1
|
Watts C. Lysosomes and lysosome‐related organelles in immune responses. FEBS Open Bio 2022; 12:678-693. [PMID: 35220694 PMCID: PMC8972042 DOI: 10.1002/2211-5463.13388] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
The catabolic, degradative capacity of the endo‐lysosome system is put to good use in mammalian immune responses as is their recently established status as signaling platforms. From the ‘creative destruction’ of antigenic and ‘self’ material for antigen presentation to T cells to the re‐purposing of lysosomes as toxic exocytosable lysosome‐related organelles (granules) in leukocytes such as CD8 T cells and eosinophils, endo‐lysosomes are key players in host defense. Signaled responses to some pathogen products initiate in endo‐lysosomes and these organelles are emerging as important in distinct ways in the unique immunobiology of dendritic cells. Potential self‐inflicted toxicity from lysosomal and granule proteases is countered by expression of serpin and cystatin family members.
Collapse
Affiliation(s)
- Colin Watts
- Division of Cell Signalling & Immunology School of Life Sciences University of Dundee Dundee DD1 5EH UK
| |
Collapse
|
2
|
Zhu J, Gouru A, Wu F, Berzofsky JA, Xie Y, Wang T. BepiTBR: T-B reciprocity enhances B cell epitope prediction. iScience 2022; 25:103764. [PMID: 35128358 PMCID: PMC8803616 DOI: 10.1016/j.isci.2022.103764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
The ability to predict B cell epitopes is critical for biomedical research and many clinical applications. Investigators have observed the phenomenon of T-B reciprocity, in which candidate B cell epitopes with nearby CD4+ T cell epitopes have higher chances of being immunogenic. To our knowledge, existing B cell epitope prediction algorithms have not considered this interesting observation. We developed a linear B cell epitope prediction model, BepiTBR, based on T-B reciprocity. We showed that explicitly including the enrichment of putative CD4+ T cell epitopes (predicted HLA class II epitopes) in the model leads to significant enhancement in the prediction of linear B cell epitopes. Curiously, the positive impact on B cell epitope generation is specific to the enrichment of DQ allele binders. Overall, our work provides interesting mechanistic insights into the generation of B cell epitopes and points to a new avenue to improve B cell epitope prediction for the field.
Collapse
Affiliation(s)
- James Zhu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anagha Gouru
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fangjiang Wu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Campbell KL, Haspel N, Gath C, Kurniatash N, Nouduri Akkiraju I, Stuffers N, Vadher U. Protein hormone fragmentation in intercellular signaling: hormones as nested information systems. Biol Reprod 2021; 104:887-901. [PMID: 33403392 DOI: 10.1093/biolre/ioaa234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
This study explores the hypothesis that protein hormones are nested information systems in which initial products of gene transcription, and their subsequent protein fragments, before and after secretion and initial target cell action, play additional physiological regulatory roles. The study produced four tools and key results: (1) a problem approach that proceeds, with examples and suggestions for in vivo organismal functional tests for peptide-protein interactions, from proteolytic breakdown prediction to models of hormone fragment modulation of protein-protein binding motifs in unrelated proteins; (2) a catalog of 461 known soluble human protein hormones and their predicted fragmentation patterns; (3) an analysis of the predicted proteolytic patterns of the canonical protein hormone transcripts demonstrating near-universal persistence of 9 ± 7 peptides of 8 ± 8 amino acids even after cleavage with 24 proteases from four protease classes; and (4) a coincidence analysis of the predicted proteolysis locations and the 1939 exon junctions within the transcripts that shows an excess (P < 0.001) of predicted proteolysis within 10 residues, especially at the exonal junction (P < 0.01). It appears all protein hormone transcripts generate multiple fragments the size of peptide hormones or protein-protein binding domains that may alter intracellular or extracellular functions by acting as modulators of metabolic enzymes, transduction factors, protein binding proteins, or hormone receptors. High proteolytic frequency at exonal junctions suggests proteolysis has evolved, as a complement to gene exon fusion, to extract structures or functions within single exons or protein segments to simplify the genome by discarding archaic one-exon genes.
