED5), cellulose (MED16), lipids (MED15 and CDK8), and the regulation of iron homeostasis (MED16 and MED25). Traditional genetic and biochemical approaches laid the foundation for our understanding of Mediator function, but recent transcriptomic and metabolomic studies have provided deeper insights into how specific subunits cooperate in the regulation of plant metabolism. In this review, we highlight recent developments in the investigation of Mediator and plant metabolism, with particular emphasis on the large-scale biology studies of med mutants.
Collapse
Affiliation(s)
- Xiangying Mao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
20
|
Menzl I, Witalisz-Siepracka A, Sexl V. CDK8-Novel Therapeutic Opportunities. Pharmaceuticals (Basel) 2019; 12:E92. [PMID: 31248103 PMCID: PMC6630639 DOI: 10.3390/ph12020092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
Improvements in cancer therapy frequently stem from the development of new small-molecule inhibitors, paralleled by the identification of biomarkers that can predict the treatment response. Recent evidence supports the idea that cyclin-dependent kinase 8 (CDK8) may represent a potential drug target for breast and prostate cancer, although no CDK8 inhibitors have entered the clinics. As the available inhibitors have been recently reviewed, we focus on the biological functions of CDK8 and provide an overview of the complexity of CDK8-dependent signaling throughout evolution and CDK8-dependent effects that may open novel treatment avenues.
Collapse
Affiliation(s)
- Ingeborg Menzl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| |
Collapse
|
21
|
Cyclin C Regulated Oxidative Stress Responsive Transcriptome in Mus musculus Embryonic Fibroblasts. G3-GENES GENOMES GENETICS 2019; 9:1901-1908. [PMID: 31036676 PMCID: PMC6553531 DOI: 10.1534/g3.119.400077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcriptional changes that occur in response to oxidative stress help direct the decision to maintain cell viability or enter a cell death pathway. Cyclin C-Cdk8 is a conserved kinase that associates with the RNA polymerase II Mediator complex that stimulates or represses transcription depending on the locus. In response to oxidative stress, cyclin C, but not Cdk8, displays partial translocation into the cytoplasm. These findings open the possibility that cyclin C relocalization is a regulatory mechanism governing oxidative stress-induced transcriptional changes. In the present study, the cyclin C-dependent transcriptome was determined and compared to transcriptional changes occurring in oxidatively stressed Mus musculus embryonic fibroblasts. We observed a similar number (∼2000) of genes up or downregulated in oxidatively stressed cells. Induced genes include cellular repair/survival factors while repressed loci were generally involved in proliferation or differentiation. Depleting cyclin C in unstressed cells produced an approximately equal number of genes (∼2400) that were repressed by, or whose transcription required, cyclin C. Consistent with the possibility that cyclin C nuclear release contributes to transcriptional remodeling in response to oxidative stress, we found that 37% cyclin C-dependent genes were downregulated following stress. Moreover, 20% of cyclin C- repressed genes were induced in response to stress. These findings are consistent with a model that cyclin C relocalization to the cytoplasm, and corresponding inactivation of Cdk8, represents a regulatory mechanism to repress and stimulate transcription of stress-responsive genes.
Collapse
|
22
|
Calpena E, Hervieu A, Kaserer T, Swagemakers SM, Goos JA, Popoola O, Ortiz-Ruiz MJ, Barbaro-Dieber T, Bownass L, Brilstra EH, Brimble E, Foulds N, Grebe TA, Harder AV, Lees MM, Monaghan KG, Newbury-Ecob RA, Ong KR, Osio D, Reynoso Santos FJ, Ruzhnikov MR, Telegrafi A, van Binsbergen E, van Dooren MF, van der Spek PJ, Blagg J, Twigg SR, Mathijssen IM, Clarke PA, Wilkie AO, Wilkie AOM. De Novo Missense Substitutions in the Gene Encoding CDK8, a Regulator of the Mediator Complex, Cause a Syndromic Developmental Disorder. Am J Hum Genet 2019; 104:709-720. [PMID: 30905399 PMCID: PMC6451695 DOI: 10.1016/j.ajhg.2019.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
23
|
Drosophila Mediator Subunit Med1 Is Required for GATA-Dependent Developmental Processes: Divergent Binding Interfaces for Conserved Coactivator Functions. Mol Cell Biol 2019; 39:MCB.00477-18. [PMID: 30670567 DOI: 10.1128/mcb.00477-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/13/2019] [Indexed: 01/26/2023] Open
Abstract
DNA-bound transcription factors (TFs) governing developmental gene regulation have been proposed to recruit polymerase II machinery at gene promoters through specific interactions with dedicated subunits of the evolutionarily conserved Mediator (MED) complex. However, whether such MED subunit-specific functions and partnerships have been conserved during evolution has been poorly investigated. To address this issue, we generated the first Drosophila melanogaster loss-of-function mutants for Med1, known as a specific cofactor for GATA TFs and hormone nuclear receptors in mammals. We show that Med1 is required for cell proliferation and hematopoietic differentiation depending on the GATA TF Serpent (Srp). Med1 physically binds Srp in cultured cells and in vitro through its conserved GATA zinc finger DNA-binding domain and the divergent Med1 C terminus. Interestingly, GATA-Srp interaction occurs through the longest Med1 isoform, suggesting a functional diversity of MED complex populations. Furthermore, we show that Med1 acts as a coactivator for the GATA factor Pannier during thoracic development. In conclusion, the Med1 requirement for GATA-dependent regulatory processes is a common feature in insects and mammals, although binding interfaces have diverged. Further work in Drosophila should bring valuable insights to fully understand GATA-MED functional partnerships, which probably involve other MED subunits depending on the cellular context.
