1
|
Ju WS, Kim S, Lee JY, Lee H, No J, Lee S, Oh K. Gene Editing for Enhanced Swine Production: Current Advances and Prospects. Animals (Basel) 2025; 15:422. [PMID: 39943192 PMCID: PMC11815767 DOI: 10.3390/ani15030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Traditional pig breeding has improved production traits but faces limitations in genetic diversity, disease resistance, and environmental adaptation. Gene editing technologies, such as CRISPR/Cas9, base editing, and prime editing, enable precise genetic modifications, overcoming these limitations and expanding applications to biomedical research. Here, we reviewed the advancements in gene editing technologies in pigs and explored pathways toward optimized swine genetics for a resilient and adaptive livestock industry. This review synthesizes recent research on gene editing tools applied to pigs, focusing on CRISPR/Cas9 and its derivatives. It examines their impact on critical swine production traits and their role as human disease models. Significant advancements have been made in targeting genes for disease resistance, such as those conferring immunity to porcine reproductive and respiratory syndrome viruses. Additionally, gene-edited pigs are increasingly used as models for human diseases, demonstrating the technology's broader applications. However, challenges such as off-target effects, ethical concerns, and varying regulatory frameworks remain. Gene editing holds substantial potential for sustainable and productive livestock production by enhancing key traits and supporting biomedical applications. Addressing technical and ethical challenges through integrated approaches will be essential to realize its full potential, ensuring a resilient, ethical, and productive livestock sector for future generations.
Collapse
Affiliation(s)
| | - Seokho Kim
- Correspondence: ; Tel.: +82-63-238-7271; Fax: +82-63-238-729
| | | | | | | | | | | |
Collapse
|
2
|
Zhang X, Luo N, Ni H, Cheng A, Wang M, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Yin Z, Jing B, Huang J, Tian B, Jia R. Anti-tembusu virus of capsid-targeted viral inactivation delivered by lentiviral vector in vivo. Vet Microbiol 2025; 300:110336. [PMID: 39644649 DOI: 10.1016/j.vetmic.2024.110336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Tembusu virus (TMUV) is a member of genus flavivirus, which mainly causes decrease in production in egg ducks and neurological symptom in meatducks, causing serious economic losses to the poultry industry. Recently, the commercialized TMUV vaccines are mainly the WF100 live vaccine and the attenuated live vaccine (FX2010-180P), so it is particularly important to find new methods to combat TMUV. The capsid-targeted viral inactivation (CTVI) strategy is based on a viral core protein and an exogenous factor that can destroy viral DNA or RNA. Lentivirus vectors are an effective tool for transferring the recombinant lentiviruses to target cells and are a promising system for efficient gene delivery. This study injected recombinant lentivirus carrying the Cap-SNase and Cap-Linker-SNase fusion proteins into duck early embryos at 109 TU/mL, achieving widespread expression of the fusion proteins in duck embryo tissues. After TMUV infection, the symptoms of the ducks in the Cap-SNase and Cap-Linker-SNase groups were significantly alleviated to the 1640 group. Pathological sections showed that compared with the 1640 group, the pathological damage in the Cap-SNase and Cap-Linker-SNase groups was greatly alleviated, and the virus loads in the feces, blood and tissues of Cap-SNase or Cap-Linker-SNase groups were significantly lower than those in the 1640 group. The results indicate that the Cap-SNase or Cap-Linker-SNase fusion proteins delivered by lentivirus have anti-TMUV effect. This study combines lentiviral vectors with CTVI strategy for the first time, which could be a simple and practical technology to treating human or animal diseases or biomedical animals.
