1
|
Wang ZR, Li LT, Xiong FF, Zhao LB, Mao H, Zhu MY, Su SY, Guo ZY, He C. Preparation, and enzymatic activity analysis of an engineered capping enzyme. Enzyme Microb Technol 2025; 188:110640. [PMID: 40188656 DOI: 10.1016/j.enzmictec.2025.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 05/27/2025]
Abstract
The Vaccinia capping enzyme (VCE) and the 2'-O-methyltransferase (VP39) are proteins encoded by the vaccinia virus genome, used for capping viral mRNA to form m7GpppN2Me mRNA (Cap1 mRNA). This capping structure is essential for protecting mRNA from degradation, facilitating pre-mRNA splicing and nuclear export, and enabling translation initiation by the eukaryotic initiation factor (eIF4E). Moreover, it helps the virus circumvent innate immune responses, thereby facilitating replication using host cell mechanisms. Currently, the enzymatic capping process employs VCE and VP39 in concert with pre-mRNA to synthesize Cap1 mRNA directly. This study introduces an engineered fusion capping enzyme , created by linking VCE and VP39 via a flexible (GGGGS)3 linker(D1R-D12L-GS linker-VP39, DDGSV). The aim is to enhance the capping reaction while reducing raw material costs, process complexity, and impurities. The tertiary structure of DDGSV, predicted using AlphaFold2, aligns well with published structures of VCE and VP39, demonstrating no steric hindrance at the enzymatic active sites resulting from the fusion configuration. The expression vector pTolo-EX2-DDGSV was constructed and expressed in Escherichia coli BL21(DE3). The mRNA of the prepared capping enzymes exhibited good integrity on an agarose gel. The capping efficiency of the engineered enzyme DDGSV reached 80.19 % after 2 h of the capping reaction, matching the performance of commercial capping enzymes. Furthermore, the potential of RNA dot blotting for rapid detection of mRNA capping efficiency was explored; however, quantitative methods are also needed. Additionally, GFP mRNA prepared using DDGSV demonstrated high expression levels in HEK 293 T cells. These results indicate that the engineered enzyme can effectively cap Cap1 mRNA, providing a novel approach for mRNA vaccine development.
Collapse
Affiliation(s)
- Zi-Ru Wang
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Ling-Ting Li
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Fei-Fei Xiong
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Li-Bin Zhao
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Hui Mao
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Man-Yi Zhu
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Si-Yuan Su
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Zi-Yu Guo
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Cheng He
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China.
| |
Collapse
|
2
|
Guo Q, Chen A, Ding J, Li J. Protocol for purification, crystallization, and structure determination of the mpox virus mRNA cap N7 methyltransferase complex. STAR Protoc 2025; 6:103845. [PMID: 40449000 PMCID: PMC12166409 DOI: 10.1016/j.xpro.2025.103845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/13/2025] [Accepted: 05/07/2025] [Indexed: 06/02/2025] Open
Abstract
The mpox virus (MPXV) mRNA cap N7 methyltransferase (RNMT) methylates guanosine at mRNA 5'-cap N7 positions to enable immune evasion. Here, we present a protocol for E1CTD-E12 complex purification and crystallization. We describe steps for rational sequence design of the complex, co-expression in E. coli, affinity chromatography purification, gel filtration, and crystallization optimization using vapor diffusion. We further outline X-ray diffraction data collection and structure determination. This reproducible framework enables structural analysis of viral mRNA-modifying enzyme complexes. For complete details on the use and execution of this protocol, please refer to Chen et al.1.
Collapse
Affiliation(s)
- Qingqing Guo
- School of Life Sciences and Pudong Hospital, Fudan University, Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Anke Chen
- School of Life Sciences and Pudong Hospital, Fudan University, Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai 200433, China
| | - Jixi Li
- School of Life Sciences and Pudong Hospital, Fudan University, Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China.
| |
Collapse
|
3
|
Kar S, Gardner EC, Javanmardi K, Boutz DR, Shroff R, Horton AP, Segall-Shapiro TH, Ellington AD, Gollihar J. Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes. iScience 2025; 28:111541. [PMID: 39811667 PMCID: PMC11732208 DOI: 10.1016/j.isci.2024.111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using Saccharomyces cerevisiae. We isolated highly active variants of this fusion enzyme, which exhibited roughly two orders of magnitude higher protein expression compared to the wild-type enzyme. We demonstrate the programmable control of gene expression using T7 RNAP-based genetic circuits in yeast and validate enhanced performance of these engineered variants in mammalian cells. This study presents a robust, orthogonal gene regulatory system applicable across diverse eukaryotic hosts, enhancing the versatility and efficiency of synthetic biology applications.
Collapse
Affiliation(s)
- Shaunak Kar
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Elizabeth C. Gardner
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R. Boutz
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Raghav Shroff
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew P. Horton
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Thomas H. Segall-Shapiro
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew D. Ellington
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jimmy Gollihar
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Chen A, Fang N, Zhang Z, Wen Y, Shen Y, Zhang Y, Zhang L, Zhao G, Ding J, Li J. Structural basis of the monkeypox virus mRNA cap N7 methyltransferase complex. Emerg Microbes Infect 2024; 13:2369193. [PMID: 38873898 PMCID: PMC11212559 DOI: 10.1080/22221751.2024.2369193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
The global outbreak of Mpox, caused by the monkeypox virus (MPXV), has attracted international attention and become another major infectious disease event after COVID-19. The mRNA cap N7 methyltransferase (RNMT) of MPXV methylates the N7 position of the added guanosine to the 5'-cap structure of mRNAs and plays a vital role in evading host antiviral immunity. MPXV RNMT is composed of the large subunit E1 and the small subunit E12. How E1 and E12 of MPXV assembly remains unclear. Here, we report the crystal structures of E12, the MTase domain of E1 with E12 (E1CTD-E12) complex, and the E1CTD-E12-SAM ternary complex, revealing the detailed conformations of critical residues and the structural changes upon E12 binding to E1. Functional studies suggest that E1CTD N-terminal extension (Asp545-Arg562) and the small subunit E12 play an essential role in the binding process of SAM. Structural comparison of the AlphaFold2-predicted E1, E1CTD-E12 complex, and the homologous D1-D12 complex of vaccinia virus (VACV) indicates an allosteric activating effect of E1 in MPXV. Our findings provide the structural basis for the MTase activity stimulation of the E1-E12 complex and suggest a potential interface for screening the anti-poxvirus inhibitors.
Collapse
Affiliation(s)
- Anke Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
| | - Ning Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
| | - Zhifei Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
| | - Yiqing Wen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
| | - Yajie Shen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
| | - Yanjie Zhang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Kar S, Gardner EC, Javanmardi K, Boutz DR, Shroff R, Horton AP, Segall-Shapiro TH, Ellington AD, Gollihar J. Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614978. [PMID: 39386662 PMCID: PMC11463353 DOI: 10.1101/2024.09.25.614978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
T7 RNA polymerase has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using Saccharomyces cerevisiae. We isolated highly active variants of this fusion enzyme, which exhibited roughly two orders of magnitude higher protein expression compared to the wild-type enzyme. We demonstrate the programmable control of gene expression using T7 RNAP-based genetic circuits in yeast and validate enhanced performance of these engineered variants in mammalian cells. This study presents a robust, orthogonal gene regulatory system applicable across diverse eukaryotic hosts, enhancing the versatility and efficiency of synthetic biology applications.
Collapse
Affiliation(s)
- Shaunak Kar
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Authors contributed equally
| | - Elizabeth C. Gardner
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Authors contributed equally
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R. Boutz
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Raghav Shroff
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew P. Horton
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Thomas H. Segall-Shapiro
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew D. Ellington
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jimmy Gollihar
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
6
|
Chen S, Jiang Z, Li Q, Pan W, Chen Y, Liu J. Viral RNA capping: Mechanisms and antiviral therapy. J Med Virol 2024; 96:e29622. [PMID: 38682614 DOI: 10.1002/jmv.29622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
RNA capping is an essential trigger for protein translation in eukaryotic cells. Many viruses have evolved various strategies for initiating the translation of viral genes and generating progeny virions in infected cells via synthesizing cap structure or stealing the RNA cap from nascent host messenger ribonucleotide acid (mRNA). In addition to protein translation, a new understanding of the role of the RNA cap in antiviral innate immunity has advanced the field of mRNA synthesis in vitro and therapeutic applications. Recent studies on these viral RNA capping systems have revealed startlingly diverse ways and molecular machinery. A comprehensive understanding of how viruses accomplish the RNA capping in infected cells is pivotal for designing effective broad-spectrum antiviral therapies. Here we systematically review the contemporary insights into the RNA-capping mechanisms employed by viruses causing human and animal infectious diseases, while also highlighting its impact on host antiviral innate immune response. The therapeutic applications of targeting RNA capping against viral infections and the development of RNA-capping inhibitors are also summarized.
Collapse
Affiliation(s)
- Saini Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhimin Jiang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiuchen Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenliang Pan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Wang DP, Zhao R, Wang HF, Wang MY, Hu WS, Lin MM, Shu W, Sun YJ, Cao JM, Cui W, Zhou X. Crystal structure of mRNA cap (guanine-N7) methyltransferase E12 subunit from monkeypox virus and discovery of its inhibitors. Int J Biol Macromol 2023; 253:127565. [PMID: 37866584 DOI: 10.1016/j.ijbiomac.2023.127565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/12/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
In July 2022, the World Health Organization announced monkeypox as a public health emergency of international concern (PHEIC), and over 85,000 global cases have been reported currently. However, preventive and therapeutic treatments for the monkeypox virus (MPXV) remain limited. MPXV mRNA cap N7 methyltransferase (MTase) is composed of two subunits (E1 C-terminal domain (E1CTD) and E12) which are essential for the replication of MPXV. Here, we solved a 2.16 Å crystal structure of E12. We also docked the D1CTD of the vaccinia virus (VACV) corresponding to the E1CTD in MPXV with E12 and found critical residues at their interface. These residues were further used for drug screening. After virtual screening, the top 347 compounds were screened out and a list of top 20 potential MPXV E12 inhibitors were discovered, including Rutin, Quercitrin, Epigallocatechin, Rosuvastatin, 5-hydroxy-L-Tryptophan, and Deferasirox, etc., which were potential E12 inhibitors. Taking the advantage of the previously unrecognized special structure of MPXV MTase composing of E1CTD and E12 heterodimer, we screened for inhibitors targeting MTase for the first time based on the interface between the heterodimer of MPXV MTase. Our study may provide insights into the development of anti-MPXV drugs.