Collapse
|
24
|
Köhler K, Sanchez-Pulido L, Höfer V, Marko A, Ponting CP, Snijders AP, Feederle R, Schepers A, Boos D. The Cdk8/19-cyclin C transcription regulator functions in genome replication through metazoan Sld7. PLoS Biol 2019; 17:e2006767. [PMID: 30695077 PMCID: PMC6377148 DOI: 10.1371/journal.pbio.2006767] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/15/2019] [Accepted: 01/08/2019] [Indexed: 02/04/2023] Open
Abstract
Accurate genome duplication underlies genetic homeostasis. Metazoan Mdm2 binding protein (MTBP) forms a main regulatory platform for origin firing together with Treslin/TICRR and TopBP1 (Topoisomerase II binding protein 1 (TopBP1)-interacting replication stimulating protein/TopBP1-interacting checkpoint and replication regulator). We report the first comprehensive analysis of MTBP and reveal conserved and metazoa-specific MTBP functions in replication. This suggests that metazoa have evolved specific molecular mechanisms to adapt replication principles conserved with yeast to the specific requirements of the more complex metazoan cells. We uncover one such metazoa-specific process: a new replication factor, cyclin-dependent kinase 8/19-cyclinC (Cdk8/19-cyclin C), binds to a central domain of MTBP. This interaction is required for complete genome duplication in human cells. In the absence of MTBP binding to Cdk8/19-cyclin C, cells enter mitosis with incompletely duplicated chromosomes, and subsequent chromosome segregation occurs inaccurately. Using remote homology searches, we identified MTBP as the metazoan orthologue of yeast synthetic lethal with Dpb11 7 (Sld7). This homology finally demonstrates that the set of yeast core factors sufficient for replication initiation in vitro is conserved in metazoa. MTBP and Sld7 contain two homologous domains that are present in no other protein, one each in the N and C termini. In MTBP the conserved termini flank the metazoa-specific Cdk8/19-cyclin C binding region and are required for normal origin firing in human cells. The N termini of MTBP and Sld7 share an essential origin firing function, the interaction with Treslin/TICRR or its yeast orthologue Sld3, respectively. The C termini may function as homodimerisation domains. Our characterisation of broadly conserved and metazoa-specific initiation processes sets the basis for further mechanistic dissection of replication initiation in vertebrates. It is a first step in understanding the distinctions of origin firing in higher eukaryotes.
Collapse
Affiliation(s)
- Kerstin Köhler
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Verena Höfer
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Anika Marko
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Regina Feederle
- Monoclonal Antibody Core Facility and Research Group, Helmholtz Zentrum, Munich GmbH; Institute for Diabetes and Obesity, Neuherberg, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility and Research Group, Helmholtz Zentrum, Munich GmbH; Institute for Diabetes and Obesity, Neuherberg, Germany.,Department of Gene Vectors, Helmholtz Zentrum München GmbH, Munich, Germany
| | - Dominik Boos
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Dannappel MV, Sooraj D, Loh JJ, Firestein R. Molecular and in vivo Functions of the CDK8 and CDK19 Kinase Modules. Front Cell Dev Biol 2019; 6:171. [PMID: 30693281 PMCID: PMC6340071 DOI: 10.3389/fcell.2018.00171] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
CDK8 and its paralog, CDK19, collectively termed ‘Mediator Kinase,’ are cyclin-dependent kinases that have been implicated as key rheostats in cellular homeostasis and developmental programming. CDK8 and CDK19 are incorporated, in a mutually exclusive manner, as part of a 4-protein complex called the Mediator kinase module. This module reversibly associates with the Mediator, a 26 subunit protein complex that regulates RNA Polymerase II mediated gene expression. As part of this complex, the Mediator kinases have been implicated in diverse process such as developmental signaling, metabolic homeostasis and in innate immunity. In recent years, dysregulation of Mediator kinase module proteins, including CDK8/19, has been implicated in the development of different human diseases, and in particular cancer. This has led to intense efforts to understand how CDK8/19 regulate diverse biological outputs and develop Mediator kinase inhibitors that can be exploited therapeutically. Herein, we review both context and function of the Mediator kinases at a molecular, cellular and animal level. In so doing, we illuminate emerging concepts underpinning Mediator kinase biology and highlight certain aspects that remain unsolved.
Collapse
Affiliation(s)
- Marius Volker Dannappel
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Dhanya Sooraj
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Jia Jian Loh
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Faculty of Science, School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Ron Firestein
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
26
|
Abstract
The Mediator-associated kinases CDK8 and CDK19 function in the context of three additional proteins: CCNC and MED12, which activate CDK8/CDK19 kinase function, and MED13, which enables their association with the Mediator complex. The Mediator kinases affect RNA polymerase II (pol II) transcription indirectly, through phosphorylation of transcription factors and by controlling Mediator structure and function. In this review, we discuss cellular roles of the Mediator kinases and mechanisms that enable their biological functions. We focus on sequence-specific, DNA-binding transcription factors and other Mediator kinase substrates, and how CDK8 or CDK19 may enable metabolic and transcriptional reprogramming through enhancers and chromatin looping. We also summarize Mediator kinase inhibitors and their therapeutic potential. Throughout, we note conserved and divergent functions between yeast and mammalian CDK8, and highlight many aspects of kinase module function that remain enigmatic, ranging from potential roles in pol II promoter-proximal pausing to liquid-liquid phase separation.
