1
|
Aksan B, Kenkel AK, Yan J, Sánchez Romero J, Missirlis D, Mauceri D. VEGFD signaling balances stability and activity-dependent structural plasticity of dendrites. Cell Mol Life Sci 2024; 81:354. [PMID: 39158743 PMCID: PMC11335284 DOI: 10.1007/s00018-024-05357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Mature neurons have stable dendritic architecture, which is essential for the nervous system to operate correctly. The ability to undergo structural plasticity, required to support adaptive processes like memory formation, is still present in mature neurons. It is unclear what molecular and cellular processes control this delicate balance between dendritic structural plasticity and stabilization. Failures in the preservation of optimal dendrite structure due to atrophy or maladaptive plasticity result in abnormal connectivity and are associated with various neurological diseases. Vascular endothelial growth factor D (VEGFD) is critical for the maintenance of mature dendritic trees. Here, we describe how VEGFD affects the neuronal cytoskeleton and demonstrate that VEGFD exerts its effects on dendrite stabilization by influencing the actin cortex and reducing microtubule dynamics. Further, we found that during synaptic activity-induced structural plasticity VEGFD is downregulated. Our findings revealed that VEGFD, acting on its cognate receptor VEGFR3, opposes structural changes by negatively regulating dendrite growth in cultured hippocampal neurons and in vivo in the adult mouse hippocampus with consequences on memory formation. A phosphoproteomic screening identified several regulatory proteins of the cytoskeleton modulated by VEGFD. Among the actin cortex-associated proteins, we found that VEGFD induces dephosphorylation of ezrin at tyrosine 478 via activation of the striatal-enriched protein tyrosine phosphatase (STEP). Activity-triggered structural plasticity of dendrites was impaired by expression of a phospho-deficient mutant ezrin in vitro and in vivo. Thus, VEGFD governs the equilibrium between stabilization and plasticity of dendrites by acting as a molecular brake of structural remodeling.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Ann-Kristin Kenkel
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Javier Sánchez Romero
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Department Molecular and Cellular Neuroscience, Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
2
|
Tabrizi MEA, Gupta JK, Gross SR. Ezrin and Its Phosphorylated Thr567 Form Are Key Regulators of Human Extravillous Trophoblast Motility and Invasion. Cells 2023; 12:cells12050711. [PMID: 36899847 PMCID: PMC10000480 DOI: 10.3390/cells12050711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
The protein ezrin has been shown to enhance cancer cell motility and invasion leading to malignant behaviours in solid tumours, but a similar regulatory function in the early physiological reproduction state is, however, much less clear. We speculated that ezrin may play a key role in promoting first-trimester extravillous trophoblast (EVT) migration/invasion. Ezrin, as well as its Thr567 phosphorylation, were found in all trophoblasts studied, whether primary cells or lines. Interestingly, the proteins were seen in a distinct cellular localisation in long, extended protrusions in specific regions of cells. Loss-of-function experiments were carried out in EVT HTR8/SVneo and Swan71, as well as primary cells, using either ezrin siRNAs or the phosphorylation Thr567 inhibitor NSC668394, resulting in significant reductions in both cell motility and cellular invasion, albeit with differences between the cells used. Our analysis further demonstrated that an increase in focal adhesion was, in part, able to explain some of the molecular mechanisms involved. Data collected using human placental sections and protein lysates further showed that ezrin expression was significantly higher during the early stage of placentation and, importantly, clearly seen in the EVT anchoring columns, further supporting the potential role of ezrin in regulating migration and invasion in vivo.
Collapse
Affiliation(s)
| | - Janesh K. Gupta
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- Fetal Medicine Centre, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TT, UK
| | - Stephane R. Gross
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
- Correspondence: ; Tel.: +44-0121-204-3467
| |
Collapse
|
3
|
Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the primary cause of morbidity and mortality in cancer as it remains the most complicated, devastating, and enigmatic aspect of cancer. Several decades of extensive research have identified several key players closely associated with metastasis. Among these players, cytoskeletal linker Ezrin (the founding member of the ERM (Ezrin-Radixin-Moesin) family) was identified as a critical promoter of metastasis in pediatric cancers in the early 21st century. Ezrin was discovered 40 years ago as a aminor component of intestinal epithelial microvillus core protein, which is enriched in actin-containing cell surface structures. It controls gastric acid secretion and plays diverse physiological roles including maintaining cell polarity, regulating cell adhesion, cell motility and morphogenesis. Extensive research for more than two decades evinces that Ezrin is frequently dysregulated in several human cancers. Overexpression, altered subcellular localization and/or aberrant activation of Ezrin are closely associated with higher metastatic incidence and patient mortality, thereby justifying Ezrin as a valuable prognostic biomarker in cancer. Ezrin plays multifaceted role in multiple aspects of cancer, with its significant contribution in the complex metastatic cascade, through reorganizing the cytoskeleton and deregulating various cellular signaling pathways. Current preclinical studies using genetic and/or pharmacological approaches reveal that inactivation of Ezrin results in significant inhibition of Ezrin-mediated tumor growth and metastasis as well as increase in the sensitivity of cancer cells to various chemotherapeutic drugs. In this review, we discuss the recent advances illuminating the molecular mechanisms responsible for Ezrin dysregulation in cancer and its pleiotropic role in cancer progression and metastasis. We also highlight its potential as a prognostic biomarker and therapeutic target in various cancers. More importantly, we put forward some potential questions, which we strongly believe, will stimulate both basic and translational research to better understand Ezrin-mediated malignancy, ultimately leading to the development of Ezrin-targeted cancer therapy for the betterment of human life.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Centre for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
4
|
Kawaguchi K, Asano S. Pathophysiological Roles of Actin-Binding Scaffold Protein, Ezrin. Int J Mol Sci 2022; 23:ijms23063246. [PMID: 35328667 PMCID: PMC8952289 DOI: 10.3390/ijms23063246] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Ezrin is one of the members of the ezrin/radixin/moesin (ERM) family of proteins. It was originally discovered as an actin-binding protein in the microvilli structure about forty years ago. Since then, it has been revealed as a key protein with functions in a variety of fields including cell migration, survival, and signal transduction, as well as functioning as a structural component. Ezrin acts as a cross-linker of membrane proteins or phospholipids in the plasma membrane and the actin cytoskeleton. It also functions as a platform for signaling molecules at the cell surface. Moreover, ezrin is regarded as an important target protein in cancer diagnosis and therapy because it is a key protein involved in cancer progression and metastasis, and its high expression is linked to poor survival in many cancers. Small molecule inhibitors of ezrin have been developed and investigated as candidate molecules that suppress cancer metastasis. Here, we wish to comprehensively review the roles of ezrin from the pathophysiological points of view.