Collapse
Affiliation(s)
- De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Rong Zhao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Hao-Feng Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Mei-Yue Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wen-Shu Hu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Meng-Meng Lin
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wen Shu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yao-Jun Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China.
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Chan SH, Molé CN, Nye D, Mitchell L, Dai N, Buss J, Kneller DW, Whipple JM, Robb GB. Biochemical characterization of mRNA capping enzyme from Faustovirus. RNA (NEW YORK, N.Y.) 2023; 29:1803-1817. [PMID: 37625853 PMCID: PMC10578482 DOI: 10.1261/rna.079738.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
The mammalian mRNA 5' cap structures play important roles in cellular processes such as nuclear export, efficient translation, and evading cellular innate immune surveillance and regulating 5'-mediated mRNA turnover. Hence, installation of the proper 5' cap is crucial in therapeutic applications of synthetic mRNA. The core 5' cap structure, Cap-0, is generated by three sequential enzymatic activities: RNA 5' triphosphatase, RNA guanylyltransferase, and cap N7-guanine methyltransferase. Vaccinia virus RNA capping enzyme (VCE) is a heterodimeric enzyme that has been widely used in synthetic mRNA research and manufacturing. The large subunit of VCE D1R exhibits a modular structure where each of the three structural domains possesses one of the three enzyme activities, whereas the small subunit D12L is required to activate the N7-guanine methyltransferase activity. Here, we report the characterization of a single-subunit RNA capping enzyme from an amoeba giant virus. Faustovirus RNA capping enzyme (FCE) exhibits a modular array of catalytic domains in common with VCE and is highly efficient in generating the Cap-0 structure without an activation subunit. Phylogenetic analysis suggests that FCE and VCE are descended from a common ancestral capping enzyme. We found that compared to VCE, FCE exhibits higher specific activity, higher activity toward RNA containing secondary structures and a free 5' end, and a broader temperature range, properties favorable for synthetic mRNA manufacturing workflows.
Collapse
Affiliation(s)
- S Hong Chan
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Christa N Molé
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Dillon Nye
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Lili Mitchell
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Nan Dai
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Jackson Buss
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | | | | | - G Brett Robb
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| |
Collapse
|
9
|
Ornelas MY, Thomas AY, Johnson Rosas LI, Medina GN, Mehta AP. Characterization, Directed Evolution, and Targeting of DNA Virus-Encoded RNA Capping Enzymes Using Phenotypic Yeast Platforms. ACS Chem Biol 2023; 18:1808-1820. [PMID: 37498174 PMCID: PMC11024868 DOI: 10.1021/acschembio.3c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The constant and the sudden emergence of zoonotic human and animal viruses is a significant threat to human health, the world economy, and the world food supply. This has necessitated the development of broad-spectrum therapeutic strategies to combat these emerging pathogens. Mechanisms that are essential for viral replication and propagation have been successfully targeted in the past to develop broad-spectrum therapeutics that can be readily repurposed to combat new zoonotic pathogens. Because of the importance of viral RNA capping enzymes to viral replication and pathogenesis, as well as their presence in both DNA and RNA viruses, these viral proteins have been a long-standing therapeutic target. Here, we use genome sequencing information and yeast-based platforms (YeRC0M) to identify, characterize, and target viral genome-encoded essential RNA capping enzymes from emerging strains of DNA viruses, i.e., Monkeypox virus and African Swine Fever Virus, which are a significant threat to human and domestic animal health. We first identified and biochemically characterized these viral RNA capping enzymes and their necessary protein domains. We observed significant differences in functional protein domains and organization for RNA capping enzymes from emerging DNA viruses in comparison to emerging RNA viruses. We also observed several differences in the biochemical properties of these viral RNA capping enzymes using our phenotypic yeast-based approaches (YeRC0M) as compared to the previous in vitro studies. Further, using directed evolution, we were able to identify inactivation and attenuation mutations in these essential viral RNA capping enzymes; these data could have implications on virus biocontainment as well as live attenuated vaccine development. We also developed methods that would facilitate high-throughput phenotypic screening to identify broad-spectrum inhibitors that selectively target viral RNA capping enzymes over host RNA capping enzymes. As demonstrated here, our approaches to identify, characterize, and target viral genome-encoded essential RNA capping enzymes are highly modular and can be readily adapted for targeting emerging viral pathogens as well as their variants that emerge in the future.
Collapse
Affiliation(s)
- Marya Y Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
| | - Angela Y Thomas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
| | - L Idalee Johnson Rosas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
| | - Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, New York 11944, United States
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, Kansas 66502, United States
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, Illinois 61801, United States
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Ohno H, Akamine S, Mochizuki M, Hayashi K, Akichika S, Suzuki T, Saito H. Versatile strategy using vaccinia virus-capping enzyme to synthesize functional 5' cap-modified mRNAs. Nucleic Acids Res 2023; 51:e34. [PMID: 36731515 PMCID: PMC10085709 DOI: 10.1093/nar/gkad019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
The potential of synthetic mRNA as a genetic carrier has increased its application in scientific fields. Because the 5' cap regulates the stability and translational activity of mRNAs, there are concerted efforts to search for and synthesize chemically-modified 5' caps that improve the functionality of mRNA. Here, we report an easy and efficient method to synthesize functional mRNAs by modifying multiple 5' cap analogs using a vaccinia virus-capping enzyme. We show that this enzyme can introduce a variety of GTP analogs to the 5' end of RNA to generate 5' cap-modified mRNAs that exhibit different translation levels. Notably, some of these modified mRNAs improve translation efficiency and can be conjugated to chemical structures, further increasing their functionality. Our versatile method to generate 5' cap-modified mRNAs will provide useful tools for RNA therapeutics and biological research.
Collapse
Affiliation(s)
- Hirohisa Ohno
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sae Akamine
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Megumi Mochizuki
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Karin Hayashi
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinichiro Akichika
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hirohide Saito
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
11
|
Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Viruses 2023; 15:v15020341. [PMID: 36851554 PMCID: PMC9960070 DOI: 10.3390/v15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.
Collapse
Affiliation(s)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, F78350 Jouy en Josas, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- Correspondence:
| |
Collapse
|
12
|
Zhan XY, Zha GF, He Y. Evolutionary dissection of monkeypox virus: Positive Darwinian selection drives the adaptation of virus-host interaction proteins. Front Cell Infect Microbiol 2023; 12:1083234. [PMID: 36710983 PMCID: PMC9880225 DOI: 10.3389/fcimb.2022.1083234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
The emerging and ongoing outbreak of human monkeypox (hMPX) in 2022 is a serious global threat. An understanding of the evolution of the monkeypox virus (MPXV) at the single-gene level may provide clues for exploring the unique aspects of the current outbreak: rapidly expanding and sustained human-to-human transmission. For the current investigation, alleles of 156 MPXV coding genes (which account for >95% of the genomic sequence) have been gathered from roughly 1,500 isolates, including those responsible for the previous outbreaks. Using a range of molecular evolution approaches, we demonstrated that intra-species homologous recombination has a negligible effect on MPXV evolution. Despite the fact that the majority of the MPXV genes (64.10%) were subjected to negative selection at the whole gene level, 10 MPXV coding genes (MPXVgp004, 010, 012, 014, 044, 098, 138, 178, 188, and 191) were found to have a total of 15 codons or amino acid sites that are known to evolve under positive Darwinian selection. Except for MPXVgp138, almost all of these genes encode proteins that interact with the host. Of these, five ankyrin proteins (MPXVgp004, 010, 012, 178, and 188) and one Bcl-2-like protein (MPXVgp014) are involved in poxviruses' host range determination. We discovered that the majority (80%) of positive amino acid substitutions emerged several decades ago, indicating that these sites have been under constant selection pressure and that more adaptable alleles have been circulating in the natural reservoir. This finding was also supported by the minimum spanning networks of the gene alleles. The three positive amino acid substitutions (T/A426V in MPXVgp010, A423D in MPXVgp012, and S105L in MPXVgp191) appeared in 2019 or 2022, indicating that they would be crucial for the virus' eventual adaptation to humans. Protein modeling suggests that positive amino acid substitutions may affect protein functions in a variety of ways. Further study should focus on revealing the biological effects of positive amino acid substitutions in the genes for viral adaptation to humans, virulence, transmission, and so on. Our study advances knowledge of MPXV's adaptive mechanism and provides insights for exploring factors that are responsible for the unique aspects of the current outbreak.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| | - Gao-Feng Zha
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| | - Yulong He
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| |
Collapse
|
13
|
Mersinoglu B, Cristinelli S, Ciuffi A. The Impact of Epitranscriptomics on Antiviral Innate Immunity. Viruses 2022; 14:1666. [PMID: 36016289 PMCID: PMC9412694 DOI: 10.3390/v14081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Epitranscriptomics, i.e., chemical modifications of RNA molecules, has proven to be a new layer of modulation and regulation of protein expression, asking for the revisiting of some aspects of cellular biology. At the virological level, epitranscriptomics can thus directly impact the viral life cycle itself, acting on viral or cellular proteins promoting replication, or impacting the innate antiviral response of the host cell, the latter being the focus of the present review.
