1
|
Zhao H, Zhang Y, Cao Y, Zhou B, Xing M, Wang Y. Lycopene regulates Nrf2 to Ameliorate Sulfamethoxazole -induced renal injury and apoptosis via inhibiting oxidative stress and Endoplasmic Reticulum stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107348. [PMID: 40187298 DOI: 10.1016/j.aquatox.2025.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The overuse and long-term existence of Sulfamethoxazole (SMZ) in aquatic system have led to adverse effects on non-target organisms, remaining a challenge for aquaculture and human health. This study investigated whether the natural carotenoid lycopene (LYC, 10 mg/kg B.W.) could be used as a candidate to alleviate SMZ (0.3 μg/L)-induced kidney injury in grass carp; the underlying mechanisms were deciphered in vivo and in vitro. Transmission electron microscopy and TUNEL were observed to detect renal injury, structure and function. Various indexes belong to apoptosis (Bcl-2 and caspase families) and its upstream cellular processes, including endoplasmic reticulum stress and autophagy and the Nrf2 pathway were detected in kidney to suggest the alleviating effect of LYC on SMZ-induced renal toxicity. The same renal protection of LYC against SMZ-induced autophagic activation, apoptotic cell death, and Nrf2 blockage, were further confirmed in cultured grass carp kidney cells (CIK). Nrf2 siRNA abrogated LYC-dependent protection of the nephrocytes against SMZ-induced higher production of ROS and apoptosis level. LYC is demonstrated as a potential feed additive for both preventing and alleviating SMZ-induced renal toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yingxue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yufei Cao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Boran Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
2
|
Guo X, Shen M, Jiang S, Xing X, Zhang C, Yin S, Zhang K. Novel insights into copper-induced Chinese mitten crab hepatopancreas mitochondrial toxicity: Oxidative stress, apoptosis and BNIP3L-mediated mitophagy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107335. [PMID: 40168791 DOI: 10.1016/j.aquatox.2025.107335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
Copper (Cu) is an important metal pollutant commonly found in aquatic environment. Cu-based nanoparticles (NPs) have been increasingly fabricated, and led to cytotoxicity in aquatic animals. Herein, the mechanisms underlying the CuSO4/Cu-NPs-mediated perturbation of the hepatopancreatic mitochondrial function at different concentrations were investigated and compared. After exposing Eriocheir sinensis to 0 (control), 5, 50, and 500 μg/L CuSO4 and 10 μg/L Cu-NPs for 21 days, hepatopancreases were retrieved. The results revealed that Cu-NPs or excess CuSO4 induced ultrastructural damage following a time-dose effect, as indicated by swelling and degeneration of the lumen of hepatic tubules. Cu-NPs or excess CuSO4 exposure decreased the antioxidative capacity and led to the over-accumulation of reactive oxygen species (ROS). Moreover, the mitochondrial membrane potential (MMP) was reduced and apoptosis induced. Additionally, both CuSO4 and Cu-NPs increased the numbers of mitophagosomes and the mRNA and protein levels of microtubule associated protein 1 light chain 3 beta (LC3B), and triggered mitophagy through BCL2 interacting protein 3 like (BNIP3L)/Beclin1 pathway. Altogether, this study provides a basis for exploring Cu-mediated potential mitochondrial autophagy activation mechanisms, uncovered the difference between CuSO4 and Cu-NPs.
Collapse
Affiliation(s)
- Xinping Guo
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China
| | - Minghao Shen
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China
| | - Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China
| | - Xiumei Xing
- Nanjing Gaochun District Qingsong Aquatic Professional Cooperative, Nanjing 211300, PR China
| | - Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, PR China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, PR China.
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, PR China.
| |
Collapse
|
3
|
Bolat M, Yilmaz TE, Çeğindir M, Atasever A, Doğan T, Yildirim S, Sağlam YS, Çomakli S, Bolat İ. Syringic acid alleviates cadmium-induced neurotoxicity in rats by modulating cellular signaling pathways. Int Immunopharmacol 2025; 158:114816. [PMID: 40354709 DOI: 10.1016/j.intimp.2025.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/10/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Cadmium (Cd) is a metal found widely in nature that negatively affects brain health by affecting the DNA repair mechanisms of the cell through the effect it creates on various reactive oxygen species in the body. Antioxidants provide the potential to reduce the neurotoxic effects of cadmium. Therefore, we aimed to investigate the protective properties of syringic acid (SA) in cadmium-induced neurotoxicity. Fifty male Sprague Dawley rats were used in the study. The rats were divided into 5 groups: Control, SA100, Cd, SA50 + Cd and SA100 + Cd. Cd (6.5 mg/kg) was administered intraperitoneally, and SA (50-100 mg/kg) intragastrically for seven days. Our results showed that SA significantly mitigated Cd-induced brain damage. The up-regulation of MDA and down-regulation of GSH, SOD, and CAT in brain tissues induced by Cd was significantly reversed by SA treatment. Additionally, the decreased expression of Nrf2/HO-1/SIRT1, impaired by ROS induced by Cd, was enhanced by SA. While Cd caused inflammation by triggering proinflammatory cytokines such as IL-1β and TNF-α via TLR4/NF-κB and suppressing IL-10, SA reduced inflammation in the tissue. This study demonstrated that SA treatment significantly reversed Beclin-1 and LC3A/B expression. Finally, it was revealed that SA treatment inhibited Cd-induced apoptosis by decreasing Bax, Caspase3 levels, and increasing Bcl2 levels. Collectively, our data revealed that SA exerts its neuroprotective effects by regulating various Cd-induced cellular signaling pathways in rat brains.
Collapse
Affiliation(s)
- Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Tuğçe Ertek Yilmaz
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Murat Çeğindir
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Aslıhan Atasever
- Çayırlı Vocational School, Department of Veterinary Medicine, Binali Yıldırım University, Erzincan, Türkiye
| | - Tuba Doğan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye; Department of Pathology, Faculty of Veterinary Medicine, Kyrgyzs-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Yavuz Selim Sağlam
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Selim Çomakli
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
4
|
Githaka JM, Kirschenman R, Patel N, Tripathi N, Wang J, Li L, Muranyi H, Pirayeshfard L, Montpetit R, Glubrecht DD, Lerner EP, Perry T, Danial NN, Nation PN, Godbout R, Goping IS. Multiple anti-tumor programs are activated by blocking BAD phosphorylation. Oncogene 2025:10.1038/s41388-025-03420-1. [PMID: 40316741 DOI: 10.1038/s41388-025-03420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
The Bcl-2 family member BAD is a candidate disease modulator because it stimulates apoptosis in a cell context basis and inhibits cell migration during normal mammary gland morphogenesis. This activity depends on 3 key regulatory serines (S75, 99, 118) in the unphosphorylated state. Given that developmental programs are often hijacked in cancer, we hypothesized that BAD would impede breast cancer progression. We generated breast cancer mouse models representing loss-of-function or phosphorylation deficient mutations (PyMT-Bad-/- and PyMT-Bad3SA/3SA, respectively). Preventing BAD phosphorylation significantly decreased breast cancer progression and metastasis. The knock-out phenocopied the control PyMT-Bad+/+ suggesting that phosphorylated BAD protein was inert. Thus, the BAD3SA mutation unmasked latent anti-tumor activity. Indeed, transcriptomics showed PyMT-Bad3SA/3SA activated multiple anti-tumor programs including apoptosis, inflammation, cellular differentiation, and diminished cell migration. This anti-tumor effect associated with clinical survival of breast cancer patients whose tumors had high levels of unphosphorylated BAD. Kinase screens identified ERK as the major BAD kinase in breast cells, and ERK inhibition impeded tumoroid invasion. Our data suggest that unphosphorylated BAD modulates anti-tumor pathways that contribute to excellent patient prognosis. Thus, targeting ERK to dephosphorylate BAD may be an exciting therapeutic opportunity in the future.