Collapse
Affiliation(s)
- Charli B Fant
- a Department of Biochemistry , University of Colorado , Boulder , CO , USA
| | - Dylan J Taatjes
- a Department of Biochemistry , University of Colorado , Boulder , CO , USA
| |
Collapse
|
27
|
Xi M, Chen T, Wu C, Gao X, Wu Y, Luo X, Du K, Yu L, Cai T, Shen R, Sun H. CDK8 as a therapeutic target for cancers and recent developments in discovery of CDK8 inhibitors. Eur J Med Chem 2018; 164:77-91. [PMID: 30594029 DOI: 10.1016/j.ejmech.2018.11.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 02/08/2023]
Abstract
Cyclin-dependent kinases 8 (CDK8) regulates transcriptional process via associating with the mediator complex or phosphorylating transcription factors (TF). Overexpression of CDK8 has been observed in various cancers. It mediates aberrant activation of Wnt/β-catenin signaling pathway, which is initially recognized and best studied in colorectal cancer (CRC). CDK8 acts as an oncogene and represents a potential target for developing novel CDK8 inhibitors in cancer therapeutics. However, other study has revealed its contrary role. The function of CDK8 is context dependent. Even so, a variety of potent and selective CDK8 inhibitors have been discovered after crystal structures were resolved in two states (active or inactive). In this review, we summarize co-crystal structures, biological mechanisms, dysregulation in cancers and recent progress in the field of CDK8 inhibitors, trying to offer an outlook of CDK8 inhibitors in cancer therapy in future.
Collapse
Affiliation(s)
- Meiyang Xi
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tingkai Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Chunlei Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiaozhong Gao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yonghua Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiang Luo
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Kui Du
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Lemao Yu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tao Cai
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Runpu Shen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
28
|
Gao X, Xie XJ, Hsu FN, Li X, Liu M, Hemba-Waduge RUS, Xu W, Ji JY. CDK8 mediates the dietary effects on developmental transition in Drosophila. Dev Biol 2018; 444:62-70. [PMID: 30352217 PMCID: PMC6263851 DOI: 10.1016/j.ydbio.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/08/2018] [Accepted: 10/07/2018] [Indexed: 01/29/2023]
Abstract
The complex interplay between genetic and environmental factors, such as diet and lifestyle, defines the initiation and progression of multifactorial diseases, including cancer, cardiovascular and metabolic diseases, and neurological disorders. Given that most of the studies have been performed in controlled experimental settings to ensure the consistency and reproducibility, the impacts of environmental factors, such as dietary perturbation, on the development of animals with different genotypes and the pathogenesis of these diseases remain poorly understood. By analyzing the cdk8 and cyclin C (cycC) mutant larvae in Drosophila, we have previously reported that the CDK8-CycC complex coordinately regulates lipogenesis by repressing dSREBP (sterol regulatory element-binding protein)-activated transcription and developmental timing by activating EcR (ecdysone receptor)-dependent gene expression. Here we report that dietary nutrients, particularly proteins and carbohydrates, modulate the developmental timing through the CDK8/CycC/EcR pathway. We observed that cdk8 and cycC mutants are sensitive to the levels of dietary proteins and seven amino acids (arginine, glutamine, isoleucine, leucine, methionine, threonine, and valine). Those mutants are also sensitive to dietary carbohydrates, and they are more sensitive to monosaccharides than disaccharides. These results suggest that CDK8-CycC mediates the dietary effects on lipid metabolism and developmental timing in Drosophila larvae.
Collapse
Affiliation(s)
- Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | | | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
29
|
Dual Roles of Glutathione in Ecdysone Biosynthesis and Antioxidant Function During Larval Development in Drosophila. Genetics 2017; 207:1519-1532. [PMID: 29021278 PMCID: PMC5714463 DOI: 10.1534/genetics.117.300391] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/08/2017] [Indexed: 01/08/2023] Open
Abstract
Ecdysteroids, including the biologically active hormone 20-hydroxyecdysone (20E), play essential roles in controlling many developmental and physiological events in insects. Ecdysteroid biosynthesis is achieved by a series of specialized enzymes encoded by the Halloween genes. Recently, a new class of Halloween gene, noppera-bo (nobo), encoding a glutathione S-transferase (GST) in dipteran and lepidopteran species, has been identified and characterized. GSTs are well known to conjugate substrates with the reduced form of glutathione (GSH), a bioactive tripeptide composed of glutamate, cysteine, and glycine. We hypothesized that GSH itself is required for ecdysteroid biosynthesis. However, the role of GSH in steroid hormone biosynthesis has not been examined in any organisms. Here, we report phenotypic analysis of a complete loss-of-function mutant in the γ-glutamylcysteine synthetase catalytic subunit (Gclc) gene in the fruit fly Drosophila melanogaster. Gclc encodes the evolutionarily conserved catalytic component of the enzyme that conjugates glutamate and cysteine in the GSH biosynthesis pathway. Complete Gclc loss-of-function leads to drastic GSH deficiency in the larval body fluid. Gclc mutant animals show a larval-arrest phenotype. Ecdysteroid titer in Gclc mutant larvae decreases, and the larval-arrest phenotype is rescued by oral administration of 20E or cholesterol. Moreover, Gclc mutant animals exhibit abnormal lipid deposition in the prothoracic gland, a steroidogenic organ during larval development. All of these phenotypes are reminiscent to nobo loss-of-function animals. On the other hand, Gclc mutant larvae also exhibit a significant reduction in antioxidant capacity. Consistent with this phenotype, Gclc mutant larvae are more sensitive to oxidative stress response as compared to wild-type. Nevertheless, the ecdysteroid biosynthesis defect in Gclc mutant animals is not associated with loss of antioxidant function. Our data raise the unexpected hypothesis that a primary role of GSH in early D. melanogaster larval development is ecdysteroid biosynthesis, independent from the antioxidant role of GSH.