Collapse
|
5
|
Holl HM, Armstrong C, Galantino-Homer H, Brooks SA. Transcriptome diversity and differential expression in supporting limb laminitis. Vet Immunol Immunopathol 2021; 243:110353. [PMID: 34839133 DOI: 10.1016/j.vetimm.2021.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Laminitis results in impaired tissue integrity and Inflammation of the epidermal and dermal lamellae connecting the hoof capsule to the underlying distal phalanx and causes loss-of-use, poor quality of life and euthanasia in horses. Historically, studies to better understand the etiology of laminitis by documenting changes in gene expression were hampered by the paucity of gene annotation specific to hoof tissues. Next-generation sequencing enables improvements to annotation by incorporating equine- and hoof-specific transcripts. Here we characterize the hoof lamellar tissue transcriptome of naturally occurring supporting limb laminitis (SLL) using archived lamellar tissue from Thoroughbred racehorses consisting of 13 SLL hospital cases and seven age-matched control horses. This was achieved using: 1) Applied transcriptome annotation by long-read sequencing to document transcript diversity and 2) short-read RNA sequencing to document changes in gene expression correlating to the developmental and acute stages of naturally occurring SLL. 1.99Gbp of long-read transcriptome sequencing deeply documented 5067 unique loci, while short read RNA-seq under very stringent quality filters described 66 differentially expressed loci. Functional analysis of these loci revealed alterations in cell replication and growth, stress response and leukocyte recruitment and activation pathways. Differential expression of the Ezrin and TIMP3 genes suggests they may have utility as biomarkers for laminitis disease, while NR1D1 and genes relevant to the inflammasome are promising targets for novel pharmacological treatments.
Collapse
Affiliation(s)
- Heather M Holl
- Department of Animal Sciences, UF Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Caitlin Armstrong
- Department of Clinical Studies/New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Hannah Galantino-Homer
- Department of Clinical Studies/New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Samantha A Brooks
- Department of Animal Sciences, UF Genetics Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
6
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Yao L, Shippy T, Li Y. Genetic analysis of the molecular regulation of electric fields-guided glia migration. Sci Rep 2020; 10:16821. [PMID: 33033380 PMCID: PMC7546725 DOI: 10.1038/s41598-020-74085-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
In a developing nervous system, endogenous electric field (EF) influence embryonic growth. We reported the EF-directed migration of both rat Schwann cells (SCs) and oligodendrocyte precursor cells (OPCs) and explored the molecular mechanism using RNA-sequencing assay. However, previous studies revealed the differentially expressed genes (DEGs) associated with EF-guided migration of SCs or OPCs alone. In this study, we performed joint differential expression analysis on the RNA-sequencing data from both cell types. We report a number of significantly enriched gene ontology (GO) terms that are related to the cytoskeleton, cell adhesion, and cell migration. Of the DEGs associated with these terms, nine up-regulated DEGs and 32 down-regulated DEGs showed the same direction of effect in both SCs and OPCs stimulated with EFs, while the remaining DEGs responded differently. Thus, our study reveals the similarities and differences in gene expression and cell migration regulation of different glial cell types in response to EF stimulation.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA.
| | - Teresa Shippy
- Bioinformatics Specialist, KSU Bioinformatics Center, Kansas State University, Manhattan, KS, 66506, USA
| | - Yongchao Li
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS, 67260, USA
| |
Collapse
|
8
|
Nuclear factor IX promotes glioblastoma development through transcriptional activation of Ezrin. Oncogenesis 2020; 9:39. [PMID: 32291386 PMCID: PMC7156762 DOI: 10.1038/s41389-020-0223-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Enhanced migration is pivotal for the malignant development of glioblastoma (GBM), but the underlying molecular mechanism that modulates the migration of the GBM cells remains obscure. Here we show that nuclear factor IX (NFIX) is significantly upregulated in human GBM lesions compared with normal or low-grade gliomas. NFIX deficiency impairs the migration of GBM cells and inhibits the tumor growth in the hippocampus of immunodeficient nude mice. Mechanistically, NFIX silencing suppresses the expression of Ezrin, a protein that crosslinks actin cytoskeleton and plasma membrane, which is also positively correlated with GBM malignancy. NFIX depletion induced migration inhibition of GBM cells can be rescued by the replenishment of Ezrin. Furthermore, we identify a NFIX response element (RE) between −840 and −825 bp in the promoter region of the Ezrin gene. Altogether, our findings show, for the first time that NFIX can transcriptionally upregulate the expression of Ezrin and contribute to the enhanced migration of GBM cells, suggesting that NFIX is a potential target for GBM therapy.
Collapse
|
9
|
Derouiche A, Geiger KD. Perspectives for Ezrin and Radixin in Astrocytes: Kinases, Functions and Pathology. Int J Mol Sci 2019; 20:ijms20153776. [PMID: 31382374 PMCID: PMC6695708 DOI: 10.3390/ijms20153776] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are increasingly perceived as active partners in physiological brain function and behaviour. The structural correlations of the glia–synaptic interaction are the peripheral astrocyte processes (PAPs), where ezrin and radixin, the two astrocytic members of the ezrin-radixin-moesin (ERM) family of proteins are preferentially localised. While the molecular mechanisms of ERM (in)activation appear universal, at least in mammalian cells, and have been studied in great detail, the actual ezrin and radixin kinases, phosphatases and binding partners appear cell type specific and may be multiplexed within a cell. In astrocytes, ezrin is involved in process motility, which can be stimulated by the neurotransmitter glutamate, through activation of the glial metabotropic glutamate receptors (mGluRs) 3 or 5. However, it has remained open how this mGluR stimulus is transduced to ezrin activation. Knowing upstream signals of ezrin activation, ezrin kinase(s), and membrane-bound binding partners of ezrin in astrocytes might open new approaches to the glial role in brain function. Ezrin has also been implicated in invasive behaviour of astrocytomas, and glial activation. Here, we review data pertaining to potential molecular interaction partners of ezrin in astrocytes, with a focus on PKC and GRK2, and in gliomas and other diseases, to stimulate further research on their potential roles in glia-synaptic physiology and pathology.
Collapse
Affiliation(s)
- Amin Derouiche
- Institute of Anatomy II, Goethe-University Frankfurt, D-60590 Frankfurt am Main, Germany.
| | - Kathrin D Geiger
- Neuropathology, Institute for Pathology, Carl Gustav Carus University Hospital, TU Dresden, D-01307 Dresden, Germany
| |
Collapse
|
10
|
Aikawa A, Fujita H, Kosaka T, Minato H, Kiyokawa E. Clinicopathological significance of heterogeneic ezrin expression in poorly differentiated clusters of colorectal cancers. Cancer Sci 2019; 110:2667-2675. [PMID: 31175699 PMCID: PMC6676292 DOI: 10.1111/cas.14093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
Multicellular structures, such as tumor buddings and poorly differentiated clusters (PDC), exist at the invasive front of colorectal cancers (CRC). Although it has been reported that CRC with PDC showed frequent lymph node metastases with a worse prognosis, the molecular markers of PDC that are responsible for prognosis have not been identified. We here noticed for the first time that Ezrin, a regulator of the actin cytoskeleton, is expressed in the corner cells of PDC. We then aimed to verify whether heterogeneous Ezrin expression in PDC predicts the prognosis of CRC patients. We immunohistochemically analyzed Ezrin expression in PDC of 184 patients with completely resected stages I-III CRC. We established the Ezrin corner score (ECS), which quantifies the tendency of Ezrin-positive cells to accumulate at the corners of PDC. On the basis of ECS values, 2 indices, the mean ECS and the number of PDC with high ECS, were obtained. Both indices were significantly higher in CRC with lymphatic invasion, higher PDC grade, and presence of micropapillary (MP) PDC. The mean ECS-high group showed shorter recurrence-free survival than the mean ECS-low group but without significance. The other index, the number of ECS-high PDC, was significantly associated with recurrence-free survival. These results suggest that Ezrin is involved in PDC progression and lymphatic invasion, and that ECS may be a marker for aggressive PDC.