Collapse
Affiliation(s)
| | - Raven Kirschenman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Namrata Patel
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Namita Tripathi
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Joy Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Laiji Li
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Heather Muranyi
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Rachel Montpetit
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - E Paul Lerner
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Troy Perry
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - P Nick Nation
- Animal Pathology Services (APS) Ltd., Canmore, AB, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Bolat I, Yildirim S, Saglam YS, Comakli S, Teki N S, Bolat M, Dogan T, Ki Li Cli Oglu M, Gozegi R B. β-Caryophyllene attenuates cadmium induced neurotoxicity in rats by modulating different cellular signaling pathways. Neurotoxicology 2025; 108:206-217. [PMID: 40233897 DOI: 10.1016/j.neuro.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Cadmium (Cd) is a naturally occurring harmful metal that can cause damage to many different tissues and organs in the body. Antioxidant agents are frequently utilized to counteract the harmful impact of this heavy metal on the body. This research explores the neuroprotective role of β-caryophyllene (BCP) in Cd-induced toxicity. Male Wistar rats were categorized into five groups: control, BCP400, Cd, BCP200 +Cd, and BCP400 +Cd. BCP suppressed Cd-induced oxidative damage in brain tissue by regulating the Nrf2/HO-1/SIRT1 signaling pathway. Moreover, BCP alleviates Cd-induced behavioral alterations through SIRT1 activation. Cd increased TNF-α and IL-1β levels and decreased IL-10 levels in brain tissue, whereas BCP suppressed TLR-4/NF-κB/JNK signaling pathway and restored these cytokines to normal levels. In addition, Cd exposure led to increased BAX and Caspase 3 and decreased Bcl-2 levels in neurons, but these proteins approached normal levels thanks to BCP's anti-apoptotic properties. Furthermore, while Beclin-1 and LC3A/B expression levels were increased in neurons of Cd-exposed animals, BCP suppressed these expressions by activating the PI3K/Akt/mTOR signaling pathway. Histopathological, biochemical, and molecular analyses confirmed BCP reduces oxidative stress, inflammation, apoptosis, and autophagy caused by Cd-induced neurotoxicity by regulating various signaling pathways and strengthening the antioxidant defense system. Therefore, we believe that BCP has a high potential as a therapeutic agent against Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey; Department of Pathology, Faculty of Veterinary Medicine, Kyrgyzs-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Yavuz Selim Saglam
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Comakli
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Samet Teki N
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Tuba Dogan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Metin Ki Li Cli Oglu
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Berrah Gozegi R
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
6
|
Bagheri L, Javanbakht M, Malekian S, Ghahderijani BH, Taghipour S, Tanha FD, Ranjkesh M, Cegolon L, Zhao S. Antifibrotic therapeutic strategies in systemic sclerosis: Critical role of the Wnt/β-catenin and TGF-β signal transduction pathways as potential targets. Eur J Pharmacol 2025; 999:177607. [PMID: 40209848 DOI: 10.1016/j.ejphar.2025.177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrosing disorder characterized by widespread fibrosis and immune dysregulation. Current evidence highlights the intricate cross-talk between the canonical Wnt/β-catenin signaling pathway and transforming growth factor-beta (TGF-β) signaling, both of which play fundamental roles in the pathogenesis of fibrosis. This review aims to elucidate the central role of the Wnt/β-catenin-TGF-β pathway and TGF-β signal transduction pathway in fibrotic diseases, focusing on SSc. We summarized evidence from cellular biology studies, animal model investigations and clinical observations to provide a comprehensive view of the mechanisms causing pathological fibrosis. In addition, we explore the possibilities of antifibrotic therapeutic strategies against Wnt/β-catenin-TGF-β signaling to counteract fibrosis, delineating approaches for treatment of SSc patients by targeting these interconnected signaling pathways.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sheida Malekian
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadra Taghipour
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Davari Tanha
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, 34128, Trieste, Italy; Public Health Unit, University Health Agency Giuliano-Isontina (ASUGI), 34148, Trieste, Italy
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
7
|
Bustamante M, Quiroga C, Mancilla G, Gomez W, Tapia A, Figueroa R, Mondaca-Ruff D, Oyarzún I, Verdejo HE, Lavandero S, Castro P. Autophagy fine-tuning by angiotensin-(1-9) in cultured rat cardiomyocytes. Front Cardiovasc Med 2025; 12:1408325. [PMID: 40144934 PMCID: PMC11937029 DOI: 10.3389/fcvm.2025.1408325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background The renin-angiotensin system (RAS) plays a pivotal role in regulating blood volume, systemic vascular resistance, and electrolyte balance, serving as a key component of cardiovascular health. Recent findings highlight the role of angiotensin II (Ang II) in inducing autophagy through angiotensin II receptor type 1 (AT1R). Autophagy, a process of self-degradation and turnover of cellular components, is a homeostatic response that eliminates superfluous materials. Abnormal autophagy promotes cardiomyocyte loss and is critical in hypertrophy and heart failure progression. The RAS's non-canonical axis, which includes the angiotensin 1-9 peptide [Ang-(1-9)], has an anti-hypertrophic effect in cardiomyocytes via an unknown mechanism. In the present study, we aimed to elucidate the effect of Ang-(1-9) on cardiomyocyte autophagy. Methods We isolated and cultured neonatal ventricular cardiomyocytes and then co-treated them with Ang-(1-9) in the presence of chloroquine (CQ), Ang-II, and chemical inhibitors of different signaling pathways. After treatment, total RNA and protein extracts were obtained to analyze the abundance of different autophagy markers. Likewise, cells were fixed, and autophagy was analyzed through epifluorescence microscopy. Results Our findings show that CQ leads to a reduction in autophagy markers, such as microtubule-associated protein 1 light chain 3-II (LC3-II) and total LC3, suggesting Ang-(1-9)'s regulatory role in basal autophagy levels. Furthermore, Ang-(1-9) opposes Ang-II-induced autophagy and induces the phosphorylation of the S234 residue of Beclin-1 (BCN1) via an angiotensin II receptor type 2 (AT2R)/Akt-dependent pathway. Conclusions This reduction of Ang-II-induced autophagy by Ang-(1-9) unveils a novel aspect of its action, potentially contributing to its cardioprotective effects.
Collapse
Affiliation(s)
- Mario Bustamante
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georthan Mancilla
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Physiology and Biophysics Program, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anita Tapia
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Figueroa
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Mondaca-Ruff
- Department of Biochemistry and Molecular Biology & Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ingrid Oyarzún
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E. Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Transducción de Señales Moleculares, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo Castro
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Wang L, Shi R, Wang S, Duan Y, Wang Z, Zheng P, Sun X, Chen X, Ji G, Shen Y, Dong B, Lin Y, Wen T, Tian Q, Guo Z, Hou Y, Wu S, Xiao L, Li M, Xiao L, Wu Q, Meng Y, Liu G, Duan S, Bai X, Liu T, Zhang Z, Zhan P, Lu Z, Xu D. ADSL promotes autophagy and tumor growth through fumarate-mediated Beclin1 dimethylation. Nat Chem Biol 2025:10.1038/s41589-024-01825-9. [PMID: 39881212 DOI: 10.1038/s41589-024-01825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025]
Abstract
As an enzyme with a critical role in de novo purine synthesis, adenylosuccinate lyase (ADSL) expression is upregulated in various malignancies. However, whether ADSL possesses noncanonical functions that contribute to cancer progression remains poorly understood. Here, we demonstrate that protein kinase R-like endoplasmic reticulum kinase (PERK) activated by lipid deprivation or ER stress phosphorylates ADSL at S140, leading to an enhanced association between ADSL and Beclin1. Beclin1-associated ADSL produces fumarate, which in turn inhibits lysine demethylase 8-mediated Beclin1 demethylation, resulting in enhanced Beclin1 K117me2, subsequent disruption of the binding of BCL-2 to Beclin1 and elevated autophagy. Blocking the ADSL-Beclin1 axis by knock-in mutation or a cell-penetrating peptide inhibits autophagy induced by lipid deprivation and ER stress and blunts liver tumor growth in mice. Additionally, ADSL pS140-upregulated Beclin1 K117me2 levels are positively correlated with autophagy levels in human hepatocellular carcinoma specimens and poor patient prognosis. These findings uncover the function of ADSL in autophagy regulation and liver tumor development.
Collapse
Affiliation(s)
- Lei Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Runze Shi
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yuran Duan
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Peixiang Zheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Xue Sun
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaohan Chen
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guimei Ji
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Yuli Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Bofei Dong
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Yanni Lin
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Ting Wen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Qi Tian
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Zhanpeng Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Yueru Hou
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Shiqi Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Ling Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Min Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Liwei Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Qingang Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Guijun Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
| | - Sofie Duan
- Canyon Crest Academy, San Diego, CA, USA
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Tong Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China.
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Selim SM, El Fayoumi HM, El-Sayed NM, Mehanna ET, Hazem RM. Alogliptin attenuates STZ-induced diabetic nephropathy in rats through the modulation of autophagy, apoptosis, and inflammation pathways: Targeting NF-κB and AMPK/mTOR pathway. Life Sci 2025; 361:123307. [PMID: 39662777 DOI: 10.1016/j.lfs.2024.123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
AIM Diabetic nephropathy (DN) is a type of microvascular complication that arises from diabetes mellitus and leads to further health issues. Most importantly, the prevalence of DN is steadily rising in developed countries. This research explored the therapeutic benefits of alogliptin, a dipeptidyl peptidase IV (DPP-4) inhibitor, on streptozotocin (STZ)-induced DN and its underlying mechanisms in rats. MAIN METHODS Ten rats were allocated to group 1, served as the normal group; and received saline. To develop diabetes, thirty rats were administered a single intraperitoneal dose of STZ (45 mg/kg). STZ-induced diabetic rats were randomly assigned to three groups: group 2 diabetic control; was given saline, groups 3 and 4 received alogliptin (10 mg/kg) and (20 mg/kg), respectively. The treatment began 8 weeks after diabetes onset and continued for four weeks. Histopathological alterations in the kidney were detected. Serum was collected to measure blood glucose levels (BGL), renal function, and lactate dehydrogenase (LDH). Tissue samples were collected to detect changes in oxidative stress (OS), inflammation, 5' adenosine monophosphate-activated protein kinase (AMPK), and the mammalian target of Rapamycin (mTOR) signaling pathways in addition to apoptotic and autophagy changes. KEY FINDINGS Alogliptin reduced STZ-induced histological changes in the kidney as well as OS, and inflammation. Alogliptin also ameliorated the AMPK/mTOR signaling pathways, enhanced autophagy, and reduced apoptosis. SIGNIFICANCE These results demonstrate that alogliptin ameliorates inflammation and OS and consequently modulates the AMPK/mTOR axis along with targeting autophagy and apoptosis, leading to the alleviation of DN.
