1
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
2
|
Liu TC, Guo KW, Chu JW, Hsiao YY. Understanding APE1 cellular functions by the structural preference of exonuclease activities. Comput Struct Biotechnol J 2021; 19:3682-3691. [PMID: 34285771 PMCID: PMC8258793 DOI: 10.1016/j.csbj.2021.06.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) has versatile enzymatic functions, including redox, endonuclease, and exonuclease activities. APE1 is thus broadly associated with pathways in DNA repair, cancer cell growth, and drug resistance. Unlike its AP site-specific endonuclease activity in Base excision repair (BER), the 3′-5′ exonucleolytic cleavage of APE1 using the same active site exhibits complex substrate selection patterns, which are key to the biological functions. This work aims to integrate molecular structural information and biocatalytic properties to deduce the substrate recognition mechanism of APE1 as an exonuclease and make connection to its diverse functionalities in the cell. In particular, an induced space-filling model emerges in which a bridge-like structure is formed by Arg177 and Met270 (RM bridge) upon substrate binding, causing the active site to adopt a long and narrow product pocket for hosting the leaving group of an AP site or the 3′-end nucleotide. Rather than distinguishing bases as other exonucleases, the hydrophobicity and steric hindrance due to the APE1 product pocket provides selectivity for substrate structures, such as matched or mismatched blunt-ended dsDNA, recessed dsDNA, gapped dsDNA, and nicked dsDNA with 3′-end overhang shorter than 2 nucleotides. These dsDNAs are similar to the native substrates in BER proofreading, BER for trinucleotide repeats (TNR), Nucleotide incision repair (NIR), DNA single-strand breaks (SSB), SSB with damaged bases, and apoptosis. Integration of in vivo studies, in vitro biochemical assays, and structural analysis is thus essential for linking the APE1 exonuclease activity to the specific roles in cellular functions.
Collapse
Affiliation(s)
- Tung-Chang Liu
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan
| | - Kai-Wei Guo
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan
| | - Jhih-Wei Chu
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Yuan Hsiao
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30068, Taiwan.,Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, 30068, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Drug Development and Value Creation Research Center, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
He Y, Wang Y, Qin C, Xu Y, Cheng K, Xu H, Tian B, Zhao Y, Wang L, Hua Y. Structural and Functional Characterization of a Unique AP Endonuclease From Deinococcus radiodurans. Front Microbiol 2020; 11:1178. [PMID: 33117296 PMCID: PMC7548837 DOI: 10.3389/fmicb.2020.01178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Various endogenous and exogenous agents cause DNA damage, including apurinic/apyrimidinic (AP) sites. Due to their cytotoxic effects, AP sites are usually cleaved by AP endonuclease through the base excision repair (BER) pathway. Deinococcus radiodurans, an extraordinary radiation-resistant bacterium, is known as an ideal model organism for elucidating DNA repair processes. Here, we have investigated a unique AP endonuclease (DrXth) from D. radiodurans and found that it possesses AP endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-5' exonuclease but has no nucleotide incision repair (NIR) activity. We also found that Mg2+ and Mn2+ were the preferred divalent metals for endonuclease and exonuclease activities, respectively. In addition, DrXth were crystallized and the crystals diffracted to 1.5 Å. Structural and biochemical analyses demonstrated that residue Gly198 is the key residue involved in the substrate DNA binding and cleavage. Deletion of the drxth gene in D. radiodurans caused elevated sensitivity to DNA damage agents and increased spontaneous mutation frequency. Overall, our results indicate that DrXth is an important AP endonuclease involved in BER pathway and functions in conjunction with other DNA repair enzymes to maintain the genome stability.
Collapse
Affiliation(s)
- Yuan He
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Yiyi Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Chen Qin
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Ying Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Kaiying Cheng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Khanam T, Afsar M, Shukla A, Alam F, Kumar S, Soyar H, Dolma K, Pasupuleti M, Srivastava KK, Ampapathi RS, Ramachandran R. M. tuberculosis class II apurinic/ apyrimidinic-endonuclease/3'-5' exonuclease (XthA) engages with NAD+-dependent DNA ligase A (LigA) to counter futile cleavage and ligation cycles in base excision repair. Nucleic Acids Res 2020; 48:4325-4343. [PMID: 32232338 PMCID: PMC7530888 DOI: 10.1093/nar/gkaa188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Class-II AP-endonuclease (XthA) and NAD+-dependent DNA ligase (LigA) are involved in initial and terminal stages of bacterial DNA base excision repair (BER), respectively. XthA acts on abasic sites of damaged DNA to create nicks with 3′OH and 5′-deoxyribose phosphate (5′-dRP) moieties. Co-immunoprecipitation using mycobacterial cell-lysate, identified MtbLigA-MtbXthA complex formation. Pull-down experiments using purified wild-type, and domain-deleted MtbLigA mutants show that LigA-XthA interactions are mediated by the BRCT-domain of LigA. Small-Angle-X-ray scattering, 15N/1H-HSQC chemical shift perturbation experiments and mutational analysis identified the BRCT-domain region that interacts with a novel 104DGQPSWSGKP113 motif on XthA for complex-formation. Isothermal-titration calorimetry experiments show that a synthetic peptide with this sequence interacts with MtbLigA and disrupts XthA–LigA interactions. In vitro assays involving DNA substrate and product analogs show that LigA can efficiently reseal 3′OH and 5′dRP DNA termini created by XthA at abasic sites. Assays and SAXS experiments performed in the presence and absence of DNA, show that XthA inhibits LigA by specifically engaging with the latter's BRCT-domain to prevent it from encircling substrate DNA. Overall, the study suggests a coordinating function for XthA whereby it engages initially with LigA to prevent the undesirable consequences of futile cleavage and ligation cycles that might derail bacterial BER.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Mohammad Afsar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ankita Shukla
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Faiyaz Alam
- Sophisticated Analytical Instruments Based Facility and Research Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sanjay Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Horam Soyar
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Kunzes Dolma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Mukesh Pasupuleti
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Kishore Kumar Srivastava
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ravi Sankar Ampapathi
- Sophisticated Analytical Instruments Based Facility and Research Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
5
|
Base excision repair pathways of bacteria: new promise for an old problem. Future Med Chem 2020; 12:339-355. [PMID: 32031026 DOI: 10.4155/fmc-2019-0267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases continue to be a major cause of human mortality. With the emergence of drug resistance, diseases that were long thought to have been curable by antibiotics are resurging. There is an urgent clinical need for newer antibiotics that target novel cellular pathways to overcome resistance to currently used therapeutics. The base excision repair (BER) pathways of the pathogen restore altered bases and safeguard the genomic integrity of the pathogen from the host's immune response. Although the BER machinery is of paramount importance to the survival of the pathogens, its potential as a drug target is largely unexplored. In this review, we discuss the importance of BER in different pathogenic organisms and the potential of its inhibition with small molecules.