Collapse
Affiliation(s)
- Xingcui Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Ning Luo
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Hui Ni
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
3
|
Tsvilovskyy V, Ottenheijm R, Kriebs U, Schütz A, Diakopoulos KN, Jha A, Bildl W, Wirth A, Böck J, Jaślan D, Ferro I, Taberner FJ, Kalinina O, Hildebrand S, Wissenbach U, Weissgerber P, Vogt D, Eberhagen C, Mannebach S, Berlin M, Kuryshev V, Schumacher D, Philippaert K, Camacho-Londoño JE, Mathar I, Dieterich C, Klugbauer N, Biel M, Wahl-Schott C, Lipp P, Flockerzi V, Zischka H, Algül H, Lechner SG, Lesina M, Grimm C, Fakler B, Schulte U, Muallem S, Freichel M. OCaR1 endows exocytic vesicles with autoregulatory competence by preventing uncontrolled Ca2+ release, exocytosis, and pancreatic tissue damage. J Clin Invest 2024; 134:e169428. [PMID: 38557489 PMCID: PMC10977991 DOI: 10.1172/jci169428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.
Collapse
Affiliation(s)
- Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ulrich Kriebs
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Aline Schütz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Kalliope Nina Diakopoulos
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Wolfgang Bildl
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Julia Böck
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dawid Jaślan
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Irene Ferro
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Francisco J. Taberner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Olga Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Staffan Hildebrand
- Institut für Pharmakologie und Toxikologie, Universität Bonn, Bonn, Germany
| | - Ulrich Wissenbach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Petra Weissgerber
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Dominik Vogt
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie Mannebach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Michael Berlin
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Vladimir Kuryshev
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | | | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Christoph Dieterich
- University Hospital Heidelberg, Department of Medicine III: Cardiology, Angiology and Pneumology, Heidelberg, Germany
| | - Norbert Klugbauer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPS-M) and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Wahl-Schott
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Medical Faculty, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology, Center for Molecular Signaling (PZMS), Universität des Saarlandes, Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | - Hana Algül
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan G. Lechner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Marina Lesina
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Grimm
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Immunology, Infection and Pandemic Research (IIP), Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Munich, Germany
| | - Bernd Fakler
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Popova J, Bets V, Kozhevnikova E. Perspectives in Genome-Editing Techniques for Livestock. Animals (Basel) 2023; 13:2580. [PMID: 37627370 PMCID: PMC10452040 DOI: 10.3390/ani13162580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Genome editing of farm animals has undeniable practical applications. It helps to improve production traits, enhances the economic value of livestock, and increases disease resistance. Gene-modified animals are also used for biomedical research and drug production and demonstrate the potential to be used as xenograft donors for humans. The recent discovery of site-specific nucleases that allow precision genome editing of a single-cell embryo (or embryonic stem cells) and the development of new embryological delivery manipulations have revolutionized the transgenesis field. These relatively new approaches have already proven to be efficient and reliable for genome engineering and have wide potential for use in agriculture. A number of advanced methodologies have been tested in laboratory models and might be considered for application in livestock animals. At the same time, these methods must meet the requirements of safety, efficiency and availability of their application for a wide range of farm animals. This review aims at covering a brief history of livestock animal genome engineering and outlines possible future directions to design optimal and cost-effective tools for transgenesis in farm species.