Collapse
Affiliation(s)
| | | | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (B.M.); (S.C.)
| |
Collapse
|
14
|
Grimm C, Bartuli J, Fischer U. Cytoplasmic gene expression: lessons from poxviruses. Trends Biochem Sci 2022; 47:892-902. [DOI: 10.1016/j.tibs.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
15
|
Fischer U, Bartuli J, Grimm C. Structure and function of the poxvirus transcription machinery. Enzymes 2021; 50:1-20. [PMID: 34861934 DOI: 10.1016/bs.enz.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Members of the Poxviridae family are large double-stranded DNA viruses that replicate exclusively in the cytoplasm of their hosts. This goes in hand with a high level of independence from the host cell, which supports transcription and replication events only in the nucleus or in DNA-containing organelles. Consequently, virus specific, rather than cellular enzymes mediate most processes involving DNA replication and mRNA synthesis. Recent technological advances allowed a detailed functional and structural investigation of the transcription machinery of the prototypic poxvirus vaccinia. The DNA-dependent RNA polymerase (RNAP) at its core displays distinct similarities to eukaryotic RNAPs. Strong idiosyncrasies, however, are apparent for viral factors that are associated with the viral RNAP during mRNA production. We expect that future studies will unravel more key aspects of poxvirus gene expression, helping also the understanding of nuclear transcription mechanisms.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Julia Bartuli
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
16
|
Kasprzyk R, Jemielity J. Enzymatic Assays to Explore Viral mRNA Capping Machinery. Chembiochem 2021; 22:3236-3253. [PMID: 34291555 PMCID: PMC8426721 DOI: 10.1002/cbic.202100291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/21/2021] [Indexed: 12/25/2022]
Abstract
In eukaryotes, mRNA is modified by the addition of the 7-methylguanosine (m7 G) 5' cap to protect mRNA from premature degradation, thereby enhancing translation and enabling differentiation between self (endogenous) and non-self RNAs (e. g., viral ones). Viruses often develop their own mRNA capping pathways to augment the expression of their proteins and escape host innate immune response. Insights into this capping system may provide new ideas for therapeutic interventions and facilitate drug discovery, e. g., against viruses that cause pandemic outbreaks, such as beta-coronaviruses SARS-CoV (2002), MARS-CoV (2012), and the most recent SARS-CoV-2. Thus, proper methods for the screening of large compound libraries are required to identify lead structures that could serve as a basis for rational antiviral drug design. This review summarizes the methods that allow the monitoring of the activity and inhibition of enzymes involved in mRNA capping.
Collapse
Affiliation(s)
- Renata Kasprzyk
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02-097WarsawPoland
- College of Inter-Faculty Individual Studies inMathematics and Natural SciencesUniversity of WarsawBanacha 2c02-097WarsawPoland
| | - Jacek Jemielity
- Centre of New TechnologiesUniversity of WarsawBanacha 2c02-097WarsawPoland
| |
Collapse
|
17
|
5'-Cap sequestration is an essential determinant of HIV-1 genome packaging. Proc Natl Acad Sci U S A 2021; 118:2112475118. [PMID: 34493679 PMCID: PMC8449379 DOI: 10.1073/pnas.2112475118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
HIV-1 selectively packages two copies of its 5'-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5' leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5' leader. ΨCES lacks a 5'-tandem hairpin element that sequesters the 5' cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5' ribozyme to ΨCES to enable cotranscriptional shedding of the 5' cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5' cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5'-capped RNA genomes.
Collapse
|
18
|
Graille M. Division of labor in epitranscriptomics: What have we learnt from the structures of eukaryotic and viral multimeric RNA methyltransferases? WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1673. [PMID: 34044474 DOI: 10.1002/wrna.1673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The translation of an mRNA template into the corresponding protein is a highly complex and regulated choreography performed by ribosomes, tRNAs, and translation factors. Most RNAs involved in this process are decorated by multiple chemical modifications (known as epitranscriptomic marks) contributing to the efficiency, the fidelity, and the regulation of the mRNA translation process. Many of these epitranscriptomic marks are written by holoenzymes made of a catalytic subunit associated with an activating subunit. These holoenzymes play critical roles in cell development. Indeed, several mutations being identified in the genes encoding for those proteins are linked to human pathologies such as cancers and intellectual disorders for instance. This review describes the structural and functional properties of RNA methyltransferase holoenzymes, which when mutated often result in brain development pathologies. It illustrates how structurally different activating subunits contribute to the catalytic activity of these holoenzymes through common mechanistic trends that most likely apply to other classes of holoenzymes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
| |
Collapse
|
19
|
Structure and Biochemical Characteristic of the Methyltransferase (MTase) Domain of RNA Capping Enzyme from African Swine Fever Virus. J Virol 2021; 95:JVI.02029-20. [PMID: 33268516 PMCID: PMC8092831 DOI: 10.1128/jvi.02029-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus (NCLDV) that causes a devastating swine disease and it is urgently needed to develop effective anti-ASFV vaccines and drugs. The process of mRNA 5'-end capping is a common characteristic in eukaryotes and many viruses, and the cap structure is required for mRNA stability and efficient translation. The ASFV protein pNP868R was found to have guanylyltransferase (GTase) activity involved in mRNA capping. Here we report the crystal structure of pNP868R methyltransferase (MTase) domain (referred as pNP868RMT) in complex with S-adenosyl-L-methionine (AdoMet). The structure shows the characteristic core fold of the class I MTase family and the AdoMet is bound in a negative-deep groove. Remarkably, the N-terminal extension of pNP868RMT is ordered and keeps away from the AdoMet-binding site, distinct from the close conformation over the active site of poxvirus RNA capping D1 subunit or the largely disordered conformation in most cellular RNA capping MTases. Structure-based mutagenesis studies based on the pNP868RMT-cap analog complex model revealed essential residues involved in substrate recognition and binding. Functional studies suggest the N-terminal extension may play an essential role in substrate recognition instead of AdoMet-binding. A positively charged path stretching from the N-terminal extension to the region around the active site was suggested to provide a favorable electrostatic environment for the binding and approaching of substrate RNA into the active site. Our structure and biochemical studies provide novel insights into the methyltransfer process of mRNA cap catalyzed by pNP868R.IMPORTANCE African swine fever (ASF) is a highly contagious hemorrhagic viral disease in pigs that is caused by African swine fever virus (ASFV). There are no effective drugs or vaccines for protection against ASFV infection till now. The protein pNP868R was predicted to be responsible for process of mRNA 5'-end capping in ASFV, which is essential for mRNA stability and efficient translation. Here, we solved the high-resolution crystal structure of the methyltransferase (MTase) domain of pNP868R. The MTase domain structure shows a canonical class I MTase family fold and the AdoMet binds into a negative pocket. Structure-based mutagenesis studies revealed critical and conserved residues involved in AdoMet-binding and substrate RNA-binding. Notably, both the conformation and the role in MTase activities of the N-terminal extension are distinct from those of previously characterized poxvirus MTase domain. Our structure-function studies provide the basis for potential anti-ASFV inhibitor design targeting the critical enzyme.
Collapse
|
20
|
Jones R, Bragagnolo G, Arranz R, Reguera J. Capping pores of alphavirus nsP1 gate membranous viral replication factories. Nature 2020; 589:615-619. [PMID: 33328629 PMCID: PMC7739802 DOI: 10.1038/s41586-020-3036-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
Positive-sense single-stranded RNA viruses, such as coronaviruses, flaviviruses and alphaviruses, carry out transcription and replication inside virus-induced membranous organelles within host cells1–7. The remodelling of the host-cell membranes for the formation of these organelles is coupled to the membrane association of viral replication complexes and to RNA synthesis. These viral niches allow for the concentration of metabolites and proteins for the synthesis of viral RNA, and prevent the detection of this RNA by the cellular innate immune system8. Here we present the cryo-electron microscopy structure of non-structural protein 1 (nsP1) of the alphavirus chikungunya virus, which is responsible for RNA capping and membrane binding of the viral replication machinery. The structure shows the enzyme in its active form, assembled in a monotopic membrane-associated dodecameric ring. The structure reveals the structural basis of the coupling between membrane binding, oligomerization and allosteric activation of the capping enzyme. The stoichiometry—with 12 active sites in a single complex—redefines viral replication complexes as RNA synthesis reactors. The ring shape of the complex implies it has a role in controlling access to the viral organelle and ensuring the exit of properly capped viral RNA. Our results provide high-resolution information about the membrane association of the replication machinery of positive-sense single-stranded RNA viruses, and open up avenues for the further characterization of viral replication on cell membranes and the generation of antiviral agents. Cryo-electron microscopy structures of non-structural protein 1 (nsP1) of chikungunya virus reveal the mechanisms that underpin the association of viral replication machinery with virus-induced membranous organelles within host cells.
Collapse
Affiliation(s)
- Rhian Jones
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Rocío Arranz
- National Center of Biotechnology, CSIC, Madrid, Spain
| | - Juan Reguera
- Aix-Marseille Université, CNRS, AFMB UMR 7257, Marseille, France. .,INSERM, AFMB UMR7257, Marseille, France.
| |
Collapse
|
21
|
Hillen HS, Bartuli J, Grimm C, Dienemann C, Bedenk K, Szalay AA, Fischer U, Cramer P. Structural Basis of Poxvirus Transcription: Transcribing and Capping Vaccinia Complexes. Cell 2020; 179:1525-1536.e12. [PMID: 31835031 DOI: 10.1016/j.cell.2019.11.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/20/2019] [Accepted: 11/14/2019] [Indexed: 11/26/2022]
Abstract
Poxviruses use virus-encoded multisubunit RNA polymerases (vRNAPs) and RNA-processing factors to generate m7G-capped mRNAs in the host cytoplasm. In the accompanying paper, we report structures of core and complete vRNAP complexes of the prototypic Vaccinia poxvirus (Grimm et al., 2019; in this issue of Cell). Here, we present the cryo-electron microscopy (cryo-EM) structures of Vaccinia vRNAP in the form of a transcribing elongation complex and in the form of a co-transcriptional capping complex that contains the viral capping enzyme (CE). The trifunctional CE forms two mobile modules that bind the polymerase surface around the RNA exit tunnel. RNA extends from the vRNAP active site through this tunnel and into the active site of the CE triphosphatase. Structural comparisons suggest that growing RNA triggers large-scale rearrangements on the surface of the transcription machinery during the transition from transcription initiation to RNA capping and elongation. Our structures unravel the basis for synthesis and co-transcriptional modification of poxvirus RNA.
Collapse
Affiliation(s)
- Hauke S Hillen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Julia Bartuli
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, 97074 Würzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kristina Bedenk
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, 97074 Würzburg, Germany
| | - Aladar A Szalay
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, 97074 Würzburg, Germany; Genelux Corporation, 3030 Bunker Hill Street, San Diego, CA 92109, USA
| | - Utz Fischer
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Würzburg, 97074 Würzburg, Germany; Genelux Corporation, 3030 Bunker Hill Street, San Diego, CA 92109, USA; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany.