Collapse
|
30
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
31
|
Malik N, Agarwal P, Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit Rev Biochem Mol Biol 2017; 52:475-502. [DOI: 10.1080/10409238.2017.1325830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
32
|
Monribot-Villanueva J, Zurita M, Vázquez M. Developmental transcriptional regulation by SUMOylation, an evolving field. Genesis 2017; 55. [PMID: 27935206 DOI: 10.1002/dvg.23009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023]
Abstract
SUMOylation is a reversible post-translational protein modification that affects the intracellular localization, stability, activity, and interactions of its protein targets. The SUMOylation pathway influences several nuclear and cytoplasmic processes. The expression of many genes, in particular those involved in development is finely tuned in space and time by several groups of proteins. There is growing evidence that transcriptional regulation mechanisms involve direct SUMOylation of transcriptional-related proteins such as initiation and elongation factors, and subunits of chromatin modifier and remodeling complexes originally described as members of the trithorax and Polycomb groups in Drosophila. Therefore, it is being unveiled that SUMOylation has a role in both, gene silencing and gene activation mechanisms. The goal of this review is to discuss the information on how SUMO modification in components of these multi-subunit complexes may have an effect in genome architecture and function and, therefore, in the regulation of gene expression in time and space.
Collapse
Affiliation(s)
- Juan Monribot-Villanueva
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Zurita
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martha Vázquez
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
33
|
The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans. Genetics 2015; 202:583-99. [PMID: 26715664 DOI: 10.1534/genetics.115.180265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/18/2015] [Indexed: 12/27/2022] Open
Abstract
Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals.
Collapse
|
34
|
McCleland ML, Soukup TM, Liu SD, Esensten JH, de Sousa e Melo F, Yaylaoglu M, Warming S, Roose-Girma M, Firestein R. Cdk8 deletion in the Apc(Min) murine tumour model represses EZH2 activity and accelerates tumourigenesis. J Pathol 2015; 237:508-19. [PMID: 26235356 DOI: 10.1002/path.4596] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/09/2015] [Accepted: 07/28/2015] [Indexed: 01/29/2023]
Abstract
CDK8 is a dissociable kinase module of the Mediator complex and has been shown to play an important role in transcriptional regulation in organisms as diverse as yeast and humans. Recent studies suggest that CDK8 functions as an oncoprotein in melanoma and colon cancer. Importantly, these studies were conducted using in vitro cell line models and the role of CDK8 in tumourigenesis in vivo has not been explored. We have generated a mouse with a Cdk8 conditional knockout allele and examined the consequences of Cdk8 loss on normal tissue homeostasis and tumour development in vivo. Cdk8 deletion in the young adult mouse did not induce any gross or histopathological abnormalities, implying that Cdk8 is largely dispensable for somatic cellular homeostasis. In contrast, Cdk8 deletion in the Apc(Min) intestinal tumour model shortened the animals' survival and increased tumour burden. Although Cdk8 deletion did not affect tumour initiation, intestinal tumour size and growth rate were significantly increased in Cdk8-null animals. Transcriptome analysis performed on Cdk8-null intestinal cells revealed up-regulation of genes that are governed by the Polycomb group (PcG) complex. In support of these findings, Cdk8-null intestinal cells and tumours displayed a reduction in histone H3K27 trimethylation, both globally and at the promoters of a number of PcG-regulated genes involved in oncogenic signalling. Together, our findings uncover a tumour suppressor function for CDK8 in vivo and suggest that the role of CDK8 activity in driving oncogenesis is context-specific. Sequencing data were deposited at GEO (Accession No. GSE71385).
Collapse
Affiliation(s)
- Mark L McCleland
- Department of Pathology, Genentech Inc, South San Francisco, CA, USA
| | - Tim M Soukup
- Department of Molecular Biology, Genentech Inc, South San Francisco, CA, USA
| | - Scot D Liu
- Department of Pathology, Genentech Inc, South San Francisco, CA, USA
| | | | | | - Murat Yaylaoglu
- Department of Pathology, Genentech Inc, South San Francisco, CA, USA
| | - Soren Warming
- Department of Molecular Biology, Genentech Inc, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech Inc, South San Francisco, CA, USA
| | - Ron Firestein
- Department of Pathology, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
35
|
Xie XJ, Hsu FN, Gao X, Xu W, Ni JQ, Xing Y, Huang L, Hsiao HC, Zheng H, Wang C, Zheng Y, Xiaoli AM, Yang F, Bondos SE, Ji JY. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol 2015. [PMID: 26222308 PMCID: PMC4519132 DOI: 10.1371/journal.pbio.1002207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval–pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval–pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval–pupal transition. During the larval-pupal transition in Drosophila, CDK8-CycC helps to link nutrient intake to development by activating ecdysone receptor-dependent transcription and to fat metabolism by inhibiting SREBP-activated gene expression. Arthropods are estimated to account for over 80% of animal species on earth. Characterized by their rigid exoskeletons, juvenile arthropods must periodically shed their thick outer cuticles by molting in order to grow. The steroid hormone ecdysone plays an essential role in regulating the timing of developmental transitions, but exactly how ecdysone and its receptor EcR activates transcription correctly after integrating nutritional and developmental cues remains unknown. Our developmental genetic analyses of two Drosophila mutants, cdk8 and cycC, show that they are lethal during the prepupal stage, with aberrant accumulation of fat and a severely delayed larval–pupal transition. As we have reported previously, CDK8-CycC inhibits fat accumulation by directly inactivating SREBP, a master transcription factor that controls the expression of lipogenic genes, which explains the abnormal fat accumulation in the cdk8 and cycC mutants. We find that CDK8 and CycC are required for EcR to bind to its target genes, serving as transcriptional cofactors for EcR-dependent gene expression. The expression of EcR target genes is compromised in cdk8 and cycC mutants and underpins the retarded pupariation phenotype. Starvation of feeding larvae precociously up-regulates CDK8 and EcR, prematurely down-regulates SREBP activity, and leads to early pupariation, whereas re-feeding starved larvae has opposite effects. Taken together, these results suggest that CDK8 and CycC play important roles in coordinating nutrition intake with fat metabolism by directly inhibiting SREBP-dependent gene expression and regulating developmental timing by activating EcR-dependent transcription in Drosophila.