Collapse
Affiliation(s)
- Kenneth L Campbell
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Nurit Haspel
- Department of Computer Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Cassandra Gath
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Nuzulul Kurniatash
- Department of Computer Sciences, University of Massachusetts Boston, Boston, MA, USA
| | | | - Naomi Stuffers
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Uma Vadher
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
4
|
Koblischke M, Mackroth MS, Schwaiger J, Fae I, Fischer G, Stiasny K, Heinz FX, Aberle JH. Protein structure shapes immunodominance in the CD4 T cell response to yellow fever vaccination. Sci Rep 2017; 7:8907. [PMID: 28827760 PMCID: PMC5566484 DOI: 10.1038/s41598-017-09331-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/17/2017] [Indexed: 12/25/2022] Open
Abstract
The live attenuated yellow fever (YF) vaccine is a highly effective human vaccine and induces long-term protective neutralizing antibodies directed against the viral envelope protein E. The generation of such antibodies requires the help of CD4 T cells which recognize peptides derived from proteins in virus particles internalized and processed by E-specific B cells. The CD4 T helper cell response is restricted to few immunodominant epitopes, but the mechanisms of their selection are largely unknown. Here, we report that CD4 T cell responses elicited by the YF-17D vaccine are focused to hotspots of two helices of the viral capsid protein and to exposed strands and loops of E. We found that the locations of immunodominant epitopes within three-dimensional protein structures exhibit a high degree of overlap between YF virus and the structurally homologous flavivirus tick-borne encephalitis virus, although amino acid sequence identity of the epitope regions is only 15-45%. The restriction of epitopes to exposed E protein surfaces and their strikingly similar positioning within proteins of distantly related flaviviruses are consistent with a strong influence of protein structure that shapes CD4 T cell responses and provide leads for a rational design of immunogens for vaccination.
Collapse
Affiliation(s)
| | - Maria S Mackroth
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Schwaiger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Rosskopf S, Jutz S, Neunkirchner A, Candia MR, Jahn-Schmid B, Bohle B, Pickl WF, Steinberger P. Creation of an engineered APC system to explore and optimize the presentation of immunodominant peptides of major allergens. Sci Rep 2016; 6:31580. [PMID: 27539532 PMCID: PMC4990899 DOI: 10.1038/srep31580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
We have generated engineered APC to present immunodominant peptides derived from the major aero-allergens of birch and mugwort pollen, Bet v 1142-153 and Art v 125-36, respectively. Jurkat-based T cell reporter lines expressing the cognate allergen-specific T cell receptors were used to read out the presentation of allergenic peptides on the engineered APC. Different modalities of peptide loading and presentation on MHC class II molecules were compared. Upon exogenous loading with allergenic peptides, the engineered APC elicited a dose-dependent response in the reporter T cells and the presence of chemical loading enhancers strongly increased reporter activation. Invariant chain-based MHC class II targeting strategies of endogenously expressed peptides resulted in stronger activation of the reporters than exogenous loading. Moreover, we used Bet v 1 as model allergen to study the ability of K562 cells to present antigenic peptides derived from whole proteins either taken up or endogenously expressed as LAMP-1 fusion protein. In both cases the ability of these cells to process and present peptides derived from whole proteins critically depended on the expression of HLA-DM. We have identified strategies to achieve efficient presentation of allergenic peptides on engineered APC and demonstrate their use to stimulate T cells from allergic individuals.
Collapse
Affiliation(s)
- Sandra Rosskopf
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jutz
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Neunkirchner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martín R Candia
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Coulon PG, Richetta C, Rouers A, Blanchet FP, Urrutia A, Guerbois M, Piguet V, Theodorou I, Bet A, Schwartz O, Tangy F, Graff-Dubois S, Cardinaud S, Moris A. HIV-Infected Dendritic Cells Present Endogenous MHC Class II-Restricted Antigens to HIV-Specific CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:517-32. [PMID: 27288536 DOI: 10.4049/jimmunol.1600286] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/17/2016] [Indexed: 01/07/2023]
Abstract
It is widely assumed that CD4(+) T cells recognize antigenic peptides (epitopes) derived solely from incoming, exogenous, viral particles or proteins. However, alternative sources of MHC class II (MHC-II)-restricted Ags have been described, in particular epitopes derived from newly synthesized proteins (so-called endogenous). In this study, we show that HIV-infected dendritic cells (DC) present MHC-II-restricted endogenous viral Ags to HIV-specific (HS) CD4(+) T cells. This endogenous pathway functions independently of the exogenous route for HIV Ag presentation and offers a distinct possibility for the immune system to activate HS CD4(+) T cells. We examined the implication of autophagy, which plays a crucial role in endogenous viral Ag presentation and thymic selection of CD4(+) T cells, in HIV endogenous presentation. We show that infected DC do not use autophagy to process MHC-II-restricted HIV Ags. This is unlikely to correspond to a viral escape from autophagic degradation, as infecting DC with Nef- or Env-deficient HIV strains did not impact HS T cell activation. However, we demonstrate that, in DC, specific targeting of HIV Ags to autophagosomes using a microtubule-associated protein L chain 3 (LC3) fusion protein effectively enhances and broadens HS CD4(+) T cell responses, thus favoring an endogenous MHC-II-restricted presentation. In summary, in DC, multiple endogenous presentation pathways lead to the activation of HS CD4(+) T cell responses. These findings will help in designing novel strategies to activate HS CD4(+) T cells that are required for CTL activation/maintenance and B cell maturation.