Collapse
|
6
|
Silhan J, Zhao Q, Boura E, Thomson H, Förster A, Tang CM, Freemont PS, Baldwin GS. Structural basis for recognition and repair of the 3'-phosphate by NExo, a base excision DNA repair nuclease from Neisseria meningitidis. Nucleic Acids Res 2019; 46:11980-11989. [PMID: 30329088 PMCID: PMC6294502 DOI: 10.1093/nar/gky934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/12/2018] [Indexed: 01/29/2023] Open
Abstract
NExo is an enzyme from Neisseria meningitidis that is specialized in the removal of the 3'-phosphate and other 3'-lesions, which are potential blocks for DNA repair. NExo is a highly active DNA 3'-phosphatase, and although it is from the class II AP family it lacks AP endonuclease activity. In contrast, the NExo homologue NApe, lacks 3'-phosphatase activity but is an efficient AP endonuclease. These enzymes act together to protect the meningococcus from DNA damage arising mainly from oxidative stress and spontaneous base loss. In this work, we present crystal structures of the specialized 3'-phosphatase NExo bound to DNA in the presence and absence of a 3'-phosphate lesion. We have outlined the reaction mechanism of NExo, and using point mutations we bring mechanistic insights into the specificity of the 3'-phosphatase activity of NExo. Our data provide further insight into the molecular origins of plasticity in substrate recognition for this class of enzymes. From this we hypothesize that these specialized enzymes lead to enhanced efficiency and accuracy of DNA repair and that this is important for the biological niche occupied by this bacterium.
Collapse
Affiliation(s)
- Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Czech Republic
| | - Qiyuan Zhao
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Czech Republic
| | - Hellen Thomson
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Paul S Freemont
- Department of Medicine, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Geoff S Baldwin
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
7
|
Abstract
Human deoxyribonuclease I (DNase I) is an endonuclease that catalyzes the hydrolysis of extracellular DNA and is just one of the numerous types of nucleases found in nature. The enzymatic mechanism for a single turnover is reasonably well understood based on biochemical and structural studies that are consistent with divalent metal ion dependent nonspecific nicking of a phosphodiester bond in one of the strands of double stranded DNA. Recombinant human DNase I (rhDNase I, rhDNase, Pulmozyme®, dornase alfa) has been expressed in mammalian cell culture in Chinese hamster ovary cells and developed clinically where it is aerosolized into the airways for treatment of pulmonary disease in patients with cystic fibrosis (CF). rhDNase I hydrolyzes the DNA in purulent sputum of CF patients and reduces sputum viscoelasticity. Reduction of high molecular weight DNA into smaller fragments by treatment with aerosolized rhDNase I has been proposed as the mechanism to reduce the mucus viscosity and improve mucus clearability from obstructed airways in patients. The improved clearance of the purulent mucus enhances pulmonary function and reduces recurrent exacerbations of respiratory symptoms. rhDNase I was approved for clinical use in 1993 and has been widely used as a safe and effective therapy for CF patients. The use of rhDNase I has also been investigated in other diseases where exogenous DNA has been implicated in the disease pathology.
Collapse
|
8
|
Wang WW, Zhou H, Xie JJ, Yi GS, He JH, Wang FP, Xiao X, Liu XP. Thermococcus Eurythermalis Endonuclease IV Can Cleave Various Apurinic/Apyrimidinic Site Analogues in ssDNA and dsDNA. Int J Mol Sci 2018; 20:ijms20010069. [PMID: 30586940 PMCID: PMC6341776 DOI: 10.3390/ijms20010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
Endonuclease IV (EndoIV) is a DNA damage-specific endonuclease that mainly hydrolyzes the phosphodiester bond located at 5' of an apurinic/apyrimidinic (AP) site in DNA. EndoIV also possesses 3'-exonuclease activity for removing 3'-blocking groups and normal nucleotides. Here, we report that Thermococcus eurythermalis EndoIV (TeuendoIV) shows AP endonuclease and 3'-exonuclease activities. The effect of AP site structures, positions and clustered patterns on the activity was characterized. The AP endonuclease activity of TeuendoIV can incise DNA 5' to various AP site analogues, including the alkane chain Spacer and polyethylene glycol Spacer. However, the short Spacer C2 strongly inhibits the AP endonuclease activity. The kinetic parameters also support its preference to various AP site analogues. In addition, the efficient cleavage at AP sites requires ≥2 normal nucleotides existing at the 5'-terminus. The 3'-exonuclease activity of TeuendoIV can remove one or more consecutive AP sites at the 3'-terminus. Mutations on the residues for substrate recognition show that binding AP site-containing or complementary strand plays a key role for the hydrolysis of phosphodiester bonds. Our results provide a comprehensive biochemical characterization of the cleavage/removal of AP site analogues and some insight for repairing AP sites in hyperthermophile cells.
Collapse
Affiliation(s)
- Wei-Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China.
| | - Juan-Juan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Gang-Shun Yi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China.
| | - Feng-Ping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| |
Collapse
|
9
|
Characterization of biochemical properties of an apurinic/apyrimidinic endonuclease from Helicobacter pylori. PLoS One 2018; 13:e0202232. [PMID: 30110394 PMCID: PMC6093668 DOI: 10.1371/journal.pone.0202232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases play critical roles in the repair of abasic sites and strand breaks in DNA. Complete genome sequences of Helicobacter pylori reveal that this bacterial specie has a single AP endonuclease. An H. pylori homolog of Xth (HpXth) is a member of exonuclease III family, which is represented by Escherichia coli Xth. Currently, it remains unknown whether this single AP endonuclease has DNA repair activities similar to those of its counterpart in E. coli and other bacteria. We report that HpXth possesses efficient AP site cleavage, 3’-repair phosphodiesterase, and 3’-phosphatase activities but not the nucleotide incision repair function. Optimal reaction conditions for HpXth’s AP endonuclease activity are low ionic strength, high Mg2+ concentration, pH in the range 7–8, and temperature 30 °C. The kinetic parameters measured under steady-state conditions showed that HpXth removes the AP site, 3’-blocking sugar-phosphate, and 3’-terminal phosphate in DNA strand breaks with good efficiency (kcat/KM = 1240, 44, and 5,4 μM–1·min–1, respectively), similar to that of E. coli Xth. As expected, the presence of HpXth protein in AP endonuclease—deficient E. coli xth nfo strain significantly reduced the sensitivity to an alkylating agent and H2O2. Mutation of active site residue D144 in HpXth predicted to be essential for catalysis resulted in a complete loss of enzyme activities. Several important structural features of HpXth were uncovered by homology modeling and phylogenetic analysis. Our data show the DNA substrate specificity of H. pylori AP endonuclease and suggest that HpXth counteracts the genotoxic effects of DNA damage generated by endogenous and host-imposed factors.