Collapse
Affiliation(s)
- Akane Aikawa
- Department of Oncologic PathologyKanazawa Medical UniversityKahoku‐gunJapan
- Department of Diagnostic PathologyToyama Prefectural Central HospitalToyamaJapan
| | - Hideto Fujita
- Department of SurgeryKanazawa Medical UniversityKahoku‐gunJapan
| | - Takeo Kosaka
- Department of SurgeryKanazawa Medical UniversityKahoku‐gunJapan
| | - Hiroshi Minato
- Department of Diagnostic PathologyIshikawa Prefectural Central HospitalKanazawaJapan
| | - Etsuko Kiyokawa
- Department of Oncologic PathologyKanazawa Medical UniversityKahoku‐gunJapan
| |
Collapse
|
11
|
Ghaffari A, Hoskin V, Turashvili G, Varma S, Mewburn J, Mullins G, Greer PA, Kiefer F, Day AG, Madarnas Y, SenGupta S, Elliott BE. Intravital imaging reveals systemic ezrin inhibition impedes cancer cell migration and lymph node metastasis in breast cancer. Breast Cancer Res 2019; 21:12. [PMID: 30678714 PMCID: PMC6345049 DOI: 10.1186/s13058-018-1079-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/12/2018] [Indexed: 12/26/2022] Open
Abstract
Background Limited understanding of the cancer biology of metastatic sites is a major factor contributing to poor outcomes in cancer patients. The regional lymph nodes are the most common site of metastasis in most solid cancers and their involvement is a strong predictor of relapse in breast cancer (BC). We have previously shown that ezrin, a cytoskeletal–membrane linker protein, is associated with lymphovascular invasion and promotes metastatic progression in BC. However, the efficacy of pharmacological inhibition of ezrin in blocking cancer cell migration and metastasis remains unexplored in BC. Methods We quantified ezrin expression in a BC tissue microarray (n = 347) to assess its correlation with risk of relapse. Next, we developed a quantitative intravital microscopy (qIVM) approach, using a syngeneic lymphatic reporter mouse tumor model, to investigate the effect of systemic ezrin inhibition on cancer cell migration and metastasis. Results We show that ezrin is expressed at significantly higher levels in lymph node metastases compared to matched primary tumors, and that a high tumor ezrin level is associated with increased risk of relapse in BC patients with regional disease. Using qIVM, we observe a subset of cancer cells that retain their invasive and migratory phenotype at the tumor-draining lymph node. We further show that systemic inhibition of ezrin, using a small molecule compound (NSC668394), impedes the migration of cancer cells in vivo. Furthermore, systemic ezrin inhibition leads to reductions in metastatic burden at the distal axillary lymph node and lungs. Conclusions Our findings demonstrate that the tumor ezrin level act as an independent biomarker in predicting relapse and provide a rationale for therapeutic targeting of ezrin to reduce the metastatic capacity of cancer cells in high-risk BC patients with elevated ezrin expression. Electronic supplementary material The online version of this article (10.1186/s13058-018-1079-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdi Ghaffari
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada. .,Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| | - Victoria Hoskin
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada.,Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Gulisa Turashvili
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Sonal Varma
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Jeff Mewburn
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Graeme Mullins
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada.,Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada.,Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | | | - Andrew G Day
- Kingston General Hospital Research Institute, Kingston, Canada
| | | | - Sandip SenGupta
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Bruce E Elliott
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada. .,Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
12
|
Ezrin as a complementary marker in ocular toxicity assessment using a three-dimensional reconstructed human corneal-like epithelium model, EpiOcular™. J Pharmacol Toxicol Methods 2018; 92:24-33. [DOI: 10.1016/j.vascn.2018.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/10/2018] [Accepted: 02/15/2018] [Indexed: 11/21/2022]
|
13
|
Huang L, Qin Y, Zuo Q, Bhatnagar K, Xiong J, Merlino G, Yu Y. Ezrin mediates both HGF/Met autocrine and non-autocrine signaling-induced metastasis in melanoma. Int J Cancer 2017; 142:1652-1663. [PMID: 29210059 DOI: 10.1002/ijc.31196] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/23/2017] [Accepted: 11/23/2017] [Indexed: 12/23/2022]
Abstract
Aberrant HGF/Met signaling promotes tumor migration, invasion, and metastasis through both autocrine and non-autocrine mechanisms; however, the molecular downstream signaling mechanisms by which HGF/Met induces metastasis are incompletely understood. We here report that Ezrin expression is stimulated by HGF and correlates with activated HGF/Met, indicating that HGF/Met signaling regulates the expression of Ezrin. We show that HGF/Met signaling activates the transcription factor Sp1 through the MAPK pathway, and activated Sp1 can in turn directly bind to the promoter of Ezrin gene and regulate its transcription. Notably, knockdown of Ezrin expression by shRNAs inhibits the metastasis induced by either HGF/Met autocrine or non-autocrine signaling in syngeneic wildtype and HGF transgenic mouse hosts. We also used small molecule drugs in preclinical mouse models to confirm that Ezrin is one of the downstream molecules mediating HGF/Met signaling-induced metastasis in melanoma. We conclude that Ezrin is a key downstream factor involved in the regulation of HGF/Met signaling-induced metastasis and demonstrate a link between Ezrin and HGF/Met/MAPK/Sp1 activation in the metastatic process. Our data indicate that Ezrin represents a promising therapeutic target for patients bearing tumors with activated HGF/Met signaling.
Collapse
Affiliation(s)
- Liping Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yifei Qin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Qiang Zuo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Kavita Bhatnagar
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Jingbo Xiong
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, National Institutes of Health, Bethesda, MD, 20892-4264
| |
Collapse
|
14
|
Ferreira ÉR, Bonfim-Melo A, Cordero EM, Mortara RA. ERM Proteins Play Distinct Roles in Cell Invasion by Extracellular Amastigotes of Trypanosoma cruzi. Front Microbiol 2017; 8:2230. [PMID: 29209287 PMCID: PMC5702390 DOI: 10.3389/fmicb.2017.02230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/30/2017] [Indexed: 12/03/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas' disease. In mammalian hosts, T. cruzi alternates between trypomastigote and amastigote forms. Additionally, trypomastigotes can differentiate into amastigotes in the extracellular environment generating infective extracellular amastigotes (EAs). Ezrin-radixin-moesin (ERM) are key proteins linking plasma membrane to actin filaments, the major host cell component responsible for EA internalization. Our results revealed that depletion of host ezrin and radixin but not moesin inhibited EAs invasion in HeLa cells. ERM are recruited and colocalize with F-actin at EA invasion sites as shown by confocal microscopy. Invasion assays performed with cells overexpressing ERM showed increased EAs invasion in ezrin and radixin but not moesin overexpressing cells. Finally, time-lapse experiments have shown altered actin dynamics leading to delayed EA internalization in ezrin and radixin depleted cells when compared to control or moesin depleted cells. Altogether, these findings show distinct roles of ERM during EAs invasion, possibly regulating F-actin dynamics and plasma membrane interplay.