Collapse
Affiliation(s)
- Pierre-Grégoire Coulon
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255, F-75013 Paris, France
| | - Clémence Richetta
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255, F-75013 Paris, France
| | - Angéline Rouers
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255, F-75013 Paris, France
| | - Fabien P Blanchet
- CNRS, FRE3689, Université de Montpellier, Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé, 34293 Montpellier, France
| | - Alejandra Urrutia
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255, F-75013 Paris, France
| | - Mathilde Guerbois
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75724 Paris, France
| | - Vincent Piguet
- Department of Dermatology and Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Ioannis Theodorou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255, F-75013 Paris, France; Département d'Immunologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France; and
| | - Anne Bet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255, F-75013 Paris, France
| | | | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75724 Paris, France
| | - Stéphanie Graff-Dubois
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255, F-75013 Paris, France
| | - Sylvain Cardinaud
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255, F-75013 Paris, France
| | - Arnaud Moris
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre d'Immunologie et des Maladies Infectieuses, U1135, CNRS 8255, F-75013 Paris, France; Département d'Immunologie, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France; and
| |
Collapse
|
7
|
Huang KYA, Rijal P, Schimanski L, Powell TJ, Lin TY, McCauley JW, Daniels RS, Townsend AR. Focused antibody response to influenza linked to antigenic drift. J Clin Invest 2015; 125:2631-45. [PMID: 26011643 DOI: 10.1172/jci81104] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/16/2015] [Indexed: 01/10/2023] Open
Abstract
The selective pressure that drives antigenic changes in influenza viruses is thought to originate from the human immune response. Here, we have characterized the B cell repertoire from a previously vaccinated donor whose serum had reduced neutralizing activity against the recently evolved clade 6B H1N1pdm09 viruses. While the response was markedly polyclonal, 88% of clones failed to recognize clade 6B viruses; however, the ability to neutralize A/USSR/90/1977 influenza, to which the donor would have been exposed in childhood, was retained. In vitro selection of virus variants with representative monoclonal antibodies revealed that a single amino acid replacement at residue K163 in the Sa antigenic site, which is characteristic of the clade 6B viruses, was responsible for resistance to neutralization by multiple monoclonal antibodies and the donor serum. The K163 residue lies in a part of a conserved surface that is common to the hemagglutinins of the 1977 and 2009 H1N1 viruses. Vaccination with the 2009 hemagglutinin induced an antibody response tightly focused on this common surface that is capable of selecting current antigenic drift variants in H1N1pdm09 influenza viruses. Moreover, amino acid replacement at K163 was not highlighted by standard ferret antisera. Human monoclonal antibodies may be a useful adjunct to ferret antisera for detecting antigenic drift in influenza viruses.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antibodies, Monoclonal
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Antibody Specificity
- Antigenic Variation
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- B-Lymphocytes/immunology
- Cross Reactions
- Ferrets
- Genetic Drift
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- Immunoglobulin G/metabolism
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Models, Molecular
- Protein Conformation
Collapse
|
8
|
Reversat A, Yuseff MI, Lankar D, Malbec O, Obino D, Maurin M, Penmatcha NVG, Amoroso A, Sengmanivong L, Gundersen GG, Mellman I, Darchen F, Desnos C, Pierobon P, Lennon-Duménil AM. Polarity protein Par3 controls B-cell receptor dynamics and antigen extraction at the immune synapse. Mol Biol Cell 2015; 26:1273-85. [PMID: 25631815 PMCID: PMC4454175 DOI: 10.1091/mbc.e14-09-1373] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
B-cell receptor (BCR) engagement with surface-tethered antigens leads to the formation of an immune synapse, which facilitates antigen uptake for presentation to T-lymphocytes. Antigen internalization and processing rely on the early dynein-dependent transport of BCR-antigen microclusters to the synapse center, as well as on the later polarization of the microtubule-organizing center (MTOC). MTOC repositioning allows the release of proteases and the delivery of MHC class II molecules at the synapse. Whether and how these events are coordinated have not been addressed. Here we show that the ancestral polarity protein Par3 promotes BCR-antigen microcluster gathering, as well as MTOC polarization and lysosome exocytosis, at the synapse by facilitating local dynein recruitment. Par3 is also required for antigen presentation to T-lymphocytes. Par3 therefore emerges as a key molecule in the coupling of the early and late events needed for efficient extraction and processing of immobilized antigen by B-cells.