Collapse
Affiliation(s)
- Julia Popova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
| | - Victoria Bets
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Center of Technological Excellence, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Elena Kozhevnikova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Laboratory of Experimental Models of Cognitive and Emotional Disorders, Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
5
|
Edwards-Faret G, de Vin F, Slezak M, Gollenbeck L, Karaman R, Shinmyo Y, Batiuk MY, Pando CM, Urschitz J, Rincon MY, Moisyadi S, Schnütgen F, Kawasaki H, Schmucker D, Holt MG. A New Technical Approach for Cross-species Examination of Neuronal Wiring and Adult Neuron-glia Functions. Neuroscience 2023; 508:40-51. [PMID: 36464177 DOI: 10.1016/j.neuroscience.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Advances in single cell sequencing have enabled the identification of a large number of genes, expressed in many different cell types, and across a variety of model organisms. In particular, the nervous system harbors an immense number of interacting cell types, which are poorly characterized. Future loss- and gain-of-function experiments will be essential in determining how novel genes play critical roles in diverse cellular, as well as evolutionarily adapted, contexts. However, functional analysis across species is often hampered by technical limitations, in non-genetic animal systems. Here, we describe a new single plasmid system, misPiggy. The system is based around the hyperactive piggyBac transposon system, which combines stable genomic integration of transgenes (for long-term expression) with large cargo capacity. Taking full advantage of these characteristics, we engineered novel expression modules into misPiggy that allow for cell-type specific loss- and gain-of-gene function. These modules work widely across species from frog to ferret. As a proof of principle, we present a loss-of-function analysis of the neuronal receptor Deleted in Colorectal Cancer (DCC) in retinal ganglion cells (RGCs) of Xenopus tropicalis tadpoles. Single axon tracings of mosaic knock-out cells reveal a specific cell-intrinsic requirement of DCC, specifically in axonal arborization within the frog tectum, rather than retina-to-brain axon guidance. Furthermore, we report additional technical advances that enable temporal control of knock-down or gain-of-function analysis. We applied this to visualize and manipulate labeled neurons, astrocytes and other glial cells in the central nervous system (CNS) of mouse, rat and ferret. We propose that misPiggy will be a valuable tool for rapid, flexible and cost-effective screening of gene function across a variety of animal models.
Collapse
Affiliation(s)
- Gabriela Edwards-Faret
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany
| | - Filip de Vin
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Michal Slezak
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Lennart Gollenbeck
- Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany
| | - Ruçhan Karaman
- VIB Center for Cancer Biology, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Oncology, Herestraat 49, Leuven 3000, Belgium
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, Ishikawa 920-1192, Japan
| | - Mykhailo Y Batiuk
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Carmen Menacho Pando
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawaii, 1960 East-West Rd. E-124, Honolulu, HI 96822, USA
| | - Melvin Y Rincon
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium
| | - Stefan Moisyadi
- Institute for Biogenesis Research, University of Hawaii, 1960 East-West Rd. E-124, Honolulu, HI 96822, USA
| | - Frank Schnütgen
- Department of Medicine 2, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany; LOEWE Center for Cell and Gene Therapy, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany; FCI, Frankfurt Cancer Institute, University Hospital Frankfurt, Goethe University, Theodor Stern Kai 7, Frankfurt am Main D60590, Germany
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University, Ishikawa 920-1192, Japan
| | - Dietmar Schmucker
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Neuronal Wiring Group, Life & Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, Bonn D53115, Germany; Leuven Brain Institute, Herestraat 49, Leuven 3000, Belgium.
| | - Matthew G Holt
- VIB Center for Brain and Disease Research, Herestraat 49, Leuven 3000, Belgium; KU Leuven Department of Neuroscience, Herestraat 49, Leuven 3000, Belgium; Leuven Brain Institute, Herestraat 49, Leuven 3000, Belgium; University of Porto, Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
6
|
Whitworth KM, Green JA, Redel BK, Geisert RD, Lee K, Telugu BP, Wells KD, Prather RS. Improvements in pig agriculture through gene editing. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:41. [PMID: 35755158 PMCID: PMC9209828 DOI: 10.1186/s43170-022-00111-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/12/2022] [Indexed: 05/06/2023]
Abstract
Genetic modification of animals via selective breeding is the basis for modern agriculture. The current breeding paradigm however has limitations, chief among them is the requirement for the beneficial trait to exist within the population. Desirable alleles in geographically isolated breeds, or breeds selected for a different conformation and commercial application, and more importantly animals from different genera or species cannot be introgressed into the population via selective breeding. Additionally, linkage disequilibrium results in low heritability and necessitates breeding over successive generations to fix a beneficial trait within a population. Given the need to sustainably improve animal production to feed an anticipated 9 billion global population by 2030 against a backdrop of infectious diseases and a looming threat from climate change, there is a pressing need for responsive, precise, and agile breeding strategies. The availability of genome editing tools that allow for the introduction of precise genetic modification at a single nucleotide resolution, while also facilitating large transgene integration in the target population, offers a solution. Concordant with the developments in genomic sequencing approaches, progress among germline editing efforts is expected to reach feverish pace. The current manuscript reviews past and current developments in germline engineering in pigs, and the many advantages they confer for advancing animal agriculture.