Collapse
Affiliation(s)
- Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Jian-Quan Ni
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, China
| | - Yue Xing
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Liying Huang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Hao-Ching Hsiao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Frelinghuysen Road, Piscataway, New Jersey, United States of America
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine; Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yani Zheng
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Alus M. Xiaoli
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fajun Yang
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Dupont CA, Dardalhon-Cuménal D, Kyba M, Brock HW, Randsholt NB, Peronnet F. Drosophila Cyclin G and epigenetic maintenance of gene expression during development. Epigenetics Chromatin 2015; 8:18. [PMID: 25995770 PMCID: PMC4438588 DOI: 10.1186/s13072-015-0008-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/01/2015] [Indexed: 12/31/2022] Open
Abstract
Background Cyclins and cyclin-dependent kinases (CDKs) are essential for cell cycle regulation and are functionally associated with proteins involved in epigenetic maintenance of transcriptional patterns in various developmental or cellular contexts. Epigenetic maintenance of transcription patterns, notably of Hox genes, requires the conserved Polycomb-group (PcG), Trithorax-group (TrxG), and Enhancer of Trithorax and Polycomb (ETP) proteins, particularly well studied in Drosophila. These proteins form large multimeric complexes that bind chromatin and appose or recognize histone post-translational modifications. PcG genes act as repressors, counteracted by trxG genes that maintain gene activation, while ETPs interact with both, behaving alternatively as repressors or activators. Drosophila Cyclin G negatively regulates cell growth and cell cycle progression, binds and co-localizes with the ETP Corto on chromatin, and participates with Corto in Abdominal-B Hox gene regulation. Here, we address further implications of Cyclin G in epigenetic maintenance of gene expression. Results We show that Cyclin G physically interacts and extensively co-localizes on chromatin with the conserved ETP Additional sex combs (ASX), belonging to the repressive PR-DUB complex that participates in H2A deubiquitination and Hox gene silencing. Furthermore, Cyclin G mainly co-localizes with RNA polymerase II phosphorylated on serine 2 that is specific to productive transcription. CycG interacts with Asx, PcG, and trxG genes in Hox gene maintenance, and behaves as a PcG gene. These interactions correlate with modified ectopic Hox protein domains in imaginal discs, consistent with a role for Cyclin G in PcG-mediated Hox gene repression. Conclusions We show here that Drosophila CycG is a Polycomb-group gene enhancer, acting in epigenetic maintenance of the Hox genes Sex combs reduced (Scr) and Ultrabithorax (Ubx). However, our data suggest that Cyclin G acts alternatively as a transcriptional activator or repressor depending on the developmental stage, the tissue or the target gene. Interestingly, since Cyclin G interacts with several CDKs, Cyclin G binding to the ETPs ASX or Corto suggests that their activity could depend on Cyclin G-mediated phosphorylation. We discuss whether Cyclin G fine-tunes transcription by controlling H2A ubiquitination and transcriptional elongation via interaction with the ASX subunit of PR-DUB. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0008-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camille A Dupont
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France ; CNRS, IBPS, UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France
| | - Delphine Dardalhon-Cuménal
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France ; CNRS, IBPS, UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455 USA
| | - Hugh W Brock
- Department of Zoology, University of British Columbia, 6270 University Boulevard, V6T 1Z4 Vancouver, BC Canada
| | - Neel B Randsholt
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France ; CNRS, IBPS, UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France
| | - Frédérique Peronnet
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France ; CNRS, IBPS, UMR 7622, Developmental Biology, 9, quai Saint-Bernard, F-75005 Paris, France
| |
Collapse
|
37
|
Chen L, Chu C, Kong X, Huang T, Cai YD. Discovery of new candidate genes related to brain development using protein interaction information. PLoS One 2015; 10:e0118003. [PMID: 25635857 PMCID: PMC4311913 DOI: 10.1371/journal.pone.0118003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/03/2015] [Indexed: 12/18/2022] Open
Abstract
Human brain development is a dramatic process composed of a series of complex and fine-tuned spatiotemporal gene expressions. A good comprehension of this process can assist us in developing the potential of our brain. However, we have only limited knowledge about the genes and gene functions that are involved in this biological process. Therefore, a substantial demand remains to discover new brain development-related genes and identify their biological functions. In this study, we aimed to discover new brain-development related genes by building a computational method. We referred to a series of computational methods used to discover new disease-related genes and developed a similar method. In this method, the shortest path algorithm was executed on a weighted graph that was constructed using protein-protein interactions. New candidate genes fell on at least one of the shortest paths connecting two known genes that are related to brain development. A randomization test was then adopted to filter positive discoveries. Of the final identified genes, several have been reported to be associated with brain development, indicating the effectiveness of the method, whereas several of the others may have potential roles in brain development.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People’s Republic of China
| | - Chen Chu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, People’s Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, People’s Republic of China
- * E-mail: (TH); (YDC)
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai 200444, People’s Republic of China
- * E-mail: (TH); (YDC)
| |
Collapse
|
38
|
The metazoan-specific mediator subunit 26 (Med26) is essential for viability and is found at both active genes and pericentric heterochromatin in Drosophila melanogaster. Mol Cell Biol 2014; 34:2710-20. [PMID: 24820420 DOI: 10.1128/mcb.01365-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human MED26 was originally purified in the cofactor required for the Sp1 activation complex (CRSP) as a 70-kDa component named CRSP70. This polypeptide was specific to metazoans and the “small” form of the Mediator complex. We report here that a Drosophila melanogaster homologue of MED26 similarly interacts with other components of the core Drosophila Mediator complex but not with the kinase module and is recruited to genes upon activation. Using a null allele of Med26, we show that Med26 is required for organismal viability but not for cell proliferation or survival. Clones lacking Med26 in the wing disc lead to loss of the adult wing margin and reduced expression of genes involved in wing margin formation. Surprisingly, when polytene chromosomes from the salivary gland were examined using antibodies to Med26, it was apparent that a fraction of the protein was associated with the chromocenter, which contains pericentric heterochromatin. This staining colocalizes with heterochromatin protein 1 (HP1). Immunoprecipitation experiments show that Med26 interacts with HP1. The interaction is mediated through the chromoshadow domain of HP1 and through the conserved motif in the carboxy terminus of the Med26 protein. This work is the first characterization of the metazoan-specific Mediator subunit in an animal model.
