1
|
Colozza G, Lee H, Merenda A, Wu SHS, Català-Bordes A, Radaszkiewicz TW, Jordens I, Lee JH, Bamford AD, Farnhammer F, Low TY, Maurice MM, Bryja V, Kim J, Koo BK. Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2. SCIENCE ADVANCES 2023; 9:eadh9673. [PMID: 38000028 PMCID: PMC10672176 DOI: 10.1126/sciadv.adh9673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate β-catenin-dependent (canonical) or -independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells.
Collapse
Affiliation(s)
- Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Heetak Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
| | | | - Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Andrea Català-Bordes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Tomasz W. Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ingrid Jordens
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ji-Hyun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
| | - Aileen-Diane Bamford
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Fiona Farnhammer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Division of Metabolism and Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), University Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Madelon M. Maurice
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jihoon Kim
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
2
|
Chen Z, Zhou R, Zhang Y, Hao D, Wang Y, Huang S, Liu N, Xia C, Yissachar N, Huang F, Chu Y, Yan D. β-arrestin 2 quenches TLR signaling to facilitate the immune evasion of EPEC. Gut Microbes 2020; 11:1423-1437. [PMID: 32403971 PMCID: PMC7524320 DOI: 10.1080/19490976.2020.1759490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The protein translocated intimin receptor (Tir) from enteropathogenic Escherichia coli shares sequence similarity with the host cellular immunoreceptor tyrosine-based inhibition motifs (ITIMs). The ITIMs of Tir are required for Tir-mediated immune inhibition and evasion of host immune responses. However, the underlying molecular mechanism by which Tir regulates immune inhibition remains unclear. Here we demonstrated that β-arrestin 2, which is involved in the G-protein-coupled receptor (GPCR) signal pathway, interacted with Tir in an ITIM-dependent manner. For the molecular mechanism, we found that β-arrestin 2 enhanced the recruitment of SHP-1 to Tir. The recruited SHP-1 inhibited K63-linked ubiquitination of TRAF6 by dephosphorylating TRAF6 at Tyr288, and inhibited K63-linked ubiquitination and phosphorylation of TAK1 by dephosphorylating TAK1 at Tyr206, which cut off the downstream signal transduction and subsequent cytokine production. Moreover, the inhibitory effect of Tir on immune responses was diminished in β-arrestin 2-deficient mice and macrophages. These findings suggest that β-arrestin 2 is a key regulator in Tir-mediated immune evasion, which could serve as a new therapeutic target for bacterial infectious diseases.
Collapse
Affiliation(s)
- Zijuan Chen
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ruixue Zhou
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yihua Zhang
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Doudou Hao
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Shichao Huang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, the Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ningning Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nissan Yissachar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Feng Huang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,CONTACT Dapeng Yan Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, Shanghai200032, China
| |
Collapse
|
3
|
Bandmann V, Mirsanaye AS, Schäfer J, Thiel G, Holstein T, Mikosch-Wersching M. Membrane capacitance recordings resolve dynamics and complexity of receptor-mediated endocytosis in Wnt signalling. Sci Rep 2019; 9:12999. [PMID: 31506500 PMCID: PMC6736968 DOI: 10.1038/s41598-019-49082-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/20/2019] [Indexed: 11/26/2022] Open
Abstract
Receptor-mediated endocytosis is an essential process in signalling pathways for activation of intracellular signalling cascades. One example is the Wnt signalling pathway that seems to depend on endocytosis of the ligand-receptor complex for initiation of Wnt signal transduction. To date, the roles of different endocytic pathways in Wnt signalling, molecular players and the kinetics of the process remain unclear. Here, we monitored endocytosis in Wnt3a and Wnt5a-mediated signalling with membrane capacitance recordings of HEK293 cells. Our measurements revealed a swift and substantial increase in the number of endocytic vesicles. Extracellular Wnt ligands specifically triggered endocytotic activity, which started immediately upon ligand binding and ceased within a period of ten minutes. By using specific inhibitors, we were able to separate Wnt-induced endocytosis into two independent pathways. We demonstrate that canonical Wnt3a is taken up mainly by clathrin-independent endocytosis whereas noncanonical Wnt5a is exclusively regulated via clathrin-mediated endocytosis. Our findings show that membrane capacitance recordings allow the resolution of complex cellular processes in plasma membrane signalling pathways in great detail.
Collapse
Affiliation(s)
- Vera Bandmann
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Ann Schirin Mirsanaye
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Johanna Schäfer
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Gerhard Thiel
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Thomas Holstein
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Melanie Mikosch-Wersching
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany. .,Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany.
| |
Collapse
|
4
|
Yun SJ, Kim H, Jung SH, Kim JH, Ryu JE, Singh NJ, Jeon J, Han JK, Kim CH, Kim S, Jang SK, Kim WJ. The mechanistic insight of a specific interaction between 15d-Prostaglandin-J2 and eIF4A suggests an evolutionary conserved role across species. Biol Open 2018; 7:bio035402. [PMID: 30257829 PMCID: PMC6262856 DOI: 10.1242/bio.035402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
15-deoxy-delta 12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory/anti-neoplastic prostaglandin that functions through covalent binding to cysteine residues of various target proteins. We previously showed that 15d-PGJ2 mediated anti-inflammatory responses are dependent on the translational inhibition through its interaction with eIF4A (Kim et al., 2007). Binding of 15d-PGJ2 to eIF4A specifically blocks the interaction between eIF4G and eIF4A, which leads to the formation of stress granules (SGs), which then cluster mRNAs with inhibited translation. Here, we show that the binding between 15d-PGJ2 and eIF4A specifically blocks the interaction between the MIF4G domain of eIF4G and eIF4A. To reveal the mechanism of this interaction, we used computational simulation-based docking studies and identified that the carboxyl tail of 15d-PGJ2 could stabilize the binding of 15d-PGJ2 to eIF4A through arginine 295 of eIF4A, which is the first suggestion that the 15d-PGJ2 tail plays a physiological role. Interestingly, the putative 15d-PGJ2 binding site on eiF4A is conserved across many species, suggesting a biological role. Our data propose that studying 15d-PGJ2 and its targets may uncover new therapeutic approaches in anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- So Jeong Yun
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyunjoon Kim
- PBC, Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung-Hyun Jung
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Joon Hyun Kim
- PBC, Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jeong Eun Ryu
- PBC, Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - N Jiten Singh
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jouhyun Jeon
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jin-Kwan Han
- PBC, Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sanguk Kim
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Key Jang
- PBC, Department of Life Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Woo Jae Kim
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada
| |
Collapse
|
5
|
Abstract
β-arrestin1 (or arrestin2) and β-arrestin2 (or arrestin3) are ubiquitously expressed cytosolic adaptor proteins that were originally discovered for their inhibitory role in G protein-coupled receptor (GPCR) signaling through heterotrimeric G proteins. However, further biochemical characterization revealed that β-arrestins do not just "block" the activated GPCRs, but trigger endocytosis and kinase activation leading to specific signaling pathways that can be localized on endosomes. The signaling pathways initiated by β-arrestins were also found to be independent of G protein activation by GPCRs. The discovery of ligands that blocked G protein activation but promoted β-arrestin binding, or vice-versa, suggested the exciting possibility of selectively activating intracellular signaling pathways. In addition, it is becoming increasingly evident that β-arrestin-dependent signaling is extremely diverse and provokes distinct cellular responses through different GPCRs even when the same effector kinase is involved. In this review, we summarize various signaling pathways mediated by β-arrestins and highlight the physiologic effects of β-arrestin-dependent signaling.