Collapse
Affiliation(s)
- Kristin M. Whitworth
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Jonathan A. Green
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bethany K. Redel
- United States Department of Agriculture – Agriculture Research Service, Plant Genetics Research Unit, Columbia, MO 65211 USA
| | - Rodney D. Geisert
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kiho Lee
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bhanu P. Telugu
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kevin D. Wells
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Randall S. Prather
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| |
Collapse
|
7
|
Wang X, Qiao X, Sui L, Zhao H, Li F, Tang YD, Shi W, Guo Y, Jiang Y, Wang L, Zhou H, Tang L, Xu Y, Li Y. Establishment of stable Vero cell lines expressing TMPRSS2 and MSPL: A useful tool for propagating porcine epidemic diarrhea virus in the absence of exogenous trypsin. Virulence 2021; 11:669-685. [PMID: 32471322 PMCID: PMC7550007 DOI: 10.1080/21505594.2020.1770491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the causative agent of porcine epidemic diarrhea, causing substantial economic losses to the swine industry worldwide. However, the development of PEDV vaccine is hampered by its low propagation titer in vitro, due to difficulty in adapting to the cells and complex culture conditions, even in the presence of trypsin. Furthermore, the frequent variation, recombination, and evolution of PEDV resulted in reemergence and vaccination failure. In this study, we established the Vero/TMPRSS2 and Vero/MSPL cell lines, constitutively expressing type II transmembrane serine protease TMPRSS2 and MSPL, in order to increase the stability and titer of PEDV culture and isolation in vitro. Our study revealed that the Vero/TMPRSS2, especially Vero/MSPL cell lines, can effectively facilitate the titer and multicycle replication of cell-adapted PEDV in the absence of exogenous trypsin, by cleaving and activating PEDV S protein. Furthermore, our results also highlighted that Vero/TMPRSS2 and Vero/MSPL cells can significantly enhance the isolation of PEDV from the clinical tissue samples as well as promote viral infection and replication by cell-cell fusion. The successful construction of the Vero/TMPRSS2 and Vero/MSPL cell lines provides a useful approach for the isolation and propagation of PEDV, simplification of virus culture, and large-scale production of industrial vaccine, and the cell lines are also an important system to research PEDV S protein cleaved by host protease.
Collapse
Affiliation(s)
- Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development , Harbin, P.R. China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Haiyuan Zhao
- Department of Swine Breeding, Jiangsu Hanswine Food Co., Ltd , Ma'anshan, Anhui Province, China
| | - Fengsai Li
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Harbin, China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University , Harbin, P.R. China
| | - Yuyao Guo
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development , Harbin, P.R. China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development , Harbin, P.R. China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development , Harbin, P.R. China
| |
Collapse
|
8
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|
9
|
Park JE, Sasaki E. Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmoset. ILAR J 2021; 61:286-303. [PMID: 33693670 PMCID: PMC8918153 DOI: 10.1093/ilar/ilab002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Genetic modification of nonhuman primate (NHP) zygotes is a useful method for the development of NHP models of human diseases. This review summarizes the recent advances in the development of assisted reproductive and genetic manipulation techniques in NHP, providing the basis for the generation of genetically modified NHP disease models. In this study, we review assisted reproductive techniques, including ovarian stimulation, in vitro maturation of oocytes, in vitro fertilization, embryo culture, embryo transfer, and intracytoplasmic sperm injection protocols in marmosets. Furthermore, we review genetic manipulation techniques, including transgenic strategies, target gene knock-out and knock-in using gene editing protocols, and newly developed gene-editing approaches that may potentially impact the production of genetically manipulated NHP models. We further discuss the progress of assisted reproductive and genetic manipulation techniques in NHP; future prospects on genetically modified NHP models for biomedical research are also highlighted.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Neurobiology, University of Pittsburgh, School of Medicine in Pittsburgh, Pennsylvania, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals in Kawasaki, Kanagawa, Japan