Collapse
Affiliation(s)
- Anne Reversat
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Maria-Isabel Yuseff
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France Departamento de Biologia Celular y Molecular, Pontificia Universidad Catolica de Chile, 6513677 Santiago, Chile
| | - Danielle Lankar
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Odile Malbec
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Dorian Obino
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | - Mathieu Maurin
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | | | - Alejandro Amoroso
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France Facultad de Ciencias de la Salud, Universidad San Sebastián, 7510157 Santiago, Chile
| | - Lucie Sengmanivong
- Cell and Tissue Imaging Core Facility (PICT-IBiSA) and Nikon Imaging Centre, Institut Curie, UMR144, Centre de Recherche, 75005 Paris, France
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | | | - François Darchen
- Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR8250, 75270 Paris Cedex 06, France
| | - Claire Desnos
- Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR8250, 75270 Paris Cedex 06, France
| | - Paolo Pierobon
- INSERM U932, Institut Curie, Centre de Recherche, 75005 Paris, France
| | | |
Collapse
|
9
|
Macmillan H, Strohman MJ, Ayyangar S, Jiang W, Rajasekaran N, Spura A, Hessell AJ, Madec AM, Mellins ED. The MHC class II cofactor HLA-DM interacts with Ig in B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:2641-2650. [PMID: 25098292 PMCID: PMC4157100 DOI: 10.4049/jimmunol.1400075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
B cells internalize extracellular Ag into endosomes using the Ig component of the BCR. In endosomes, Ag-derived peptides are loaded onto MHC class II proteins. How these pathways intersect remains unclear. We find that HLA-DM (DM), a catalyst for MHC class II peptide loading, coprecipitates with Ig in lysates from human tonsillar B cells and B cell lines. The molecules in the Ig/DM complexes have mature glycans, and the complexes colocalize with endosomal markers in intact cells. A larger fraction of Ig precipitates with DM after BCR crosslinking, implying that complexes can form when DM meets endocytosed Ig. In vitro, in the endosomal pH range, soluble DM directly binds the Ig Fab domain and increases levels of free Ag released from immune complexes. Taken together, these results argue that DM and Ig intersect in the endocytic pathway of B cells with potential functional consequences.
Collapse
Affiliation(s)
- Henriette Macmillan
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J. Strohman
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sashi Ayyangar
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wei Jiang
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Narendiran Rajasekaran
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Armin Spura
- Life Technologies, South San Francisco, CA 94080, USA
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | - Elizabeth D. Mellins
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Hauser JT, Lindner R. Coalescence of B cell receptor and invariant chain MHC II in a raft-like membrane domain. J Leukoc Biol 2014; 96:843-55. [PMID: 25024398 DOI: 10.1189/jlb.2a0713-353r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The BCR binds antigen for processing and subsequent presentation on MHC II molecules. Polyvalent antigen induces BCR clustering and targeting to endocytic processing compartments, which are also accessed by Ii-MHC II. Here, we report that clustered BCR is able to team up with Ii-MHC II already at the plasma membrane of mouse B-lymphocytes. Colocalization of BCR and Ii-MHC II on the cell surface required clustering of both types of molecules. The clustering of only one type did not trigger the recruitment of the other. Ii-bound MIF (a ligand of Ii) also colocalized with clustered BCR upon oligomerization of MIF on the surface of the B cell. Abundant surface molecules, such as B220 or TfnR, did not cocluster with the BCR. Some membrane raft-associated molecules, such as peptide-loaded MHC II, coclustered with the BCR, whereas others, such as GM1, did not. The formation of a BCR- and Ii-MHC II-containing membrane domain by antibody-mediated clustering was independent of F-actin and led to the coendocytosis of its constituents. With a rapid Brij 98 extraction method, it was possible to capture this membrane domain biochemically as a DRM. Ii and clustered BCR were present on the same DRM, as shown by immunoisolation. The coalescence of BCR and Ii-MHC II increased tyrosine phosphorylation, indicative of enhanced BCR signaling. Our work suggests a novel role for MIF and Ii-MHC II in BCR-mediated antigen processing.