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
22
|
The C-Terminal Domain of the Sudan Ebolavirus L Protein Is Essential for RNA Binding and Methylation. J Virol 2020; 94:JVI.00520-20. [PMID: 32269120 DOI: 10.1128/jvi.00520-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 12/20/2022] Open
Abstract
The large (L) protein of Ebola virus is a key protein for virus replication. Its N-terminal region harbors the RNA-dependent RNA polymerase activity, and its C terminus contains a cap assembling line composed of a capping domain and a methyltransferase domain (MTase) followed by a C-terminal domain (CTD) of unknown function. The L protein MTase catalyzes methylation at the 2'-O and N-7 positions of the cap structures. In addition, the MTase of Ebola virus can induce cap-independent internal adenosine 2'-O-methylation. In this work, we investigated the CTD role in the regulation of the cap-dependent and cap-independent MTase activities of the L protein. We found that the CTD, which is enriched in basic amino acids, plays a key role in RNA binding and in turn regulates the different MTase activities. We demonstrated that the mutation of CTD residues modulates specifically the different MTase activities. Altogether, our results highlight the pivotal role of the L protein CTD in the control of viral RNA methylation, which is critical for Ebola virus replication and escape from the innate response in infected cells.IMPORTANCE Ebola virus infects human and nonhuman primates, causing severe infections that are often fatal. The epidemics, in West and Central Africa, emphasize the urgent need to develop antiviral therapies. The Ebola virus large protein (L), which is the central protein for viral RNA replication/transcription, harbors a methyltransferase domain followed by a C-terminal domain of unknown function. We show that the C-terminal domain regulates the L protein methyltransferase activities and consequently participates in viral replication and escape of the host innate immunity.
Collapse
|
23
|
Esquiaqui JM, Kharytonchyk S, Drucker D, Telesnitsky A. HIV-1 spliced RNAs display transcription start site bias. RNA (NEW YORK, N.Y.) 2020; 26:708-714. [PMID: 32205324 PMCID: PMC7266155 DOI: 10.1261/rna.073650.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/17/2020] [Indexed: 05/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transcripts have three fates: to serve as genomic RNAs, unspliced mRNAs, or spliced subgenomic mRNAs. Recent structural studies have shown that sequences near the 5' end of HIV-1 RNA can adopt at least two alternate three-dimensional conformations, and that these structures dictate genome versus unspliced mRNA fates. HIV-1's use of alternate transcription start sites (TSS) can influence which RNA conformer is generated, and this choice, in turn, dictates the fate of the unspliced RNA. The structural context of HIV-1's major 5' splice site differs in these two RNA conformers, suggesting that the conformers may differ in their ability to support HIV-1 splicing events. Here, we tested the hypothesis that TSS that shift the RNA monomer/dimer structural equilibrium away from the splice site sequestering dimer-competent fold would favor splicing. Consistent with this hypothesis, the results showed that the 5' ends of spliced HIV-1 RNAs were enriched in 3GCap structures and depleted of 1GCap RNAs relative to the total intracellular RNA population. These findings expand the functional significance of HIV-1 RNA structural dynamics by demonstrating roles for RNA structure in defining all three classes of HIV-1 RNAs, and suggest that HIV-1 TSS choice initiates a cascade of molecular events that dictate the fates of nascent HIV-1 RNAs.
Collapse
Affiliation(s)
- Jackie M Esquiaqui
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| | - Siahrei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| | - Darra Drucker
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| |
Collapse
|
24
|
Brown JD, Kharytonchyk S, Chaudry I, Iyer AS, Carter H, Becker G, Desai Y, Glang L, Choi SH, Singh K, Lopresti MW, Orellana M, Rodriguez T, Oboh U, Hijji J, Ghinger FG, Stewart K, Francis D, Edwards B, Chen P, Case DA, Telesnitsky A, Summers MF. Structural basis for transcriptional start site control of HIV-1 RNA fate. Science 2020; 368:413-417. [PMID: 32327595 PMCID: PMC7351118 DOI: 10.1126/science.aaz7959] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Heterogeneous transcriptional start site usage by HIV-1 produces 5'-capped RNAs beginning with one, two, or three 5'-guanosines (Cap1G, Cap2G, or Cap3G, respectively) that are either selected for packaging as genomes (Cap1G) or retained in cells as translatable messenger RNAs (mRNAs) (Cap2G and Cap3G). To understand how 5'-guanosine number influences fate, we probed the structures of capped HIV-1 leader RNAs by deuterium-edited nuclear magnetic resonance. The Cap1G transcript adopts a dimeric multihairpin structure that sequesters the cap, inhibits interactions with eukaryotic translation initiation factor 4E, and resists decapping. The Cap2G and Cap3G transcripts adopt an alternate structure with an elongated central helix, exposed splice donor residues, and an accessible cap. Extensive remodeling, achieved at the energetic cost of a G-C base pair, explains how a single 5'-guanosine modifies the function of a ~9-kilobase HIV-1 transcript.
Collapse
Affiliation(s)
- Joshua D Brown
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | - Issac Chaudry
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Aishwarya S Iyer
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Hannah Carter
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Ghazal Becker
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Yash Desai
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Lindsay Glang
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Seung H Choi
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Karndeep Singh
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Michael W Lopresti
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Matthew Orellana
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Tatiana Rodriguez
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Ubiomo Oboh
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Jana Hijji
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Frances Grace Ghinger
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Kailan Stewart
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Dillion Francis
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Bryce Edwards
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Patrick Chen
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - David A Case
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8087, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
25
|
Bueren-Calabuig JA, G Bage M, Cowling VH, Pisliakov AV. Mechanism of allosteric activation of human mRNA cap methyltransferase (RNMT) by RAM: insights from accelerated molecular dynamics simulations. Nucleic Acids Res 2019; 47:8675-8692. [PMID: 31329932 PMCID: PMC7145595 DOI: 10.1093/nar/gkz613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 02/04/2023] Open
Abstract
The RNA guanine-N7 methyltransferase (RNMT) in complex with RNMT-activating miniprotein (RAM) catalyses the formation of a N7-methylated guanosine cap structure on the 5' end of nascent RNA polymerase II transcripts. The mRNA cap protects the primary transcript from exonucleases and recruits cap-binding complexes that mediate RNA processing, export and translation. By using microsecond standard and accelerated molecular dynamics simulations, we provide for the first time a detailed molecular mechanism of allosteric regulation of RNMT by RAM. We show that RAM selects the RNMT active site conformations that are optimal for binding of substrates (AdoMet and the cap), thus enhancing their affinity. Furthermore, our results strongly suggest the likely scenario in which the cap binding promotes the subsequent AdoMet binding, consistent with the previously suggested cooperative binding model. By employing the network community analyses, we revealed the underlying long-range allosteric networks and paths that are crucial for allosteric regulation by RAM. Our findings complement and explain previous experimental data on RNMT activity. Moreover, this study provides the most complete description of the cap and AdoMet binding poses and interactions within the enzyme's active site. This information is critical for the drug discovery efforts that consider RNMT as a promising anti-cancer target.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Marcus G Bage
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| |
Collapse
|
26
|
Jaïs PH, Decroly E, Jacquet E, Le Boulch M, Jaïs A, Jean-Jean O, Eaton H, Ponien P, Verdier F, Canard B, Goncalves S, Chiron S, Le Gall M, Mayeux P, Shmulevitz M. C3P3-G1: first generation of a eukaryotic artificial cytoplasmic expression system. Nucleic Acids Res 2019; 47:2681-2698. [PMID: 30726994 PMCID: PMC6412113 DOI: 10.1093/nar/gkz069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 12/25/2022] Open
Abstract
Most eukaryotic expression systems make use of host-cell nuclear transcriptional and post-transcriptional machineries. Here, we present the first generation of the chimeric cytoplasmic capping-prone phage polymerase (C3P3-G1) expression system developed by biological engineering, which generates capped and polyadenylated transcripts in host-cell cytoplasm by means of two components. First, an artificial single-unit chimeric enzyme made by fusing an mRNA capping enzyme and a DNA-dependent RNA polymerase. Second, specific DNA templates designed to operate with the C3P3-G1 enzyme, which encode for the transcripts and their artificial polyadenylation. This system, which can potentially be adapted to any in cellulo or in vivo eukaryotic expression applications, was optimized for transient expression in mammalian cells. C3P3-G1 shows promising results for protein production in Chinese Hamster Ovary (CHO-K1) cells. This work also provides avenues for enhancing the performances for next generation C3P3 systems.