Collapse
|
6
|
The role of G protein-coupled receptors in cochlear planar cell polarity. Int J Biochem Cell Biol 2016; 77:220-5. [DOI: 10.1016/j.biocel.2016.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 02/06/2023]
|
7
|
Lee H, Lee SJ, Kim GH, Yeo I, Han JK. PLD1 regulates Xenopus convergent extension movements by mediating Frizzled7 endocytosis for Wnt/PCP signal activation. Dev Biol 2016; 411:38-49. [PMID: 26806705 DOI: 10.1016/j.ydbio.2016.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/30/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Phospholipase D (PLD) is involved in the regulation of receptor-associated signaling, cell movement, cell adhesion and endocytosis. However, its physiological role in vertebrate development remains poorly understood. In this study, we show that PLD1 is required for the convergent extension (CE) movements during Xenopus gastrulation by activating Wnt/PCP signaling. Xenopus PLD1 protein is specifically enriched in the dorsal region of Xenopus gastrula embryo and loss or gain-of-function of PLD1 induce defects in gastrulation and CE movements. These defective phenotypes are due to impaired regulation of Wnt/PCP signaling pathway. Biochemical and imaging analysis using Xenopus tissues reveal that PLD1 is required for Fz7 receptor endocytosis upon Wnt11 stimulation. Moreover, we show that Fz7 endocytosis depends on dynamin and regulation of GAP activity of dynamin by PLD1 via its PX domain is crucial for this process. Taken together, our results suggest that PLD1 acts as a new positive mediator of Wnt/PCP signaling by promoting Wnt11-induced Fz7 endocytosis for precise regulation of Xenopus CE movements.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Department of Life Sciences, Pohang University of Science and Technology, San31, Hyoja Dong, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Seung Joon Lee
- Department of Life Sciences, Pohang University of Science and Technology, San31, Hyoja Dong, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Gun-Hwa Kim
- Division of Life Science and Pioneer Research Center for Protein Network Exploration, Korea Basic Science Institute, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-333, Republic of Korea
| | - Inchul Yeo
- Department of Life Sciences, Pohang University of Science and Technology, San31, Hyoja Dong, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology, San31, Hyoja Dong, Pohang, Kyungbuk 790-784, Republic of Korea.
| |
Collapse
|
8
|
Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell 2015; 58:522-33. [PMID: 25891077 DOI: 10.1016/j.molcel.2015.03.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/26/2015] [Accepted: 03/11/2015] [Indexed: 12/31/2022]
Abstract
Tumor suppressors ZNRF3 and RNF43 inhibit Wnt signaling through promoting degradation of Wnt coreceptors Frizzled (FZD) and LRP6, and this activity is counteracted by stem cell growth factor R-spondin. The mechanism by which ZNRF3 and RNF43 recognize Wnt receptors remains unclear. Here we uncover an unexpected role of Dishevelled (DVL), a positive Wnt regulator, in promoting Wnt receptor degradation. DVL knockout cells have significantly increased cell surface levels of FZD and LRP6. DVL is required for ZNRF3/RNF43-mediated ubiquitination and degradation of FZD. Physical interaction with DVL is essential for the Wnt inhibitory activity of ZNRF3/RNF43. Binding of FZD through the DEP domain of DVL is required for DVL-mediated downregulation of FZD. Fusion of the DEP domain to ZNRF3/RNF43 overcomes their DVL dependency to downregulate FZD. Our study reveals DVL as a dual function adaptor to recruit negative regulators ZNRF3/RNF43 to Wnt receptors to ensure proper control of pathway activity.
Collapse
|
9
|
Cleghorn WM, Branch KM, Kook S, Arnette C, Bulus N, Zent R, Kaverina I, Gurevich EV, Weaver AM, Gurevich VV. Arrestins regulate cell spreading and motility via focal adhesion dynamics. Mol Biol Cell 2015; 26:622-635. [PMID: 25540425 PMCID: PMC4325834 DOI: 10.1091/mbc.e14-02-0740] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 11/19/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022] Open
Abstract
Focal adhesions (FAs) play a key role in cell attachment, and their timely disassembly is required for cell motility. Both microtubule-dependent targeting and recruitment of clathrin are critical for FA disassembly. Here we identify nonvisual arrestins as molecular links between microtubules and clathrin. Cells lacking both nonvisual arrestins showed excessive spreading on fibronectin and poly-d-lysine, increased adhesion, and reduced motility. The absence of arrestins greatly increases the size and lifespan of FAs, indicating that arrestins are necessary for rapid FA turnover. In nocodazole washout assays, FAs in arrestin-deficient cells were unresponsive to disassociation or regrowth of microtubules, suggesting that arrestins are necessary for microtubule targeting-dependent FA disassembly. Clathrin exhibited decreased dynamics near FA in arrestin-deficient cells. In contrast to wild-type arrestins, mutants deficient in clathrin binding did not rescue the phenotype. Collectively the data indicate that arrestins are key regulators of FA disassembly linking microtubules and clathrin.