Collapse
Affiliation(s)
- Julian T Hauser
- Hannover Medical School, Department of Cell Biology, Center for Anatomy, Hannover, Germany
| | - Robert Lindner
- Hannover Medical School, Department of Cell Biology, Center for Anatomy, Hannover, Germany
| |
Collapse
|
11
|
A critical role for cell polarity in antigen extraction, processing, and presentation by B lymphocytes. Adv Immunol 2014; 123:51-67. [PMID: 24840947 DOI: 10.1016/b978-0-12-800266-7.00001-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The activation of B lymphocytes in response to external stimuli represents a key step in the adaptive immune response, which is required for the production of high-affinity antibodies and for the generation of long-term memory. Because the dysregulation of B lymphocyte responses can lead to diverse pathological situations, B cells are considered today as valuable therapeutic targets for immunomodulation, in particular in the context of autoimmune reactions. Here, we review the fundamental molecular and cell biological mechanisms that enable B cells to efficiently sense, acquire, and respond to extracellular antigens. A special emphasis is given to cell polarity, which was shown to be critical for the regulation of antigen acquisition, processing, and presentation by B lymphocytes. How cell polarity coordinates the various steps of B lymphocyte activation and might impact the humoral immune response is further discussed.
Collapse
|
12
|
Homan EJ, Bremel RD. Are cases of mumps in vaccinated patients attributable to mismatches in both vaccine T-cell and B-cell epitopes?: An immunoinformatic analysis. Hum Vaccin Immunother 2013; 10:290-300. [PMID: 24275080 PMCID: PMC4185895 DOI: 10.4161/hv.27139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Resurgent mumps outbreaks have raised questions about the current efficacy of mumps vaccines. We have applied immunoinformatics techniques based on principal component analysis to evaluate patterns in predicted B-cell linear epitopes, MHC binding affinity and cathepsin cleavage in the hemagglutinin neuraminidase protein of vaccine strains and wild-type mumps isolates. We have mapped predicted MHC-peptide binding for 37 MHC-I and 28 MHC-II alleles and predicted cleavage by cathepsin B, L and S. By all measures we applied Jeryl-Lynn JL5 major strain is an outlier with immunomic features arising from a small number of amino acid changes that distinguish it from other virus strains. Individuals vaccinated with Jeryl-Lynn who are not exposed to wild-type virus until their protective antibody titer has waned may be unable to recall a protective immune response when exposed to wild-type virus. Dependence on serology to evaluate mumps vaccines may have overemphasized the conservation of one neutralizing antibody epitope, at the expense of monitoring other related changes in the HN protein that could affect recall responses.
Collapse
|
13
|
Recognition of higher order patterns in proteins: immunologic kernels. PLoS One 2013; 8:e70115. [PMID: 23922927 PMCID: PMC3726486 DOI: 10.1371/journal.pone.0070115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/17/2013] [Indexed: 01/28/2023] Open
Abstract
By applying analysis of the principal components of amino acid physical properties we predicted cathepsin cleavage sites, MHC binding affinity, and probability of B-cell epitope binding of peptides in tetanus toxin and in ten diverse additional proteins. Cross-correlation of these metrics, for peptides of all possible amino acid index positions, each evaluated in the context of a ±25 amino acid flanking region, indicated that there is a strongly repetitive pattern of short peptides of approximately thirty amino acids each bounded by cathepsin cleavage sites and each comprising B-cell linear epitopes, MHC–I and MHC-II binding peptides. Such “immunologic kernel” peptides comprise all signals necessary for adaptive immunologic cognition, response and recall. The patterns described indicate a higher order spatial integration that forms a symbolic logic coordinating the adaptive immune system.