Collapse
|
39
|
Mao F, Yang X, Fu L, Lv X, Zhang Z, Wu W, Yang S, Zhou Z, Zhang L, Zhao Y. The Kto-Skd complex can regulate ptc expression by interacting with Cubitus interruptus (Ci) in the Hedgehog signaling pathway. J Biol Chem 2014; 289:22333-41. [PMID: 24962581 DOI: 10.1074/jbc.m114.560995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression.
Collapse
Affiliation(s)
- Feifei Mao
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiaofeng Yang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Lin Fu
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiangdong Lv
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhao Zhang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Wenqing Wu
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Siqi Yang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhaocai Zhou
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Lei Zhang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yun Zhao
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
40
|
Heart- and muscle-derived signaling system dependent on MED13 and Wingless controls obesity in Drosophila. Proc Natl Acad Sci U S A 2014; 111:9491-6. [PMID: 24979807 DOI: 10.1073/pnas.1409427111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity develops in response to an imbalance of energy homeostasis and whole-body metabolism. Muscle plays a central role in the control of energy homeostasis through consumption of energy and signaling to adipose tissue. We reported previously that MED13, a subunit of the Mediator complex, acts in the heart to control obesity in mice. To further explore the generality and mechanistic basis of this observation, we investigated the potential influence of MED13 expression in heart and muscle on the susceptibility of Drosophila to obesity. Here, we show that heart/muscle-specific knockdown of MED13 or MED12, another Mediator subunit, increases susceptibility to obesity in adult flies. To identify possible muscle-secreted obesity regulators, we performed an RNAi-based genetic screen of 150 genes that encode secreted proteins and found that Wingless inhibition also caused obesity. Consistent with these findings, muscle-specific inhibition of Armadillo, the downstream transcriptional effector of the Wingless pathway, also evoked an obese phenotype in flies. Epistasis experiments further demonstrated that Wingless functions downstream of MED13 within a muscle-regulatory pathway. Together, these findings reveal an intertissue signaling system in which Wingless acts as an effector of MED13 in heart and muscle and suggest that Wingless-mediated cross-talk between striated muscle and adipose tissue controls obesity in Drosophila. This signaling system appears to represent an ancestral mechanism for the control of systemic energy homeostasis.
Collapse
|
41
|
Raya-González J, Ortiz-Castro R, Ruíz-Herrera LF, Kazan K, López-Bucio J. PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root Formation via Auxin Signaling in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:880-894. [PMID: 24784134 PMCID: PMC4044844 DOI: 10.1104/pp.114.239806] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/24/2014] [Indexed: 05/22/2023]
Abstract
Root system architecture is a major determinant of water and nutrient acquisition as well as stress tolerance in plants. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II. In this article, we characterize possible roles of the MEDIATOR8 (MED8) and MED25 subunits of the plant Mediator complex in the regulation of root system architecture in Arabidopsis (Arabidopsis thaliana). We found that loss-of-function mutations in PHYTOCHROME AND FLOWERING TIME1 (PFT1)/MED25 increase primary and lateral root growth as well as lateral and adventitious root formation. In contrast, PFT1/MED25 overexpression reduces these responses, suggesting that PFT1/MED25 is an important element of meristematic cell proliferation and cell size control in both lateral and primary roots. PFT1/MED25 negatively regulates auxin transport and response gene expression in most parts of the plant, as evidenced by increased and decreased expression of the auxin-related reporters PIN-FORMED1 (PIN1)::PIN1::GFP (for green fluorescent protein), DR5:GFP, DR5:uidA, and BA3:uidA in pft1-2 mutants and in 35S:PFT1 seedlings, respectively. No alterations in endogenous auxin levels could be found in pft1-2 mutants or in 35S:PFT1-overexpressing seedlings. However, detailed analyses of DR5:GFP and DR5:uidA activity in wild-type, pft1-2, and 35S:PFT1 seedlings in response to indole-3-acetic acid, naphthaleneacetic acid, and the polar auxin transport inhibitor 1-N-naphthylphthalamic acid indicated that PFT1/MED25 principally regulates auxin transport and response. These results provide compelling evidence for a new role for PFT1/MED25 as an important transcriptional regulator of root system architecture through auxin-related mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - Randy Ortiz-Castro
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - Kemal Kazan
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., J.L.-B.); andCommonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia (K.K.)
| |
Collapse
|
42
|
Yin JW, Wang G. The Mediator complex: a master coordinator of transcription and cell lineage development. Development 2014; 141:977-87. [PMID: 24550107 DOI: 10.1242/dev.098392] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.