Collapse
|
10
|
Akishev Z, Taipakova S, Joldybayeva B, Zutterling C, Smekenov I, Ishchenko AA, Zharkov DO, Bissenbaev AK, Saparbaev M. The major Arabidopsis thaliana apurinic/apyrimidinic endonuclease, ARP is involved in the plant nucleotide incision repair pathway. DNA Repair (Amst) 2016; 48:30-42. [PMID: 27836324 DOI: 10.1016/j.dnarep.2016.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/18/2022]
Abstract
Apurinic/apyrimidinic (AP) endonucleases are important DNA repair enzymes involved in two overlapping pathways: DNA glycosylase-initiated base excision (BER) and AP endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, AP endonucleases cleave DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in NIR, the same AP endonucleases incise DNA 5' to a wide variety of oxidized bases. The flowering plant Arabidopsis thaliana contains three genes encoding homologues of major human AP endonuclease 1 (APE1): Arp, Ape1L and Ape2. It has been shown that all three proteins contain AP site cleavage and 3'-repair phosphodiesterase activities; however, it was not known whether the plant AP endonucleases contain the NIR activity. Here, we report that ARP proteins from Arabidopsis and common wheat (Triticum aestivum) contain NIR and 3'→5' exonuclease activities in addition to their AP endonuclease and 3'-repair phosphodiesterase functions. The steady-state kinetic parameters of reactions indicate that Arabidopsis ARP cleaves oligonucleotide duplexes containing α-anomeric 2'-deoxyadenosine (αdA) and 5,6-dihydrouridine (DHU) with efficiencies (kcat/KM=134 and 7.3 μM-1·min-1, respectively) comparable to those of the human counterpart. However, the ARP-catalyzed 3'-repair phosphodiesterase and 3'→5' exonuclease activities (kcat/KM=314 and 34 μM-1·min-1, respectively) were about 10-fold less efficient as compared to those of APE1. Interestingly, homozygous A. thaliana arp-/- mutant exhibited high sensitivity to methyl methanesulfonate and tert-butyl hydroperoxide, but not to H2O2, suggesting that ARP is a major plant AP endonuclease that removes abasic sites and specific types of oxidative DNA base damage. Taken together, these data establish the presence of the NIR pathway in plants and suggest its possible role in the repair of DNA damage generated by oxidative stress.
Collapse
Affiliation(s)
- Zhiger Akishev
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Sabira Taipakova
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Botagoz Joldybayeva
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Caroline Zutterling
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Izat Smekenov
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Dmitry O Zharkov
- Novosibirsk State University, Novosibirsk 630090, Russia; SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Amangeldy K Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 0530040, Almaty, Kazakhstan.
| | - Murat Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
11
|
ExoMeg1: a new exonuclease from metagenomic library. Sci Rep 2016; 6:19712. [PMID: 26815639 PMCID: PMC4750427 DOI: 10.1038/srep19712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/27/2015] [Indexed: 01/18/2023] Open
Abstract
DNA repair mechanisms are responsible for maintaining the integrity of DNA and are essential to life. However, our knowledge of DNA repair mechanisms is based on model organisms such as Escherichia coli, and little is known about free living and uncultured microorganisms. In this study, a functional screening was applied in a metagenomic library with the goal of discovering new genes involved in the maintenance of genomic integrity. One clone was identified and the sequence analysis showed an open reading frame homolog to a hypothetical protein annotated as a member of the Exo_Endo_Phos superfamily. This novel enzyme shows 3′-5′ exonuclease activity on single and double strand DNA substrates and it is divalent metal-dependent, EDTA-sensitive and salt resistant. The clone carrying the hypothetical ORF was able to complement strains deficient in recombination or base excision repair, suggesting that the new enzyme may be acting on the repair of single strand breaks with 3′ blockers, which are substrates for these repair pathways. Because this is the first report of an enzyme obtained from a metagenomic approach showing exonuclease activity, it was named ExoMeg1. The metagenomic approach has proved to be a useful tool for identifying new genes of uncultured microorganisms.
Collapse
|
12
|
Khanam T, Rai N, Ramachandran R. Mycobacterium tuberculosis class II apurinic/apyrimidinic-endonuclease/3'-5' exonuclease III exhibits DNA regulated modes of interaction with the sliding DNA β-clamp. Mol Microbiol 2015; 98:46-68. [PMID: 26103519 DOI: 10.1111/mmi.13102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 11/30/2022]
Abstract
The class-II AP-endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β-clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239 QLRFPKK245 motif in the DNA-binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding-groove (PBG) and the C-terminal of β-clamp located on different domains interact with XthA. The β-clamp-XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β-clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β-clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β-clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β-clamp is important for interactions with XthA, while the C-terminal domain predominantly mediates functional interactions in the substrate's presence.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
| | - Niyati Rai
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
| |
Collapse
|
13
|
Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis. DNA Repair (Amst) 2015; 33:1-16. [PMID: 26043425 DOI: 10.1016/j.dnarep.2015.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/19/2015] [Accepted: 05/18/2015] [Indexed: 11/24/2022]
Abstract
Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3'→5' exonuclease activities. However, it remains unclear whether these enzymes hold 3'-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3'-repair phosphodiesterase and 3'-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37 °C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3'-blocking sugar-phosphate and 3'-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM=440 and 1280 μM(-1)∙min(-1), respectively), while MtbNfo exhibits much lower 3'-repair activities (kcat/KM=0.26 and 0.65 μM(-1)∙min(-1), respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role in the repair of oxidative DNA damage generated by endogenous and host- imposed factors.
Collapse
|
14
|
Khanam T, Shukla A, Rai N, Ramachandran R. Critical determinants for substrate recognition and catalysis in the M. tuberculosis class II AP-endonuclease/3'-5' exonuclease III. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:505-16. [PMID: 25748880 DOI: 10.1016/j.bbapap.2015.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/02/2015] [Accepted: 02/25/2015] [Indexed: 01/13/2023]
Abstract
The Mycobacterium tuberculosis AP-endonuclease/3'-5' exodeoxyribonuclease (MtbXthA) is an important player in DNA base excision repair (BER). We demonstrate that the enzyme has robust apurinic/apyrimidinic (AP) endonuclease activity, 3'-5' exonuclease, phosphatase, and phosphodiesterase activities. The enzyme functions as an AP-endonuclease at high ionic environments, while the 3'-5'-exonuclease activity is predominant at low ionic environments. Our molecular modelling and mutational experiments show that E57 and D251 are critical for catalysis. Although nicked DNA and gapped DNA are fair substrates of MtbXthA, the gap-size did not affect the excision activity and furthermore, a substrate with a recessed 3'-end is preferred. To understand the determinants of abasic-site recognition, we examined the possible roles of (i) the base opposite the abasic site, (ii) the abasic ribose ring itself, (iii) local distortions in the AP-site, and (iv) conserved residues located near the active site. Our experiments demonstrate that the first three determinants do not play a role in MtbXthA, and in fact the enzyme exhibits robust endonucleolytic activity against single-stranded AP DNA also. Regarding the fourth determinant, it is known that the catalytic-site of AP endonucleases is surrounded by conserved aromatic residues and intriguingly, the exact residues that are directly involved in abasic site recognition vary with the individual proteins. We therefore, used a combination of mutational analysis, kinetic assays, and structure-based modelling, to identify that Y237, supported by Y137, mediates the formation of the MtbXthA-AP-DNA complex and AP-site incision.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Ankita Shukla
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Niyati Rai
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India.
| |
Collapse
|
15
|
van der Veen S, Tang CM. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat Rev Microbiol 2015; 13:83-94. [PMID: 25578955 DOI: 10.1038/nrmicro3391] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.