Collapse
Affiliation(s)
- Éden R Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexis Bonfim-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Esteban M Cordero
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Asai A, Miyata Y, Takehara K, Kanda S, Watanabe SI, Greer PA, Sakai H. Pathological significance and prognostic significance of FES expression in bladder cancer vary according to tumor grade. J Cancer Res Clin Oncol 2017; 144:21-31. [PMID: 28952025 PMCID: PMC5756570 DOI: 10.1007/s00432-017-2524-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/17/2017] [Indexed: 12/13/2022]
Abstract
Purpose The feline sarcoma oncogene protein (FES) is a non-receptor tyrosine kinase implicated in both oncogenesis and tumor suppression. Here, cancer cell lines and human tissues were employed to clarify the pathological and prognostic significance of FES in bladder cancer. Methods The relationship between FES expression and cancer aggressiveness was investigated using 3 cell lines (T24: corresponding to grade 3, 5637: corresponding to grade 2, and RT4: corresponding to grade 1) and 203 tissues derived from human bladder malignancies. Proliferation, invasion, and migration of cancer cells were assessed following the knockdown (KD) of FES expression by the siRNA method. Relationships between FES expression and pathological features, aggressiveness, and outcome were investigated. Results FES-KD inhibited the proliferation, migration, and invasion of T24 cells but not of RT4 cells and 5637 cells. Considering all patients, FES expression demonstrated a negative relationship with grade but no association with muscle invasion or cancer cell proliferation. However, it was positively correlated with pT stage and cell proliferation in high-grade tumors (p = 0.002); no such association was found for low-grade tumors. In addition, elevated FES expression was a negative prognostic indicator of metastasis after radical surgery for patients with high-grade tumors (p = 0.021) but not for those with low-grade malignancies. Conclusions FES appeared to act as a suppressor of carcinogenesis, being associated with low tumor grade in the overall patient group. However, its expression correlated with cancer aggressiveness and poor outcome in high-grade bladder cancer. FES, therefore, represents a potential therapeutic target and useful prognostic factor for such patients.
Collapse
Affiliation(s)
- Akihiro Asai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Kosuke Takehara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shigeru Kanda
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shin-Ichi Watanabe
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's Cancer Research Institute, Queens University, Kingston, ON, K7L 3N6, Canada
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
16
|
Quan C, Yan Y, Qin Z, Lin Z, Quan T. Ezrin regulates skin fibroblast size/mechanical properties and YAP-dependent proliferation. J Cell Commun Signal 2017; 12:549-560. [PMID: 28889372 DOI: 10.1007/s12079-017-0406-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023] Open
Abstract
Ezrin acts as a dynamic linkage between plasma membrane and cytoskeleton, and thus involved in many fundamental cellular functions. Yet, its potential role in human skin is virtually unknown. Here we investigate the role of Ezrin in primary skin fibroblasts, the major cells responsible extracellular matrix (ECM) production. We report that Ezrin play an important role in the maintenance of skin fibroblast size/mechanical properties and proliferation. siRNA-mediated Ezrin knockdown decreased fibroblast size and mechanical properties, and thus impaired the nuclear translocation of YAP, a protein commonly response to cell size and mechanical force. Functionally, depletion of Ezrin significantly inhibited YAP target gene expression and fibroblast proliferation. Conversely, restoration of YAP nuclear translocation by overexpression of constitutively active YAP reversed YAP target genes expression and rescued proliferation in Ezrin knockdown cells. These data reveal a novel role for Ezrin in maintenance of fibroblast size/mechanical force and regulating YAP-mediated proliferation.
Collapse
Affiliation(s)
- Chunji Quan
- Department of Pathology, Affiliated Hospital of Yanbian University Medical College, 133000 Yanji, Jilin, Province, People's Republic of China
| | - Yan Yan
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100144, China
| | - Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, 1150 W. Medical Center Drive Medical Science I, Room 6447, Ann Arbor, MI, 48109-0609, USA
| | - Zhenhua Lin
- Department of Pathology, Affiliated Hospital of Yanbian University Medical College, 133000 Yanji, Jilin, Province, People's Republic of China.
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, 1150 W. Medical Center Drive Medical Science I, Room 6447, Ann Arbor, MI, 48109-0609, USA.
| |
Collapse
|
17
|
Li LY, Xie YH, Xie YM, Liao LD, Xu XE, Zhang Q, Zeng FM, Tao LH, Xie WM, Xie JJ, Xu LY, Li EM. Ezrin Ser66 phosphorylation regulates invasion and metastasis of esophageal squamous cell carcinoma cells by mediating filopodia formation. Int J Biochem Cell Biol 2017; 88:162-171. [PMID: 28504189 DOI: 10.1016/j.biocel.2017.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/18/2017] [Accepted: 05/09/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ezrin, links the plasma membrane to the actin cytoskeleton, and plays an important role in the development and progression of human esophageal squamous cell carcinoma (ESCC). However, the roles of ezrin S66 phosphorylation in tumorigenesis of ESCC remain unclear. METHODS Distribution of ezrin in membrane and cytosol fractions was examined by analysis of detergent-soluble/-insoluble fractions and cytosol/membrane fractionation. Both immunofluorescence and live imaging were used to explore the role of ezrin S66 phosphorylation in the behavior of ezrin and actin in cell filopodia. Cell proliferation, migration and invasion of ESCC cells were investigated by proliferation and migration assays, respectively. Tumorigenesis, local invasion and metastasis were assessed in a nude mouse model of regional lymph node metastasis. RESULTS Ezrin S66 phosphorylation enhanced the recruitment of ezrin to the membrane in ESCC cells. Additionally, non-phosphorylatable ezrin (S66A) significantly prevented filopodia formation, as well as caused a reduction in the number, length and lifetime of filopodia. Moreover, functional experiments revealed that expression of non-phosphorylatable ezrin (S66A) markedly suppressed migration and invasion but not proliferation of ESCC cells in vitro, and attenuated local invasion and regional lymph node metastasis, but not primary tumor growth of ESCC cells in vivo. CONCLUSION Ezrin S66 phosphorylation enhances filopodia formation, contributing to the regulation of invasion and metastasis of esophageal squamous cell carcinoma cells.
Collapse
Affiliation(s)
- Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Ying-Hua Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Yang-Min Xie
- Experimental Animal Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Qiang Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Fa-Min Zeng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Li-Hua Tao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Wen-Ming Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Jian-Jun Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China.
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China.
| |
Collapse
|
18
|
HGF/Met Signaling in Cancer Invasion: The Impact on Cytoskeleton Remodeling. Cancers (Basel) 2017; 9:cancers9050044. [PMID: 28475121 PMCID: PMC5447954 DOI: 10.3390/cancers9050044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
The invasion of cancer cells into surrounding tissue and the vasculature is essential for tumor metastasis. Increasing evidence indicates that hepatocyte growth factor (HGF) induces cancer cell migration and invasion. A broad spectrum of mechanisms underlies cancer cell migration and invasion. Cytoskeletal reorganization is of central importance in the development of the phenotype of cancer cells with invasive behavior. Through their roles in cell mechanics, intracellular trafficking, and signaling, cytoskeleton proteins participate in all essential events leading to cell migration. HGF has been involved in cytoskeleton assembly and reorganization, and its role in regulating cytoskeleton dynamics is still expanding. This review summarizes our current understanding of the role of HGF in regulating cytoskeleton remodeling, distribution, and interactions.