Collapse
Affiliation(s)
- Salma M Selim
- Department of Pharmacology & Toxicology, Faculty of Dentistry, Sinai University, Kantara, Ismailia 41636, Egypt
| | - Hassan M El Fayoumi
- Department of Pharmacology & Toxicology, Faculty of Dentistry, Sinai University, Kantara, Ismailia 41636, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Reem M Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Zhang J, Zhang J, Yang C. Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities. J Transl Med 2025; 23:52. [PMID: 39806481 PMCID: PMC11727735 DOI: 10.1186/s12967-024-06063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors. Hence, having knowledge of the role of molecular processes in the advancement of brain tumors is enlightening, and the current review specifically examines the role of autophagy. The discussion would focus on the molecular pathways that control autophagy in brain tumors, and its dual role as a tumor suppressor and a supporter of tumor survival. Autophagy can control the advancement of different types of brain tumors like glioblastoma, glioma, and ependymoma, demonstrating its potential for treatment. Autophagy mechanisms can influence metastasis and drug resistance in glioblastoma, and there is a complex interplay between autophagy and cellular responses to stress like hypoxia and starvation. Autophagy can inhibit the growth of brain tumors by promoting apoptosis. Hence, focusing on autophagy could offer fresh perspectives on creating successful treatments.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinan Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| |
Collapse
|
11
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, Cañadas I, Sethi G, Tergaonkar V, Wang L, Lin Y, Kang D, Klionsky DJ. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat 2025; 78:101170. [PMID: 39603146 DOI: 10.1016/j.drup.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells' response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer's biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Kaijian Hou
- School of Public Health(Long Hu people hospital), Shantou University, Shantou, 515000, Guangdong, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL 60532, USA
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
14
|
Wei Z, Hu X, Wu Y, Zhou L, Zhao M, Lin Q. Molecular Mechanisms Underlying Initiation and Activation of Autophagy. Biomolecules 2024; 14:1517. [PMID: 39766224 PMCID: PMC11673044 DOI: 10.3390/biom14121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Autophagy is an important catabolic process to maintain cellular homeostasis and antagonize cellular stresses. The initiation and activation are two of the most important aspects of the autophagic process. This review focuses on mechanisms underlying autophagy initiation and activation and signaling pathways regulating the activation of autophagy found in recent years. These findings include autophagy initiation by liquid-liquid phase separation (LLPS), autophagy initiation in the endoplasmic reticulum (ER) and Golgi apparatus, and the signaling pathways mediated by the ULK1 complex, the mTOR complex, the AMPK complex, and the PI3KC3 complex. Through the review, we attempt to present current research progress in autophagy regulation and forward our understanding of the regulatory mechanisms and signaling pathways of autophagy initiation and activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Z.W.); (X.H.); (Y.W.); (L.Z.); (M.Z.)
| |
Collapse
|
15
|
Wang M, Chen X, Li S, Wang L, Tang H, Pu Y, Zhang D, Fang B, Bai X. A crosstalk between autophagy and apoptosis in intracerebral hemorrhage. Front Cell Neurosci 2024; 18:1445919. [PMID: 39650799 PMCID: PMC11622039 DOI: 10.3389/fncel.2024.1445919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition that devastatingly harms human health and poses a financial burden on families and society. Bcl-2 Associated X-protein (Bax) and B-cell lymphoma 2 (Bcl-2) are two classic apoptotic markers post-ICH. Beclin 1 offers a competitive architecture with that of Bax, both playing a vital role in autophagy. However, the interaction between Beclin 1 and Bcl-2/Bax has not been conjunctively analyzed. This review aims to examine the crosstalk between autophagy and apoptosis in ICH by focusing on the interaction and balance of Beclin 1, Bax, and Bcl-2. We also explored the therapeutic potential of Western conventional medicine and traditional Chinese medicine (TCM) in ICH via controlling the crosstalk between autophagy and apoptosis.
Collapse
Affiliation(s)
- Moyan Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Shuangyang Li
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Lingxue Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yuting Pu
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Bangjiang Fang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Emergency, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Bai
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Lin L, Lin Y, Han Z, Wang K, Zhou S, Wang Z, Wang S, Chen H. Understanding the molecular regulatory mechanisms of autophagy in lung disease pathogenesis. Front Immunol 2024; 15:1460023. [PMID: 39544928 PMCID: PMC11560454 DOI: 10.3389/fimmu.2024.1460023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Lung disease development involves multiple cellular processes, including inflammation, cell death, and proliferation. Research increasingly indicates that autophagy and its regulatory proteins can influence inflammation, programmed cell death, cell proliferation, and innate immune responses. Autophagy plays a vital role in the maintenance of homeostasis and the adaptation of eukaryotic cells to stress by enabling the chelation, transport, and degradation of subcellular components, including proteins and organelles. This process is essential for sustaining cellular balance and ensuring the health of the mitochondrial population. Recent studies have begun to explore the connection between autophagy and the development of different lung diseases. This article reviews the latest findings on the molecular regulatory mechanisms of autophagy in lung diseases, with an emphasis on potential targeted therapies for autophagy.
Collapse
Affiliation(s)
- Lin Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medicine, Southeast University, Nanjing, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- Department of Science and Education, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Siyu Wang
- Department of Preventive Medicine, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
17
|
Pedrão LFAT, Medeiros POS, Leandro EC, Falquetto B. Parkinson's disease models and death signaling: what do we know until now? Front Neuroanat 2024; 18:1419108. [PMID: 39533977 PMCID: PMC11555652 DOI: 10.3389/fnana.2024.1419108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease (PD) is the second neurodegenerative disorder most prevalent in the world, characterized by the loss of dopaminergic neurons in the Substantia Nigra (SN). It is well known for its motor and non-motor symptoms including bradykinesia, resting tremor, psychiatric, cardiorespiratory, and other dysfunctions. Pathological apoptosis contributes to a wide variety of diseases including PD. Various insults and/or cellular phenotypes have been shown to trigger distinct signaling events leading to cell death in neurons affected by PD. The intrinsic or mitochondrial pathway, inflammatory or oxidative stress-induced extrinsic pathways are the main events associated with apoptosis in PD-related neuronal loss. Although SN is the main brain area studied so far, other brain nuclei are also affected by the disease leading to non-classical motor symptoms as well as non-motor symptoms. Among these, the respiratory symptoms are often overlooked, yet they can cause discomfort and may contribute to patients shortened lifespan after disease diagnosis. While animal and in vitro models are frequently used to investigate the mechanisms involved in the pathogenesis of PD in both the SN and other brain regions, these models provide only a limited understanding of the disease's actual progression. This review offers a comprehensive overview of some of the most studied forms of cell death, including recent research on potential treatment targets for these pathways. It highlights key findings and milestones in the field, shedding light on the potential role of understanding cell death in the prevention and treatment of the PD. Therefore, unraveling the connection between these pathways and the notable pathological mechanisms observed during PD progression could enhance our comprehension of the disease's origin and provide valuable insights into potential molecular targets for the developing therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciências Biomédica, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Qi J, Li Q, Xin T, Lu Q, Lin J, Zhang Y, Luo H, Zhang F, Xing Y, Wang W, Cui D, Wang M. MCOLN1/TRPML1 in the lysosome: a promising target for autophagy modulation in diverse diseases. Autophagy 2024; 20:1712-1722. [PMID: 38522082 PMCID: PMC11262240 DOI: 10.1080/15548627.2024.2333715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
MCOLN1/TRPML1 is a nonselective cationic channel specifically localized to the late endosome and lysosome. With its property of mediating the release of several divalent cations such as Ca2+, Zn2+ and Fe2+ from the lysosome to the cytosol, MCOLN1 plays a pivotal role in regulating a variety of cellular events including endocytosis, exocytosis, lysosomal biogenesis, lysosome reformation, and especially in Macroautophagy/autophagy. Autophagy is a highly conserved catabolic process that maintains cytoplasmic integrity by removing superfluous proteins and damaged organelles. Acting as the terminal compartments, lysosomes are crucial for the completion of the autophagy process. This review delves into the emerging role of MCOLN1 in controlling the autophagic process by regulating lysosomal ionic homeostasis, thereby governing the fundamental functions of lysosomes. Furthermore, this review summarizes the physiological relevance as well as molecular mechanisms through which MCOLN1 orchestrates autophagy, consequently influencing mitochondria turnover, cell apoptosis and migration. In addition, we have illustrated the implications of MCOLN1-regulated autophagy in the pathological process of cancer and myocardial ischemia-reperfusion (I/R) injury. In summary, given the involvement of MCOLN1-mediated autophagy in the pathogenesis of cancer and myocardial I/R injury, targeting MCOLN1 May provide clues for developing new therapeutic strategies for the treatment of these diseases. Exploring the regulation of MCOLN1-mediated autophagy in diverse diseases contexts will surely broaden our understanding of this pathway and offer its potential as a promising drug target.Abbreviation: CCCP:carbonyl cyanide3-chlorophenylhydrazone; CQ:chloroquine; HCQ: hydroxychloroquine;I/R: ischemia-reperfusion; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MCOLN1/TRPML1:mucolipin TRP cation channel 1; MLIV: mucolipidosis type IV; MTORC1:MTOR complex 1; ROS: reactive oxygenspecies; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Jiansong Qi
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinyi Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiting Luo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Feifei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Derong Cui
- Department of Anesthesiology, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengmeng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital, China of Medical University, Shenyang, LiaoningChina
| |
Collapse
|
19
|
Liang Y, Liu B, Xiao L, Ren S, Sheng X, Qi X, Zhang Z, Yuan N, Guo K, Wang X. Exosomes-mediated transmission of standard bovine viral diarrhea strain OregonC24Va in bovine trophoblast cells. J Reprod Immunol 2024; 164:104254. [PMID: 38761508 DOI: 10.1016/j.jri.2024.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/04/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Bovine viral diarrhoea virus (BVDV) can infect cows on days 30-110 of gestation and crossing the placental barrier, resulting in persistently infected (PI) and causing significant economic losses to dairy farming. Bovine placental trophoblast cells (BTCs) are the major cells in the early chorionic tissue of the placenta and play important roles in placental resistance to viral transmission. In this study, we have confirmed that BTCs is among a groups of cell types those could be infected by BVDV in vivo, and BVDV infection stimulates the autophagic responses in BTCs and promotes the release of exosomes. Meanwhile, the exosomes derived from BTCs can be used by BVDV to spread between placental trophoblast cells, and this mode of transmission cannot be blocked by antibodies against the BVDV E2 protein, whereas the replication and spread of BVDV in BTCs can be blocked by inhibiting autophagy and exosomogenesis. Our study provides a theoretical and practical basis for scientific prediction and intervention of reproductive disorders caused by BVDV infection in cows of different gestation periods from a novel perspective.