Collapse
|
14
|
Steede NK, Rust BJ, Hossain MM, Freytag LC, Robinson JE, Landry SJ. Shaping T cell - B cell collaboration in the response to human immunodeficiency virus type 1 envelope glycoprotein gp120 by peptide priming. PLoS One 2013; 8:e65748. [PMID: 23776539 PMCID: PMC3679139 DOI: 10.1371/journal.pone.0065748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/30/2013] [Indexed: 11/24/2022] Open
Abstract
Prime-boost vaccination regimes have shown promise for obtaining protective immunity to HIV. Poorly understood mechanisms of cellular immunity could be responsible for improved humoral responses. Although CD4+ T-cell help promotes B-cell development, the relationship of CD4+ T-cell specificity to antibody specificity has not been systematically investigated. Here, protein and peptide-specific immune responses to HIV-1 gp120 were characterized in groups of ten mucosally immunized BALB/c mice. Protein and peptide reactivity of serum antibody was tested for correlation with cytokine secretion by splenocytes restimulated with individual gp120 peptides. Antibody titer for gp120 correlated poorly with the peptide-stimulated T-cell response. In contrast, titers for conformational epitopes, measured as crossreactivity or CD4-blocking, correlated with average interleukin-2 and interleukin-5 production in response to gp120 peptides. Antibodies specific for conformational epitopes and individual gp120 peptides typically correlated with T-cell responses to several peptides. In order to modify the specificity of immune responses, animals were primed with a gp120 peptide prior to immunization with protein. Priming induced distinct peptide-specific correlations of antibodies and T-cells. The majority of correlated antibodies were specific for the primed peptides or other peptides nearby in the gp120 sequence. These studies suggest that the dominant B-cell subsets recruit the dominant T-cell subsets and that T-B collaborations can be shaped by epitope-specific priming.
Collapse
Affiliation(s)
- N. Kalaya Steede
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Blake J. Rust
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Mohammad M. Hossain
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lucy C. Freytag
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - James E. Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Samuel J. Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.
Collapse
Affiliation(s)
- Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
16
|
Watts C. The endosome-lysosome pathway and information generation in the immune system. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:14-21. [PMID: 21782984 PMCID: PMC3476823 DOI: 10.1016/j.bbapap.2011.07.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 12/04/2022]
Abstract
For a long time the lysosomal pathway was thought to be exclusively one for catabolism and recycling of material taken up by endocytosis from the external milieu or from the cytosol by autophagy. At least in the immune system it is clear now that endo/lysosomal proteolysis generates crucially important information, in particular peptides that bind class II MHC molecules to create ligands for survey by the diverse antigen receptors of the T lymphocyte system. This process of antigen processing and presentation is used to display not only foreign but also self peptides and therefore is important for 'self' tolerance as well as immunity to pathogens. Some cells, macrophages and particularly dendritic cells can load peptides on class I MHC molecules in the endosome system through the important, though still not fully characterised, pathway of cross-presentation. Here I try to provide a brief review of how this area developed focussing to some extent our own contributions to understanding the class II MHC pathway. I also mention briefly recent work of others showing that proteolysis along this pathway turns out to regulate immune signalling events in the innate immune system such as the activation of some members of the Toll-like receptor family. Finally, our recent work on the endo/lysosome targeted protease inhibitor cystatin F, suggests that auto-regulation of protease activity in some immune cells occurs. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Colin Watts
- Division of Cell Signaling & Immunology, College of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
17
|
Polarized Secretion of Lysosomes at the B Cell Synapse Couples Antigen Extraction to Processing and Presentation. Immunity 2011; 35:361-74. [DOI: 10.1016/j.immuni.2011.07.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/30/2011] [Accepted: 07/08/2011] [Indexed: 11/17/2022]
|
18
|
Miller G, Matthews SP, Reinheckel T, Fleming S, Watts C. Asparagine endopeptidase is required for normal kidney physiology and homeostasis. FASEB J 2011; 25:1606-17. [DOI: 10.1096/fj.10-172312] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gail Miller
- Division of Cell Biology and ImmunologyCollege of Life SciencesUniversity of DundeeDundeeUK
| | - Stephen P. Matthews
- Division of Cell Biology and ImmunologyCollege of Life SciencesUniversity of DundeeDundeeUK
| | - Thomas Reinheckel
- Institut für Molekulare Medizin und ZellforschungAlbert-Ludwigs-Universität FreiburgFreiburgGermany
| | - Stewart Fleming
- Department of Molecular PathologyNinewells HospitalUniversity of DundeeDundeeUK
| | - Colin Watts
- Division of Cell Biology and ImmunologyCollege of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
19
|
Abstract
This review considers the stages of the development of synthetic peptide vaccines against infectious agents, novel approaches and technologies employed in this process, including bioinformatics, genomics, proteomics, large-scale peptide synthesis, high-throughput screening methods, the use of transgenic animals for modelling human infections. An important role for the development and selection of efficient adjuvants for peptide immunogens is noted. Examples of synthetic peptide vaccine developments against three infectious diseases (malaria, hepatitis C, and foot-and-mouth disease) are given.