Collapse
|
19
|
Ijuin T, Takeuchi Y, Shimono Y, Fukumoto M, Tokuda E, Takenawa T. Regulation of CD44 expression and focal adhesion by Golgi phosphatidylinositol 4-phosphate in breast cancer. Cancer Sci 2016; 107:981-90. [PMID: 27178239 PMCID: PMC4946718 DOI: 10.1111/cas.12968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/29/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022] Open
Abstract
CD44, a transmembrane receptor, is expressed in the standard or variant form and plays a critical role in tumor progression and metastasis. This protein regulates cell adhesion and migration in breast cancer cells. We previously reported that phosphatidylinositol-4-phosphate (PI(4)P) at the Golgi regulates cell migration and invasion in breast cancer cell lines. In this study, we showed that an increase in PI(4)P levels at the Golgi by knockdown of PI(4)P phosphatase SAC1 increased the expression of standard CD44, variant CD44, and ezrin/radixin phosphorylation and enhanced the formation of focal adhesions mediated by CD44 and ezrin/radixin in MCF7 and SK-BR-3 cells. In contrast, knockdown of PI 4-kinase IIIβ in highly invasive MDA-MB-231 cells decreased these factors. These results suggest that SAC1 expression and PI(4)P at the Golgi are important in tumor progression and metastasis and are potential prognostic markers of breast cancers.
Collapse
Affiliation(s)
- Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yukiko Takeuchi
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Shimono
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Miki Fukumoto
- Division of Membrane Biology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Emi Tokuda
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadaomi Takenawa
- Division of Membrane Biology, Biosignal Research Center, Kobe University, Kobe, Japan
| |
Collapse
|
20
|
Abstract
As cells grow, move, and divide, they must reorganize and rearrange their membranes and cytoskeleton. The F-BAR protein family links cellular membranes with actin cytoskeletal rearrangements in processes including endocytosis, cytokinesis, and cell motility. Here we review emerging information on mechanisms of F-BAR domain oligomerization and membrane binding, and how these activities are coordinated with additional domains to accomplish scaffolding and signaling functions.
Collapse
Affiliation(s)
- Nathan A McDonald
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| | - Kathleen L Gould
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
21
|
Abstract
In all eukaryotes, the plasma membrane is critically important as it maintains the architectural integrity of the cell. Proper anchorage and interaction between the plasma membrane and the cytoskeleton is critical for normal cellular processes. The ERM (ezrin-radixin-moesin) proteins are a class of highly homologous proteins involved in linking the plasma membrane to the cortical actin cytoskeleton. This review takes a succinct look at the biology of the ERM proteins including their structure and function. Current reports on their regulation that leads to activation and deactivation was examined before taking a look at the different interacting partners. Finally, emerging roles of each of the ERM family members in cancer was highlighted.
Collapse
Affiliation(s)
- Godwin A Ponuwei
- Cell migration laboratory, Molecular and Cellular Medicine Unit, Department of Biomedical Sciences, School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights, Berkshire, UK. .,Molecular and Cellular Medicine unit, Department of Biomedical sciences, School of Life Sciences, Hopkins Building, Whiteknights Campus, University of Reading, Reading, Berkshire, UK.
| |
Collapse
|
22
|
Hoskin V, Szeto A, Ghaffari A, Greer PA, Côté GP, Elliott BE. Ezrin regulates focal adhesion and invadopodia dynamics by altering calpain activity to promote breast cancer cell invasion. Mol Biol Cell 2015; 26:3464-79. [PMID: 26246600 PMCID: PMC4591691 DOI: 10.1091/mbc.e14-12-1584] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/31/2015] [Indexed: 01/09/2023] Open
Abstract
Ezrin regulates proper focal adhesion and invadopodia turnover by regulating calpain-1, in part by directing its proteolytic activity toward key substrates talin, FAK, and cortactin. Ezrin-deficient tumor cells show reduced lung seeding and colonization in vivo but not primary tumor growth, thus implicating ezrin as a metastasis-associated protein. Up-regulation of the cytoskeleton linker protein ezrin frequently occurs in aggressive cancer types and is closely linked with metastatic progression. However, the underlying molecular mechanisms detailing how ezrin is involved in the invasive and metastatic phenotype remain unclear. Here we report a novel function of ezrin in regulating focal adhesion (FA) and invadopodia dynamics, two key processes required for efficient invasion to occur. We show that depletion of ezrin expression in invasive breast cancer cells impairs both FA and invadopodia turnover. We also demonstrate that ezrin-depleted cells display reduced calpain-mediated cleavage of the FA and invadopodia-associated proteins talin, focal adhesion kinase (FAK), and cortactin and reduced calpain-1–specific membrane localization, suggesting a requirement for ezrin in maintaining proper localization and activity of calpain-1. Furthermore, we show that ezrin is required for cell directionality, early lung seeding, and distant organ colonization but not primary tumor growth. Collectively our results unveil a novel mechanism by which ezrin regulates breast cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Victoria Hoskin
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alvin Szeto
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Abdi Ghaffari
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Graham P Côté
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bruce E Elliott
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
23
|
Wu CY, Lin MW, Wu DC, Huang YB, Huang HT, Chen CL. The role of phosphoinositide-regulated actin reorganization in chemotaxis and cell migration. Br J Pharmacol 2014; 171:5541-54. [PMID: 25420930 DOI: 10.1111/bph.12777] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/15/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Reorganization of the actin cytoskeleton is essential for cell motility and chemotaxis. Actin-binding proteins (ABPs) and membrane lipids, especially phosphoinositides PI(4,5)P2 and PI(3,4,5)P3 are involved in the regulation of this reorganization. At least 15 ABPs have been reported to interact with, or regulated by phosphoinositides (PIPs) whose synthesis is regulated by extracellular signals. Recent studies have uncovered several parallel intracellular signalling pathways that crosstalk in chemotaxing cells. Here, we review the roles of ABPs and phosphoinositides in chemotaxis and cell migration. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- C-Y Wu
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Members of the ezrin-radixin-moesin (ERM) family of proteins are involved in multiple aspects of cell migration by acting both as crosslinkers between the membrane, receptors and the actin cytoskeleton, and as regulators of signalling molecules that are implicated in cell adhesion, cell polarity and migration. Increasing evidence suggests that the regulation of cell signalling and the cytoskeleton by ERM proteins is crucial during cancer progression. Thus, both their expression levels and subcellular localisation would affect tumour progression. High expression of ERM proteins has been shown in a variety of cancers. Mislocalisation of ERM proteins reduces the ability of cells to form cell-cell contacts and, therefore, promotes an invasive phenotype. Similarly, mislocalisation of ERM proteins impairs the formation of receptor complexes and alters the transmission of signals in response to growth factors, thereby facilitating tumour progression. In this Commentary, we address the structure, function and regulation of ERM proteins under normal physiological conditions as well as in cancer progression, with particular emphasis on cancers of epithelial origin, such as those from breast, lung and prostate. We also discuss any recent developments that have added to the understanding of the underlying molecular mechanisms and signalling pathways these proteins are involved in during cancer progression.