Collapse
Affiliation(s)
| | - Kevin M Branch
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | - Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | - Nada Bulus
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Roy Zent
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Irina Kaverina
- Department of Cell Biology, Vanderbilt University, Nashville, TN 37232
| | | | - Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | | |
Collapse
|
10
|
Asymmetry of VANGL2 in migrating lymphocytes as a tool to monitor activity of the mammalian WNT/planar cell polarity pathway. Cell Commun Signal 2015; 13:2. [PMID: 25627785 PMCID: PMC4314808 DOI: 10.1186/s12964-014-0079-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/17/2014] [Indexed: 11/29/2022] Open
Abstract
Background The WNT/planar-cell-polarity (PCP) pathway is a key regulator of cell polarity and directional cell movements. Core PCP proteins such as Van Gogh-like2 (VANGL2) are evolutionarily highly conserved; however, the mammalian PCP machinery is still poorly understood mainly due to lack of suitable models and quantitative methodology. WNT/PCP has been implicated in many human diseases with the most distinguished positive role in the metastatic process, which accounts for more than 90% of cancer related deaths, and presents therefore an attractive target for pharmacological interventions. However, cellular assays for the assessment of PCP signaling, which would allow a more detailed mechanistic analysis of PCP function and possibly also high throughput screening for chemical compounds targeting mammalian PCP signaling, are still missing. Results Here we describe a mammalian cell culture model, which correlates B lymphocyte migration of patient-derived MEC1 cells and asymmetric localization of fluorescently-tagged VANGL2. We show by live cell imaging that PCP proteins are polarized in MEC1 cells and that VANGL2 polarization is controlled by the same mechanism as in tissues i.e. it is dependent on casein kinase 1 activity. In addition, destruction of the actin cytoskeleton leads to migratory arrest and cell rounding while VANGL2-EGFP remains polarized suggesting that active PCP signaling visualized by polarized distribution of VANGL2 is a cause for and not a consequence of the asymmetric shape of a migrating cell. Conclusions The presented imaging-based methodology allows overcoming limitations of earlier approaches to study the mammalian WNT/PCP pathway, which required in vivo models and analysis of complex tissues. Our system investigating PCP-like signaling on a single-cell level thus opens new possibilities for screening of compounds, which control asymmetric distribution of proteins in the PCP pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0079-1) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Prokop A, Sánchez-Soriano N, Gonçalves-Pimentel C, Molnár I, Kalmár T, Mihály J. DAAM family members leading a novel path into formin research. Commun Integr Biol 2014. [DOI: 10.4161/cib.16511] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
12
|
Sewduth RN, Jaspard-Vinassa B, Peghaire C, Guillabert A, Franzl N, Larrieu-Lahargue F, Moreau C, Fruttiger M, Dufourcq P, Couffinhal T, Duplàa C. The ubiquitin ligase PDZRN3 is required for vascular morphogenesis through Wnt/planar cell polarity signalling. Nat Commun 2014; 5:4832. [PMID: 25198863 DOI: 10.1038/ncomms5832] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/28/2014] [Indexed: 01/01/2023] Open
Abstract
Development and stabilization of a vascular plexus requires the coordination of multiple signalling processes. Wnt planar cell polarity (PCP) signalling is critical in vertebrates for diverse morphogenesis events, which coordinate cell orientation within a tissue-specific plane. However, its functional role in vascular morphogenesis is not well understood. Here we identify PDZRN3, an ubiquitin ligase, and report that Pdzrn3 deficiency impairs embryonic angiogenic remodelling and postnatal retinal vascular patterning, with a loss of two-dimensional polarized orientation of the intermediate retinal plexus. Using in vitro and ex vivo Pdzrn3 loss-of-function and gain-of-function experiments, we demonstrate a key role of PDZRN3 in endothelial cell directional and coordinated extension. PDZRN3 ubiquitinates Dishevelled 3 (Dvl3), to promote endocytosis of the Frizzled/Dvl3 complex, for PCP signal transduction. These results highlight the role of PDZRN3 to direct Wnt PCP signalling, and broadly implicate this pathway in the planar orientation and highly branched organization of vascular plexuses.
Collapse
Affiliation(s)
- Raj N Sewduth
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Béatrice Jaspard-Vinassa
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Claire Peghaire
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Aude Guillabert
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Nathalie Franzl
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | | | - Catherine Moreau
- INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | | | - Pascale Dufourcq
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| | - Thierry Couffinhal
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [3] CHU de Bordeaux, Service des Maladies Cardiaques et Vasculaires, F-33000 Bordeaux, France
| | - Cécile Duplàa
- 1] INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France [2] Univ. Bordeaux, Adaptation cardiovasculaire à l'ischémie, U1034, F-33600 Pessac, France
| |
Collapse
|
13
|
Sheng R, Kim H, Lee H, Xin Y, Chen Y, Tian W, Cui Y, Choi JC, Doh J, Han JK, Cho W. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat Commun 2014; 5:4393. [PMID: 25024088 PMCID: PMC4100210 DOI: 10.1038/ncomms5393] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 12/19/2022] Open
Abstract
Wnt proteins control diverse biological processes through β-catenin-dependent canonical signalling and β-catenin-independent non-canonical signalling. The mechanisms by which these signalling pathways are differentially triggered and controlled are not fully understood. Dishevelled (Dvl) is a scaffold protein that serves as the branch point of these pathways. Here, we show that cholesterol selectively activates canonical Wnt signalling over non-canonical signalling under physiological conditions by specifically facilitating the membrane recruitment of the PDZ domain of Dvl and its interaction with other proteins. Single-molecule imaging analysis shows that cholesterol is enriched around the Wnt-activated Frizzled and low-density lipoprotein receptor-related protein 5/6 receptors and plays an essential role for Dvl-mediated formation and maintenance of the canonical Wnt signalling complex. Collectively, our results suggest a new regulatory role of cholesterol in Wnt signalling and a potential link between cellular cholesterol levels and the balance between canonical and non-canonical Wnt signalling activities.
Collapse
Affiliation(s)
- Ren Sheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | - Yao Xin
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yong Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wen Tian
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yang Cui
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jong-Cheol Choi
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Junsang Doh
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
14
|
Abstract
Formin proteins were recognized as effectors of Rho GTPases some 15 years ago. They contribute to different cellular actin cytoskeleton structures by their ability to polymerize straight actin filaments at the barbed end. While not all formins necessarily interact with Rho GTPases, a subgroup of mammalian formins, termed Diaphanous-related formins or DRFs, were shown to be activated by small GTPases of the Rho superfamily. DRFs are autoinhibited in the resting state by an N- to C-terminal interaction that renders the central actin polymerization domain inactive. Upon the interaction with a GTP-bound Rho, Rac, or Cdc42 GTPase, the C-terminal autoregulation domain is displaced from its N-terminal recognition site and the formin becomes active to polymerize actin filaments. In this review we discuss the current knowledge on the structure, activation, and function of formin-GTPase interactions for the mammalian formin families Dia, Daam, FMNL, and FHOD. We describe both direct and indirect interactions of formins with GTPases, which lead to formin activation and cytoskeletal rearrangements. The multifaceted function of formins as effector proteins of Rho GTPases thus reflects the diversity of the actin cytoskeleton in cells.
Collapse
Affiliation(s)
- Sonja Kühn
- Center of Advanced European Studies and Research (caesar); Group Physical Biochemistry; Bonn, Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research (caesar); Group Physical Biochemistry; Bonn, Germany
| |
Collapse
|
15
|
β-Arrestin interacts with the beta/gamma subunits of trimeric G-proteins and dishevelled in the Wnt/Ca(2+) pathway in xenopus gastrulation. PLoS One 2014; 9:e87132. [PMID: 24489854 PMCID: PMC3906129 DOI: 10.1371/journal.pone.0087132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022] Open
Abstract
β-Catenin independent, non-canonical Wnt signaling pathways play a major role in the regulation of morphogenetic movements in vertebrates. The term non-canonical Wnt signaling comprises multiple, intracellularly divergent, Wnt-activated and β-Catenin independent signaling cascades including the Wnt/Planar Cell Polarity and the Wnt/Ca2+ cascades. Wnt/Planar Cell Polarity and Wnt/Ca2+ pathways share common effector proteins, including the Wnt ligand, Frizzled receptors and Dishevelled, with each other and with additional branches of Wnt signaling. Along with the aforementioned proteins, β-Arrestin has been identified as an essential effector protein in the Wnt/β-Catenin and the Wnt/Planar Cell Polarity pathway. Our results demonstrate that β-Arrestin is required in the Wnt/Ca2+ signaling cascade upstream of Protein Kinase C (PKC) and Ca2+/Calmodulin-dependent Protein Kinase II (CamKII). We have further characterized the role of β-Arrestin in this branch of non-canonical Wnt signaling by knock-down and rescue experiments in Xenopus embryo explants and analyzed protein-protein interactions in 293T cells. Functional interaction of β-Arrestin, the β subunit of trimeric G-proteins and Dishevelled is required to induce PKC activation and membrane translocation. In Xenopus gastrulation, β-Arrestin function in Wnt/Ca2+ signaling is essential for convergent extension movements. We further show that β-Arrestin physically interacts with the β subunit of trimeric G-proteins and Dishevelled, and that the interaction between β-Arrestin and Dishevelled is promoted by the beta/gamma subunits of trimeric G-proteins, indicating the formation of a multiprotein signaling complex.