Collapse
Affiliation(s)
- A.A. Moysa
- Institute of Biomedical Chemistry, Russian Academy of Medical sciences
| | - E.F. Kolesanova
- Institute of Biomedical Chemistry, Russian Academy of Medical sciences
| |
Collapse
|
20
|
Moisa AA, Kolesanova EF. Synthetic peptide vaccines. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s1990750810040025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Stoeckle C, Tolosa E. Antigen processing and presentation in multiple sclerosis. Results Probl Cell Differ 2010; 51:149-72. [PMID: 19582405 DOI: 10.1007/400_2009_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
CD4(+) T cells play a central role in the pathogenesis of multiple sclerosis (MS). Generation, activation and effector function of these cells crucially depends on their interaction with MHC II-peptide complexes displayed by antigen presenting cells (APC). Processing and presentation of self antigens by different APC therefore influences the disease course at all stages. Selection by thymic APC leads to the generation of autoreactive T cells, which can be activated by peripheral APC. Reactivation by central nervous system APC leads to the initiation of the inflammatory response resulting in demyelination. In this review we will focus on how MHC class II antigenic epitopes are created by different APC from the thymus, the periphery and from the brain, and will discuss the relevance of the balance between creation and destruction of such epitopes in the context of MS. A solid understanding of these processes offers the possibility for designing future therapeutic strategies.
Collapse
Affiliation(s)
- Christina Stoeckle
- Department of General Neurology, Hertie Institute for Clinical Brain Research, Otfried-Mueller-Str. 27, 72076, Tuebingen, Germany.
| | | |
Collapse
|
22
|
Matthews SP, Werber I, Deussing J, Peters C, Reinheckel T, Watts C. Distinct protease requirements for antigen presentation in vitro and in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 184:2423-31. [PMID: 20164435 DOI: 10.4049/jimmunol.0901486] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Asparagine endopeptidase (AEP) or legumain is a potentially important Ag-processing enzyme that introduces limited cleavages that trigger unfolding and class II MHC binding of different Ag substrates. AEP is necessary and sufficient for optimal processing and presentation of the tetanus toxin C fragment (TTCF) Ag in vitro, but its importance has not been tested in vivo. Surprisingly, virtually normal T cell and Ab responses to TTCF were mounted in AEP-deficient mice when examined 10 d after immunization. This was the case when TTCF was emulsified with CFA, adsorbed onto alum, or expressed within live Salmonella typhimurium. In addition, the dominant Ab and T cell determinants recognized in TTCF were essentially unchanged in AEP-deficient mice. These data are explained, at least in part, by the much lower levels of AEP expressed in primary murine APCs compared with immortalized B cell lines. Even so, the initial in vivo kinetics of TTCF presentation were slower in AEP-deficient mice and, as expected, boosting AEP levels in primary APCs enhanced and accelerated TTCF processing and presentation in vitro. Thus, AEP remains the protease of choice for TTCF processing; however, in its absence, other enzymes can substitute to enable slower, but equally robust, adaptive immune responses. Moreover, clear relationships between Ags and processing proteases identified from short-term in vitro processing and presentation studies do not necessarily predict an absolute in vivo dependency on those processing enzymes, not least because they may be expressed at strikingly different levels in vitro versus in vivo.
Collapse
Affiliation(s)
- Stephen P Matthews
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys. Nat Med 2010; 16:324-8. [PMID: 20173754 PMCID: PMC2834806 DOI: 10.1038/nm.2108] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/27/2010] [Indexed: 11/14/2022]
Abstract
An effective HIV vaccine must elicit immune responses that recognize genetically diverse viruses1, 2. It must generate CD8+ T lymphocytes that control HIV replication and CD4+ T lymphocytes that provide help for the generation and maintenance of both cellular and humoral immune responses against the virus3–5. Creating immunogens that can elicit cellular immune responses against the genetically varied circulating isolates of HIV presents an important challenge for creating an AIDS vaccine6, 7. Polyvalent mosaic immunogens derived by in silico recombination of natural strains of HIV are designed to induce cellular immune responses that recognize genetically diverse circulating virus isolates8. In the present study we immunized rhesus monkeys by plasmid DNA prime/ recombinant vaccinia virus boost using vaccine constructs expressing either consensus or polyvalent mosaic proteins. The mosaic immunogens elicited CD8+ T lymphocyte responses to more epitopes of each viral protein than the consensus immunogens, and to more variant sequences of CD8+ T lymphocyte epitopes. This increased breadth and depth of epitope recognition may contribute both to protection against infection by genetically diverse viruses and to the control of variant viruses that emerge as they mutate away from recognition by cytotoxic T lymphocytes.