| |
Collapse
|
10
|
Zettler S, Renner S, Kemter E, Hinrichs A, Klymiuk N, Backman M, Riedel EO, Mueller C, Streckel E, Braun-Reichhart C, Martins AS, Kurome M, Keßler B, Zakhartchenko V, Flenkenthaler F, Arnold GJ, Fröhlich T, Blum H, Blutke A, Wanke R, Wolf E. A decade of experience with genetically tailored pig models for diabetes and metabolic research. Anim Reprod 2020; 17:e20200064. [PMID: 33029223 PMCID: PMC7534555 DOI: 10.1590/1984-3143-ar2020-0064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The global prevalence of diabetes mellitus and other metabolic diseases is rapidly increasing. Animal models play pivotal roles in unravelling disease mechanisms and developing and testing therapeutic strategies. Rodents are the most widely used animal models but may have limitations in their resemblance to human disease mechanisms and phenotypes. Findings in rodent models are consequently often difficult to extrapolate to human clinical trials. To overcome this ‘translational gap’, we and other groups are developing porcine disease models. Pigs share many anatomical and physiological traits with humans and thus hold great promise as translational animal models. Importantly, the toolbox for genetic engineering of pigs is rapidly expanding. Human disease mechanisms and targets can therefore be reproduced in pigs on a molecular level, resulting in precise and predictive porcine (PPP) models. In this short review, we summarize our work on the development of genetically (pre)diabetic pig models and how they have been used to study disease mechanisms and test therapeutic strategies. This includes the generation of reporter pigs for studying beta-cell maturation and physiology. Furthermore, genetically engineered pigs are promising donors of pancreatic islets for xenotransplantation. In summary, genetically tailored pig models have become an important link in the chain of translational diabetes and metabolic research.
Collapse
Affiliation(s)
- Silja Zettler
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Simone Renner
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Arne Hinrichs
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Nikolai Klymiuk
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Mattias Backman
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | | | - Christiane Mueller
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Elisabeth Streckel
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Christina Braun-Reichhart
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Ana Sofia Martins
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Mayuko Kurome
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Barbara Keßler
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Valeri Zakhartchenko
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | | | - Georg Josef Arnold
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| |
Collapse
|
11
|
Lee J, Kim DH, Lee K. Current Approaches and Applications in Avian Genome Editing. Int J Mol Sci 2020; 21:ijms21113937. [PMID: 32486292 PMCID: PMC7312999 DOI: 10.3390/ijms21113937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/02/2023] Open
Abstract
Advances in genome-editing technologies and sequencing of animal genomes enable researchers to generate genome-edited (GE) livestock as valuable animal models that benefit biological researches and biomedical and agricultural industries. As birds are an important species in biology and agriculture, their genome editing has gained significant interest and is mainly performed by using a primordial germ cell (PGC)-mediated method because pronuclear injection is not practical in the avian species. In this method, PGCs can be isolated, cultured, genetically edited in vitro, and injected into a recipient embryo to produce GE offspring. Recently, a couple of GE quail have been generated by using the newly developed adenovirus-mediated method. Without technically required in vitro procedures of the PGC-mediated method, direct injection of adenovirus into the avian blastoderm in the freshly laid eggs resulted in the production of germ-line chimera and GE offspring. As more approaches are available in avian genome editing, avian research in various fields will progress rapidly. In this review, we describe the development of avian genome editing and scientific and industrial applications of GE avian species.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; (J.L.); (D.-H.K.)