Collapse
Affiliation(s)
- Stijn van der Veen
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
16
|
Puri RV, Reddy PV, Tyagi AK. Apurinic/apyrimidinic endonucleases of Mycobacterium tuberculosis protect against DNA damage but are dispensable for the growth of the pathogen in guinea pigs. PLoS One 2014; 9:e92035. [PMID: 24800740 PMCID: PMC4011885 DOI: 10.1371/journal.pone.0092035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/19/2014] [Indexed: 12/31/2022] Open
Abstract
In host cells, Mycobacterium tuberculosis encounters an array of reactive molecules capable of damaging its genome. Non-bulky DNA lesions are the most common damages produced on the exposure of the pathogen to reactive species and base excision repair (BER) pathway is involved in the repair of such damage. During BER, apurinic/apyrimidinic (AP) endonuclease enzymes repair the abasic sites that are generated after spontaneous DNA base loss or by the action of DNA glycosylases, which if left unrepaired lead to inhibition of replication and transcription. However, the role of AP endonucleases in imparting protection against DNA damage and in the growth and pathogenesis of M.tuberculosis has not yet been elucidated. To demonstrate the biological significance of these enzymes in M.tuberculosis, it would be desirable to disrupt the relevant genes and evaluate the resulting mutants for their ability to grow in the host and cause disease. In this study, we have generated M.tuberculosis mutants of the base excision repair (BER) system, disrupted in either one (MtbΔend or MtbΔxthA) or both the AP endonucleases (MtbΔendΔxthA). We demonstrate that these genes are crucial for bacteria to withstand alkylation and oxidative stress in vitro. In addition, the mutant disrupted in both the AP endonucleases (MtbΔendΔxthA) exhibited a significant reduction in its ability to survive inside human macrophages. However, infection of guinea pigs with either MtbΔend or MtbΔxthA or MtbΔendΔxthA resulted in the similar bacillary load and pathological damage in the organs as observed in the case of infection with wild-type M.tuberculosis. The implications of these observations are discussed.
Collapse
Affiliation(s)
- Rupangi Verma Puri
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - P. Vineel Reddy
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
17
|
Inhibition of the alternative pathway of nonhuman infant complement by porin B2 contributes to virulence of Neisseria meningitidis in the infant rat model. Infect Immun 2014; 82:2574-84. [PMID: 24686052 DOI: 10.1128/iai.01517-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis utilizes capsular polysaccharide, lipooligosaccharide (LOS) sialic acid, factor H binding protein (fHbp), and neisserial surface protein A (NspA) to regulate the alternative pathway (AP) of complement. Using meningococcal mutants that lacked all four of the above-mentioned molecules (quadruple mutants), we recently identified a role for PorB2 in attenuating the human AP; inhibition was mediated by human fH, a key downregulatory protein of the AP. Previous studies showed that fH downregulation of the AP via fHbp or NspA is specific for human fH. Here, we report that PorB2-expressing quadruple mutants also regulate the AP of baby rabbit and infant rat complement. Blocking a human fH binding region on PorB2 of the quadruple mutant of strain 4243 with a chimeric protein that comprised human fH domains 6 and 7 fused to murine IgG Fc enhanced AP-mediated baby rabbit C3 deposition, which provided evidence for an fH-dependent mechanism of nonhuman AP regulation by PorB2. Using isogenic mutants of strain H44/76 that differed only in their PorB molecules, we confirmed a role for PorB2 in resistance to killing by infant rat serum. The PorB2-expressing strain also caused higher levels of bacteremia in infant rats than its isogenic PorB3-expressing counterpart, thus providing a molecular basis for increased survival of PorB2 isolates in this model. These studies link PorB2 expression with infection of infant rats, which could inform the choice of meningococcal strains for use in animal models, and reveals, for the first time, that PorB2-expressing strains of N. meningitidis regulate the AP of baby rabbits and rats.
Collapse
|
18
|
Brzostek A, Szulc I, Klink M, Brzezinska M, Sulowska Z, Dziadek J. Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized Mycobacterium tuberculosis. PLoS One 2014; 9:e92799. [PMID: 24658131 PMCID: PMC3962454 DOI: 10.1371/journal.pone.0092799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/25/2014] [Indexed: 12/20/2022] Open
Abstract
The intracellular pathogen Mycobacterium tuberculosis (Mtb) is constantly exposed to a multitude of hostile conditions and is confronted by a variety of potentially DNA-damaging assaults in vivo, primarily from host-generated antimicrobial toxic radicals. Exposure to reactive nitrogen species and/or reactive oxygen species causes different types of DNA damage, including oxidation, depurination, methylation and deamination, that can result in single- or double-strand breaks (DSBs). These breaks affect the integrity of the whole genome and, when left unrepaired, can lead to cell death. Here, we investigated the role of the DSB repair pathways, homologous recombination (HR) and non-homologous ends joining (NHEJ), in the survival of Mtb inside macrophages. To this end, we constructed Mtb strains defective for HR (ΔrecA), NHEJ [Δ(ku,ligD)], or both DSB repair systems [Δ(ku,ligD,recA)]. Experiments using these strains revealed that either HR or NHEJ is sufficient for the survival and propagation of tubercle bacilli inside macrophages. Inhibition of nitric oxide or superoxide anion production with L-NIL or apocynin, respectively, enabled the Δ(ku,ligD,recA) mutant strain lacking both systems to survive intracellularly. Complementation of the Δ(ku,ligD,recA) mutant with an intact recA or ku-ligD rescued the ability of Mtb to propagate inside macrophages.