Collapse
Affiliation(s)
- Philippe H Jaïs
- Eukarÿs SAS, Génopole Campus 3, 4 rue Pierre Fontaine, 91058 Evry Cedex, France
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257 CNRS/AMU, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Marine Le Boulch
- Eukarÿs SAS, Génopole Campus 3, 4 rue Pierre Fontaine, 91058 Evry Cedex, France
| | - Aurélien Jaïs
- Eukarÿs SAS, Génopole Campus 3, 4 rue Pierre Fontaine, 91058 Evry Cedex, France
| | - Olivier Jean-Jean
- Sorbonne Université, CNRS-UMR8256, Biological Adaptation and Ageing, Institut de Biologie Paris Seine (B2A-IBPS), F-75252 Paris, France
| | - Heather Eaton
- Medical Microbiology and Immunology, University of Alberta, 6-142J Katz Group Centre for Pharmacy and Health Research, 114 Street NW, Edmonton, Alberta T6G 2E1, Canada
| | - Prishila Ponien
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Fréderique Verdier
- INSERM Unit 1016, Institut Cochin, Bâtiment Gustave Roussy, 27 rue du faubourg Saint-Jacques, 75014 Paris, France
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257 CNRS/AMU, 163 Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Sergio Goncalves
- Eukarÿs SAS, Génopole Campus 3, 4 rue Pierre Fontaine, 91058 Evry Cedex, France
| | - Stéphane Chiron
- Eukarÿs SAS, Génopole Campus 3, 4 rue Pierre Fontaine, 91058 Evry Cedex, France
| | - Maude Le Gall
- Gastrointestinal and Metabolic Dysfunctions in Nutritional Pathologies, INSERM UMRS1149, 16 rue Henri Huchard, 75890 Paris Cedex 18, France
| | - Patrick Mayeux
- INSERM Unit 1016, Institut Cochin, Bâtiment Gustave Roussy, 27 rue du faubourg Saint-Jacques, 75014 Paris, France
| | - Maya Shmulevitz
- Medical Microbiology and Immunology, University of Alberta, 6-142J Katz Group Centre for Pharmacy and Health Research, 114 Street NW, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
27
|
Medvedev KE, Kinch LN, Grishin NV. Functional and evolutionary analysis of viral proteins containing a Rossmann-like fold. Protein Sci 2018; 27:1450-1463. [PMID: 29722076 PMCID: PMC6153405 DOI: 10.1002/pro.3438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 11/17/2022]
Abstract
Viruses are the most abundant life form and infect practically all organisms. Consequently, these obligate parasites are a major cause of human suffering and economic loss. Rossmann-like fold is the most populated fold among α/β-folds in the Protein Data Bank and proteins containing Rossmann-like fold constitute 22% of all known proteins 3D structures. Thus, analysis of viral proteins containing Rossmann-like domains could provide an understanding of viral biology and evolution as well as could propose possible targets for antiviral therapy. We provide functional and evolutionary analysis of viral proteins containing a Rossmann-like fold found in the evolutionary classification of protein domains (ECOD) database developed in our lab. We identified 81 protein families of bacterial, archeal, and eukaryotic viruses in light of their evolution-based ECOD classification and Pfam taxonomy. We defined their functional significance using enzymatic EC number assignments as well as domain-level family annotations.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Departments of Biophysics and BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Lisa N. Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasTexas
| | - Nick V. Grishin
- Departments of Biophysics and BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexas
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasTexas
| |
Collapse
|
28
|
Binding of the Methyl Donor S-Adenosyl-l-Methionine to Middle East Respiratory Syndrome Coronavirus 2'- O-Methyltransferase nsp16 Promotes Recruitment of the Allosteric Activator nsp10. J Virol 2017; 91:JVI.02217-16. [PMID: 28031370 DOI: 10.1128/jvi.02217-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) nonstructural protein 16 (nsp16) is an S-adenosyl-l-methionine (SAM)-dependent 2'-O-methyltransferase (2'-O-MTase) that is thought to methylate the ribose 2'-OH of the first transcribed nucleotide (N1) of viral RNA cap structures. This 2'-O-MTase activity is regulated by nsp10. The 2'-O methylation prevents virus detection by cell innate immunity mechanisms and viral translation inhibition by the interferon-stimulated IFIT-1 protein. To unravel the regulation of nsp10/nsp16 2'-O-MTase activity, we used purified MERS-CoV nsp16 and nsp10. First, we showed that nsp16 recruited N7-methylated capped RNA and SAM. The SAM binding promotes the assembly of the enzymatically active nsp10/nsp16 complex that converted 7mGpppG (cap-0) into 7mGpppG2'Om (cap-1) RNA by 2'-OH methylation of N1 in a SAM-dependent manner. The subsequent release of SAH speeds up nsp10/nsp16 dissociation that stimulates the reaction turnover. Alanine mutagenesis and RNA binding assays allowed the identification of the nsp16 residues involved in RNA recognition forming the RNA binding groove (K46, K170, E203, D133, R38, Y47, and Y181) and the cap-0 binding site (Y30, Y132, and H174). Finally, we found that nsp10/nsp16 2'-O-MTase activity is sensitive to known MTase inhibitors, such as sinefungin and cap analogues. This characterization of the MERS-CoV 2'-O-MTase is a preliminary step toward the development of molecules to inhibit cap 2'-O methylation and to restore the host antiviral response. IMPORTANCE MERS-CoV codes for a cap 2'-O-methyltransferase that converts cap-0 into cap-1 structure in order to prevent virus detection by cell innate immunity mechanisms. We report the biochemical properties of MERS-CoV 2'O-methyltransferase, which is stimulated by nsp10 acting as an allosteric activator of the nsp16 2'-O-methyltransferase possibly through enhanced RNA binding affinity. In addition, we show that SAM promotes the formation of the active nsp10/nsp16 complex. Conversely, after cap methylation, the reaction turnover is speeded up by cap-1 RNA release and nsp10/nsp16 complex dissociation, at the low intracellular SAH concentration. These results suggest that SAM/SAH balance is a regulator of the 2'-O-methyltransferase activity and raises the possibility that SAH hydrolase inhibitors might interfere with CoV replication cycle. The enzymatic and RNA binding assays developed in this work were also used to identify nsp16 residues involved in cap-0 RNA recognition and to understand the action mode of known methyltransferase inhibitors.
Collapse
|
29
|
Structural Analysis of Glycine Sarcosine N-methyltransferase from Methanohalophilus portucalensis Reveals Mechanistic Insights into the Regulation of Methyltransferase Activity. Sci Rep 2016; 6:38071. [PMID: 27934872 PMCID: PMC5146677 DOI: 10.1038/srep38071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
Methyltransferases play crucial roles in many cellular processes, and various regulatory mechanisms have evolved to control their activities. For methyltransferases involved in biosynthetic pathways, regulation via feedback inhibition is a commonly employed strategy to prevent excessive accumulation of the pathways’ end products. To date, no biosynthetic methyltransferases have been characterized by X-ray crystallography in complex with their corresponding end product. Here, we report the crystal structures of the glycine sarcosine N-methyltransferase from the halophilic archaeon Methanohalophilus portucalensis (MpGSMT), which represents the first structural elucidation of the GSMT methyltransferase family. As the first enzyme in the biosynthetic pathway of the osmoprotectant betaine, MpGSMT catalyzes N-methylation of glycine and sarcosine, and its activity is feedback-inhibited by the end product betaine. A structural analysis revealed that, despite the simultaneous presence of both substrate (sarcosine) and cofactor (S-adenosyl-L-homocysteine; SAH), the enzyme was likely crystallized in an inactive conformation, as additional structural changes are required to complete the active site assembly. Consistent with this interpretation, the bound SAH can be replaced by the methyl donor S-adenosyl-L-methionine without triggering the methylation reaction. Furthermore, the observed conformational state was found to harbor a betaine-binding site, suggesting that betaine may inhibit MpGSMT activity by trapping the enzyme in an inactive form. This work implicates a structural basis by which feedback inhibition of biosynthetic methyltransferases may be achieved.
Collapse
|
30
|
Transcriptional start site heterogeneity modulates the structure and function of the HIV-1 genome. Proc Natl Acad Sci U S A 2016; 113:13378-13383. [PMID: 27834211 DOI: 10.1073/pnas.1616627113] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The promoter in HIV type 1 (HIV-1) proviral DNA contains three sequential guanosines at the U3-R boundary that have been proposed to function as sites for transcription initiation. Here we show that all three sites are used in cells infected with HIV-1 and that viral RNAs containing a single 5' capped guanosine (Cap1G) are specifically selected for packaging in virions, consistent with a recent report [Masuda et al. (2015) Sci Rep 5:17680]. In addition, we now show that transcripts that begin with two or three capped guanosines (Cap2G or Cap3G) are enriched on polysomes, indicating that RNAs synthesized from different transcription start sites have different functions in viral replication. Because genomes are selected for packaging as dimers, we examined the in vitro monomer-dimer equilibrium properties of Cap1G, Cap2G, and Cap3G 5'-leader RNAs in the NL4-3 strain of HIV-1. Strikingly, under physiological-like ionic conditions in which the Cap1G 5'-leader RNA adopts a dimeric structure, the Cap2G and Cap3G 5'-leader RNAs exist predominantly as monomers. Mutagenesis studies designed to probe for base-pairing interactions suggest that the additional guanosines of the 2G and 3G RNAs remodel the base of the PolyA hairpin, resulting in enhanced sequestration of dimer-promoting residues and stabilization of the monomer. Our studies suggest a mechanism through which the structure, function, and fate of the viral genome can be modulated by the transcriptionally controlled presence or absence of a single 5' guanosine.
Collapse
|
31
|
Martin OMF, Etheve L, Launay G, Martin J. Implication of Terminal Residues at Protein-Protein and Protein-DNA Interfaces. PLoS One 2016; 11:e0162143. [PMID: 27611671 PMCID: PMC5017611 DOI: 10.1371/journal.pone.0162143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022] Open
Abstract
Terminal residues of protein chains are charged and more flexible than other residues since they are constrained only on one side. Do they play a particular role in protein-protein and protein-DNA interfaces? To answer this question, we considered large sets of non-redundant protein-protein and protein-DNA complexes and analyzed the status of terminal residues and their involvement in interfaces. In protein-protein complexes, we found that more than half of terminal residues (62%) are either modified by attachment of a tag peptide (10%) or have missing coordinates in the analyzed structures (52%). Terminal residues are almost exclusively located at the surface of proteins (94%). Contrary to charged residues, they are not over or under-represented in protein-protein interfaces, but strongly prefer the peripheral region of interfaces when present at the interface (83% of terminal residues). The almost exclusive location of terminal residues at the surface of the proteins or in the rim regions of interfaces explains that experimental methods relying on tail hybridization can be successfully applied without disrupting the complexes under study. Concerning conformational rearrangement in protein-protein complexes, despite their expected flexibility, terminal residues adopt similar locations between the free and bound forms of the docking benchmark. In protein-DNA complexes, N-terminal residues are twice more frequent than C-terminal residues at interfaces. Both N-terminal and C-terminal residues are under-represented in interfaces, in contrast to positively charged residues, which are strongly favored. When located in protein-DNA interfaces, terminal residues prefer the periphery. N-terminal and C-terminal residues thus have particular properties with regard to interfaces, which cannot be reduced to their charged nature.