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-688-7963
| |
Collapse
|
12
|
Livestock Gene Editing by One-step Embryo Manipulation. J Equine Vet Sci 2020; 89:103025. [PMID: 32563448 DOI: 10.1016/j.jevs.2020.103025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
The breakthrough and rapid advance of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has enabled the efficient generation of gene-edited animals by one-step embryo manipulation. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 delivery to the livestock embryos has been typically achieved by intracytoplasmic microinjection; however, recent studies show that electroporation may be a reliable, efficient, and practical method for CRISPR/Cas9 delivery. The source of embryos used to generate gene-edited animals varies from in vivo to in vitro produced, depending mostly on the species of interest. In addition, different Cas9 and gRNA reagents can be used for embryo editing, ranging from Cas9-coding plasmid or messenger RNA to Cas9 recombinant protein, which can be combined with in vitro transcribed or synthetic guide RNAs. Mosaicism is reported as one of the main problems with generation of animals by embryo editing. On the other hand, off-target mutations are rarely found in livestock derived from one-step editing. In this review, we discussed these and other aspects of generating gene-edited animals by single-step embryo manipulation.
Collapse
|
13
|
Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380:341-378. [PMID: 31932949 DOI: 10.1007/s00441-019-03158-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.
Collapse
|
14
|
Abstract
This chapter highlights the importance of reproductive technologies that are applied to porcine breeds. Nowadays the porcine industry, part of a high technological and specialized sector, offers high-quality protein food. The development of the swine industry is founded in the development of breeding/genetics, nutrition, animal husbandry, and animal health. The implementation of reproductive technologies in swine has conducted to levels of productivity never reached before. In addition, the pig is becoming an important species for biomedicine. The generation of pig models for human disease, xenotransplantation, or production of therapeutic proteins for human medicine has in fact generated a growing field of interest.
Collapse
|
15
|
El-Magd MA, Ghoniem AM, Helmy NM, Abdelfattah-Hassan A, Saleh AA, Abd Allah EA, Essawi WM, Kahilo KA. Effect of myostatin inhibitor (myostatin pro-peptide) microinjection on in vitro maturation and subsequent early developmental stages of buffalo embryo. Theriogenology 2019; 126:230-238. [DOI: 10.1016/j.theriogenology.2018.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
|
16
|
Lee JG, Sung YH, Baek IJ. Generation of genetically-engineered animals using engineered endonucleases. Arch Pharm Res 2018; 41:885-897. [PMID: 29777358 PMCID: PMC6153862 DOI: 10.1007/s12272-018-1037-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
The key to successful drug discovery and development is to find the most suitable animal model of human diseases for the preclinical studies. The recent emergence of engineered endonucleases is allowing for efficient and precise genome editing, which can be used to develop potentially useful animal models for human diseases. In particular, zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat systems are revolutionizing the generation of diverse genetically-engineered experimental animals including mice, rats, rabbits, dogs, pigs, and even non-human primates that are commonly used for preclinical studies of the drug discovery. Here, we describe recent advances in engineered endonucleases and their application in various laboratory animals. We also discuss the importance of genome editing in animal models for more closely mimicking human diseases.
Collapse
Affiliation(s)
- Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Lu F, Luo C, Li N, Liu Q, Wei Y, Deng H, Wang X, Li X, Jiang J, Deng Y, Shi D. Efficient Generation of Transgenic Buffalos (Bubalus bubalis) by Nuclear Transfer of Fetal Fibroblasts Expressing Enhanced Green Fluorescent Protein. Sci Rep 2018; 8:6967. [PMID: 29725050 PMCID: PMC5934360 DOI: 10.1038/s41598-018-25120-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
The possibility of producing transgenic cloned buffalos by nuclear transfer of fetal fibroblasts expressing enhanced green fluorescent protein (EGFP) was explored in this study. When buffalo fetal fibroblasts (BFFs) isolated from a male buffalo fetus were transfected with pEGFP-N1 (EGFP is driven by CMV and Neo is driven by SV-40) by means of electroporation, Lipofectamine-LTX and X-tremeGENE, the transfection efficiency of electroporation (35.5%) was higher than Lipofectamine-LTX (11.7%) and X-tremeGENE (25.4%, P < 0.05). When BFFs were transfected by means of electroporation, more embryos from BFFs transfected with pEGFP-IRES-Neo (EGFP and Neo are driven by promoter of human elongation factor) cleaved and developed to blastocysts (21.6%) compared to BFFs transfected with pEGFP-N1 (16.4%, P < 0.05). A total of 72 blastocysts were transferred into 36 recipients and six recipients became pregnant. In the end of gestation, the pregnant recipients delivered six healthy calves and one stillborn calf. These calves were confirmed to be derived from the transgenic cells by Southern blot and microsatellite analysis. These results indicate that electroporation is more efficient than lipofection in transfecting exogenous DNA into BFFs and transgenic buffalos can be produced effectively by nuclear transfer of BFFs transfected with pEGFP-IRES-Neo.