Collapse
Affiliation(s)
- Yixuan Liang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Bingying Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Siqi Ren
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhenhao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Naihan Yuan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kaijun Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
20
|
Liu T, Yue X, Chen X, Yan R, Wu C, Li Y, Bu X, Han H, Liu RY. Nilotinib in combination with sunitinib renders MCL-1 for degradation and activates autophagy that overcomes sunitinib resistance in renal cell carcinoma. Cell Oncol (Dordr) 2024; 47:1277-1294. [PMID: 38393513 DOI: 10.1007/s13402-024-00927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Sunitinib is a recommended drug for metastatic renal cell carcinoma (RCC). However, the therapeutic potential of sunitinib is impaired by toxicity and resistance. Therefore, we seek to explore a combinatorial strategy to improve sunitinib efficacy of low-toxicity dose for better clinical application. METHODS We screen synergistic reagents of sunitinib from a compound library containing 1374 FDA-approved drugs by in vitro cell viability evaluation. The synergistically antiproliferative and proapoptotic effects were demonstrated on in vitro and in vivo models. The molecular mechanism was investigated by phosphoproteomics, co-immunoprecipitation, immunofluorescence and western-blot assays, etc. RESULTS: From the four-step screening, nilotinib stood out as a potential synergistic killer combined with sunitinib. Subsequent functional evaluation demonstrated that nilotinib and sunitinib synergistically inhibit RCC cell proliferation and promote apoptosis in vitro and in vivo. Mechanistically, nilotinib activates E3-ligase HUWE1 and in combination with sunitinib renders MCL-1 for degradation via proteasome pathway, resulting in the release of Beclin-1 from MCL-1/Beclin-1 complex. Subsequently, Beclin-1 induces complete autophagy flux to promote antitumor effect. CONCLUSION Our findings revealed that a novel mechanism that nilotinib in combination with sunitinib overcomes sunitinib resistance in RCC. Therefore, this novel rational combination regimen provides a promising therapeutic avenue for metastatic RCC and rationale for evaluating this combination clinically.
Collapse
Affiliation(s)
- Tingyu Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xin Yue
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xue Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ru Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yunzhi Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hui Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
21
|
Suraweera CD, Espinoza B, Hinds MG, Kvansakul M. Mastering Death: The Roles of Viral Bcl-2 in dsDNA Viruses. Viruses 2024; 16:879. [PMID: 38932171 PMCID: PMC11209288 DOI: 10.3390/v16060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Proteins of the Bcl-2 family regulate cellular fate via multiple mechanisms including apoptosis, autophagy, senescence, metabolism, inflammation, redox homeostasis, and calcium flux. There are several regulated cell death (RCD) pathways, including apoptosis and autophagy, that use distinct molecular mechanisms to elicit the death response. However, the same proteins/genes may be deployed in multiple biochemical pathways. In apoptosis, Bcl-2 proteins control the integrity of the mitochondrial outer membrane (MOM) by regulating the formation of pores in the MOM and apoptotic cell death. A number of prosurvival genes populate the genomes of viruses including those of the pro-survival Bcl-2 family. Viral Bcl-2 proteins are sequence and structural homologs of their cellular counterparts and interact with cellular proteins in apoptotic and autophagic pathways, potentially allowing them to modulate these pathways and determine cellular fate.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| | - Benjamin Espinoza
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Marc Kvansakul
- Genome Sciences and Cancer Division, The John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
22
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
23
|
Stanzione R, Pietrangelo D, Cotugno M, Forte M, Rubattu S. Role of autophagy in ischemic stroke: insights from animal models and preliminary evidence in the human disease. Front Cell Dev Biol 2024; 12:1360014. [PMID: 38590779 PMCID: PMC10999556 DOI: 10.3389/fcell.2024.1360014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Stroke represents a main cause of death and permanent disability worldwide. The molecular mechanisms underlying cerebral injury in response to the ischemic insults are not completely understood. In this article, we summarize recent evidence regarding the role of autophagy in the pathogenesis of ischemic stroke by reviewing data obtained in murine models of either transient or permanent middle cerebral artery occlusion, and in the stroke-prone spontaneously hypertensive rat. Few preliminary observational studies investigating the role of autophagy in subjects at high cerebrovascular risk and in cohorts of stroke patients were also reviewed. Autophagy plays a dual role in neuronal and vascular cells by exerting both protective and detrimental effects depending on its level, duration of stress and type of cells involved. Protective autophagy exerts adaptive mechanisms which reduce neuronal loss and promote survival. On the other hand, excessive activation of autophagy leads to neuronal cell death and increases brain injury. In conclusion, the evidence reviewed suggests that a proper manipulation of autophagy may represent an interesting strategy to either prevent or reduce brain ischemic injury.
Collapse
Affiliation(s)
| | - Donatella Pietrangelo
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
24
|
Li S, Han Q, Liu C, Wang Y, Liu F, Pan S, Zuo L, Gao D, Chen K, Feng Q, Liu Z, Liu D. Role of ferroptosis in chronic kidney disease. Cell Commun Signal 2024; 22:113. [PMID: 38347570 PMCID: PMC10860320 DOI: 10.1186/s12964-023-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 02/15/2024] Open
Abstract
Chronic kidney disease (CKD) has historically been a significant global health concern, profoundly impacting both life and well-being. In the process of CKD, with the gradual loss of renal function, the incidence of various life-threatening complications, such as cardiovascular diseases, cerebrovascular accident, infection and stroke, is also increasing rapidly. Unfortunately, existing treatments exhibit limited ability to halt the progression of kidney injury in CKD, emphasizing the urgent need to delve into the precise molecular mechanisms governing the occurrence and development of CKD while identifying novel therapeutic targets. Renal fibrosis, a typical pathological feature of CKD, plays a pivotal role in disrupting normal renal structures and the loss of renal function. Ferroptosis is a recently discovered iron-dependent form of cell death characterized by lipid peroxide accumulation. Ferroptosis has emerged as a potential key player in various diseases and the initiation of organ fibrosis. Substantial evidence suggests that ferroptosis may significantly contribute to the intricate interplay between CKD and its progression. This review comprehensively outlines the intricate relationship between CKD and ferroptosis in terms of iron metabolism and lipid peroxidation, and discusses the current landscape of pharmacological research on ferroptosis, shedding light on promising avenues for intervention. It further illustrates recent breakthroughs in ferroptosis-related regulatory mechanisms implicated in the progression of CKD, thereby providing new insights for CKD treatment. Video Abstract.