Collapse
|
16
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
17
|
Kríz V, Pospíchalová V, Masek J, Kilander MBC, Slavík J, Tanneberger K, Schulte G, Machala M, Kozubík A, Behrens J, Bryja V. β-arrestin promotes Wnt-induced low density lipoprotein receptor-related protein 6 (Lrp6) phosphorylation via increased membrane recruitment of Amer1 protein. J Biol Chem 2013; 289:1128-41. [PMID: 24265322 PMCID: PMC3887180 DOI: 10.1074/jbc.m113.498444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
β-Arrestin is a scaffold protein that regulates signal transduction by seven transmembrane-spanning receptors. Among other functions it is also critically required for Wnt/β-catenin signal transduction. In the present study we provide for the first time a mechanistic basis for the β-arrestin function in Wnt/β-catenin signaling. We demonstrate that β-arrestin is required for efficient Wnt3a-induced Lrp6 phosphorylation, a key event in downstream signaling. β-Arrestin regulates Lrp6 phosphorylation via a novel interaction with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding protein Amer1/WTX/Fam123b. Amer1 has been shown very recently to bridge Wnt-induced and Dishevelled-associated PtdIns(4,5)P2 production to the phosphorylation of Lrp6. Using fluorescence recovery after photobleaching we show here that β-arrestin is required for the Wnt3a-induced Amer1 membrane dynamics and downstream signaling. Finally, we show that β-arrestin interacts with PtdIns kinases PI4KIIα and PIP5KIβ. Importantly, cells lacking β-arrestin showed higher steady-state levels of the relevant PtdInsP and were unable to increase levels of these PtdInsP in response to Wnt3a. In summary, our data show that β-arrestins regulate Wnt3a-induced Lrp6 phosphorylation by the regulation of the membrane dynamics of Amer1. We propose that β-arrestins via their scaffolding function facilitate Amer1 interaction with PtdIns(4,5)P2, which is produced locally upon Wnt3a stimulation by β-arrestin- and Dishevelled-associated kinases.
Collapse
Affiliation(s)
- Vítezslav Kríz
- From the Faculty of Science, Institute of Experimental Biology, Masaryk University, 611 37 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Muñoz-Soriano V, Belacortu Y, Paricio N. Planar cell polarity signaling in collective cell movements during morphogenesis and disease. Curr Genomics 2013; 13:609-22. [PMID: 23730201 PMCID: PMC3492801 DOI: 10.2174/138920212803759721] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 01/01/2023] Open
Abstract
Collective and directed cell movements are crucial for diverse developmental processes in the animal kingdom, but they are also involved in wound repair and disease. During these processes groups of cells are oriented within the tissue plane, which is referred to as planar cell polarity (PCP). This requires a tight regulation that is in part conducted by the PCP pathway. Although this pathway was initially characterized in flies, subsequent studies in vertebrates revealed a set of conserved core factors but also effector molecules and signal modulators, which build the fundamental PCP machinery. The PCP pathway in Drosophila regulates several developmental processes involving collective cell movements such as border cell migration during oogenesis, ommatidial rotation during eye development, and embryonic dorsal closure. During vertebrate embryogenesis, PCP signaling also controls collective and directed cell movements including convergent extension during gastrulation, neural tube closure, neural crest cell migration, or heart morphogenesis. Similarly, PCP signaling is linked to processes such as wound repair, and cancer invasion and metastasis in adults. As a consequence, disruption of PCP signaling leads to pathological conditions. In this review, we will summarize recent findings about the role of PCP signaling in collective cell movements in flies and vertebrates. In addition, we will focus on how studies in Drosophila have been relevant to our understanding of the PCP molecular machinery and will describe several developmental defects and human disorders in which PCP signaling is compromised. Therefore, new discoveries about the contribution of this pathway to collective cell movements could provide new potential diagnostic and therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética, Facultad de CC Biológicas, Universidad de Valencia, Burjassot 46100, Valencia, Spain
| | | | | |
Collapse
|
19
|
Kim GH, Park EC, Lee H, Na HJ, Choi SC, Han JK. β-Arrestin 1 mediates non-canonical Wnt pathway to regulate convergent extension movements. Biochem Biophys Res Commun 2013; 435:182-7. [PMID: 23665017 DOI: 10.1016/j.bbrc.2013.04.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/24/2013] [Indexed: 02/04/2023]
Abstract
β-Arrestins are multifaceted proteins that play critical roles in termination of G protein-coupled receptor (GPCR) signaling by inducing its desensitization and internalization as well as in facilitation of many intracellular signaling pathways. Here, we examine using Xenopus embryos whether β-arrestin 1 might act as a mediator of β-catenin-independent Wnt (non-canonical) signaling. Xenopus β-arrestin 1 (xβarr1) is expressed in the tissues undergoing extensive cell rearrangements in early development. Gain- and loss-of-function analyses of xβarr1 revealed that it regulates convergent extension (CE) movements of mesodermal tissue with no effect on cell fate specification. In addition, rescue experiments showed that xβarr1 controls CE movements downstream of Wnt11/Fz7 signal and via activation of RhoA and JNK. In line with this, xβarr1 associated with key Wnt components including Ryk, Fz, and Dishevelled. Furthermore, we found that xβarr1 could recover CE movements inhibited by xβarr2 knockdown or its endocytosis defective mutant. Overall, these results suggest that β-arrestin 1 and 2 share interchangeable endocytic activity to regulate CE movements downstream of the non-canonical Wnt pathway.
Collapse
Affiliation(s)
- Gun-Hwa Kim
- Division of Life Science, Korea Basic Science Institute (KBSI), Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Planar cell polarity (PCP), a process controlling coordinated, uniformly polarized cellular behaviors in a field of cells, has been identified to be critically required for many fundamental developmental processes. However, a global directional cue that establishes PCP in a three-dimensional tissue or organ with respect to the body axes remains elusive. In vertebrate, while Wnt-secreted signaling molecules have been implicated in regulating PCP in a β-catenin-independent manner, whether they function permissively or act as a global cue to convey directional information is not clearly defined. In addition, the underlying molecular mechanism by which Wnt signal is transduced to core PCP proteins is largely unknown. In this chapter, I review the roles of Wnt signaling in regulating PCP during vertebrate development and update our knowledge of its regulatory mechanism.
Collapse
Affiliation(s)
- Bo Gao
- National Human Genome Research Institute, Bethesda, Maryland, USA.
| |
Collapse
|
21
|
The Role of Arrestins in Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:225-42. [DOI: 10.1016/b978-0-12-394440-5.00009-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
β-Arrestins: modulators of small GTPase activation and function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:149-74. [PMID: 23764053 DOI: 10.1016/b978-0-12-394440-5.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most cellular events responsible for accurate G protein-coupled receptor trafficking involve small GTP-binding proteins. For example, trafficking of receptors via the endocytic and exocytic pathways requires activation of ADP-ribosylation factors and Rab proteins, while receptor-mediated complex responses such as migration are well characterized to be dependent upon Rho family members. Because β-arrestin proteins are recruited to activated receptors and now considered as key signaling molecules, whether they act to control small GTPase activity remains a subject of great interest. Over the years, considerable evidence has suggested that β-arrestins and GTPases might be effectors of the same signaling pathways. One example is the roles of both β-arrestin and Ras, the prototypical GTPase, in coordinating activation of mitogen-activated protein kinase. Recently developed tools effective in suppressing the expression of β-arrestins will help define whether they are essential for small G protein activation. Furthermore, novel approaches to identify protein complexes will greatly advance our understanding of the possible cross talk between β-arrestin and small GTPases.