Collapse
Affiliation(s)
- Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Chan Luo
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Nan Li
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.,Reproductive Center of Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, 545001, China
| | - Qingyou Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yingming Wei
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Haiying Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Xiaoli Wang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Xiangping Li
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Jianrong Jiang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yanfei Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
18
|
Intratesticular injection followed by electroporation allows gene transfer in caprine spermatogenic cells. Sci Rep 2018; 8:3169. [PMID: 29453369 PMCID: PMC5816633 DOI: 10.1038/s41598-018-21558-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/07/2018] [Indexed: 01/09/2023] Open
Abstract
The production of transgenic livestock is constrained due to the limited success of currently available methods for transgenesis. Testis mediated gene transfer (TMGT) is an emerging method that shows a high success rate in generating transgenic mice. In this study, we report a newly developed protocol for electroporation-aided TMGT to produce a transgenic goat. The injectable volume and concentration of the transgene were first standardized, and then electroporation conditions were optimized in vitro. In vivo experiments were performed by injecting a transgenic construct (pIRES2-EGFP; enhanced green fluorescent protein) into the testicular interstitium followed by electroporation. Immunohistochemistry, quantitative real-time PCR (qPCR) and western blotting analyses confirmed the successful transfer of the transgene into seminiferous tubules and testicular cells. Furthermore, chromosomal integration of the transgene and its expression in sperm were evaluated d60 and d120 post-electroporation. Our protocol neither altered the seminal characteristics nor the fertilization capacity of the sperm cells. In vitro fertilization using transgenic sperm generated fluorescent embryos. Finally, natural mating of a pre-founder buck produced a transgenic baby goat. The present study demonstrates the first successful report of an electroporation-aided TMGT method for gene transfer in goats.
Collapse
|
19
|
Yum SY, Youn KY, Choi WJ, Jang G. Development of genome engineering technologies in cattle: from random to specific. J Anim Sci Biotechnol 2018; 9:16. [PMID: 29423215 PMCID: PMC5789629 DOI: 10.1186/s40104-018-0232-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The production of transgenic farm animals (e.g., cattle) via genome engineering for the gain or loss of gene functions is an important undertaking. In the initial stages of genome engineering, DNA micro-injection into one-cell stage embryos (zygotes) followed by embryo transfer into a recipient was performed because of the ease of the procedure. However, as this approach resulted in severe mosaicism and has a low efficiency, it is not typically employed in the cattle as priority, unlike in mice. To overcome the above issue with micro-injection in cattle, somatic cell nuclear transfer (SCNT) was introduced and successfully used to produce cloned livestock. The application of SCNT for the production of transgenic livestock represents a significant advancement, but its development speed is relatively slow because of abnormal reprogramming and low gene targeting efficiency. Recent genome editing technologies (e.g., ZFN, TALEN, and CRISPR-Cas9) have been rapidly adapted for applications in cattle and great results have been achieved in several fields such as disease models and bioreactors. In the future, genome engineering technologies will accelerate our understanding of genetic traits in bovine and will be readily adapted for bio-medical applications in cattle.