Collapse
Affiliation(s)
- Shiyang Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Chang Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Dan Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Kai Chen
- Kaifeng Renmin Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
25
|
Das N, Mukherjee S, Das A, Gupta P, Bandyopadhyay A, Chattopadhyay S. Intra-tumor ROS amplification by melatonin interferes in the apoptosis-autophagy-inflammation-EMT collusion in the breast tumor microenvironment. Heliyon 2024; 10:e23870. [PMID: 38226217 PMCID: PMC10788523 DOI: 10.1016/j.heliyon.2023.e23870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Epidemiological as well as experimental studies have established that the pineal hormone melatonin has inhibitory effects on different types of cancers. Several mechanisms have been proposed for the anticancer activities of melatonin, but the fundamental molecular pathways still require clarity. We developed a mouse model of breast cancer using Ehrlich's ascites carcinoma (injected in the 4th mammary fat pad of female Swiss albino mice) and investigated the possibility of targeting the autophagy-inflammation-EMT colloquy to restrict breast tumor progression using melatonin as intervention. Contrary to its conventional antioxidant role, melatonin was shown to augment intracellular ROS and initiate ROS-dependent apoptosis in our system, by modulating the p53/JNK & NF-κB/pJNK expressions/interactions. Melatonin-induced ROS promoted SIRT1 activity. Interplay between SIRT1 and NF-κB/p65 is known to play a pivotal role in regulating the crosstalk between autophagy and inflammation. Persistent inflammation in the tumor microenvironment and subsequent activation of the IL-6/STAT3/NF-κB feedback loop promoted EMT and suppression of autophagy through activation of PI3K/Akt/mTOR signaling pathway. Melatonin disrupted NF-κB/SIRT1 interactions blocking IL-6/STAT3/NF-κB pathway. This led to reversal of pro-inflammatory bias in the breast tumor microenvironment and augmented autophagic responses. The interactions between p62/Twist1, NF-κB/Beclin1 and NF-κB/Slug were altered by melatonin to strike a balance between autophagy, inflammation and EMT, leading to tumor regression. This study provides critical insights into how melatonin could be utilized in treating breast cancer via inhibition of the PI3K/Akt/mTOR signaling and differential modulation of SIRT1 and NF-κB proteins, leading to the establishment of apoptotic and autophagic fates in breast cancer cells.
Collapse
Affiliation(s)
- Nirmal Das
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Sudeshna Mukherjee
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
- Department of Physiology and Allied Sciences, Amity Institute of Health Allied Sciences, Amity University, Uttar Pradesh, India
| | - Ankur Das
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Amit Bandyopadhyay
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
- Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, JD-2, Salt Lake, Sector III, Kolkata-700098, India
| |
Collapse
|
26
|
Chattopadhyay M, Chanda A, Pal B. Unravelling the Nexus: Mitochondrial Oxidative Stress, Tumour Microenvironment, and Escape from Immune Surveillance. CANCER DRUG DISCOVERY AND DEVELOPMENT 2024:255-286. [DOI: 10.1007/978-3-031-66421-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|
27
|
Guseva EA, Pavlova JA, Dontsova OA, Sergiev PV. Synthetic Activators of Autophagy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:27-52. [PMID: 38467544 DOI: 10.1134/s0006297924010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 03/13/2024]
Abstract
Autophagy is a central process for degradation of intracellular components that do not operate correctly. Molecular mechanisms underlying this process are extremely difficult to study, since they involve a large number of participants. The main task of autophagy is redistribution of cellular resources in response to environmental changes, such as starvation. Recent studies show that autophagy regulation could be the key to achieve healthy longevity, as well as to create therapeutic agents for treatment of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Thus, development of autophagy activators with established detailed mechanism of action is a really important area of research. Several commercial companies are at various stages of development of such molecules, and some of them have already begun to introduce autophagy activators to the market.
Collapse
Affiliation(s)
- Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Julia A Pavlova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
28
|
Ahamed A, Hasan M, Samanta A, Alam SSM, Jamil Z, Ali S, Hoque M. Prospective pharmacological potential of cryptotanshinone in cancer therapy. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2023; 9:100308. [DOI: 10.1016/j.prmcm.2023.100308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
29
|
Ye J, Zhang J, Zhu Y, Wang L, Jiang X, Liu B, He G. Targeting autophagy and beyond: Deconvoluting the complexity of Beclin-1 from biological function to cancer therapy. Acta Pharm Sin B 2023; 13:4688-4714. [PMID: 38045051 PMCID: PMC10692397 DOI: 10.1016/j.apsb.2023.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 08/02/2023] [Indexed: 12/05/2023] Open
Abstract
Beclin-1 is the firstly-identified mammalian protein of the autophagy machinery, which functions as a molecular scaffold for the assembly of PI3KC3 (class III phosphatidylinositol 3 kinase) complex, thus controlling autophagy induction and other cellular trafficking events. Notably, there is mounting evidence establishing the implications of Beclin-1 in diverse tumorigenesis processes, including tumor suppression and progression as well as resistance to cancer therapeutics and CSC (cancer stem-like cell) maintenance. More importantly, Beclin-1 has been confirmed as a potential target for the treatment of multiple cancers. In this review, we provide a comprehensive survey of the structure, functions, and regulations of Beclin-1, and we discuss recent advances in understanding the controversial roles of Beclin-1 in oncology. Moreover, we focus on summarizing the targeted Beclin-1-regulating strategies in cancer therapy, providing novel insights into a promising strategy for regulating Beclin-1 to improve cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jing Ye
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanghui Zhu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease Related Molecular Network, Chengdu 610041, China
| |
Collapse
|
30
|
Fan Z, Wan LX, Jiang W, Liu B, Wu D. Targeting autophagy with small-molecule activators for potential therapeutic purposes. Eur J Med Chem 2023; 260:115722. [PMID: 37595546 DOI: 10.1016/j.ejmech.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Autophagy is well-known to be a lysosome-mediated catabolic process for maintaining cellular and organismal homeostasis, which has been established with many links to a variety of human diseases. Compared with the therapeutic strategy for inhibiting autophagy, activating autophagy seems to be another promising therapeutic strategy in several contexts. Hitherto, mounting efforts have been made to discover potent and selective small-molecule activators of autophagy to potentially treat human diseases. Thus, in this perspective, we focus on summarizing the complicated relationships between defective autophagy and human diseases, and further discuss the updated progress of a series of small-molecule activators targeting autophagy in human diseases. Taken together, these inspiring findings would provide a clue on discovering more small-molecule activators of autophagy as targeted candidate drugs for potential therapeutic purposes.
Collapse
Affiliation(s)
- Zhichao Fan
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin-Xi Wan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dongbo Wu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Chen H, Su Z, Pan X, Zheng X, Li H, Ye Z, Tang B, Lu Y, Zheng G, Lu C. Phytochemicals: Targeting autophagy to treat psoriasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155041. [PMID: 37678054 DOI: 10.1016/j.phymed.2023.155041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease characterized by well-defined erythema and white scales, which affects approximately 2% of the worldwide population and causes long-term distress to patients. Therefore, development of safe and effective therapeutic drugs is imminent. Autophagy, an evolutionarily conserved catabolic process, degrades intracellular constituents to maintain cellular energy homeostasis. Numerous studies have revealed that autophagy is closely related to immune function, such as removal of intracellular bacteria, inflammatory cytokine secretion, antigen presentation, and lymphocyte development. Phytochemicals derived from natural plants are often used to treat psoriasis due to their unique therapeutic properties and favorable safety. So far, a mass of phytochemicals have been proven to be able to activate autophagy and thus alleviate psoriasis. This review aimed to provide directions for finding phytochemicals that target autophagy to treat psoriasis. METHODS The relevant literatures were collected from classical TCM books and a variety of databases (PubMed, Google Scholar, ScienceDirect, Springer Link, Web of Science and China National Knowledge Infrastructure) till December 2022. Search terms were "Phytochemical", "Psoriasis" and "Autophagy". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS Phytochemicals treat psoriasis mainly through regulating immune cell function, inhibiting excessive inflammatory response, and reducing oxidative stress. While the role and mechanism of autophagy in the pathogenesis of psoriasis have been confirmed in human trials, most of the evidence for phytochemicals that target autophagy to treat psoriasis comes from animal studies. The research focusing on the role of phytochemical-mediated autophagy in the prevention and treatment of psoriasis is limited, and the definite relationship between phytochemical-regulated autophagy and treatment of psoriasis still deserves further experimental confirmation. CONCLUSIONS Phytochemicals with autophagic activities will provide new insights into the therapeutic intervention for psoriasis.