Collapse
Affiliation(s)
- Jarama Clucas
- Division of Biomedical Sciences, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | | |
Collapse
|
25
|
Ghaffari A, Hoskin V, Szeto A, Hum M, Liaghati N, Nakatsu K, LeBrun D, Madarnas Y, Sengupta S, Elliott BE. A novel role for ezrin in breast cancer angio/lymphangiogenesis. Breast Cancer Res 2014; 16:438. [PMID: 25231728 PMCID: PMC4303119 DOI: 10.1186/s13058-014-0438-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 09/01/2014] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Recent evidence suggests that tumour lymphangiogenesis promotes lymph node metastasis, a major prognostic factor for survival of breast cancer patients. However, signaling mechanisms involved in tumour-induced lymphangiogenesis remain poorly understood. The expression of ezrin, a membrane cytoskeletal crosslinker and Src substrate, correlates with poor outcome in a diversity of cancers including breast. Furthermore, ezrin is essential in experimental invasion and metastasis models of breast cancer. Ezrin acts cooperatively with Src in the regulation of the Src-induced malignant phenotype and metastasis. However, it remains unclear if ezrin plays a role in Src-induced tumour angio/lymphangiogenesis. METHODS The effects of ezrin knockdown and mutation on angio/lymphangiogenic potential of human MDA-MB-231 and mouse AC2M2 mammary carcinoma cell lines were examined in the presence of constitutively active or wild-type (WT) Src. In vitro assays using primary human lymphatic endothelial cells (hLEC), an ex vivo aortic ring assay, and in vivo tumour engraftment were utilized to assess angio/lymphangiogenic activity of cancer cells. RESULTS Ezrin-deficient cells expressing activated Src displayed significant reduction in endothelial cell branching in the aortic ring assay in addition to reduced hLEC migration, tube formation, and permeability compared to the controls. Intravital imaging and microvessel density (MVD) analysis of tumour xenografts revealed significant reductions in tumour-induced angio/lymphangiogenesis in ezrin-deficient cells when compared to the WT or activated Src-expressing cells. Moreover, syngeneic tumours derived from ezrin-deficient or Y477F ezrin-expressing (non-phosphorylatable by Src) AC2M2 cells further confirmed the xenograft results. Immunoblotting analysis provided a link between ezrin expression and a key angio/lymphangiogenesis signaling pathway by revealing that ezrin regulates Stat3 activation, VEGF-A/-C and IL-6 expression in breast cancer cell lines. Furthermore, high expression of ezrin in human breast tumours significantly correlated with elevated Src expression and the presence of lymphovascular invasion. CONCLUSIONS The results describe a novel function for ezrin in the regulation of tumour-induced angio/lymphangiogenesis promoted by Src in breast cancer. The combination of Src/ezrin might prove to be a beneficial prognostic/predictive biomarker for early-stage metastatic breast cancer.
Collapse
|
26
|
Viswanatha R, Wayt J, Ohouo PY, Smolka MB, Bretscher A. Interactome analysis reveals ezrin can adopt multiple conformational states. J Biol Chem 2013; 288:35437-51. [PMID: 24151071 DOI: 10.1074/jbc.m113.505669] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ezrin, a member of the ezrin-radixin-moesin family (ERM), is an essential regulator of the structure of microvilli on the apical aspect of epithelial cells. Ezrin provides a linkage between membrane-associated proteins and F-actin, oscillating between active/open and inactive/closed states, and is regulated in part by phosphorylation of a C-terminal threonine. In the open state, ezrin can bind a number of ligands, but in the closed state the ligand-binding sites are inaccessible. In vitro analysis has proposed that there may be a third hyperactivated form of ezrin. To gain a better understanding of ezrin, we conducted an unbiased proteomic analysis of ezrin-binding proteins in an epithelial cell line, Jeg-3. We refined our list of interactors by comparing the interactomes using quantitative mass spectrometry between wild-type ezrin, closed ezrin, open ezrin, and hyperactivated ezrin. The analysis reveals several novel interactors confirmed by their localization to microvilli, as well as a significant class of proteins that bind closed ezrin. Taken together, the data indicate that ezrin can exist in three different conformational states, and different ligands "perceive" ezrin conformational states differently.
Collapse
Affiliation(s)
- Raghuvir Viswanatha
- From the Department of Molecular Biology and Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
| | | | | | | | | |
Collapse
|
27
|
Jasaitis A, Estevez M, Heysch J, Ladoux B, Dufour S. E-cadherin-dependent stimulation of traction force at focal adhesions via the Src and PI3K signaling pathways. Biophys J 2012; 103:175-84. [PMID: 22853894 DOI: 10.1016/j.bpj.2012.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 12/20/2022] Open
Abstract
The interplay between cadherin- and integrin-dependent signals controls cell behavior, but the precise mechanisms that regulate the strength of adhesion to the extracellular matrix remains poorly understood. We deposited cells expressing a defined repertoire of cadherins and integrins on fibronectin (FN)-coated polyacrylamide gels (FN-PAG) and on FN-coated pillars used as a micro-force sensor array (μFSA), and analyzed the functional relationship between these adhesion receptors to determine how it regulates cell traction force. We found that cadherin-mediated adhesion stimulated cell spreading on FN-PAG, and this was modulated by the substrate stiffness. We compared S180 cells with cells stably expressing different cadherins on μFSA and found that traction forces were stronger in cells expressing cadherins than in parental cells. E-cadherin-mediated contact and mechanical coupling between cells are required for this increase in cell-FN traction force, which was not observed in isolated cells, and required Src and PI3K activities. Traction forces were stronger in cells expressing type I cadherins than in cells expressing type II cadherins, which correlates with our previous observation of a higher intercellular adhesion strength developed by type I compared with type II cadherins. Our results reveal one of the mechanisms whereby molecular cross talk between cadherins and integrins upregulates traction forces at cell-FN adhesion sites, and thus provide additional insight into the molecular control of cell behavior.
Collapse
Affiliation(s)
- Audrius Jasaitis
- Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
28
|
Ezrin ubiquitylation by the E3 ubiquitin ligase, WWP1, and consequent regulation of hepatocyte growth factor receptor activity. PLoS One 2012; 7:e37490. [PMID: 22629406 PMCID: PMC3358263 DOI: 10.1371/journal.pone.0037490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/20/2012] [Indexed: 12/31/2022] Open
Abstract
The membrane cytoskeleton linker ezrin participates in several functions downstream of the receptor Met in response to Hepatocyte Growth Factor (HGF) stimulation. Here we report a novel interaction of ezrin with a HECT E3 ubiquitin ligase, WWP1/Aip5/Tiul1, a potential oncogene that undergoes genomic amplification and overexpression in human breast and prostate cancers. We show that ezrin binds to the WW domains of WWP1 via the consensus motif PPVY477 present in ezrin’s C-terminus. This association results in the ubiquitylation of ezrin, a process that requires an intact PPVY477 motif. Interestingly ezrin ubiquitylation does not target the protein for degradation by the proteasome. We find that ezrin ubiquitylation by WWP1 in epithelial cells leads to the upregulation of Met level in absence of HGF stimulation and increases the response of Met to HGF stimulation as measured by the ability of the cells to heal a wound. Interestingly this effect requires ubiquitylated ezrin since it can be rescued, after depletion of endogenous ezrin, by wild type ezrin but not by a mutant of ezrin that cannot be ubiquitylated. Taken together our data reveal a new role for ezrin in Met receptor stability and activity through its association with the E3 ubiquitin ligase WWP1. Given the role of Met in cell proliferation and tumorigenesis, our results may provide a mechanistic basis for understanding the role of ezrin in tumor progression.