Collapse
Affiliation(s)
| | - Loïc Etheve
- Univ Lyon, CNRS, UMR 5086 MMSB, 7 passage du Vercors F-69367, Lyon, France
| | - Guillaume Launay
- Univ Lyon, CNRS, UMR 5086 MMSB, 7 passage du Vercors F-69367, Lyon, France
| | - Juliette Martin
- Univ Lyon, CNRS, UMR 5086 MMSB, 7 passage du Vercors F-69367, Lyon, France
- * E-mail:
| |
Collapse
|
32
|
Fuchs AL, Neu A, Sprangers R. A general method for rapid and cost-efficient large-scale production of 5' capped RNA. RNA (NEW YORK, N.Y.) 2016; 22:1454-66. [PMID: 27368341 PMCID: PMC4986899 DOI: 10.1261/rna.056614.116] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 05/03/2023]
Abstract
The eukaryotic mRNA 5' cap structure is indispensible for pre-mRNA processing, mRNA export, translation initiation, and mRNA stability. Despite this importance, structural and biophysical studies that involve capped RNA are challenging and rare due to the lack of a general method to prepare mRNA in sufficient quantities. Here, we show that the vaccinia capping enzyme can be used to produce capped RNA in the amounts that are required for large-scale structural studies. We have therefore designed an efficient expression and purification protocol for the vaccinia capping enzyme. Using this approach, the reaction scale can be increased in a cost-efficient manner, where the yields of the capped RNA solely depend on the amount of available uncapped RNA target. Using a large number of RNA substrates, we show that the efficiency of the capping reaction is largely independent of the sequence, length, and secondary structure of the RNA, which makes our approach generally applicable. We demonstrate that the capped RNA can be directly used for quantitative biophysical studies, including fluorescence anisotropy and high-resolution NMR spectroscopy. In combination with (13)C-methyl-labeled S-adenosyl methionine, the methyl groups in the RNA can be labeled for methyl TROSY NMR spectroscopy. Finally, we show that our approach can produce both cap-0 and cap-1 RNA in high amounts. In summary, we here introduce a general and straightforward method that opens new means for structural and functional studies of proteins and enzymes in complex with capped RNA.
Collapse
Affiliation(s)
- Anna-Lisa Fuchs
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ancilla Neu
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Remco Sprangers
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
33
|
Aregger M, Kaskar A, Varshney D, Fernandez-Sanchez ME, Inesta-Vaquera FA, Weidlich S, Cowling VH. CDK1-Cyclin B1 Activates RNMT, Coordinating mRNA Cap Methylation with G1 Phase Transcription. Mol Cell 2016; 61:734-746. [PMID: 26942677 PMCID: PMC4781437 DOI: 10.1016/j.molcel.2016.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/11/2015] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
Abstract
The creation of translation-competent mRNA is dependent on RNA polymerase II transcripts being modified by addition of the 7-methylguanosine (m7G) cap. The factors that mediate splicing, nuclear export, and translation initiation are recruited to the transcript via the cap. The cap structure is formed by several activities and completed by RNMT (RNA guanine-7 methyltransferase), which catalyzes N7 methylation of the cap guanosine. We report that CDK1-cyclin B1 phosphorylates the RNMT regulatory domain on T77 during G2/M phase of the cell cycle. RNMT T77 phosphorylation activates the enzyme both directly and indirectly by inhibiting interaction with KPNA2, an RNMT inhibitor. RNMT T77 phosphorylation results in elevated m7G cap methyltransferase activity at the beginning of G1 phase, coordinating mRNA capping with the burst of transcription that occurs following nuclear envelope reformation. RNMT T77 phosphorylation is required for the production of cohort of proteins, and inhibiting T77 phosphorylation reduces the cell proliferation rate.
Collapse
Affiliation(s)
- Michael Aregger
- Centre for Gene Regulation and Expression/MRC Phosphorylation and Ubiquitylation, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Aneesa Kaskar
- Centre for Gene Regulation and Expression/MRC Phosphorylation and Ubiquitylation, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dhaval Varshney
- Centre for Gene Regulation and Expression/MRC Phosphorylation and Ubiquitylation, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Maria Elena Fernandez-Sanchez
- Centre for Gene Regulation and Expression/MRC Phosphorylation and Ubiquitylation, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Francisco A Inesta-Vaquera
- Centre for Gene Regulation and Expression/MRC Phosphorylation and Ubiquitylation, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Simone Weidlich
- Division of Signal Transduction Therapy, University of Dundee, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression/MRC Phosphorylation and Ubiquitylation, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
34
|
Varshney D, Petit AP, Bueren-Calabuig JA, Jansen C, Fletcher DA, Peggie M, Weidlich S, Scullion P, Pisliakov AV, Cowling VH. Molecular basis of RNA guanine-7 methyltransferase (RNMT) activation by RAM. Nucleic Acids Res 2016; 44:10423-10436. [PMID: 27422871 PMCID: PMC5137418 DOI: 10.1093/nar/gkw637] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 01/16/2023] Open
Abstract
Maturation and translation of mRNA in eukaryotes requires the addition of the 7-methylguanosine cap. In vertebrates, the cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), has an activating subunit, RNMT-Activating Miniprotein (RAM). Here we report the first crystal structure of the human RNMT in complex with the activation domain of RAM. A relatively unstructured and negatively charged RAM binds to a positively charged surface groove on RNMT, distal to the active site. This results in stabilisation of a RNMT lobe structure which co-evolved with RAM and is required for RAM binding. Structure-guided mutagenesis and molecular dynamics simulations reveal that RAM stabilises the structure and positioning of the RNMT lobe and the adjacent α-helix hinge, resulting in optimal positioning of helix A which contacts substrates in the active site. Using biophysical and biochemical approaches, we observe that RAM increases the recruitment of the methyl donor, AdoMet (S-adenosyl methionine), to RNMT. Thus we report the mechanism by which RAM allosterically activates RNMT, allowing it to function as a molecular rheostat for mRNA cap methylation.
Collapse
Affiliation(s)
- Dhaval Varshney
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Alain-Pierre Petit
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Juan A Bueren-Calabuig
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.,Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 5EH, UK
| | - Chimed Jansen
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Dan A Fletcher
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Mark Peggie
- Division of Signal Transduction Therapies, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Simone Weidlich
- Division of Signal Transduction Therapies, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Paul Scullion
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.,Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK .,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
35
|
Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. Nucleic Acids Res 2016; 44:7511-26. [PMID: 27317694 PMCID: PMC5027499 DOI: 10.1093/nar/gkw551] [Citation(s) in RCA: 554] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/03/2016] [Indexed: 12/19/2022] Open
Abstract
The 5′ m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2′O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose.
Collapse
Affiliation(s)
- Anand Ramanathan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - G Brett Robb
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Siu-Hong Chan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
36
|
Fenwick MK, Philmus B, Begley TP, Ealick SE. Burkholderia glumae ToxA Is a Dual-Specificity Methyltransferase That Catalyzes the Last Two Steps of Toxoflavin Biosynthesis. Biochemistry 2016; 55:2748-59. [PMID: 27070241 PMCID: PMC4870115 DOI: 10.1021/acs.biochem.6b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoflavin is a major virulence factor of the rice pathogen Burkholderia glumae. The tox operon of B. glumae contains five putative toxoflavin biosynthetic genes toxABCDE. ToxA is a predicted S-adenosylmethionine-dependent methyltransferase, and toxA knockouts of B. glumae are less virulent in plant infection models. In this study, we show that ToxA performs two consecutive methylations to convert the putative azapteridine intermediate, 1,6-didemethyltoxoflavin, to toxoflavin. In addition, we report a series of crystal structures of ToxA complexes that reveals the molecular basis of the dual methyltransferase activity. The results suggest sequential methylations with initial methylation at N6 of 1,6-didemethyltoxoflavin followed by methylation at N1. The two azapteridine orientations that position N6 or N1 for methylation are coplanar with a 140° rotation between them. The structure of ToxA contains a class I methyltransferase fold having an N-terminal extension that either closes over the active site or is largely disordered. The ordered conformation places Tyr7 at a position of a structurally conserved tyrosine site of unknown function in various methyltransferases. Crystal structures of ToxA-Y7F consistently show a closed active site, whereas structures of ToxA-Y7A consistently show an open active site, suggesting that the hydroxyl group of Tyr7 plays a role in opening and closing the active site during the multistep reaction.
Collapse
Affiliation(s)
- Michael K. Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Benjamin Philmus
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
37
|
Chen Y, Guo D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin 2016; 31:3-11. [PMID: 26847650 PMCID: PMC7091378 DOI: 10.1007/s12250-016-3726-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
The 5′-cap structures of eukaryotic mRNAs are important for RNA stability, pre-mRNA splicing, mRNA export, and protein translation. Many viruses have evolved mechanisms for generating their own cap structures with methylation at the N7 position of the capped guanine and the ribose 2′-Oposition of the first nucleotide, which help viral RNAs escape recognition by the host innate immune system. The RNA genomes of coronavirus were identified to have 5′-caps in the early 1980s. However, for decades the RNA capping mechanisms of coronaviruses remained unknown. Since 2003, the outbreak of severe acute respiratory syndrome coronavirus has drawn increased attention and stimulated numerous studies on the molecular virology of coronaviruses. Here, we review the current understanding of the mechanisms adopted by coronaviruses to produce the 5′-cap structure and methylation modification of viral genomic RNAs.![]()
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430070, China.
| | - Deyin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430070, China.
| |
Collapse
|
38
|
Tate J, Boldt RL, McFadden BD, D'Costa SM, Lewandowski NM, Shatzer AN, Gollnick P, Condit RC. Biochemical analysis of the multifunctional vaccinia mRNA capping enzyme encoded by a temperature sensitive virus mutant. Virology 2015; 487:27-40. [PMID: 26496697 DOI: 10.1016/j.virol.2015.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/26/2015] [Accepted: 10/08/2015] [Indexed: 11/27/2022]
Abstract
Prior biochemical analysis of the heterodimeric vaccinia virus mRNA capping enzyme suggests roles not only in mRNA capping but also in early viral gene transcription termination and intermediate viral gene transcription initiation. Prior phenotypic characterization of Dts36, a temperature sensitive virus mutant affecting the large subunit of the capping enzyme was consistent with the multifunctional roles of the capping enzyme in vivo. We report a biochemical analysis of the capping enzyme encoded by Dts36. Of the three enzymatic activities required for mRNA capping, the guanylyltransferase and methyltransferase activities are compromised while the triphosphatase activity and the D12 subunit interaction are unaffected. The mutant enzyme is also defective in stimulating early gene transcription termination and intermediate gene transcription initiation in vitro. These results confirm that the vaccinia virus mRNA capping enzyme functions not only in mRNA capping but also early gene transcription termination and intermediate gene transcription initiation in vivo.