Collapse
Affiliation(s)
- Haiming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuqing Su
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin Pan
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuwei Zheng
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hongxia Li
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zeting Ye
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
32
|
Qiu X, Li N, Yang Q, Wu S, Li X, Pan X, Yamamoto S, Zhang X, Zeng J, Liao J, He C, Wang R, Zhao Y. The potent BECN2-ATG14 coiled-coil interaction is selectively critical for endolysosomal degradation of GPRASP1/GASP1-associated GPCRs. Autophagy 2023; 19:2884-2898. [PMID: 37409929 PMCID: PMC10549190 DOI: 10.1080/15548627.2023.2233872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
ABBREVIATIONS AMBRA1 autophagy and beclin 1 regulator 1; ATG14 autophagy related 14; ATG5 autophagy related 5; ATG7 autophagy related 7; BECN1 beclin 1; BECN2 beclin 2; CC coiled-coil; CQ chloroquine CNR1/CB1R cannabinoid receptor 1 DAPI 4',6-diamidino-2-phenylindole; dCCD delete CCD; DRD2/D2R dopamine receptor D2 GPRASP1/GASP1 G protein-coupled receptor associated sorting protein 1 GPCR G-protein coupled receptor; ITC isothermal titration calorimetry; IP immunoprecipitation; KD knockdown; KO knockout; MAP1LC3/LC3 microtubule associated protein 1 light chain 3; NRBF2 nuclear receptor binding factor 2; OPRD1/DOR opioid receptor delta 1 PIK3C3/VPS34 phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15 phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K class III phosphatidylinositol 3-kinase; PtdIns3P phosphatidylinositol-3-phosphate; RUBCN rubicon autophagy regulator; SQSTM1/p62 sequestosome 1; UVRAG UV radiation resistance associated; VPS vacuolar protein sorting; WT wild type.
Collapse
Affiliation(s)
- Xianxiu Qiu
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, P. R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Na Li
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P.R. China
| | - Qifan Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Shuai Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaohua Li
- Department of Research and Development, Shenzhen Shiningbiotek Co. Ltd, Shenzhen, P. R. China
| | - Xuehua Pan
- Shenzhen Pengcheng Biopharm Co. Ltd, Shenzhen, P.R. China
| | - Soh Yamamoto
- Department of Cell and Molecular Biology, Feingberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaozhe Zhang
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P.R. China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Jiahao Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, the First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, P.R. China
| | - Congcong He
- Department of Cell and Molecular Biology, Feingberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Yanxiang Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P.R. China
| |
Collapse
|
33
|
Pervushin NV, Kopeina GS, Zhivotovsky B. Bcl-B: an "unknown" protein of the Bcl-2 family. Biol Direct 2023; 18:69. [PMID: 37899453 PMCID: PMC10614328 DOI: 10.1186/s13062-023-00431-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Bcl-B is a poorly understood protein of the Bcl-2 family that is highly expressed in many healthy tissues and tumor types. Bcl-B is considered an antiapoptotic protein, but many reports have revealed its contradictory roles in different cancer types. In this mini-review, we elucidate the functions of Bcl-B in normal conditions and various pathologies, its regulation of programmed cell death, its oncogene/oncosuppressor activity in tumorigenesis, its impact on drug-acquired resistance, and possible approaches to inhibit Bcl-B.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, Stockholm, 17177, Sweden.
| |
Collapse
|
34
|
Farzaei MH, Ramezani-Aliakbari F, Ramezani-Aliakbari M, Zarei M, Komaki A, Shahidi S, Sarihi A, Salehi I. Regulatory effects of trimetazidine in cardiac ischemia/reperfusion injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1633-1646. [PMID: 36971866 DOI: 10.1007/s00210-023-02469-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Ischemia/reperfusion (I/R) injury is a tissue damage during reperfusion after an ischemic condition. I/R injury is induced by pathological cases including stroke, myocardial infarction, circulatory arrest, sickle cell disease, acute kidney injury, trauma, and sleep apnea. It can lead to increased morbidity and mortality in the context of these processes. Mitochondrial dysfunction is one of the hallmarks of I/R insult, which is induced via reactive oxygen species (ROS) production, apoptosis, and autophagy. MicroRNAs (miRNAs, miRs) are non-coding RNAs that play a main regulatory role in gene expression. Recently, there are evidence, which miRNAs are the major modulators of cardiovascular diseases, especially myocardial I/R injury. Cardiovascular miRNAs, specifically miR-21, and probably miR-24 and miR-126 have protective effects on myocardial I/R injury. Trimetazidine (TMZ) is a new class of metabolic agents with an anti-ischemic activity. It has beneficial effects on chronic stable angina by suppressing mitochondrial permeability transition pore (mPTP) opening. The present review study addressed the different mechanistic effects of TMZ on cardiac I/R injury. Online databases including Scopus, PubMed, Web of Science, and Cochrane library were assessed for published studies between 1986 and 2021. TMZ, an antioxidant and metabolic agent, prevents the cardiac reperfusion injury by regulating AMP-activated protein kinase (AMPK), cystathionine-γ-lyase enzyme (CSE)/hydrogen sulfide (H2S), and miR-21. Therefore, TMZ protects the heart against I/R injury by inducing key regulators such as AMPK, CSE/H2S, and miR-21.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Maryam Ramezani-Aliakbari
- Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zarei
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
35
|
Zhang T, Rao Q, Dai M, Wu ZE, Zhao Q, Li F. Tripterygium wilfordii protects against an animal model of autoimmune hepatitis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116365. [PMID: 36907478 DOI: 10.1016/j.jep.2023.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii tablets (TWT) is widely used to treat autoimmune diseases such as rheumatoid arthritis. Celastrol, one main active ingredient in TWT, has been shown to produce a variety of beneficial effects, including anti-inflammatory, anti-obesity, anti-cancer, and immunomodulatory. However, whether TWT could protect against Concanavalin A (Con A)-induced hepatitis remains unclear. THE AIM OF THE STUDY This study aims to investigate the protective effect of TWT against Con A-induced hepatitis and elucidate the underlying mechanism. MATERIALS AND METHODS Metabolomic analysis, pathological analysis, biochemical analysis, qPCR and Western blot analysis and the Pxr-null mice were used in this study. RESULTS The results indicated that TWT and its active ingredient celastrol could protect against Con A-induced acute hepatitis. Plasma metabolomics analysis revealed that metabolic perturbations related to bile acid and fatty acid metabolism induced by Con A were reversed by celastrol. The level of itaconate in the liver was increased by celastrol and speculated as an active endogenous compound mediating the protective effect of celastrol. Administration of 4-octanyl itaconate (4-OI) as a cell-permeable itaconate mimicker was found to attenuate Con A-induced liver injury through activation of the pregnane X receptor (PXR) and enhancement of the transcription factor EB (TFEB)-mediated autophagy. CONCLUSIONS Celastrol increased itaconate and 4-OI promoted activation of TFEB-mediated lysosomal autophagy to protect against Con A-induced liver injury in a PXR-dependent manner. Our study reported a protective effect of celastrol against Con A-induced AIH via an increased production of itaconate and upregulation of TFEB. The results highlighted that PXR and TFEB-mediated lysosomal autophagic pathway may offer promising therapeutic target for the treatment of autoimmune hepatitis.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianru Rao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Manyun Dai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhanxuan E Wu
- Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Laboratory of Metabolomics and Drug-induced Liver Injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Wu L, Lin Y, Gao S, Wang Y, Pan H, Wang Z, Pozzolini M, Yang F, Zhang H, Yang Y, Xiao L, Xu Y. Luteolin inhibits triple-negative breast cancer by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling. Front Pharmacol 2023; 14:1200843. [PMID: 37346292 PMCID: PMC10279868 DOI: 10.3389/fphar.2023.1200843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is one of the most prominent neoplasm disorders and lacks efficacious treatments yet. Luteolin (3',4',5,7-tetrahydroxyflavone), a natural flavonoid commonly presented in plants, has been reported to delay the progression of TNBC. However, the precise mechanism is still elusive. We aimed to elucidate the inhibition and molecular regulation mechanism of luteolin on TNBC. Methods: The effects of luteolin on the biological functions of TNBC cells were first evaluated using the corresponding assays for cell counting kit-8 assay, flow cytometry, wound-healing assay, and transwell migration assay, respectively. The mechanism of luteolin on TNBC cells was then analyzed by RNA sequencing and verified by RT-qPCR, Western blot, transmission electron microscopy, etc. Finally, in vivo mouse tumor models were constructed to further confirm the effects of luteolin on TNBC. Results: Luteolin dramatically suppressed cell proliferation, invasion, and migration while favoring cell apoptosis in a dose- and time-dependent manner. In TNBC cells treated with luteolin, SGK1 and AKT3 were significantly downregulated while their downstream gene BNIP3 was upregulated. According to the results of 3D modeling, the direct binding of luteolin to SGK1 was superior to that of AKT3. The inhibition of SGK1 promoted FOXO3a translocation into the nucleus and led to the transcription of BNIP3 both in vitro and in vivo, eventually facilitating the interaction between BNIP3 and apoptosis and autophagy protein. Furthermore, the upregulation of SGK1, induced by luteolin, attenuated the apoptosis and autophagy of the TNBC. Conclusion: Luteolin inhibits TNBC by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling.