Collapse
|
29
|
Mak H, Naba A, Varma S, Schick C, Day A, SenGupta SK, Arpin M, Elliott BE. Ezrin phosphorylation on tyrosine 477 regulates invasion and metastasis of breast cancer cells. BMC Cancer 2012; 12:82. [PMID: 22397367 PMCID: PMC3372425 DOI: 10.1186/1471-2407-12-82] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 03/07/2012] [Indexed: 11/11/2022] Open
Abstract
Background The membrane cytoskeletal crosslinker, ezrin, a member of the ERM family of proteins, is frequently over-expressed in human breast cancers, and is required for motility and invasion of epithelial cells. Our group previously showed that ezrin acts co-operatively with the non-receptor tyrosine kinase, Src, in deregulation of cell-cell contacts and scattering of epithelial cells. In particular, ezrin phosphorylation on Y477 by Src is specific to ezrin within the ERM family, and is required for HGF-induced scattering of epithelial cells. We therefore sought to examine the role of Y477 phosphorylation in ezrin on tumor progression. Methods Using a highly metastatic mouse mammary carcinoma cell line (AC2M2), we tested the effect of over-expressing a non-phosphorylatable form of ezrin (Y477F) on invasive colony growth in 3-dimensional Matrigel cultures, and on local invasion and metastasis in an orthotopic engraftment model. Results AC2M2 cells over-expressing Y477F ezrin exhibited delayed migration in vitro, and cohesive round colonies in 3-dimensional Matrigel cultures, compared to control cells that formed invasive colonies with branching chains of cells and numerous actin-rich protrusions. Moreover, over-expression of Y477F ezrin inhibits local tumor invasion in vivo. Whereas orthotopically injected wild type AC2M2 tumor cells were found to infiltrate into the abdominal wall and visceral organs within three weeks, tumors expressing Y477F ezrin remained circumscribed, with little invasion into the surrounding stroma and abdominal wall. Additionally, Y477F ezrin reduces the number of lung metastatic lesions. Conclusions Our study implicates a role of Y477 ezrin, which is phosphorylated by Src, in regulating local invasion and metastasis of breast carcinoma cells, and provides a clinically relevant model for assessing the Src/ezrin pathway as a potential prognostic/predictive marker or treatment target for invasive human breast cancer.
Collapse
Affiliation(s)
- Hannah Mak
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zwaenepoel I, Naba A, Da Cunha MML, Del Maestro L, Formstecher E, Louvard D, Arpin M. Ezrin regulates microvillus morphogenesis by promoting distinct activities of Eps8 proteins. Mol Biol Cell 2012; 23:1080-94. [PMID: 22262457 PMCID: PMC3302735 DOI: 10.1091/mbc.e11-07-0588] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The membrane cytoskeleton linker ezrin differentially regulates the activity of Eps8 and Eps8L1a in microvillar actin-F assembly. Eps8L1a displays F-actin capping activity, therefore controlling microvillus length, whereas, as previously shown, Eps8 displays bundling activity. The mechanisms that regulate actin filament polymerization resulting in the morphogenesis of the brush border microvilli in epithelial cells remain unknown. Eps8, the prototype of a family of proteins capable of capping and bundling actin filaments, has been shown to bundle the microvillar actin filaments. We report that Eps8L1a, a member of the Eps8 family and a novel ezrin-interacting partner, controls microvillus length through its capping activity. Depletion of Eps8L1a leads to the formation of long microvilli, whereas its overexpression has the opposite effect. We demonstrate that ezrin differentially modulates the actin-capping and -bundling activities of Eps8 and Eps8L1a during microvillus assembly. Coexpression of ezrin with Eps8 promotes the formation of membrane ruffles and tufts of microvilli, whereas expression of ezrin and Eps8L1a induces the clustering of actin-containing structures at the cell surface. These distinct morphological changes are neither observed when a mutant of ezrin defective in its binding to Eps8/Eps8L1a is coexpressed with Eps8 or Eps8L1a nor observed when ezrin is expressed with mutants of Eps8 or Eps8L1a defective in the actin-bundling or -capping activities, respectively. Our data show a synergistic effect of ezrin and Eps8 proteins in the assembly and organization of actin microvillar filaments.
Collapse
Affiliation(s)
- Ingrid Zwaenepoel
- Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Matsui K, Parameswaran N, Bagheri N, Willard B, Gupta N. Proteomics analysis of the ezrin interactome in B cells reveals a novel association with Myo18aα. J Proteome Res 2011; 10:3983-92. [PMID: 21751808 DOI: 10.1021/pr200577d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular regulation of recruitment and assembly of signalosomes near the B cell receptor (BCR) is poorly understood. We have previously demonstrated a role for the ERM family protein ezrin in regulating antigen-dependent lipid raft coalescence in B cells. In this study, we addressed the possibility that ezrin may collaborate with other adaptor proteins to regulate signalosome dynamics at the membrane. Using mass spectrometry-based proteomics analysis, we identified Myo18aα as a novel binding partner of ezrin. Myo18aα is an attractive candidate as it has several protein-protein interaction domains and an intrinsic motor activity. The expression of Myo18aα varied during B cell development in the bone marrow and in mature B cell subsets suggesting functional differences. Interestingly, BCR stimulation increased the association between ezrin and Myo18aα, and induced co-segregation of Myo18aα with the BCR and phosphotyrosine-containing proteins. Our data raise an intriguing possibility that the Myo18aα/ezrin complex may facilitate BCR-mediated signaling by recruiting signaling proteins that are in close proximity of the antigen receptor. Our study is not only significant with respect to understanding the molecular regulation of BCR signaling but also provides a broader basis for understanding the mechanism of action of ezrin in other cellular systems.
Collapse
Affiliation(s)
- Ken Matsui
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | | | | | | | | |
Collapse
|
32
|
Ognibene M, Vanni C, Segalerba D, Mancini P, Merello E, Torrisi MR, Bosco MC, Varesio L, Eva A. The tumor suppressor hamartin enhances Dbl protein transforming activity through interaction with ezrin. J Biol Chem 2011; 286:29973-83. [PMID: 21712385 DOI: 10.1074/jbc.m111.270785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Rho guanine nucleotide exchange factor (GEF) Dbl binds to the N-terminal region of ezrin, a member of the ERM (ezrin, radixin, moesin) proteins known to function as linkers between the plasma membrane and the actin cytoskeleton. Here we have characterized the interaction between ezrin and Dbl. We show that binding of Dbl with ezrin involves positively charged amino acids within the region of the pleckstrin homology (PH) domain comprised between β1 and β2 sheets. In addition, we show that Dbl forms a complex with the tuberous sclerosis-1 (TSC-1) gene product hamartin and with ezrin. We demonstrate that hamartin and ezrin are both required for activation of Dbl. In fact, the knock-down of ezrin and hamartin, as well as the expression of a mutant hamartin, unable to bind ezrin, inhibit Dbl transforming and exchange activity. These results suggest that Dbl is regulated by hamartin through association with ezrin.
Collapse
Affiliation(s)
- Marzia Ognibene
- Laboratorio di Biologia Molecolare, Istituto G. Gaslini, Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Heiska L, Melikova M, Zhao F, Saotome I, McClatchey AI, Carpén O. Ezrin is key regulator of Src-induced malignant phenotype in three-dimensional environment. Oncogene 2011; 30:4953-62. [DOI: 10.1038/onc.2011.207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Ross SH, Post A, Raaijmakers JH, Verlaan I, Gloerich M, Bos JL. Ezrin is required for efficient Rap1-induced cell spreading. J Cell Sci 2011; 124:1808-18. [PMID: 21540295 DOI: 10.1242/jcs.079830] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rap family of small GTPases regulate the adhesion of cells to extracellular matrices. Several Rap-binding proteins have been shown to function as effectors that mediate Rap-induced adhesion. However, little is known regarding the relationships between these effectors, or about other proteins that are downstream of or act in parallel to the effectors. To establish whether an array of effectors was required for Rap-induced cell adhesion and spreading, and to find new components involved in Rap-signal transduction, we performed a small-scale siRNA screen in A549 lung epithelial cells. Of the Rap effectors tested, only Radil blocked Rap-induced spreading. Additionally, we identified a novel role for Ezrin downstream of Rap1. Ezrin was necessary for Rap-induced cell spreading, but not Rap-induced cell adhesion or basal adhesion processes. Furthermore, Ezrin depletion inhibited Rap-induced cell spreading in several cell lines, including primary human umbilical vein endothelial cells. Interestingly, Radixin and Moesin, two proteins with high homology to Ezrin, are not required for Rap-induced cell spreading and cannot compensate for loss of Ezrin to rescue Rap-induced cell spreading. Here, we present a novel function for Ezrin in Rap1-induced cell spreading and evidence of a non-redundant role of an ERM family member.