Collapse
Affiliation(s)
- Jessica Tate
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, P.O. Box 100266, Gainesville, FL 32610, United States
| | - Rachel L Boldt
- Department of Biological Sciences, 609 Hochstetter Hall, State University of New York at Buffalo, Buffalo, NY 14260, United States
| | - Baron D McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, P.O. Box 100266, Gainesville, FL 32610, United States
| | - Susan M D'Costa
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, P.O. Box 100266, Gainesville, FL 32610, United States
| | - Nicholas M Lewandowski
- Department of Biological Sciences, 609 Hochstetter Hall, State University of New York at Buffalo, Buffalo, NY 14260, United States
| | - Amber N Shatzer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, P.O. Box 100266, Gainesville, FL 32610, United States
| | - Paul Gollnick
- Department of Biological Sciences, 609 Hochstetter Hall, State University of New York at Buffalo, Buffalo, NY 14260, United States
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, P.O. Box 100266, Gainesville, FL 32610, United States
| |
Collapse
|
39
|
Byszewska M, Śmietański M, Purta E, Bujnicki JM. RNA methyltransferases involved in 5' cap biosynthesis. RNA Biol 2015; 11:1597-607. [PMID: 25626080 PMCID: PMC4615557 DOI: 10.1080/15476286.2015.1004955] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In eukaryotes and viruses that infect them, the 5′ end of mRNA molecules, and also many other functionally important RNAs, are modified to form a so-called cap structure that is important for interactions of these RNAs with many nuclear and cytoplasmic proteins. The RNA cap has multiple roles in gene expression, including enhancement of RNA stability, splicing, nucleocytoplasmic transport, and translation initiation. Apart from guanosine addition to the 5′ end in the most typical cap structure common to transcripts produced by RNA polymerase II (in particular mRNA), essentially all cap modifications are due to methylation. The complexity of the cap structure and its formation can range from just a single methylation of the unprocessed 5′ end of the primary transcript, as in mammalian U6 and 7SK, mouse B2, and plant U3 RNAs, to an elaborate m7Gpppm6,6AmpAmpCmpm3Um structure at the 5′ end of processed RNA in trypanosomes, which are formed by as many as 8 methylation reactions. While all enzymes responsible for methylation of the cap structure characterized to date were found to belong to the same evolutionarily related and structurally similar Rossmann Fold Methyltransferase superfamily, that uses the same methyl group donor, S-adenosylmethionine; the enzymes also exhibit interesting differences that are responsible for their distinct functions. This review focuses on the evolutionary classification of enzymes responsible for cap methylation in RNA, with a focus on the sequence relationships and structural similarities and dissimilarities that provide the basis for understanding the mechanism of biosynthesis of different caps in cellular and viral RNAs. Particular attention is paid to the similarities and differences between methyltransferases from human cells and from human pathogens that may be helpful in the development of antiviral and antiparasitic drugs.
Collapse
|
40
|
Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus. Structure 2015; 22:452-65. [PMID: 24607143 DOI: 10.1016/j.str.2013.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 02/03/2023]
Abstract
Vaccinia virus capping enzyme is a heterodimer of D1 (844 aa) and D12 (287 aa) polypeptides that executes all three steps in m(7)GpppRNA synthesis. The D1 subunit comprises an N-terminal RNA triphosphatase (TPase)-guanylyltransferase (GTase) module and a C-terminal guanine-N7-methyltransferase (MTase) module. The D12 subunit binds and allosterically stimulates the MTase module. Crystal structures of the complete D1⋅D12 heterodimer disclose the TPase and GTase as members of the triphosphate tunnel metalloenzyme and covalent nucleotidyltransferase superfamilies, respectively, albeit with distinctive active site features. An extensive TPase-GTase interface clamps the GTase nucleotidyltransferase and OB-fold domains in a closed conformation around GTP. Mutagenesis confirms the importance of the TPase-GTase interface for GTase activity. The D1⋅D12 structure complements and rationalizes four decades of biochemical studies of this enzyme, which was the first capping enzyme to be purified and characterized, and provides new insights into the origins of the capping systems of other large DNA viruses.
Collapse
|
41
|
Pflug A, Guilligay D, Reich S, Cusack S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 2014; 516:355-60. [PMID: 25409142 DOI: 10.1038/nature14008] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022]
Abstract
The influenza virus polymerase transcribes or replicates the segmented RNA genome (viral RNA) into viral messenger RNA or full-length copies. To initiate RNA synthesis, the polymerase binds to the conserved 3' and 5' extremities of the viral RNA. Here we present the crystal structure of the heterotrimeric bat influenza A polymerase, comprising subunits PA, PB1 and PB2, bound to its viral RNA promoter. PB1 contains a canonical RNA polymerase fold that is stabilized by large interfaces with PA and PB2. The PA endonuclease and the PB2 cap-binding domain, involved in transcription by cap-snatching, form protrusions facing each other across a solvent channel. The 5' extremity of the promoter folds into a compact hook that is bound in a pocket formed by PB1 and PA close to the polymerase active site. This structure lays the basis for an atomic-level mechanistic understanding of the many functions of influenza polymerase, and opens new opportunities for anti-influenza drug design.
Collapse
Affiliation(s)
- Alexander Pflug
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Delphine Guilligay
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Stefan Reich
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Stephen Cusack
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| |
Collapse
|
42
|
Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crépin T, Hart D, Lunardi T, Nanao M, Ruigrok RWH, Cusack S. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 2014; 516:361-6. [PMID: 25409151 DOI: 10.1038/nature14009] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/29/2014] [Indexed: 12/11/2022]
Abstract
Influenza virus polymerase uses a capped primer, derived by 'cap-snatching' from host pre-messenger RNA, to transcribe its RNA genome into mRNA and a stuttering mechanism to generate the poly(A) tail. By contrast, genome replication is unprimed and generates exact full-length copies of the template. Here we use crystal structures of bat influenza A and human influenza B polymerases (FluA and FluB), bound to the viral RNA promoter, to give mechanistic insight into these distinct processes. In the FluA structure, a loop analogous to the priming loop of flavivirus polymerases suggests that influenza could initiate unprimed template replication by a similar mechanism. Comparing the FluA and FluB structures suggests that cap-snatching involves in situ rotation of the PB2 cap-binding domain to direct the capped primer first towards the endonuclease and then into the polymerase active site. The polymerase probably undergoes considerable conformational changes to convert the observed pre-initiation state into the active initiation and elongation states.
Collapse
Affiliation(s)
- Stefan Reich
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Delphine Guilligay
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Alexander Pflug
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Hélène Malet
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Imre Berger
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Thibaut Crépin
- University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Darren Hart
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Thomas Lunardi
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Max Nanao
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Rob W H Ruigrok
- University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Stephen Cusack
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| |
Collapse
|
43
|
Boschi-Muller S, Motorin Y. Chemistry enters nucleic acids biology: enzymatic mechanisms of RNA modification. BIOCHEMISTRY (MOSCOW) 2014; 78:1392-404. [PMID: 24490730 DOI: 10.1134/s0006297913130026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modified nucleotides are universally conserved in all living kingdoms and are present in almost all types of cellular RNAs, including tRNA, rRNA, sn(sno)RNA, and mRNA and in recently discovered regulatory RNAs. Altogether, over 110 chemically distinct RNA modifications have been characterized and localized in RNA by various analytical methods. However, this impressive list of known modified nucleotides is certainly incomplete, mainly due to difficulties in identification and characterization of these particular residues in low abundance cellular RNAs. In DNA, modified residues are formed by both enzymatic reactions (like DNA methylations, for example) and by spontaneous chemical reactions resulting from oxidative damage. In contrast, all modified residues characterized in cellular RNA molecules are formed by specific action of dedicated RNA-modification enzymes, which recognize their RNA substrate with high specificity. These RNA-modification enzymes display a great diversity in terms of the chemical reaction and use various low molecular weight cofactors (or co-substrates) in enzymatic catalysis. Depending on the nature of the target base and of the co-substrate, precise chemical mechanisms are used for appropriate activation of the base and the co-substrate in the enzyme active site. In this review, we give an extended summary of the enzymatic mechanisms involved in formation of different methylated nucleotides in RNA, as well as pseudouridine residues, which are almost universally conserved in all living organisms. Other interesting mechanisms include thiolation of uridine residues by ThiI and the reaction of guanine exchange catalyzed by TGT. The latter implies the reversible cleavage of the N-glycosidic bond in order to replace the initially encoded guanine by an aza-guanosine base. Despite the extensive studies of RNA modification and RNA-modification machinery during the last 20 years, our knowledge on the exact chemical steps involved in catalysis of RNA modification remains very limited. Recent discoveries of radical mechanisms involved in base methylation clearly demonstrate that numerous possibilities are used in Nature for these difficult reactions. Future studies are certainly required for better understanding of the enzymatic mechanisms of RNA modification, and this knowledge is crucial not only for basic research, but also for development of new therapeutic molecules.
Collapse
Affiliation(s)
- S Boschi-Muller
- Université de Lorraine, Laboratoire IMoPA, UMR 7365 CNRS-UL, Faculté de Médecine de Nancy, BP 184, Vandoeuvre les Nancy, 54505, France.
| | | |
Collapse
|
44
|
Biswas P, Kundu A, Ghosh AK. Genome segment 4 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes RNA triphosphatase and methyltransferases. J Gen Virol 2014; 96:95-105. [PMID: 25228490 DOI: 10.1099/vir.0.069716-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cloning and sequencing of Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) genome segment S4 showed that it consists of 3410 nt with a single ORF of 1110 aa which could encode a protein of ~127 kDa (p127). Bioinformatics analysis showed the presence of a 5' RNA triphosphatase (RTPase) domain (LRDR), a S-adenosyl-l-methionine (SAM)-binding (GxGxG) motif and the KDKE tetrad of 2'-O-methyltransferase (MTase), which suggested that S4 may encode RTPase and MTase. The ORF of S4 was expressed in Escherichia coli as a His-tagged fusion protein and purified by nickel-nitrilotriacetic acid affinity chromatography. Biochemical analysis of recombinant p127 showed its RTPase as well as SAM-dependent guanine N(7)-and ribose 2'-O-MTase activities. A MTase assay using in vitro transcribed AmCPV S2 RNA having a 5' G*pppG end showed that guanine N(7) methylation occurred prior to the ribose 2'-O methylation to yield a m(7)GpppG/m(7)GpppGm RNA cap. Mutagenesis of the SAM-binding (GxGxG) motif (G831A) completely abolished N(7)- and 2'-O-MTase activities, indicating the importance of these residues for capping. From the kinetic analysis, the Km values of N(7)-MTase for SAM and RNA were calculated as 4.41 and 0.39 µM, respectively. These results suggested that AmCPV S4-encoded p127 catalyses RTPase and two cap methylation reactions for capping the 5' end of viral RNA.