Collapse
Affiliation(s)
- Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Izabela Szulc
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marta Brzezinska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Zofia Sulowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail:
| |
Collapse
|
19
|
Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae. J Bacteriol 2013; 195:5166-73. [PMID: 24039262 DOI: 10.1128/jb.00839-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Regulation of gene expression by small noncoding RNAs (sRNAs) plays a critical role in bacterial response to physiological stresses. NrrF, a trans-acting sRNA in Neisseria meningitidis and Neisseria gonorrhoeae, has been shown in the meningococcus to control indirectly, in response to iron (Fe) availability, the transcription of genes encoding subunits of succinate dehydrogenase, a Fe-requiring enzyme. Given that in other organisms, sRNAs target multiple mRNAs to control gene expression, we used a global approach to examine the role of NrrF in controlling gonococcal transcription. Three strains, including N. gonorrhoeae FA1090, an nrrF deletion mutant, and a complemented derivative, were examined using a custom CombiMatrix microarray to assess the role of this sRNA in controlling gene expression in response to Fe availability. In the absence of NrrF, the mRNA half-lives for 12 genes under Fe-depleted growth conditions were longer than those in FA1090. The 12 genes controlled by NrrF encoded proteins with biological functions including energy metabolism, oxidative stress, antibiotic resistance, and amino acid synthesis, as well as hypothetical proteins and a regulatory protein whose functions are not fully understood.
Collapse
|
20
|
Puri RV, Singh N, Gupta RK, Tyagi AK. Endonuclease IV Is the major apurinic/apyrimidinic endonuclease in Mycobacterium tuberculosis and is important for protection against oxidative damage. PLoS One 2013; 8:e71535. [PMID: 23936515 PMCID: PMC3731287 DOI: 10.1371/journal.pone.0071535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/29/2013] [Indexed: 11/23/2022] Open
Abstract
During the establishment of an infection, bacterial pathogens encounter oxidative stress resulting in the production of DNA lesions. Majority of these lesions are repaired by base excision repair (BER) pathway. Amongst these, abasic sites are the most frequent lesions in DNA. Class II apurinic/apyrimidinic (AP) endonucleases play a major role in BER of damaged DNA comprising of abasic sites. Mycobacterium tuberculosis, a deadly pathogen, resides in the human macrophages and is continually subjected to oxidative assaults. We have characterized for the first time two AP endonucleases namely Endonuclease IV (End) and Exonuclease III (XthA) that perform distinct functions in M.tuberculosis. We demonstrate that M.tuberculosis End is a typical AP endonuclease while XthA is predominantly a 3′→5′ exonuclease. The AP endonuclease activity of End and XthA was stimulated by Mg2+ and Ca2+ and displayed a preferential recognition for abasic site paired opposite to a cytosine residue in DNA. Moreover, End exhibited metal ion independent 3′→5′ exonuclease activity while in the case of XthA this activity was metal ion dependent. We demonstrate that End is not only a more efficient AP endonuclease than XthA but it also represents the major AP endonuclease activity in M.tuberculosis and plays a crucial role in defense against oxidative stress.
Collapse
Affiliation(s)
- Rupangi Verma Puri
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Nisha Singh
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Rakesh K. Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
21
|
Wei Y, Zhang H, Gao ZQ, Xu JH, Liu QS, Dong YH. Structure analysis of the global metabolic regulator Crc from Pseudomonas aeruginosa. IUBMB Life 2013; 65:50-7. [PMID: 23281037 DOI: 10.1002/iub.1103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/14/2012] [Accepted: 09/26/2012] [Indexed: 11/06/2022]
Abstract
The global metabolic regulator catabolite repression control (Crc) has recently been found to modulate the susceptibility to antibiotics and virulence in the opportunistic pathogen Pseudomonas aeruginosa and been suggested as a nonlethal target for novel antimicrobials. In P. aeruginosa, Crc couples with the CA motifs from the small RNA CrcZ to form a post-transcriptional regulator system and is removed from the 5'-end of the target mRNAs. In this study, we first reported the crystal structure of Crc from P. aeruginosa refined to 2.20 Å. The structure showed that it consists of two halves with similar overall topology and there are 11 β strands surrounded by 13 helices, forming a four-layered α/β-sandwich. The circular dichroism spectroscopy revealed that it is thermostable in solution and shares similar characteristics to that in crystal. Comprehensive structural analysis and comparison with the homologies of Crc showed high similarity with several known nucleases and consequently may be classified into a member exodeoxyribonuclease III. However, it shows distinct substrate specificity (RNA as the preferred substrate) compared to these DNA endonucleases. Structural comparisons also revealed potential RNA recognition and binding region mainly consisting of five flexible loops. Our structure study provided the basis for the future application of Crc as a target to develop new antibiotics.
Collapse
Affiliation(s)
- Yong Wei
- School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity. PLoS One 2013; 8:e64609. [PMID: 23717639 PMCID: PMC3662782 DOI: 10.1371/journal.pone.0064609] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
The Crc protein has been shown to mediate catabolite repression control in Pseudomonas, leading to a preferential assimilation of carbon sources. It has been suggested that Crc acts as a translational repressor of mRNAs, encoding functions involved in uptake and breakdown of different carbon sources. Moreover, the regulatory RNA CrcZ, the level of which is increased in the presence of less preferred carbon sources, was suggested to bind to and sequester Crc, resulting in a relief of catabolite repression. Here, we determined the crystal structure of Pseudomonas aeruginosa Crc, a member of apurinic/apyrimidinic (AP) endonuclease family, at 1.8 Å. Although Crc displays high sequence similarity with its orthologs, there are amino acid alterations in the area corresponding to the active site in AP proteins. Unlike typical AP endonuclease family proteins, Crc has a reduced overall positive charge and the conserved positively charged amino-acid residues of the DNA-binding surface of AP proteins are partially substituted by negatively charged, polar and hydrophobic residues. Crc protein purified to homogeneity from P. aeruginosa did neither display DNase activity, nor did it bind to previously identified RNA substrates. Rather, the RNA chaperone Hfq was identified as a contaminant in His-tagged Crc preparations purified by one step Ni-affinity chromatography from Escherichia coli, and was shown to account for the RNA binding activity observed with the His-Crc preparations. Taken together, these data challenge a role of Crc as a direct translational repressor in carbon catabolite repression in P. aeruginosa.
Collapse
|
23
|
Abstract
Fundamental aspects of the lifestyle of Mycobacterium tuberculosis implicate DNA metabolism in bacillary survival and adaptive evolution. The environments encountered by M. tuberculosis during successive cycles of infection and transmission are genotoxic. Moreover, as an obligate pathogen, M. tuberculosis has the ability to persist for extended periods in a subclinical state, suggesting that active DNA repair is critical to maintain genome integrity and bacterial viability during prolonged infection. In this chapter, we provide an overview of the major DNA metabolic pathways identified in M. tuberculosis, and situate key recent findings within the context of mycobacterial pathogenesis. Unlike many other bacterial pathogens, M. tuberculosis is genetically secluded, and appears to rely solely on chromosomal mutagenesis to drive its microevolution within the human host. In turn, this implies that a balance between high versus relaxed fidelity mechanisms of DNA metabolism ensures the maintenance of genome integrity, while accommodating the evolutionary imperative to adapt to hostile and fluctuating environments. The inferred relationship between mycobacterial DNA repair and genome dynamics is considered in the light of emerging data from whole-genome sequencing studies of clinical M. tuberculosis isolates which have revealed the potential for considerable heterogeneity within and between different bacterial and host populations.