Collapse
Affiliation(s)
- Sarah H Ross
- Molecular Cancer Research, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Centre Utrecht, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Arpin M, Chirivino D, Naba A, Zwaenepoel I. Emerging role for ERM proteins in cell adhesion and migration. Cell Adh Migr 2011; 5:199-206. [PMID: 21343695 DOI: 10.4161/cam.5.2.15081] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The highly related ERM (Ezrin, Radixin, Moesin) proteins provide a regulated linkage between the membrane and the underlying actin cytoskeleton. They also provide a platform for the transmission of signals in responses to extracellular cues. Studies in different model organisms and in cultured cells have highlighted the importance of ERM proteins in the generation and maintenance of specific domains of the plasma membrane. A central question is how do ERM proteins coordinate actin filament organization and membrane protein transport/stability with signal transduction pathways to build up complex structures? Through their interaction with numerous partners including membrane proteins, actin cytoskeleton and signaling molecules, ERM proteins have the ability to organize multiprotein complexes in specific cellular compartments. Likewise, ERM proteins participate in diverse functions including cell morphogenesis, endocytosis/exocytosis, adhesion and migration. This review focuses on aspects still poorly understood related to the function of ERM proteins in epithelial cell adhesion and migration.
Collapse
Affiliation(s)
- Monique Arpin
- UMR 144, Centre National de la Recherche Scientifique/Morphogenèse et Signalisation Cellulaires, Institut Curie, Paris, France.
| | | | | | | |
Collapse
|
36
|
Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse. EMBO J 2010; 29:2301-14. [PMID: 20551903 DOI: 10.1038/emboj.2010.127] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 05/25/2010] [Indexed: 11/08/2022] Open
Abstract
T-cell receptor (TCR) signalling is triggered and tuned at immunological synapses by the generation of signalling complexes that associate into dynamic microclusters. Microcluster movement is necessary to tune TCR signalling, but the molecular mechanism involved remains poorly known. We show here that the membrane-microfilament linker ezrin has an important function in microcluster dynamics and in TCR signalling through its ability to set the microtubule network organization at the immunological synapse. Importantly, ezrin and microtubules are important to down-regulate signalling events leading to Erk1/2 activation. In addition, ezrin is required for appropriate NF-AT activation through p38 MAP kinase. Our data strongly support the notion that ezrin regulates immune synapse architecture and T-cell activation through its interaction with the scaffold protein Dlg1. These results uncover a crucial function for ezrin, Dlg1 and microtubules in the organization of the immune synapse and TCR signal down-regulation. Moreover, they underscore the importance of ezrin and Dlg1 in the regulation of NF-AT activation through p38.
Collapse
|
37
|
Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and β1 integrin receptors. Cell Signal 2010; 22:427-36. [DOI: 10.1016/j.cellsig.2009.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/23/2009] [Indexed: 11/17/2022]
|
38
|
Protection of human corneal epithelial cells from hypoxia-induced disruption of barrier function by hepatocyte growth factor. Exp Eye Res 2010; 90:337-43. [DOI: 10.1016/j.exer.2009.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/30/2009] [Accepted: 11/18/2009] [Indexed: 11/19/2022]
|
39
|
Voisset E, Lopez S, Chaix A, Vita M, George C, Dubreuil P, De Sepulveda P. FES kinase participates in KIT-ligand induced chemotaxis. Biochem Biophys Res Commun 2010; 393:174-8. [PMID: 20117079 DOI: 10.1016/j.bbrc.2010.01.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/27/2010] [Indexed: 12/31/2022]
Abstract
FES is a cytoplasmic tyrosine kinase activated by several membrane receptors, originally identified as a viral oncogene product. We have recently identified FES as a crucial effector of oncogenic KIT mutant receptor. However, FES implication in wild-type KIT receptor function was not addressed. We report here that FES interacts with KIT and is phosphorylated following activation by its ligand SCF. Unlike in the context of oncogenic KIT mutant, FES is not involved in wild-type KIT proliferation signal, or in cell adhesion. Instead, FES is required for SCF-induced chemotaxis. In conclusion, FES kinase is a mediator of wild-type KIT signalling implicated in cell migration.
Collapse
Affiliation(s)
- Edwige Voisset
- INSERM U891, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Contributions of F-BAR and SH2 domains of Fes protein tyrosine kinase for coupling to the FcepsilonRI pathway in mast cells. Mol Cell Biol 2008; 29:389-401. [PMID: 19001085 DOI: 10.1128/mcb.00904-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study investigates the roles of Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) and SH2 domains of Fes protein tyrosine kinase in regulating its activation and signaling downstream of the high-affinity immunoglobulin G (IgE) receptor (FcepsilonRI) in mast cells. Homology modeling of the Fes F-BAR domain revealed conservation of some basic residues implicated in phosphoinositide binding (R113/K114). The Fes F-BAR can bind phosphoinositides and induce tubulation of liposomes in vitro. Mutation of R113/K114 to uncharged residues (RK/QQ) caused a significant reduction in phosphoinositide binding in vitro and a more diffuse cytoplasmic localization in transfected COS-7 cells. RBL-2H3 mast cells expressing full-length Fes carrying the RK/QQ mutation show defects in FcepsilonRI-induced Fes tyrosine phosphorylation and degranulation compared to cells expressing wild-type Fes. This correlated with reduced localization to Lyn kinase-containing membrane fractions for the RK/QQ mutant compared to wild-type Fes in mast cells. The Fes SH2 domain also contributes to Fes signaling in mast cells, via interactions with the phosphorylated FcepsilonRI beta chain and the actin regulatory protein HS1. We show that Fes phosphorylates C-terminal tyrosine residues in HS1 implicated in actin stabilization. Thus, coordinated actions of the F-BAR and SH2 domains of Fes allow for coupling to FcepsilonRI signaling and potential regulation the actin reorganization in mast cells.
Collapse
|
41
|
Thongboonkerd V, Semangoen T, Sinchaikul S, Chen ST. Proteomic Analysis of Calcium Oxalate Monohydrate Crystal-Induced Cytotoxicity in Distal Renal Tubular Cells. J Proteome Res 2008; 7:4689-700. [DOI: 10.1021/pr8002408] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit & Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Theptida Semangoen
- Medical Proteomics Unit & Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Supachok Sinchaikul
- Medical Proteomics Unit & Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shui-Tein Chen
- Medical Proteomics Unit & Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, Salah E, Neudecker P, Kay LE, Turk BE, Superti-Furga G, Pawson T, Knapp S. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 2008; 134:793-803. [PMID: 18775312 PMCID: PMC2572732 DOI: 10.1016/j.cell.2008.07.047] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/23/2008] [Accepted: 07/29/2008] [Indexed: 11/05/2022]
Abstract
The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase αC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.
Collapse
Affiliation(s)
- Panagis Filippakopoulos
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|