Collapse
Affiliation(s)
- Jing-wen Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
43
|
Kuuluvainen E, Hakala H, Havula E, Sahal Estimé M, Rämet M, Hietakangas V, Mäkelä TP. Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of Serpent-dependent innate immunity genes in Drosophila. J Biol Chem 2014; 289:16252-61. [PMID: 24778181 DOI: 10.1074/jbc.m113.541904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Cdk8 (cyclin-dependent kinase 8) module of Mediator integrates regulatory cues from transcription factors to RNA polymerase II. It consists of four subunits where Med12 and Med13 link Cdk8 and cyclin C (CycC) to core Mediator. Here we have investigated the contributions of the Cdk8 module subunits to transcriptional regulation using RNA interference in Drosophila cells. Genome-wide expression profiling demonstrated separation of Cdk8-CycC and Med12-Med13 profiles. However, transcriptional regulation by Cdk8-CycC was dependent on Med12-Med13. This observation also revealed that Cdk8-CycC and Med12-Med13 often have opposite transcriptional effects. Interestingly, Med12 and Med13 profiles overlapped significantly with that of the GATA factor Serpent. Accordingly, mutational analyses indicated that GATA sites are required for Med12-Med13 regulation of Serpent-dependent genes. Med12 and Med13 were also found to be required for Serpent-activated innate immunity genes in defense to bacterial infection. The results reveal a novel role for the Cdk8 module in Serpent-dependent transcription and innate immunity.
Collapse
Affiliation(s)
- Emilia Kuuluvainen
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Heini Hakala
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Essi Havula
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki, the Department of Biosciences, University of Helsinki, P. O. Box 65, 00014 Helsinki
| | - Michelle Sahal Estimé
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Mika Rämet
- the Institute of Biomedical Technology, and BioMediTech, University of Tampere, 33014 Tampere, the Department of Pediatrics, Tampere University Hospital, 22521 Tampere, the Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, 90014 Oulu, and the Department of Children and Adolescents, Oulu University Hospital, 90029 Oulu, Finland
| | - Ville Hietakangas
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki, the Department of Biosciences, University of Helsinki, P. O. Box 65, 00014 Helsinki
| | - Tomi P Mäkelä
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki,
| |
Collapse
|
44
|
Xu W, Amire-Brahimi B, Xie XJ, Huang L, Ji JY. All-atomic molecular dynamic studies of human CDK8: insight into the A-loop, point mutations and binding with its partner CycC. Comput Biol Chem 2014; 51:1-11. [PMID: 24754906 DOI: 10.1016/j.compbiolchem.2014.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
Abstract
The Mediator, a conserved multisubunit protein complex in eukaryotic organisms, regulates gene expression by bridging sequence-specific DNA-binding transcription factors to the general RNA polymerase II machinery. In yeast, Mediator complex is organized in three core modules (head, middle and tail) and a separable 'CDK8 submodule' consisting of four subunits including Cyclin-dependent kinase CDK8 (CDK8), Cyclin C (CycC), MED12, and MED13. The 3-D structure of human CDK8-CycC complex has been recently experimentally determined. To take advantage of this structure and the improved theoretical calculation methods, we have performed molecular dynamic simulations to study dynamics of CDK8 and two CDK8 point mutations (D173A and D189N), which have been identified in human cancers, with and without full length of the A-loop, as well as the binding between CDK8 and CycC. We found that CDK8 structure gradually loses two helical structures during the 50-ns molecular dynamic simulation, likely due to the presence of the full-length A-loop. In addition, our studies showed the hydrogen bond occupation of the CDK8 A-loop increases during the first 20-ns MD simulation and stays stable during the later 30-ns MD simulation. Four residues in the A-loop of CDK8 have high hydrogen bond occupation, while the rest residues have low or no hydrogen bond occupation. The hydrogen bond dynamic study of the A-loop residues exhibits three types of changes: increasing, decreasing, and stable. Furthermore, the 3-D structures of CDK8 point mutations D173A, D189N, T196A and T196D have been built by molecular modeling and further investigated by 50-ns molecular dynamic simulations. D173A has the highest average potential energy, while T196D has the lowest average potential energy, indicating that T196D is the most stable structure. Finally, we calculated theoretical binding energy of CDK8 and CycC by MM/PBSA and MM/GBSA methods, and the negative values obtained from both methods demonstrate stability of CDK8-CycC complex. Taken together, these analyses will improve our understanding of the exact functions of CDK8 and the interaction with its partner CycC.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA.
| | - Benjamin Amire-Brahimi
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Liying Huang
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
45
|
Nemet J, Jelicic B, Rubelj I, Sopta M. The two faces of Cdk8, a positive/negative regulator of transcription. Biochimie 2013; 97:22-7. [PMID: 24139904 DOI: 10.1016/j.biochi.2013.10.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022]
Abstract
Three cyclin dependent kinases, Cdk7, Cdk8 and Cdk9 are intimately connected with the processes of RNA polymerase II dependent transcription initiation and elongation in eukaryotic cells. Each of these kinases is part of a larger multisubunit complex, TFIIH, Mediator and p-TEFb respectively. Of the three kinases, Cdk8 is the most complex given that it has been associated with both positive and negative effects on transcription via mechanisms that include regulation of transcription factor turnover, regulation of CTD phosphorylation and regulation of activator or repressor function. Furthermore, Cdk8 has emerged as a key regulator of multiple transcriptional programs linked to nutrient/growth factor sensing and differentiation control. As such Cdk8 represents a potentially interesting therapeutic drug target. In this review we summarize the current state of knowledge on Cdk8 function both in yeast and higher eukaryotes as well as discussing the effects of Cdk8 null mutations at the organismal level.