Collapse
|
24
|
Parsiegla G, Noguere C, Santell L, Lazarus RA, Bourne Y. The structure of human DNase I bound to magnesium and phosphate ions points to a catalytic mechanism common to members of the DNase I-like superfamily. Biochemistry 2012; 51:10250-8. [PMID: 23215638 DOI: 10.1021/bi300873f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant human DNase I (Pulmozyme, dornase alfa) is used for the treatment of cystic fibrosis where it improves lung function and reduces the number of exacerbations. The physiological mechanism of action is thought to involve the reduction of the viscoelasticity of cystic fibrosis sputum by hydrolyzing high concentrations of DNA into low-molecular mass fragments. Here we describe the 1.95 Å resolution crystal structure of recombinant human DNase I (rhDNase I) in complex with magnesium and phosphate ions, both bound in the active site. Complementary mutagenesis data of rhDNase I coupled to a comprehensive structural analysis of the DNase I-like superfamily argue for the key catalytic role of Asn7, which is invariant among mammalian DNase I enzymes and members of this superfamily, through stabilization of the magnesium ion coordination sphere. Overall, our combined structural and mutagenesis data suggest the occurrence of a magnesium-assisted pentavalent phosphate transition state in human DNase I during catalysis, where Asp168 may play a key role as a general catalytic base.
Collapse
Affiliation(s)
- Goetz Parsiegla
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université and CNRS UMR 7257, Parc Scientifique et Technonlogique de Luminy, Case 932, 163 Avenue de Luminy, 13288 Marseille cedex 09, France.
| | | | | | | | | |
Collapse
|
25
|
Structural basis for the recognition and cleavage of abasic DNA in Neisseria meningitidis. Proc Natl Acad Sci U S A 2012; 109:16852-7. [PMID: 23035246 DOI: 10.1073/pnas.1206563109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Base excision repair (BER) is a highly conserved DNA repair pathway throughout all kingdoms from bacteria to humans. Whereas several enzymes are required to complete the multistep repair process of damaged bases, apurinic-apyrimidic (AP) endonucleases play an essential role in enabling the repair process by recognizing intermediary abasic sites cleaving the phosphodiester backbone 5' to the abasic site. Despite extensive study, there is no structure of a bacterial AP endonuclease bound to substrate DNA. Furthermore, the structural mechanism for AP-site cleavage is incomplete. Here we report a detailed structural and biochemical study of the AP endonuclease from Neisseria meningitidis that has allowed us to capture structural intermediates providing more complete snapshots of the catalytic mechanism. Our data reveal subtle differences in AP-site recognition and kinetics between the human and bacterial enzymes that may reflect different evolutionary pressures.
Collapse
|
26
|
Nagorska K, Silhan J, Li Y, Pelicic V, Freemont PS, Baldwin GS, Tang CM. A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis. Mol Microbiol 2012; 83:1064-1079. [PMID: 22296581 PMCID: PMC3749813 DOI: 10.1111/j.1365-2958.2012.07989.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although oxidative stress is a key aspect of innate immunity, little is known about how host-restricted pathogens successfully repair DNA damage. Base excision repair is responsible for correcting nucleobases damaged by oxidative stress, and is essential for bloodstream infection caused by the human pathogen, Neisseria meningitidis. We have characterized meningococcal base excision repair enzymes involved in the recognition and removal of damaged nucleobases, and incision of the DNA backbone. We demonstrate that the bi-functional glycosylase/lyases Nth and MutM share several overlapping activities and functional redundancy. However, MutM and other members of the GO system, which deal with 8-oxoG, a common lesion of oxidative damage, are not required for survival of N. meningitidis under oxidative stress. Instead, the mismatch repair pathway provides back-up for the GO system, while the lyase activity of Nth can substitute for the meningococcal AP endonuclease, NApe. Our genetic and biochemical evidence shows that DNA repair is achieved through a robust network of enzymes that provides a flexible system of DNA repair. This network is likely to reflect successful adaptation to the human nasopharynx, and might provide a paradigm for DNA repair in other prokaryotes.
Collapse
Affiliation(s)
- Krzysztofa Nagorska
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Jan Silhan
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - Yanwen Li
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Vladimir Pelicic
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Paul S. Freemont
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - Geoff S. Baldwin
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - Christoph M. Tang
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
27
|
Trypanosoma brucei AP endonuclease 1 has a major role in the repair of abasic sites and protection against DNA-damaging agents. DNA Repair (Amst) 2012; 11:53-64. [DOI: 10.1016/j.dnarep.2011.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 11/20/2022]
|
28
|
Abstract
Small non-coding RNA molecules (sRNA) are key regulators participating in complex networks, which adapt metabolism in response to environmental changes. In this issue of Molecular Microbiology, and in a related paper in Proc. Natl. Acad. Sci. USA, Moreno et al. (2011) and Sonnleitner et al. (2009) report on novel sRNAs, which act as decoys to inhibit the activity of the master post-transcriptional regulatory protein Crc. Crc is a key protein involved in carbon catabolite repression that optimizes metabolism improving the adaptation of the bacteria to their diverse habitats. Crc is a novel RNA-binding protein that regulates translation of multiple target mRNAs. Two regulatory sRNAs in Pseudomonas putida mimic the natural mRNA targets of Crc and counteract the action of Crc by sequestrating the protein when catabolite repression is absent. Crc trapping by a sRNA is a mechanism reminiscent to the regulation of the repressor of secondary metabolites (RsmA) in Pseudomonas, and highlights the suitability of RNA-dependent regulation to rapidly adjust cell growth in response to environmental changes.
Collapse
Affiliation(s)
- S Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg, France
| | | |
Collapse
|
29
|
Silhan J, Nagorska K, Zhao Q, Jensen K, Freemont PS, Tang CM, Baldwin GS. Specialization of an Exonuclease III family enzyme in the repair of 3' DNA lesions during base excision repair in the human pathogen Neisseria meningitidis. Nucleic Acids Res 2011; 40:2065-75. [PMID: 22067446 PMCID: PMC3300015 DOI: 10.1093/nar/gkr905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have previously demonstrated that the two Exonuclease III (Xth) family members present within the obligate human pathogen Neisseria meningitidis, NApe and NExo, are important for survival under conditions of oxidative stress. Of these, only NApe possesses AP endonuclease activity, while the primary function of NExo remained unclear. We now reveal further functional specialization at the level of 3′-PO4 processing for NExo. We demonstrate that the bi-functional meningococcal glycosylases Nth and MutM can perform strand incisions at abasic sites in addition to NApe. However, no such functional redundancy exists for the 3′-phosphatase activity of NExo, and the cytotoxicity of 3′-blocking lesions is reflected in the marked sensitivity of a mutant lacking NExo to oxidative stress, compared to strains deficient in other base excision repair enzymes. A histidine residue within NExo that is responsible for its lack of AP endonuclease activity is also important for its 3′-phosphatase activity, demonstrating an evolutionary trade off in enzyme function at the single amino acid level. This specialization of two Xth enzymes for the 3′-end processing and strand-incision reactions has not previously been observed and provides a new paradigm within the prokaryotic world for separation of these critical functions during base excision repair.