Collapse
Affiliation(s)
- Ling Wu
- Medical College of Yangzhou University, Yangzhou, China
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yingda Lin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Songyu Gao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yongfang Wang
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhaozhi Wang
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Fengling Yang
- Department of Healthcare, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Haiyan Zhang
- Department of Healthcare, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yi Yang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Liang Xiao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
37
|
Overmeyer C, Jorgensen K, Vohra BPS. The Translocase of the Outer Mitochondrial Membrane (TOM40) is required for mitochondrial dynamics and neuronal integrity in Dorsal Root Ganglion Neurons. Mol Cell Neurosci 2023; 125:103853. [PMID: 37100265 DOI: 10.1016/j.mcn.2023.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Polymorphisms and altered expression of the Translocase of the Outer Mitochondrial Membrane - 40 kD (Tom40) are observed in neurodegenerative disease subjects. We utilized in vitro cultured dorsal root ganglion (DRG) neurons to investigate the association of TOM40 depletion to neurodegeneration, and to unravel the mechanism of neurodegeneration induced by decreased levels of TOM40 protein. We provide evidence that severity of neurodegeneration induced in the TOM40 depleted neurons increases with the increase in the depletion of TOM40 and is exacerbated by an increase in the duration of TOM40 depletion. We also demonstrate that TOM40 depletion causes a surge in neuronal calcium levels, decreases mitochondrial motility, increases mitochondrial fission, and decreases neuronal ATP levels. We observed that alterations in the neuronal calcium homeostasis and mitochondrial dynamics precede BCL-xl and NMNAT1 dependent neurodegenerative pathways in the TOM40 depleted neurons. This data also suggests that manipulation of BCL-xl and NMNAT1 may be of therapeutic value in TOM40 associated neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Kylie Jorgensen
- Department of Biology, William Jewell College Liberty, MO 64068
| | | |
Collapse
|
38
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
39
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
40
|
Mao B, Yuan W, Wu F, Yan Y, Wang B. Autophagy in hepatic ischemia-reperfusion injury. Cell Death Discov 2023; 9:115. [PMID: 37019879 PMCID: PMC10076300 DOI: 10.1038/s41420-023-01387-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver resection or liver transplantation that can seriously affect patient's prognosis. There is currently no definitive and effective treatment strategy for HIRI. Autophagy is an intracellular self-digestion pathway initiated to remove damaged organelles and proteins, which maintains cell survival, differentiation, and homeostasis. Recent studies have shown that autophagy is involved in the regulation of HIRI. Numerous drugs and treatments can change the outcome of HIRI by controlling the pathways of autophagy. This review mainly discusses the occurrence and development of autophagy, the selection of experimental models for HIRI, and the specific regulatory pathways of autophagy in HIRI. Autophagy has considerable potential in the treatment of HIRI.
Collapse
Affiliation(s)
- Benliang Mao
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Wei Yuan
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Fan Wu
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Yong Yan
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China
| | - Bailin Wang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China.
- Department of General Surgery, Guangzhou Red Cross Hospital affiliated to Jinan University, Guangzhou, China.
| |
Collapse
|
41
|
Perez-Serna AA, Dos Santos RS, Ripoll C, Nadal A, Eizirik DL, Marroqui L. BCL-XL Overexpression Protects Pancreatic β-Cells against Cytokine- and Palmitate-Induced Apoptosis. Int J Mol Sci 2023; 24:5657. [PMID: 36982731 PMCID: PMC10056015 DOI: 10.3390/ijms24065657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven β-cell loss or by the progressive loss of β-cell function, due to continued metabolic stresses. Although both α- and β-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect β-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two β-cell lines-namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-βH1 cells-using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-βH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced β-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-βH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in β-cells, participating both in cellular processes related to β-cell physiology and in fostering survival against pro-apoptotic insults.
Collapse
Affiliation(s)
- Atenea A. Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Reinaldo S. Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Cristina Ripoll
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| |
Collapse
|
42
|
High-Intensity Focused Ultrasound Decreases Subcutaneous Fat Tissue Thickness by Increasing Apoptosis and Autophagy. Biomolecules 2023; 13:biom13020392. [PMID: 36830763 PMCID: PMC9953651 DOI: 10.3390/biom13020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
High-intensity focused ultrasound (HIFU) leads to decreased subcutaneous adipose tissue (SAT) thickness via heat-induced adipocyte necrosis. Heat can induce adipocyte apoptosis and autophagy, and it is known that nuclear or mitochondrial p53 is involved in apoptosis and autophagy. However, whether HIFU leads to apoptosis or autophagy is unclear. We evaluated whether HIFU decreases SAT thickness via p53-related apoptosis or autophagy in high-fat diet (HFD)-fed animals. The expression of nuclear and mitochondrial p53 was increased by HIFU. HIFU also led to decreased expression of BCL2/BCL-xL (an antiapoptotic signal), increased expression of BAX/BAK (an apoptotic signal), increased levels of cleaved caspase 3/9, and increased numbers of apoptotic cells as evaluated by TUNEL assay. Furthermore, HIFU led to increased levels of ATG5, BECN1, and LC3II/LC3I, and decreased levels of p62, a marker of increased autophagy. The thickness of SAT was decreased by HIFU. In conclusion, HIFU led to nuclear and mitochondrial p53 expression, which led to apoptosis and autophagy, and eventually decreased SAT thickness in HFD-fed animals.
Collapse
|
43
|
Transcription of Autophagy Associated Gene Expression as Possible Predictors of a Colorectal Cancer Prognosis. Biomedicines 2023; 11:biomedicines11020418. [PMID: 36830954 PMCID: PMC9952998 DOI: 10.3390/biomedicines11020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Autophagy plays a dual role in oncogenesis-it contributes to the growth of the tumor and can inhibit its development. The aim of this study was to assess changes in the transcriptional activity of LAMP-2, BECN1, PINK1, and FOXO1 genes involved in the autophagy process in histopathologically confirmed adenocarcinoma sections of colorectal cancer: (2) Methods: A gene expression profile analysis was performed using HG-U133A and the RT-qPCR reaction. The transcriptional activity of genes was compared in sections of colorectal cancer in the four clinical stages (CSI-CSIV) concerning the control group; (3) Results: In CSI, the transcriptional activity of the PINK1 gene is highest; in CS II, the LAMP-2 gene is highest, while FOXO1 increases gradually from CSI reaching a maximum in CSIII. There is no BECN1 gene expression in colorectal cancer cells; (4) Conclusions: The observed differences in the mRNA concentration profile of autophagy-related genes in colon cancer specimens may indicate the role of autophagy in the pathogenesis of this cancer. Genes involved in autophagy may be diagnostic tools for colorectal cancer screening and personalized therapy in the future.
Collapse
|
44
|
Resveratrol protects osteocytes against oxidative stress in ovariectomized rats through AMPK/JNK1-dependent pathway leading to promotion of autophagy and inhibition of apoptosis. Cell Death Dis 2023; 9:16. [PMID: 36681672 PMCID: PMC9867734 DOI: 10.1038/s41420-023-01331-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
A large number of studies in recent years indicate that osteocytes are the orchestrators of bone remodeling by regulating both osteoblast and osteoclast activities. Oxidative stress-induced osteocyte apoptosis plays critical roles in the pathological processes of postmenopausal osteoporosis. Resveratrol is a natural polyphenolic compound that ameliorates postmenopausal osteoporosis. However, whether resveratrol regulates osteocyte apoptosis via autophagy remains largely unknown. The effects of resveratrol on regulating osteocyte apoptosis and autophagy were analyzed both in vivo and in vitro. In vitro, cultured MLO-Y4 cells were exposed to H2O2 with or without resveratrol. In vivo, an ovariectomy-induced osteoporosis model was constructed in rats with or without daily intraperitoneal injection of 10 mg/kg body weight resveratrol. It was found that resveratrol attenuated H2O2-induced apoptosis through activating autophagy in cultured MLO-Y4 cells, which was mediated by the dissociation of Beclin-1/Bcl-2 complex in AMPK/JNK1-dependent pathway, ultimately regulating osteocytes function. Furthermore, it was shown that resveratrol treatment reduced osteocytes oxidative stress, inhibited osteocytes apoptosis and promoted autophagy in ovariectomized rats. Our study suggests that resveratrol protects against oxidative stress by restoring osteocytes autophagy and alleviating apoptosis via AMPK/JNK1 activation, therefore dissociating Bcl-2 from Beclin-1.
Collapse
|
45
|
Zanuttigh E, Derderian K, Güra MA, Geerlof A, Di Meo I, Cavestro C, Hempfling S, Ortiz-Collazos S, Mauthe M, Kmieć T, Cammarota E, Panzeri MC, Klopstock T, Sattler M, Winkelmann J, Messias AC, Iuso A. Identification of Autophagy as a Functional Target Suitable for the Pharmacological Treatment of Mitochondrial Membrane Protein-Associated Neurodegeneration (MPAN) In Vitro. Pharmaceutics 2023; 15:pharmaceutics15010267. [PMID: 36678896 PMCID: PMC9862353 DOI: 10.3390/pharmaceutics15010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a relentlessly progressive neurodegenerative disorder caused by mutations in the C19orf12 gene. C19orf12 has been implicated in playing a role in lipid metabolism, mitochondrial function, and autophagy, however, the precise functions remain unknown. To identify new robust cellular targets for small compound treatments, we evaluated reported mitochondrial function alterations, cellular signaling, and autophagy in a large cohort of MPAN patients and control fibroblasts. We found no consistent alteration of mitochondrial functions or cellular signaling messengers in MPAN fibroblasts. In contrast, we found that autophagy initiation is consistently impaired in MPAN fibroblasts and show that C19orf12 expression correlates with the amount of LC3 puncta, an autophagy marker. Finally, we screened 14 different autophagy modulators to test which can restore this autophagy defect. Amongst these compounds, carbamazepine, ABT-737, LY294002, oridonin, and paroxetine could restore LC3 puncta in the MPAN fibroblasts, identifying them as novel potential therapeutic compounds to treat MPAN. In summary, our study confirms a role for C19orf12 in autophagy, proposes LC3 puncta as a functionally robust and consistent readout for testing compounds, and pinpoints potential therapeutic compounds for MPAN.