Collapse
|
23
|
Abstract
30 years after the identification of WNTs, their signal transduction has become increasingly complex, with the discovery of more than 15 receptors and co-receptors in seven protein families. The recent discovery of three receptor classes for the R-spondin family of WNT agonists further adds to this complexity. What emerges is an intricate network of receptors that form higher-order ligand-receptor complexes routing downstream signalling. These are regulated both extracellularly by agonists such as R-spondin and intracellularly by post-translational modifications such as phosphorylation, proteolytic processing and endocytosis.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Dual functions of DP1 promote biphasic Wnt-on and Wnt-off states during anteroposterior neural patterning. EMBO J 2012; 31:3384-97. [PMID: 22773187 DOI: 10.1038/emboj.2012.181] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 06/15/2012] [Indexed: 01/14/2023] Open
Abstract
DP1, a dimerization partner protein of the transcription factor E2F, is known to inhibit Wnt/β-catenin signalling along with E2F, although the function of DP1 itself was not well characterized. Here, we present a novel dual regulatory mechanism of Wnt/β-catenin signalling by DP1 independent from E2F. DP1 negatively regulates Wnt/β-catenin signalling by inhibiting Dvl-Axin interaction and by enhancing poly-ubiquitination of β-catenin. In contrast, DP1 positively modulates the signalling upon Wnt stimulation, via increasing cytosolic β-catenin and antagonizing the kinase activity of NLK. In Xenopus embryos, DP1 exerts both positive and negative roles in Wnt/β-catenin signalling during anteroposterior neural patterning. From subcellular localization analyses, we suggest that the dual roles of DP1 in Wnt/β-catenin signalling are endowed by differential nucleocytoplasmic localizations. We propose that these dual functions of DP1 can promote and stabilize biphasic Wnt-on and Wnt-off states in response to a gradual gradient of Wnt/β-catenin signalling to determine differential cell fates.
Collapse
|
25
|
Andersson ER. The role of endocytosis in activating and regulating signal transduction. Cell Mol Life Sci 2012; 69:1755-71. [PMID: 22113372 PMCID: PMC11114983 DOI: 10.1007/s00018-011-0877-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 02/07/2023]
Abstract
Endocytosis is increasingly understood to play crucial roles in most signaling pathways, from determining which signaling components are activated, to how the signal is subsequently transduced and/or terminated. Whether a receptor-ligand complex is internalized via a clathrin-dependent or clathrin-independent endocytic route, and the complexes' subsequent trafficking through specific endocytic compartments, to then be recycled or degraded, has profound effects on signaling output. This review discusses the roles of endocytosis in three markedly different signaling pathways: the Wnt, Notch, and Eph/Ephrin pathways. These offer fundamentally different signaling systems: (1) diffusible ligands inducing signaling in one cell, (2) membrane-tethered ligands inducing signaling in a contacting receptor cell, and (3) bi-directional receptor-ligand signaling in two contacting cells. In each of these systems, endocytosis controls signaling in fascinating ways, and comparison of their similarities and dissimilarities will help to expand our understanding of endocytic control of signal transduction across multiple signaling pathways.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77, Stockholm, Sweden.
| |
Collapse
|
26
|
Analysis of the expression of microtubule plus-end tracking proteins (+TIPs) during Xenopus laevis embryogenesis. Gene Expr Patterns 2012; 12:204-12. [DOI: 10.1016/j.gep.2012.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 12/25/2022]
|
27
|
Wnt/planar cell polarity signaling in the regulation of convergent extension movements during Xenopus gastrulation. Methods Mol Biol 2012; 839:79-89. [PMID: 22218894 DOI: 10.1007/978-1-61779-510-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Wnt/planar cell polarity (PCP) signaling pathway plays a critical role in wing, eye, neural tube defects, and sensory bristle development of Drosophila and vertebrate development. Recently, the Wnt/PCP pathway has been known to regulate convergent extension (CE) movements that are essential for establishing the three germ layers and body axis during early vertebrate development. Here, we describe detailed practical procedures required for the particular studies in Xenopus CE movements.
Collapse
|
28
|
Kikuchi A, Yamamoto H, Sato A, Matsumoto S. New insights into the mechanism of Wnt signaling pathway activation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 291:21-71. [PMID: 22017973 DOI: 10.1016/b978-0-12-386035-4.00002-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wnts compromise a large family of secreted, hydrophobic glycoproteins that control a variety of developmental and adult processes in all metazoan organisms. Recent advances in the Wnt-signal studies have revealed that distinct Wnts activate multiple intracellular cascades that regulate cellular proliferation, differentiation, migration, and polarity. Although the mechanism by which Wnts regulate different pathways selectively remains to be clarified, evidence has accumulated that in addition to the formation of ligand-receptor pairs, phosphorylation of receptors, receptor-mediated endocytosis, acidification, and the presence of cofactors, such as heparan sulfate proteoglycans, are also involved in the activation of specific Wnt pathways. Here, we review the mechanism of activation in Wnt signaling initiated on the cell-surface membrane. In addition, the mechanisms for fine-tuning by cross talk between Wnt and other signaling are also discussed.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
29
|
Abstract
Planar cell polarity is a fundamental concept to understanding the coordination of cell movements in the plane of a tissue. Since the planar cell polarity pathway was discovered in mesenchymal tissues involving cell interaction during vertebrate gastrulation, there is an emerging evidence that a variety of mesenchymal and epithelial cells utilize this genetic pathway to mediate the coordination of cells in directed movements. In this review, we focus on how the planar cell polarity pathway is mediated by migrating cells to communicate with one another in different developmental processes.
Collapse
|
30
|
Kikuchi A, Yamamoto H, Sato A, Matsumoto S. Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf) 2012; 204:17-33. [PMID: 21518267 DOI: 10.1111/j.1748-1716.2011.02294.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Wnt5a is a representative ligand that activates the β-catenin-independent pathways. Because the β-catenin-independent pathway includes multiple signalling cascades in addition to the planar cell polarity and Ca(2+) pathway, Wnt5a regulates a variety of cellular functions, such as proliferation, differentiation, migration, adhesion and polarity. Consistent with the multiple functions of Wnt5a signalling, Wnt5a knockout mice show various phenotypes, including an inability to extend the embryonic anterior-posterior and proximal-distal axes in outgrowth tissues. Thus, many important roles of Wnt5a in developmental processes have been demonstrated. Moreover, recent reports suggest that the postnatal abnormalities in the Wnt5a signalling are involved in various diseases, such as cancer, inflammatory diseases and metabolic disorders. Therefore, Wnt5a and its signalling pathways could be important targets for the diagnosis and therapy for human diseases.