Collapse
Affiliation(s)
- Jan Silhan
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Talà A, Monaco C, Nagorska K, Exley RM, Corbett A, Zychlinsky A, Alifano P, Tang CM. Glutamate utilization promotes meningococcal survival in vivo through avoidance of the neutrophil oxidative burst. Mol Microbiol 2011; 81:1330-42. [PMID: 21777301 PMCID: PMC3755445 DOI: 10.1111/j.1365-2958.2011.07766.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymorphonuclear neutrophil leucocytes (PMNs) are a critical part of innate immune defence against bacterial pathogens, and only a limited subset of microbes can escape killing by these phagocytic cells. Here we show that Neisseria meningitidis, a leading cause of septicaemia and meningitis, can avoid killing by PMNs and this is dependent on the ability of the bacterium to acquire L-glutamate through its GltT uptake system. We demonstrate that the uptake of available L-glutamate promotes N. meningitidis evasion of PMN reactive oxygen species produced by the oxidative burst. In the meningococcus, L-glutamate is converted to glutathione, a key molecule for maintaining intracellular redox potential, which protects the bacterium from reactive oxygen species such as hydrogen peroxide. We show that this mechanism contributes to the ability of N. meningitidis to cause bacteraemia, a critical step in the disease process during infections caused by this important human pathogen.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Caterina Monaco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Krzysztofa Nagorska
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| | - Rachel M. Exley
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| | - Anne Corbett
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Christoph M. Tang
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Imperial College London, England, UK
| |
Collapse
|
31
|
Role of the Nfo and ExoA apurinic/apyrimidinic endonucleases in radiation resistance and radiation-induced mutagenesis of Bacillus subtilis spores. J Bacteriol 2011; 193:2875-9. [PMID: 21441501 DOI: 10.1128/jb.00134-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of DNA repair by apurinic/apyrimidinic (AP) endonucleases alone, and together with DNA protection by α/β-type small acid-soluble spore proteins (SASP), in Bacillus subtilis spore resistance to different types of radiation have been studied. Spores lacking both AP endonucleases (Nfo and ExoA) and major SASP were significantly more sensitive to 254-nm UV-C, environmental UV (>280 nm), X-ray exposure, and high-energy charged (HZE)-particle bombardment and had elevated mutation frequencies compared to those of wild-type spores and spores lacking only one or both AP endonucleases or major SASP. These findings further implicate AP endonucleases and α/β-type SASP in repair and protection, respectively, of spore DNA against effects of UV and ionizing radiation.
Collapse
|
32
|
Davies BW, Bogard RW, Dupes NM, Gerstenfeld TAI, Simmons LA, Mekalanos JJ. DNA damage and reactive nitrogen species are barriers to Vibrio cholerae colonization of the infant mouse intestine. PLoS Pathog 2011; 7:e1001295. [PMID: 21379340 PMCID: PMC3040672 DOI: 10.1371/journal.ppat.1001295] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/18/2011] [Indexed: 02/01/2023] Open
Abstract
Ingested Vibrio cholerae pass through the stomach and colonize the small intestines of its host. Here, we show that V. cholerae requires at least two types of DNA repair systems to efficiently compete for colonization of the infant mouse intestine. These results show that V. cholerae experiences increased DNA damage in the murine gastrointestinal tract. Agreeing with this, we show that passage through the murine gut increases the mutation frequency of V. cholerae compared to liquid culture passage. Our genetic analysis identifies known and novel defense enzymes required for detoxifying reactive nitrogen species (but not reactive oxygen species) that are also required for V. cholerae to efficiently colonize the infant mouse intestine, pointing to reactive nitrogen species as the potential cause of DNA damage. We demonstrate that potential reactive nitrogen species deleterious for V. cholerae are not generated by host inducible nitric oxide synthase (iNOS) activity and instead may be derived from acidified nitrite in the stomach. Agreeing with this hypothesis, we show that strains deficient in DNA repair or reactive nitrogen species defense that are defective in intestinal colonization have decreased growth or increased mutation frequency in acidified nitrite containing media. Moreover, we demonstrate that neutralizing stomach acid rescues the colonization defect of the DNA repair and reactive nitrogen species defense defective mutants suggesting a common defense pathway for these mutants. Studies on intracellular bacterial pathogens have shown the need for maintaining genomic fidelity to promote colonization. Loss of DNA repair functions often leads to attenuation and rapid clearing of the invading pathogen. However, for some pathogens, an increased mutation rate has been shown to be beneficial for promoting host colonization, presumably by allowing the pathogen to rapidly adapt to adverse host conditions. We asked if the non-invasive pathogen V. cholerae experienced increased DNA damage during infection and if so, how the increased damage influenced host colonization and from where the source of the damage was derived. Our results demonstrate that V. cholerae experiences increased DNA damage during infection in the infant mouse model and that loss of ability to repair this damage results in attenuation of virulence. We specifically show that V. cholerae requires both base excision repair and mismatch repair for efficient intestinal colonization. Furthermore, we present evidence that the source of the DNA damage is derived from reactive nitrogen species (RNS) formed by acidified nitrite in the mouse gut and in doing so we identify a new RNS defense protein found in V. cholerae and several other pathogenic bacteria.
Collapse
Affiliation(s)
- Bryan W. Davies
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ryan W. Bogard
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicole M. Dupes
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tyler A. I. Gerstenfeld
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: .
| |
Collapse
|
33
|
Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites. Proc Natl Acad Sci U S A 2010; 107:19219-24. [PMID: 20974932 DOI: 10.1073/pnas.1013603107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The N-glycosidic bond can be hydrolyzed spontaneously or by glycosylases during removal of damaged bases by the base excision repair pathway, leading to the formation of highly mutagenic apurinic/apyrimidinic (AP) sites. Organisms encode for evolutionarily conserved repair machinery, including specific AP endonucleases that cleave the DNA backbone 5' to the AP site to prime further DNA repair synthesis. We report on the DNA polymerase X from the bacterium Bacillus subtilis (PolX(Bs)) that, along with polymerization and 3'-5'-exonuclease activities, possesses an intrinsic AP-endonuclease activity. Both, AP-endonuclease and 3'-5'-exonuclease activities are genetically linked and governed by the same metal ligands located at the C-terminal polymerase and histidinol phosphatase domain of the polymerase. The different catalytic functions of PolX(Bs) enable it to perform recognition and incision at an AP site and further restoration (repair) of the original nucleotide in a standalone AP-endonuclease-independent way.