Collapse
|
24
|
Autoantibodies and associated T-cell responses to determinants within the 831-860 region of the autoantigen IA-2 in Type 1 diabetes. J Autoimmun 2009; 33:147-54. [PMID: 19447008 DOI: 10.1016/j.jaut.2009.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/15/2009] [Accepted: 04/19/2009] [Indexed: 11/20/2022]
Abstract
B-cells influence T-cell reactivity by facilitating antigen presentation, but the role of autoantibody-secreting B-cells in regulating T-cell responses in Type 1 diabetes is poorly defined. The aims of this study were to characterise epitopes on the IA-2 autoantigen for three monoclonal antibodies from diabetic patients by amino acid substitutions of selected residues of IA-2, establish contributions of these epitopes to binding of serum antibodies in Type 1 diabetes and relate B- and T-cell responses to overlapping determinants on IA-2. The monoclonal antibodies recognised overlapping epitopes, with residues within the 831-860 region of IA-2 contributing to binding; substitution of Glu836 inhibited binding of all three antibodies. Monoclonal antibody Fab fragments and substitution of residues within the 831-836 region blocked serum antibody binding to an IA-2 643-937 construct. IL-10-secreting T-cells responding to peptides within the 831-860 region were detected by cytokine-specific ELISPOT in diabetic patients and responses to 841-860 peptide were associated with antibodies to the region of IA-2 recognised by the monoclonal antibodies. The study identifies a region of IA-2 frequently recognised by antibodies in Type 1 diabetes and demonstrates that these responses are associated with T-cells secreting IL-10 in response to a neighbouring determinant.
Collapse
|
25
|
Harvey BP, Quan TE, Rudenga BJ, Roman RM, Craft J, Mamula MJ. Editing antigen presentation: antigen transfer between human B lymphocytes and macrophages mediated by class A scavenger receptors. THE JOURNAL OF IMMUNOLOGY 2008; 181:4043-51. [PMID: 18768860 DOI: 10.4049/jimmunol.181.6.4043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B lymphocytes can function independently as efficient APCs. However, our previous studies demonstrate that both dendritic cells and macrophages are necessary to propagate immune responses initiated by B cell APCs. This finding led us to identify a process in mice whereby Ag-specific B cells transfer Ag to other APCs. In this study, we report the ability and mechanism by which human B lymphocytes can transfer BCR-captured Ag to macrophages. The transfer of Ag involves direct contact between the two cells followed by the capture of B cell-derived membrane and/or intracellular components by the macrophage. These events are abrogated by blocking scavenger receptor A, a receptor involved in the exchange of membrane between APCs. Macrophages acquire greater amounts of Ag in the presence of specific B cells than in their absence. This mechanism allows B cells to amplify or edit the immune response to specific Ag by transferring BCR-captured Ag to other professional APCs, thereby increasing the frequency of its presentation. Ag transfer may perpetuate chronic autoimmune responses to specific self-proteins and help explain the efficacy of B cell-directed therapies in human disease.
Collapse
Affiliation(s)
- Bohdan P Harvey
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
26
|
Rocha N, Neefjes J. MHC class II molecules on the move for successful antigen presentation. EMBO J 2007; 27:1-5. [PMID: 18046453 DOI: 10.1038/sj.emboj.7601945] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 11/12/2007] [Indexed: 11/09/2022] Open
Abstract
Major histocompatibility complex class II (MHC II) molecules are targeted to endocytic compartments, known as MIIC, by the invariant chain (Ii) that is degraded upon arrival in these compartments. MHC II acquire antigenic fragments from endocytosed proteins for presentation at the cell surface. In a unique and complex series of reactions, MHC II succeed in exchanging a remaining fragment of Ii for other protein fragments in subdomains of MIIC before transport to the cell surface. Here, the mechanisms regulating loading and intracellular trafficking of MHC II are discussed.
Collapse
Affiliation(s)
- Nuno Rocha
- Division of Tumor Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
27
|
Abstract
Heterogeneous intracellular pathways and biochemical mechanisms are responsible for generating the glycoprotein complexes of peptide and major histocompatibility complex that are displayed on the surfaces of antigen-presenting cells for recognition by T lymphocytes. These pathways have a profound influence on the specificity of adaptive immunity and tolerance, as well as the context and consequences of antigen recognition by T cells in the thymus and periphery. The field of antigen processing and presentation has continued to advance since the publication of a focus issue on the topic in Nature Immunology in July 2004. Progress has been made on many fronts, including advances in understanding how proteases, accessory molecules and intracellular pathways influence peptide loading and antigen presentation in various cell types.
Collapse
Affiliation(s)
- Peter E Jensen
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|