Collapse
Affiliation(s)
- A Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan.
| | | | | | | |
Collapse
|
31
|
β-arrestin2 plays permissive roles in the inhibitory activities of RGS9-2 on G protein-coupled receptors by maintaining RGS9-2 in the open conformation. Mol Cell Biol 2011; 31:4887-901. [PMID: 22006018 DOI: 10.1128/mcb.05690-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Together with G protein-coupled receptor (GPCR) kinases (GRKs) and β-arrestins, RGS proteins are the major family of molecules that control the signaling of GPCRs. The expression pattern of one of these RGS family members, RGS9-2, coincides with that of the dopamine D(3) receptor (D(3)R) in the brain, and in vivo studies have shown that RGS9-2 regulates the signaling of D2-like receptors. In this study, β-arrestin2 was found to be required for scaffolding of the intricate interactions among the dishevelled-EGL10-pleckstrin (DEP) domain of RGS9-2, Gβ5, R7-binding protein (R7BP), and D(3)R. The DEP domain of RGS9-2, under the permission of β-arrestin2, inhibited the signaling of D(3)R in collaboration with Gβ5. β-Arrestin2 competed with R7BP and Gβ5 so that RGS9-2 is placed in the cytosolic region in an open conformation which is able to inhibit the signaling of GPCRs. The affinity of the receptor protein for β-arrestin2 was a critical factor that determined the selectivity of RGS9-2 for the receptor it regulates. These results show that β-arrestins function not only as mediators of receptor-G protein uncoupling and initiators of receptor endocytosis but also as scaffolding proteins that control and coordinate the inhibitory effects of RGS proteins on the signaling of certain GPCRs.
Collapse
|
32
|
Prokop A, Sánchez-Soriano N, Gonçalves-Pimentel C, Molnár I, Kalmár T, Mihály J. DAAM family members leading a novel path into formin research. Commun Integr Biol 2011; 4:538-42. [PMID: 22046456 DOI: 10.4161/cib.4.5.16511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 11/19/2022] Open
Abstract
Formins are an important and evolutionarily well conserved class of actin binding proteins with essential biological functions. Although their molecular roles in actin regulation have been clearly demonstrated in vitro, their functions at the cellular or organism levels are still poorly understood. To illustrate this problem, but also to demonstrate potential ways forward, we focus here on the DAAM group of formins. In vertebrates, DAAM group members have been demonstrated to be important regulators of cellular and tissue morphogenesis but, as for all formins, the molecular mechanisms underlying these morphogenetic functions remain to be uncovered. The genome of the fruitfly Drosophila encodes a single DAAM gene that is evolutionarily highly conserved. Recent work on dDAAM has already provided a unique combination of observations and experimental opportunities unrivalled by any other Drosophila formin. These comprise in vitro actin polymerisation assays, subcellular studies in culture and in vivo, and a range of developmental phenotypes revealing a role in tracheal morphogenesis, axonal growth and muscle organization. At all these levels, future work on dDAAM will capitalize on the power of fly genetics, raising unique opportunities to advance our understanding of dDAAM at the systems level, with obvious implications for other formins.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences; Wellcome Trust Centre for Cell-Matrix Research; Michael Smith Building; Manchester, UK
| | | | | | | | | | | |
Collapse
|
33
|
Shenoy SK, Lefkowitz RJ. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 2011; 32:521-33. [PMID: 21680031 DOI: 10.1016/j.tips.2011.05.002] [Citation(s) in RCA: 570] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 01/14/2023]
Abstract
β-Arrestins function as endocytic adaptors and mediate trafficking of a variety of cell-surface receptors, including seven-transmembrane receptors (7TMRs). In the case of 7TMRs, β-arrestins carry out these tasks while simultaneously inhibiting upstream G-protein-dependent signaling and promoting alternate downstream signaling pathways. The mechanisms by which β-arrestins interact with a continuously expanding ensemble of protein partners and perform their multiple functions including trafficking and signaling are currently being uncovered. Molecular changes at the level of protein conformation as well as post-translational modifications of β-arrestins probably form the basis for their dynamic interactions during receptor trafficking and signaling. It is becoming increasingly evident that β-arrestins, originally discovered as 7TMR adaptor proteins, indeed have much broader and more versatile roles in maintaining cellular homeostasis. In this review paper, we assess the traditional and novel functions of β-arrestins and discuss the molecular attributes that might facilitate multiple interactions in regulating cell signaling and receptor trafficking.
Collapse
Affiliation(s)
- Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Box 3821, Durham, NC 27710, USA.
| | | |
Collapse
|
34
|
Manson ME, Corey DA, Rymut SM, Kelley TJ. β-arrestin-2 regulation of the cAMP response element binding protein. Biochemistry 2011; 50:6022-9. [PMID: 21644508 DOI: 10.1021/bi200015h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous work demonstrated that cystic fibrosis (CF) cells exhibit an increase in cAMP-mediated signaling as a characteristic response to lost CFTR function. Evidence for increased cAMP-mediated signaling in CF included increased phosphorylation of the cAMP response element binding protein (CREB) and elevated β-arrestin-2 (βarr2) expression. However, subsequent studies reveal that CREB activation in CF cells is independent of protein kinase-A (PKA). The goal of this study is to test the hypothesis that elevated βarr2 expression leads to increased CREB activation in a PKA-independent mechanism. βarr2-GFP expressing tracheal epithelial cells (βarr2-GFP) exhibit an increase of pCREB content and subsequent CRE activation compared to GFP expressing control cells. βarr2 activation of the ERK cascade represents a candidate mechanism leading to CREB activation. ERK exhibits increased activation in βarr2-GFP cells compared to cont-GFP cells, and ERK inhibition diminishes CRE activation in both GFP and βarr2-GFP cells. To test directly whether CREB regulation in CF is βarr2-dependent, nasal epithelium excised from wt mice (Cftr +/+; βarr2 +/+), CF mice (Cftr -/-; βarr2 +/+), and DKO mice (Cftr -/-; βarr2 -/-) were analyzed for pCREB protein content. Removal of βarr2 expression from CF mice reduces both pCREB and pERK content to wt levels. These data indicate that CF-related CREB regulation is mediated directly through βarr2 expression via the ERK pathway.