Collapse
|
34
|
Lakomek K, Dickmanns A, Ciirdaeva E, Schomacher L, Ficner R. Crystal structure analysis of DNA uridine endonuclease Mth212 bound to DNA. J Mol Biol 2010; 399:604-17. [PMID: 20434457 DOI: 10.1016/j.jmb.2010.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 11/30/2022]
Abstract
The reliable repair of pre-mutagenic U/G mismatches that originated from hydrolytic cytosine deamination is crucial for the maintenance of the correct genomic information. In most organisms, any uracil base in DNA is attacked by uracil DNA glycosylases (UDGs), but at least in Methanothermobacter thermautotrophicus DeltaH, an alternative strategy has evolved. The exonuclease III homologue Mth212 from the thermophilic archaeon M. thermautotrophicus DeltaH exhibits a DNA uridine endonuclease activity in addition to the apyrimidinic/apurinic site endonuclease and 3'-->5'exonuclease functions. Mth212 alone compensates for the lack of a UDG in a single-step reaction thus substituting the two-step pathway that requires the consecutive action of UDG and apyrimidinic/apurinic site endonuclease. In order to gain deeper insight into the structural basis required for the specific uridine recognition by Mth212, we have characterized the enzyme by means of X-ray crystallography. Structures of Mth212 wild-type or mutant proteins either alone or in complex with DNA substrates and products have been determined to a resolution of up to 1.2 A, suggesting key residues for the uridine endonuclease activity. The insertion of the side chain of Arg209 into the DNA helical base stack resembles interactions observed in human UDG and seems to be crucial for the uridine recognition. In addition, Ser171, Asn153, and Lys125 in the substrate binding pocket appear to have important functions in the discrimination of aberrant uridine against naturally occurring thymidine and cytosine residues in double-stranded DNA.
Collapse
Affiliation(s)
- Kristina Lakomek
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Justus-von-Liebig Weg 11, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Mechanisms of avoidance of host immunity by Neisseria meningitidis and its effect on vaccine development. THE LANCET. INFECTIOUS DISEASES 2009; 9:418-27. [PMID: 19555901 DOI: 10.1016/s1473-3099(09)70132-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neisseria meningitidis remains an important cause of severe sepsis and meningitis worldwide. The bacterium is only found in human hosts, and so must continually coexist with the immune system. Consequently, N meningitidis uses multiple mechanisms to avoid being killed by antimicrobial proteins, phagocytes, and, crucially, the complement system. Much remains to be learnt about the strategies N meningitidis employs to evade aspects of immune killing, including mimicry of host molecules by bacterial structures such as capsule and lipopolysaccharide, which poses substantial problems for vaccine design. To date, available vaccines only protect individuals against subsets of meningococcal strains. However, two promising vaccines are currently being assessed in clinical trials and appear to offer good prospects for an effective means of protecting individuals against endemic serogroup B disease, which has proven to be a major challenge in vaccine research.
Collapse
|
37
|
Schmiedel R, Kuettner EB, Keim A, Sträter N, Greiner-Stöffele T. Structure and function of the abasic site specificity pocket of an AP endonuclease from Archaeoglobus fulgidus. DNA Repair (Amst) 2008; 8:219-31. [PMID: 19015049 DOI: 10.1016/j.dnarep.2008.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/09/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
The major AP endonuclease in Escherichia coli Exonuclease III (ExoIII) is frequently used in gene technology due to its strong exonucleolytic activity. A thermostabilized variant of ExoIII or a homologous enzyme from thermophilic organisms could be most useful for further applications. For this purpose we characterized a nuclease from the hyperthermophilic archaeon Archaeoglobus fulgidus (Af_Exo), which shares 33% overall sequence identity and 55% similarity to ExoIII. The gene coding for this thermostable enzyme was cloned and expressed in E. coli. The purified protein shows a strong Mg(2+)-dependent nicking activity at AP-sites, nicking of undamaged double-stranded (ds) DNA and a weak exonucleolytic activity. A V217G variant of the enzyme was crystallized with decamer ds-DNA molecule, and the three-dimensional structure was determined to 1.7A resolution. Besides our goal to find or produce a thermostable exonuclease, the structural and catalytic data of Af_Exo and a series of mutant proteins, based on the crystal structure, provide new insight into the mechanism of abasic site recognition and repair. Each of the hydrophobic residues Phe 200, Trp 215 and Val 217, forming a binding pocket for the abasic deoxyribose in Af_Exo, were mutated to glycine or serine. By expanding the size of the binding pocket the unspecific endonucleolytic activity is increased. Thus, size and flexibility of the mostly hydrophobic binding pocket have a significant influence on AP-site specificity. We suggest that its tight fitting to the flipped-out deoxyribose allows for a preferred competent binding of abasic sites. In a larger or more flexible pocket however, intact nucleotides more easily bind in a catalytically competent conformation, resulting in loss of specificity. Moreover, with mutations of Phe 200 and Trp 215 we induced a strong exonucleolytic activity on undamaged DNA.
Collapse
Affiliation(s)
- Ramona Schmiedel
- Institute of Biochemistry, Faculty of Biology, Pharmacy and Psychology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
38
|
Abstract
The persistence of Porphyromonas gingivalis in the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. DNA damage is a major consequence of oxidative stress. Unlike the case for other organisms, our previous report suggests a role for a non-base excision repair mechanism for the removal of 8-oxo-7,8-dihydroguanine (8-oxo-G) in P. gingivalis. Because the uvrB gene is known to be important in nucleotide excision repair, the role of this gene in the repair of oxidative stress-induced DNA damage was investigated. A 3.1-kb fragment containing the uvrB gene was PCR amplified from the chromosomal DNA of P. gingivalis W83. This gene was insertionally inactivated using the ermF-ermAM antibiotic cassette and used to create a uvrB-deficient mutant by allelic exchange. When plated on brucella blood agar, the mutant strain, designated P. gingivalis FLL144, was similar in black pigmentation and beta-hemolysis to the parent strain. In addition, P. gingivalis FLL144 demonstrated no significant difference in growth rate, proteolytic activity, or sensitivity to hydrogen peroxide from that of the parent strain. However, in contrast to the wild type, P. gingivalis FLL144 was significantly sensitive to UV irradiation. The enzymatic removal of 8-oxo-G from duplex DNA was unaffected by the inactivation of the uvrB gene. DNA affinity fractionation identified unique proteins that preferentially bound to the oligonucleotide fragment carrying the 8-oxo-G lesion. Collectively, these results suggest that the repair of oxidative stress-induced DNA damage involving 8-oxo-G may occur by a still undescribed mechanism in P. gingivalis.
Collapse
|
39
|
O'Connell D. Stress relief... Nat Rev Microbiol 2007. [DOI: 10.1038/nrmicro1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|