Collapse
Affiliation(s)
- Enrica Zanuttigh
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Kevork Derderian
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Miriam A. Güra
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Arie Geerlof
- Protein Expression and Purification Facility, Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ivano Di Meo
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Chiara Cavestro
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Stefan Hempfling
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Stephanie Ortiz-Collazos
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Mario Mauthe
- Molecular Cell Biology Section, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Tomasz Kmieć
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Eugenia Cammarota
- Alembic, Experimental Imaging Center, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Maria Carla Panzeri
- Alembic, Experimental Imaging Center, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-University (LMU), 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Ana C. Messias
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Arcangela Iuso
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
46
|
Bednarczyk M, Kociszewska K, Grosicka O, Grosicki S. The role of autophagy in acute myeloid leukemia development. Expert Rev Anticancer Ther 2023; 23:5-18. [PMID: 36563329 DOI: 10.1080/14737140.2023.2161518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Autophagy is a highly conservative self-degradative process. It aims at elimination-impaired proteins and cellular organelles. Previous research confirmed the autophagy role in cancer pathogenesis. AREAS COVERED This article discusses the role of autophagy in the development of AML. Autophagy seems to be a 'double-sword' mechanism, hence, either its suppression or induction could promote neoplasm growth. This mechanism could also be the aim of the 'molecular targeted therapy.' Chemo- and radiotherapy induce cellular stress in neoplasm cells with subsequent autophagy suppression. Simultaneously, it is claimed that the autophagy suppression increases chemosensitivity 'in neoplastic cells. Some agents, like bortezomib, in turn could promote autophagy process, e.g. in AML (acute myeloid leukemia). However, currently there are not many studies focusing on the role of autophagy in patients suffering for AML. In this review, we summarize the research done so far on the role of autophagy in the development of AML. EXPERT OPINION The analysis of autophagy genes expression profiling in AML could be a relevant factor in the diagnostic process and treatment 'individualization.' Autophagy modulation seems to be a relevant target in the oncological therapy - it could limit disease progression and increase the effectiveness of treatment.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | - Karolina Kociszewska
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Sebastian Grosicki
- Department of Hematology and Cancer Prevention, School of Public Health in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
47
|
Redox Regulation of Autophagy in Cancer: Mechanism, Prevention and Therapy. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010098. [PMID: 36676047 PMCID: PMC9863886 DOI: 10.3390/life13010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS), products of normal cellular metabolism, play an important role in signal transduction. Autophagy is an intracellular degradation process in response to various stress conditions, such as nutritional deprivation, organelle damage and accumulation of abnormal proteins. ROS and autophagy both exhibit double-edged sword roles in the occurrence and development of cancer. Studies have shown that oxidative stress, as the converging point of these stimuli, is involved in the mechanical regulation of autophagy process. The regulation of ROS on autophagy can be roughly divided into indirect and direct methods. The indirect regulation of autophagy by ROS includes post-transcriptional and transcriptional modulation. ROS-mediated post-transcriptional regulation of autophagy includes the post-translational modifications and protein interactions of AMPK, Beclin 1, PI3K and other molecules, while transcriptional regulation mainly focuses on p62/Keap1/Nrf2 pathway. Notably, ROS can directly oxidize key autophagy proteins, such as ATG4 and p62, leading to the inhibition of autophagy pathway. In this review, we will elaborate the molecular mechanisms of redox regulation of autophagy in cancer, and discuss ROS- and autophagy-based therapeutic strategies for cancer treatment.
Collapse
|
48
|
Russo M, Moccia S, Spagnuolo C, Tedesco I, Russo GL. Carotenoid-Enriched Nanoemulsions and γ-Rays Synergistically Induce Cell Death in a Novel Radioresistant Osteosarcoma Cell Line. Int J Mol Sci 2022; 23:ijms232415959. [PMID: 36555605 PMCID: PMC9782251 DOI: 10.3390/ijms232415959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
We previously demonstrated that SAOS human osteosarcoma cells, incubated with carotenoid-enriched nanoemulsions (CEN), activated a nonprotective form of autophagy and delayed cell proliferation. The present work focuses on the biological effects of CEN on a derivative of SAOS cells named SAOS400, recently described for their radiation resistance and higher expression of therapy-induced senescence (TIS) markers. SAOS400 cells, incubated with CEN, activated a “cytostatic” form of autophagy confirmed by cell cycle arrest in the G2/M phase and increased expression of autophagic proteins. Treatment of SAOS400 cells with CEN also resulted in decreased expression of the senescence marker p16INK4. However, when SAOS400 cells were γ-irradiated in combination with CEN, the threshold for cell death was reached (>60% after 96 h). We showed that this type of cell death corresponded to ‘cytotoxic’ or ‘lethal’ autophagy and that the combined treatment of CEN plus γ-rays was synergistic, with the combination index < 1. Since CEN contained β-carotene, the pure compound was used in SAOS400 cells at the same concentration present in CEN and up to 10 times higher. However, no radio-sensitizing effect of β-carotene was observed, suggesting that the biological effect of CEN was due to less abundant but more bioactive molecules, or to the synergistic activity of multiple components present in the extracts, confirming the functional pleiotropy of natural extracts enriched in bioactive molecules.
Collapse
|
49
|
Lee H, Nguyen Hoang AT, Lee SJ. Ginsenoside protopanaxadiol protects adult retinal pigment epithelial-19 cells from chloroquine by modulating autophagy and apoptosis. PLoS One 2022; 17:e0274763. [PMID: 36454967 PMCID: PMC9714852 DOI: 10.1371/journal.pone.0274763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/04/2022] [Indexed: 12/05/2022] Open
Abstract
Chloroquine often causes serious eye and vision problems, which are mainly mediated by lysosomotropic alteration. In this study, we investigated whether the ginsenoside protopanaxadiol relieves chloroquine-induced retinopathy by restoring lysosomotropic abnormalities in human adult retinal pigment epithelial-19 cells. Cytotoxicity was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Morphological alterations in autophagosomes of adult retinal pigment epithelial-19 cells was detected using confocal microscopy. Apoptosis was examined using flow cytometry, whereas cellular reactive oxygen species levels were determined by measuring the fluorescence intensity of 5-(and-6)-carboxy-2'-7'-dichlorohydrofluorescein diacetate. Lysosomal function was assessed by measuring lysosomal pH and enzyme activity. Immunoprecipitation and western blotting analyses were performed. Adult retinal pigment epithelial-19 cells accumulated autophagosomes with fusion defects in lysosomes and reactive oxygen species formation following exposure to chloroquine. This effect trapped Beclin-1 and B-cell lymphoma 2 interfering with autophagy initiation and autophagosome development. Protopanaxadiol alleviated chloroquine-induced toxicity by modulating the interaction between Beclin-1 and Bcl-2, which was mediated by the AMP-activated protein kinase-mammalian target of rapamycin signal axis. Furthermore, autophagy and apoptosis were simultaneously controlled by protopanaxadiol via upregulation of autophagy flux and decreased reactive oxygen species formation and apoptotic protein expression. These findings suggest that protopanaxadiol is a promising treatment strategy for chloroquine-mediated retinopathy.
Collapse
Affiliation(s)
- Haesung Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Anh Thu Nguyen Hoang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Sook-Jeong Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- * E-mail:
| |
Collapse
|
50
|
Martelli A, Omrani M, Zarghooni M, Citi V, Brogi S, Calderone V, Sureda A, Lorzadeh S, da Silva Rosa SC, Grabarek BO, Staszkiewicz R, Los MJ, Nabavi SF, Nabavi SM, Mehrbod P, Klionsky DJ, Ghavami S. New Visions on Natural Products and Cancer Therapy: Autophagy and Related Regulatory Pathways. Cancers (Basel) 2022; 14:5839. [PMID: 36497321 PMCID: PMC9738256 DOI: 10.3390/cancers14235839] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce or inhibit) the autophagy pathway. Natural products may target different regulatory components of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated ~100 natural compounds and plant species and their impact on different types of cancers via the autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in regulating cell autophagy and its potential impact on cancer therapy; however, the number of related clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted to better clarify the utility of natural compounds and their modulatory effects on autophagy, as fine-tuning of autophagy could be translated into therapeutic applications for several cancers.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marzieh Omrani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Maryam Zarghooni
- Department of Laboratory Medicine & Pathobiology, University of Toronto Alumna, Toronto, ON M5S 3J3, Canada
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition, Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C. da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Beniamin Oscar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
| | - Marek J. Los
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyed Fazel Nabavi
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite 62760-000, Brazil
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030 San Salvatore Telesino, Italy
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|