Collapse
Affiliation(s)
- Mary E Manson
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-4948, USA
| | | | | | | |
Collapse
|
35
|
Ohkawara B, Glinka A, Niehrs C. Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis. Dev Cell 2011; 20:303-14. [PMID: 21397842 DOI: 10.1016/j.devcel.2011.01.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 10/24/2010] [Accepted: 12/22/2010] [Indexed: 11/26/2022]
Abstract
The R-Spondin (Rspo) family of secreted Wnt modulators is involved in development and disease and holds therapeutic promise as stem cell growth factors. Despite growing biological importance, their mechanism of action is poorly understood. Here, we show that Rspo3 binds syndecan 4 (Sdc4) and that together they activate Wnt/PCP signaling. In Xenopus embryos, Sdc4 and Rspo3 are essential for two Wnt/PCP-driven processes-gastrulation movements and head cartilage morphogenesis. Rspo3/PCP signaling during gastrulation requires Wnt5a and is transduced via Fz7, Dvl, and JNK. Rspo3 functions by inducing Sdc4-dependent, clathrin-mediated endocytosis. We show that this internalization is essential for PCP signal transduction, suggesting that endocytosis of Wnt-receptor complexes is a key mechanism by which R-spondins promote Wnt signaling.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 581, Heidelberg, Germany
| | | | | |
Collapse
|
36
|
Kim H, Han JK. Rab3d is required for Xenopus anterior neurulation by regulating Noggin secretion. Dev Dyn 2011; 240:1430-9. [PMID: 21520330 DOI: 10.1002/dvdy.22643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2011] [Indexed: 11/10/2022] Open
Abstract
Rab3d is a member of the Ras-related small GTPase family of secretory Rab, Rab3. In this study, we showed that Xenopus Rab3d is expressed specifically in the anterior border of the neural plate when the neural plate converges and folds to initiate neural tube formation. Morpholino-mediated knockdown of Rab3d resulted in neurulation defects both in neural plate convergence and folding. Interestingly, perturbation of BMP signaling rescued neurulation defects of Rab3d morphants, suggesting that Rab3d inhibits BMP signaling during neurulation. By secretion assay in the Xenopus animal cap, we found that Rab3d specifically regulates secretion of a BMP antagonist, Noggin, but not Chordin and Wnts. We also found that Rab3d is co-localized with Noggin and that this interaction is dependent on the GTP/GDP cycle of Rab3d. Collectively, these findings suggest that Rab3d-mediated secretion regulation of a BMP antagonist, Noggin, is one of the mechanisms of BMP antagonism during Xenopus anterior neurulation.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Kyungbuk, Republic of Korea
| | | |
Collapse
|
37
|
Li D, Hallett MA, Zhu W, Rubart M, Liu Y, Yang Z, Chen H, Haneline LS, Chan RJ, Schwartz RJ, Field LJ, Atkinson SJ, Shou W. Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development 2011; 138:303-15. [PMID: 21177343 DOI: 10.1242/dev.055566] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dishevelled-associated activator of morphogenesis 1 (Daam1), a member of the formin protein family, plays an important role in regulating the actin cytoskeleton via mediation of linear actin assembly. Previous functional studies of Daam1 in lower species suggest its essential role in Drosophila trachea formation and Xenopus gastrulation. However, its in vivo physiological function in mammalian systems is largely unknown. We have generated Daam1-deficient mice via gene-trap technology and found that Daam1 is highly expressed in developing murine organs, including the heart. Daam1-deficient mice exhibit embryonic and neonatal lethality and suffer multiple cardiac defects, including ventricular noncompaction, double outlet right ventricles and ventricular septal defects. In vivo genetic rescue experiments further confirm that the lethality of Daam1-deficient mice results from the inherent cardiac abnormalities. In-depth analyses have revealed that Daam1 is important for regulating filamentous actin assembly and organization, and consequently for cytoskeletal function in cardiomyocytes, which contributes to proper heart morphogenesis. Daam1 is also found to be important for proper cytoskeletal architecture and functionalities in embryonic fibroblasts. Biochemical analyses indicate that Daam1 does not regulate cytoskeletal organization through RhoA, Rac1 or Cdc42. Our study highlights a crucial role for Daam1 in regulating the actin cytoskeleton and tissue morphogenesis.
Collapse
Affiliation(s)
- Deqiang Li
- Riley Heart Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 2010; 62:632-67. [PMID: 21079039 DOI: 10.1124/pr.110.002931] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The receptor class Frizzled, which has recently been categorized as a separate group of G protein-coupled receptors by the International Union of Basic and Clinical Pharmacology, consists of 10 Frizzleds (FZD(1-10)) and Smoothened (SMO). The FZDs are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH). Recent years have seen major advances in our knowledge about these seven-transmembrane-spanning proteins, including: receptor function, molecular mechanisms of signal transduction, and the receptor's role in embryonic patterning, physiology, cancer, and other diseases. Despite intense efforts, many question marks and challenges remain in mapping receptor-ligand interaction, signaling routes, mechanisms of specificity and how these molecular details underlie disease and also the receptor's important role in physiology. This review therefore focuses on the molecular aspects of WNT/FZD and HH/SMO signaling discussing receptor structure, mechanisms of signal transduction, accessory proteins, receptor dynamics, and the possibility of targeting these signaling pathways pharmacologically.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
39
|
Park EC. Identification of Binding Proteins inXenopus laevisby MALDI-TOF/TOF Mass Spectrometry. J Anal Sci Technol 2010. [DOI: 10.5355/jast.2010.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
40
|
Caddy J, Wilanowski T, Darido C, Dworkin S, Ting SB, Zhao Q, Rank G, Auden A, Srivastava S, Papenfuss TA, Murdoch JN, Humbert PO, Parekh V, Boulos N, Weber T, Zuo J, Cunningham JM, Jane SM. Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev Cell 2010; 19:138-47. [PMID: 20643356 DOI: 10.1016/j.devcel.2010.06.008] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/12/2010] [Accepted: 05/03/2010] [Indexed: 02/07/2023]
Abstract
The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair.
Collapse
Affiliation(s)
- Jacinta Caddy
- Rotary Bone Marrow Research Laboratories, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
β-arrestin Kurtz inhibits MAPK and Toll signalling in Drosophila development. EMBO J 2010; 29:3222-35. [PMID: 20802461 DOI: 10.1038/emboj.2010.202] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 07/26/2010] [Indexed: 01/14/2023] Open
Abstract
β-Arrestins have been implicated in the regulation of multiple signalling pathways. However, their role in organism development is not well understood. In this study, we report a new in vivo function of the Drosophila β-arrestin Kurtz (Krz) in the regulation of two distinct developmental signalling modules: MAPK ERK and NF-κB, which transmit signals from the activated receptor tyrosine kinases (RTKs) and the Toll receptor, respectively. Analysis of the expression of effectors and target genes of Toll and the RTK Torso in krz maternal mutants reveals that Krz limits the activity of both pathways in the early embryo. Protein interaction studies suggest a previously uncharacterized mechanism for ERK inhibition: Krz can directly bind and sequester an inactive form of ERK, thus preventing its activation by the upstream kinase, MEK. A simultaneous dysregulation of different signalling systems in krz mutants results in an abnormal patterning of the embryo and severe developmental defects. Our findings uncover a new in vivo function of β-arrestins and present a new mechanism of ERK inhibition by the Drosophila β-arrestin Krz.
Collapse
|
42
|
Purvanov V, Koval A, Katanaev VL. A Direct and Functional Interaction Between Go and Rab5 During G Protein-Coupled Receptor Signaling. Sci Signal 2010; 3:ra65. [DOI: 10.1126/scisignal.2000877] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
43
|
Schönichen A, Geyer M. Fifteen formins for an actin filament: a molecular view on the regulation of human formins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:152-63. [PMID: 20102729 DOI: 10.1016/j.bbamcr.2010.01.014] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/24/2009] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
The regulation of the actin cytoskeleton is a key process for the stability and motility of eukaryotic cells. Besides the Arp2/3 complex and its nucleation promoting factors, WH2 domain-containing proteins and a diverse family of formin proteins have recently been recognized as actin nucleators and potent polymerization factors of actin filaments. Formins are defined by the presence of a catalytic formin homology 2 (FH2) domain, yet, the modular domain architecture appears significantly different for the eight formin families identified in humans. A diverse picture of protein localization, interaction partners and cell specific regulation emerged, suggesting various functions of formins in the building and maintenance of actin filaments. This review focuses on the domain architecture of human formins, the regulation mechanisms of their activation and the diversity in formin cellular functions.