Collapse
Affiliation(s)
- Poulomi Biswas
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anirban Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ananta Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
45
|
Predicted structure and domain organization of rotavirus capping enzyme and innate immune antagonist VP3. J Virol 2014; 88:9072-85. [PMID: 24899176 DOI: 10.1128/jvi.00923-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Rotaviruses and orbiviruses are nonturreted Reoviridae members. The rotavirus VP3 protein is a multifunctional capping enzyme and antagonist of the interferon-induced cellular oligoadenylate synthetase-RNase L pathway. Despite mediating important processes, VP3 is the sole protein component of the rotavirus virion whose structure remains unknown. In the current study, we used sequence alignment and homology modeling to identify features common to nonturreted Reoviridae capping enzymes and to predict the domain organization, structure, and active sites of rotavirus VP3. Our results suggest that orbivirus and rotavirus capping enzymes share a domain arrangement similar to that of the bluetongue virus capping enzyme. Sequence alignments revealed conserved motifs and suggested that rotavirus and orbivirus capping enzymes contain a variable N-terminal domain, a central guanine-N7-methyltransferase domain that contains an additional inserted domain, and a C-terminal guanylyltransferase and RNA 5'-triphosphatase domain. Sequence conservation and homology modeling suggested that the insertion in the guanine-N7-methyltransferase domain is a ribose-2'-O-methyltransferase domain for most rotavirus species. Our analyses permitted putative identification of rotavirus VP3 active-site residues, including those that form the ribose-2'-O-methyltransferase catalytic tetrad, interact with S-adenosyl-l-methionine, and contribute to autoguanylation. Previous reports have indicated that group A rotavirus VP3 contains a C-terminal 2H-phosphodiesterase domain that can cleave 2'-5' oligoadenylates, thereby preventing RNase L activation. Our results suggest that a C-terminal phosphodiesterase domain is present in the capping enzymes from two additional rotavirus species. Together, these findings provide insight into a poorly understood area of rotavirus biology and are a springboard for future biochemical and structural studies of VP3. IMPORTANCE Rotaviruses are an important cause of severe diarrheal disease. The rotavirus VP3 protein caps viral mRNAs and helps combat cellular innate antiviral defenses, but little is known about its structure or enzymatic mechanisms. In this study, we used sequence- and structure-based alignments with related proteins to predict the structure of VP3 and identify enzymatic domains and active sites therein. This work provides insight into the mechanisms of rotavirus transcription and evasion of host innate immune defenses. An improved understanding of these processes may aid our ability to develop rotavirus vaccines and therapeutics.
Collapse
|
46
|
Zhu B, Yang C, Liu H, Cheng L, Song F, Zeng S, Huang X, Ji G, Zhu P. Identification of the active sites in the methyltransferases of a transcribing dsRNA virus. J Mol Biol 2014; 426:2167-74. [PMID: 24690366 PMCID: PMC7094362 DOI: 10.1016/j.jmb.2014.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/28/2022]
Abstract
Many double-stranded RNA (dsRNA) viruses are capable of transcribing and capping RNA within a stable icosahedral viral capsid. The turret of turreted dsRNA viruses belonging to the family Reoviridae is formed by five copies of the turret protein, which contains domains with both 7-N-methyltransferase and 2′-O-methyltransferase activities, and serves to catalyze the methylation reactions during RNA capping. Cypovirus of the family Reoviridae provides a good model system for studying the methylation reactions in dsRNA viruses. Here, we present the structure of a transcribing cypovirus to a resolution of ~ 3.8 Å by cryo-electron microscopy. The binding sites for both S-adenosyl-l-methionine and RNA in the two methyltransferases of the turret were identified. Structural analysis of the turret in complex with RNA revealed a pathway through which the RNA molecule reaches the active sites of the two methyltransferases before it is released into the cytoplasm. The pathway shows that RNA capping reactions occur in the active sites of different turret protein monomers, suggesting that RNA capping requires concerted efforts by at least three turret protein monomers. Thus, the turret structure provides novel insights into the precise mechanisms of RNA methylation. Structure of methyltransferases (MTases) and RNA in a transcribing dsRNA virus. S-Adenosyl-l-methionine/S-adenosyl-l-homocysteine was observed in the two MTases. A pathway was identified through which RNA reaches active sites of the two MTase. Methylation reactions require concerted efforts by turret protein monomers.
Collapse
Affiliation(s)
- Bin Zhu
- College of Physics and Information Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410081, China
| | - Chongwen Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hongrong Liu
- College of Physics and Information Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410081, China.
| | - Lingpeng Cheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Feng Song
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Songjun Zeng
- College of Physics and Information Science, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410081, China
| | - Xiaojun Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Gang Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| |
Collapse
|
47
|
Structure-function analysis of severe acute respiratory syndrome coronavirus RNA cap guanine-N7-methyltransferase. J Virol 2013; 87:6296-305. [PMID: 23536667 DOI: 10.1128/jvi.00061-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses possess a cap structure at the 5' ends of viral genomic RNA and subgenomic RNAs, which is generated through consecutive methylations by virally encoded guanine-N7-methyltransferase (N7-MTase) and 2'-O-methyltransferase (2'-O-MTase). The coronaviral N7-MTase is unique for its physical linkage with an exoribonuclease (ExoN) harbored in nonstructural protein 14 (nsp14) of coronaviruses. In this study, the structure-function relationships of the N7-MTase were analyzed by deletion and site-directed mutagenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) nsp14. The results showed that the ExoN domain is closely involved in the activity of the N7-MTase, suggesting that coronavirus N7-MTase is different from all other viral N7-MTases, which are separable from other structural domains located in the same polypeptide. Two of the 12 critical residues identified to be essential for the N7-MTase were located at the N terminus of the core ExoN domain, reinforcing a role of the ExoN domain in the N7-MTase activity of nsp14. The other 10 critical residues were distributed throughout the N7-MTase domain but localized mainly in the S-adenosyl-l-methionine (SAM)-binding pocket and key structural elements of the MTase fold of nsp14. The sequence motif DxGxPxA (amino acids [aa] 331 to 338) was identified as the key part of the SAM-binding site. These results provide insights into the structure and functional mechanisms of coronaviral nsp14 N7-MTase.
Collapse
|
48
|
Ferron F, Decroly E, Selisko B, Canard B. The viral RNA capping machinery as a target for antiviral drugs. Antiviral Res 2012; 96:21-31. [PMID: 22841701 PMCID: PMC7114304 DOI: 10.1016/j.antiviral.2012.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/18/2022]
Abstract
Most viruses modify their genomic and mRNA 5′-ends with the addition of an RNA cap, allowing efficient mRNA translation, limiting degradation by cellular 5′–3′ exonucleases, and avoiding its recognition as foreign RNA by the host cell. Viral RNA caps can be synthesized or acquired through the use of a capping machinery which exhibits a significant diversity in organization, structure and mechanism relative to that of their cellular host. Therefore, viral RNA capping has emerged as an interesting field for antiviral drug design. Here, we review the different pathways and mechanisms used to produce viral mRNA 5′-caps, and present current structures, mechanisms, and inhibitors known to act on viral RNA capping.
Collapse
Affiliation(s)
- François Ferron
- Centre National de la Recherche Scientifique and Aix-Marseille Université, UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
49
|
Lin HY, Yu CY, Hsu YH, Meng M. Functional analysis of the conserved histidine residue of Bamboo mosaic virus capping enzyme in the activity for the formation of the covalent enzyme-m7GMP intermediate. FEBS Lett 2012; 586:2326-31. [PMID: 22641040 DOI: 10.1016/j.febslet.2012.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
The alphavirus-like mRNA capping enzyme of Bamboo mosaic virus (BaMV) exhibits an AdoMet-dependent guanylyltransferase activity by which the methyl group of AdoMet is transferred to GTP, leading to the formation of m(7)GTP, and the m(7)GMP moiety is next transferred to the 5' end of ppRNA via a covalent enzyme-m(7)GMP intermediate. The function of the conserved H68 of the BaMV capping enzyme in the intermediate formation was analyzed by mutagenesis in this study. The nature of the bond linking the enzyme and m(7)GMP was changed in the H68C mutant protein, strongly suggesting that H68 covalently binds to m(7)GMP in the intermediate.
Collapse
Affiliation(s)
- Hua-Yang Lin
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan, ROC
| | | | | | | |
Collapse
|
50
|
Bouvet M, Ferron F, Imbert I, Gluais L, Selisko B, Coutard B, Canard B, Decroly E. [Capping strategies in RNA viruses]. Med Sci (Paris) 2012; 28:423-9. [PMID: 22549871 DOI: 10.1051/medsci/2012284021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Most viruses use the mRNA-cap dependent cellular translation machinery to translate their mRNAs into proteins. The addition of a cap structure at the 5' end of mRNA is therefore an essential step for the replication of many virus families. Additionally, the cap protects the viral RNA from degradation by cellular nucleases and prevents viral RNA recognition by innate immunity mechanisms. Viral RNAs acquire their cap structure either by using cellular capping enzymes, by stealing the cap of cellular mRNA in a process named "cap snatching", or using virus-encoded capping enzymes. Many viral enzymes involved in this process have recently been structurally and functionally characterized. These studies have revealed original cap synthesis mechanisms and pave the way towards the development of specific inhibitors bearing antiviral drug potential.
Collapse
Affiliation(s)
- Mickaël Bouvet
- Laboratoire CNRS - Architecture et fonction des macromolécules biologiques (AFMB), UMR 7257, groupe réplication virale, structures, mécanismes et drug-design, école supérieure d'ingénieurs de Luminy (ESIL) - Case 925, 163, avenue de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|