Collapse
Affiliation(s)
- Josipa Nemet
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Branka Jelicic
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Ivica Rubelj
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Mary Sopta
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| |
Collapse
|
46
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
47
|
Tsutsui T, Fukasawa R, Shinmyouzu K, Nakagawa R, Tobe K, Tanaka A, Ohkuma Y. Mediator complex recruits epigenetic regulators via its two cyclin-dependent kinase subunits to repress transcription of immune response genes. J Biol Chem 2013; 288:20955-20965. [PMID: 23749998 DOI: 10.1074/jbc.m113.486746] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mediator complex (Mediator) plays pivotal roles in activating transcription by RNA polymerase II, but relatively little is known about its roles in repression. Here, we identified the histone arginine methyltransferase PRMT5 and WD repeat protein 77/methylosome protein 50 (WDR77/MEP50) as Mediator cyclin-dependent kinase (CDK)-interacting proteins and studied the roles of PRMT5 in the transcriptional regulation of CCAAT enhancer-binding protein (C/EBP) β target genes. First, we purified CDK8- and CDK19-containing complexes from HeLa nuclear extracts and subjected these purified complexes to mass spectrometric analyses. These experiments revealed that two Mediator CDKs, CDK8 and CDK19, individually interact with PRMT5 and WDR77, and their interactions with PRMT5 cause transcriptional repression of C/EBPβ target genes by regulating symmetric dimethylation of histone H4 arginine 3 (H4R3me2s) in the promoter regions of those genes. Furthermore, the recruitment of the DNA methyltransferase DNMT3A correlated with H4R3 dimethylation potentially leading to DNA methylation at the promoter proximal region and tight inhibition of preinitiation complex formation. In vertebrates, C/EBPβ regulates many genes involved in immune responses and cell differentiation. These findings shed light on the molecular mechanisms of the repressive roles of Mediator CDKs in transcription of C/EBPβ target genes and might provide clues that enable future studies of the functional associations between Mediators and epigenetic regulation.
Collapse
Affiliation(s)
- Taiki Tsutsui
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and
| | - Rikiya Fukasawa
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and
| | - Kaori Shinmyouzu
- the Mass Spectrometry Analysis Unit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Reiko Nakagawa
- the Mass Spectrometry Analysis Unit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazuyuki Tobe
- the First Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan and
| | - Aki Tanaka
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and
| | - Yoshiaki Ohkuma
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and.
| |
Collapse
|
48
|
Grueter CE. Mediator complex dependent regulation of cardiac development and disease. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:151-7. [PMID: 23727265 PMCID: PMC4357813 DOI: 10.1016/j.gpb.2013.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/09/2013] [Accepted: 05/18/2013] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality. The risk factors for CVD include environmental and genetic components. Human mutations in genes involved in most aspects of cardiovascular function have been identified, many of which are involved in transcriptional regulation. The Mediator complex serves as a pivotal transcriptional regulator that functions to integrate diverse cellular signals by multiple mechanisms including recruiting RNA polymerase II, chromatin modifying proteins and non-coding RNAs to promoters in a context dependent manner. This review discusses components of the Mediator complex and the contribution of the Mediator complex to normal and pathological cardiac development and function. Enhanced understanding of the role of this core transcriptional regulatory complex in the heart will help us gain further insights into CVD.
Collapse
Affiliation(s)
- Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
49
|
Steimel A, Suh J, Hussainkhel A, Deheshi S, Grants JM, Zapf R, Moerman DG, Taubert S, Hutter H. The C. elegans CDK8 Mediator module regulates axon guidance decisions in the ventral nerve cord and during dorsal axon navigation. Dev Biol 2013; 377:385-98. [PMID: 23458898 DOI: 10.1016/j.ydbio.2013.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 01/21/2013] [Accepted: 02/14/2013] [Indexed: 11/30/2022]
Abstract
Receptors expressed on the growth cone of outgrowing axons detect cues required for proper navigation. The pathway choices available to an axon are in part defined by the set of guidance receptors present on the growth cone. Regulated expression of receptors and genes controlling the localization and activity of receptors ensures that axons respond only to guidance cues relevant for reaching their targets. In genetic screens for axon guidance mutants, we isolated an allele of let-19/mdt-13, a component of the Mediator, a large ~30 subunit protein complex essential for gene transcription by RNA polymerase II. LET-19/MDT-13 is part of the CDK8 module of the Mediator. By testing other Mediator components, we found that all subunits of the CDK8 module as well as some other Mediator components are required for specific axon navigation decisions in a subset of neurons. Expression profiling demonstrated that let-19/mdt-13 regulates the expression of a large number of genes in interneurons. A mutation in the sax-3 gene, encoding a receptor for the repulsive guidance cue SLT-1, suppresses the commissure navigation defects found in cdk-8 mutants. This suggests that the CDK8 module specifically represses the SAX-3/ROBO pathway to ensure proper commissure navigation.
Collapse
Affiliation(s)
- Andreas Steimel
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bancerek J, Poss ZC, Steinparzer I, Sedlyarov V, Pfaffenwimmer T, Mikulic I, Dölken L, Strobl B, Müller M, Taatjes DJ, Kovarik P. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 2013; 38:250-62. [PMID: 23352233 PMCID: PMC3580287 DOI: 10.1016/j.immuni.2012.10.017] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022]
Abstract
Gene regulation by cytokine-activated transcription factors of the signal transducer and activator of transcription (STAT) family requires serine phosphorylation within the transactivation domain (TAD). STAT1 and STAT3 TAD phosphorylation occurs upon promoter binding by an unknown kinase. Here, we show that the cyclin-dependent kinase 8 (CDK8) module of the Mediator complex phosphorylated regulatory sites within the TADs of STAT1, STAT3, and STAT5, including S727 within the STAT1 TAD in the interferon (IFN) signaling pathway. We also observed a CDK8 requirement for IFN-γ-inducible antiviral responses. Microarray analyses revealed that CDK8-mediated STAT1 phosphorylation positively or negatively regulated over 40% of IFN-γ-responsive genes, and RNA polymerase II occupancy correlated with gene expression changes. This divergent regulation occurred despite similar CDK8 occupancy at both S727 phosphorylation-dependent and -independent genes. These data identify CDK8 as a key regulator of STAT1 and antiviral responses and suggest a general role for CDK8 in STAT-mediated transcription. As such, CDK8 represents a promising target for therapeutic manipulation of cytokine responses.
Collapse
Affiliation(s)
- Joanna Bancerek
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|