Collapse
Affiliation(s)
- André Schönichen
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | |
Collapse
|
44
|
Sato A, Yamamoto H, Sakane H, Koyama H, Kikuchi A. Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J 2009; 29:41-54. [PMID: 19910923 DOI: 10.1038/emboj.2009.322] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 10/02/2009] [Indexed: 11/09/2022] Open
Abstract
Wnt5a regulates multiple intracellular signalling cascades, but how Wnt5a determines the specificity of these pathways is not well understood. This study examined whether the internalization of Wnt receptors affects the ability of Wnt5a to regulate its signalling pathways. Wnt5a activated Rac in the beta-catenin-independent pathway, and Frizzled2 (Fz2) and Ror1 or Ror2 were required for this action. Fz2 was internalized through a clathrin-mediated route in response to Wnt5a, and inhibition of clathrin-dependent internalization suppressed the ability of Wnt5a to activate Rac. As another action of Wnt5a, it inhibited Wnt3a-dependent lipoprotein receptor-related protein 6 (LRP6) phosphorylation and beta-catenin accumulation. Wnt3a-dependent phosphorylation of LRP6 was enhanced in Wnt5a knockout embryonic fibroblasts. Fz2 was also required for the Wnt3a-dependent accumulation of beta-catenin, and Wnt5a competed with Wnt3a for binding to Fz2 in vitro and in intact cells, thereby inhibiting the beta-catenin pathway. This inhibitory action of Wnt5a was not affected by the impairment of clathrin-dependent internalization. These results suggest that Wnt5a regulates distinct pathways through receptor internalization-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Akira Sato
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
45
|
Kovacs JJ, Hara MR, Davenport CL, Kim J, Lefkowitz RJ. Arrestin development: emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell 2009; 17:443-58. [PMID: 19853559 DOI: 10.1016/j.devcel.2009.09.011] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arrestins were identified as mediators of G protein-coupled receptor (GPCR) desensitization and endocytosis. However, it is now clear that they scaffold many intracellular signaling networks to modulate the strength and duration of signaling by diverse types of receptors--including those relevant to the Hedgehog, Wnt, Notch, and TGFbeta pathways--and downstream kinases such as the MAPK and Akt/PI3K cascades. The involvement of arrestins in many discrete developmental signaling events suggests an indispensable role for these multifaceted molecular scaffolds.
Collapse
Affiliation(s)
- Jeffrey J Kovacs
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
46
|
Schulte G, Schambony A, Bryja V. beta-Arrestins - scaffolds and signalling elements essential for WNT/Frizzled signalling pathways? Br J Pharmacol 2009; 159:1051-8. [PMID: 19888962 DOI: 10.1111/j.1476-5381.2009.00466.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
beta-arrestins were originally identified as negative regulators of G protein-coupled receptor signalling. Recent studies have revealed that beta-arrestins serve as intracellular scaffolds and signalling intermediates. Their diverse functions in intracellular signalling pathways provide mechanisms for achieving signal specificity that might be attacked for pharmacological intervention. Here, we summarize the importance of beta-arrestin function for WNT [wingless (from Drosophila) and the oncogene int-1]/Frizzled (FZD) signalling. WNTs are secreted lipoglycoproteins that act through the seven transmembrane-spanning receptors of the FZD family. It recently became evident that beta-arrestins are required for cellular communication by means of WNTs and FZDs both in cellular systems and in vivo. Although the overall importance of arrestin for WNT/FZD signalling remains obscure, interaction with the central phosphoprotein Dishevelled and the endocytic machinery implicates beta-arrestin as a determinant of WNT signalling specificity, a mediator of WNT/FZD desensitization and a regulator of signalling compartmentation.
Collapse
Affiliation(s)
- Gunnar Schulte
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
47
|
|
48
|
Frizzled. Br J Pharmacol 2009. [DOI: 10.1111/j.1476-5381.2009.00501_25.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Beta-arrestin 2 is required for the induction and strengthening of integrin-mediated leukocyte adhesion during CXCR2-driven extravasation. Blood 2009; 114:1073-82. [PMID: 19429870 DOI: 10.1182/blood-2008-10-183699] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Leukocyte extravasation involves interdependent signaling pathways underlying the complex dynamics of firm adhesion, crawling, and diapedesis. While signal transduction by agonist-bound chemokine receptors plays a central role in the above responses, it is unclear how it contributes to the sustained and concurrent nature of such responses, given the rapid kinetics of chemokine-induced trimeric G protein coupling and homologous desensitization. Our findings unveil a novel role of beta-arrestins in regulating the activation of signaling pathways underlying discrete integrin-mediated steps in CXCR2-driven leukocyte extravasation. By combining in vivo approaches in beta-arrestin knockout mice with in vitro studies in engineered cellular models, we show that membrane-recruited beta-arrestin 2 is required for the onset and maintenance of shear stress-resistant leukocyte adhesion mediated by both beta(1) and beta(2) integrins. While both beta-arrestin isoforms are required for rapid keratinocyte-derived chemokine (KC)-induced arrest onto limiting amounts of vascular cell adhesion molecule-1 (VCAM-1), adhesion strengthening under shear is selectively dependent on beta-arrestin 2. The latter synergizes with phospholipase C in promoting activation of Rap1A and B, both of which co-operatively control subsecond adhesion as well as postarrest adhesion stabilization. Thus, receptor-induced Galpha(i) and beta-arrestins act sequentially and in spatially distinct compartments to promote optimal KC-induced integrin-dependent adhesion during leukocyte extravasation.
Collapse
|
50
|
Kim H, Cheong SM, Ryu J, Jung HJ, Jho EH, Han JK. Xenopus Wntless and the retromer complex cooperate to regulate XWnt4 secretion. Mol Cell Biol 2009; 29:2118-28. [PMID: 19223472 PMCID: PMC2663306 DOI: 10.1128/mcb.01503-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/27/2008] [Accepted: 02/02/2009] [Indexed: 11/20/2022] Open
Abstract
Wnt signaling is implicated in a variety of developmental and pathological processes. The molecular mechanisms governing the secretion of Wnt ligands remain to be elucidated. Wntless, an evolutionarily conserved multipass transmembrane protein, is a dedicated secretion factor of Wnt proteins that participates in Drosophila melanogaster embryogenesis. In this study, we show that Xenopus laevis Wntless (XWntless) regulates the secretion of a specific Wnt ligand, XWnt4, and that this regulation is specifically required for eye development in Xenopus. Moreover, the Retromer complex is required for XWntless recycling to regulate the XWnt4-mediated eye development. Inhibition of Retromer function by Vps35 morpholino (MO) resulted in various Wnt deficiency phenotypes, affecting mesoderm induction, gastrulation cell movements, neural induction, neural tube closure, and eye development. Overexpression of XWntless led to the rescue of Vps35 MO-mediated eye defects but not other deficiencies. These results collectively suggest that XWntless and the Retromer complex are required for the efficient secretion of XWnt4, facilitating its role in Xenopus eye development.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|