Collapse
Affiliation(s)
- Soo-Young Yum
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Ki-Young Youn
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Woo-Jae Choi
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Goo Jang
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea.,2Farm Animal Clinical Training and Research Center, Institute of GreenBio Science Technology, Seoul National University, PyeongChang-Gun, Gangwon-do 25354 Republic of Korea.,3Emergence Center for Food-Medicine Personalized Therapy System, Advanced Institutes of Convergence Technology, Seoul National University, SuWon, Gyeonggi-do 16629 Republic of Korea.,4College of Veterinary Medicine, Seoul National University, #85, Room631, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| |
Collapse
|
20
|
Perleberg C, Kind A, Schnieke A. Genetically engineered pigs as models for human disease. Dis Model Mech 2018; 11:11/1/dmm030783. [PMID: 29419487 PMCID: PMC5818075 DOI: 10.1242/dmm.030783] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetically modified animals are vital for gaining a proper understanding of disease mechanisms. Mice have long been the mainstay of basic research into a wide variety of diseases but are not always the most suitable means of translating basic knowledge into clinical application. The shortcomings of rodent preclinical studies are widely recognised, and regulatory agencies around the world now require preclinical trial data from nonrodent species. Pigs are well suited to biomedical research, sharing many similarities with humans, including body size, anatomical features, physiology and pathophysiology, and they already play an important role in translational studies. This role is set to increase as advanced genetic techniques simplify the generation of pigs with precisely tailored modifications designed to replicate lesions responsible for human disease. This article provides an overview of the most promising and clinically relevant genetically modified porcine models of human disease for translational biomedical research, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We briefly summarise the technologies involved and consider the future impact of recent technical advances. Summary: An overview of porcine models of human disease, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We summarise the technologies involved and potential future impact of recent technical advances.
Collapse
Affiliation(s)
- Carolin Perleberg
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
21
|
Generation of DKK1 transgenic Tibet minipigs by somatic cell nuclear transfer (SCNT). Oncotarget 2017; 8:74331-74339. [PMID: 29088789 PMCID: PMC5650344 DOI: 10.18632/oncotarget.20604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Hairless mice have been widely applied in skin-related researches, while hairless pigs will be a useful model for skin-related study and other biomedical researches. Dickkopf-related protein 1 (DKK1) is inhibitor of Wnt signaling pathway. Transgenic mice expressing DKK1 transgene under control of a human keratin 14 (K14) promoter display hairless phenotype, which encouraged us to generate transgenic minipigs expressing pig DKK1 transgene under control of K14 promoter and finally achieve hairless minipigs. To generate transgenic cloned pigs, we constructed the lentiviral expression vector pERKDZG which contains two independent expression cassettes, the transcription of Tibet minipig DKK1 and EGFP genes are driven by K14 promoter, while mRFP is regulated under the control of Ef-1α promoter. Prior to generating the transgenic pig, the functionality of pERKDZG construct was verified by fluorescence assay and via checking pDKK1 expression. Subsequently, lentiviruses harboring ERKDZG transgene infected porcine embryonic fibroblasts (PEFs), followed by sorting RFP-positive PEFs by flow cytometry to obtain the purified PEFs carrying ERKDZG, designated DKK1-PEFs as donor cells used for somatic cell nuclear transfer (SCNT). Finally, we obtained 3 DKK1 transgenic cloned pigs with skin-specific expression of pDKK1 and EGFP transgenes, but unfortunately, DKK1 transgenic cloned pigs don't display hairless phenotype as expected. Taken together, we achieve DKK1 transgenic cloned pigs with skin-specific expression of pDKK1 transgene which provide a pig model for exploring DKK1 gene functions in pigs.
Collapse
|
22
|
Telugu BP, Park KE, Park CH. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mamm Genome 2017; 28:338-347. [PMID: 28712062 DOI: 10.1007/s00335-017-9709-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/08/2017] [Indexed: 01/23/2023]
Abstract
Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.
Collapse
Affiliation(s)
- Bhanu P Telugu
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA. .,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA. .,RenOVAte Biosciences Inc, Reisterstown, MD, USA.
| | - Ki-Eun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA.,RenOVAte Biosciences Inc, Reisterstown, MD, USA
| | - Chi-Hun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA
| |
Collapse
|
23
|
Ectopic expression of FGF5s induces wool growth in Chinese merino sheep. Gene 2017; 627:477-483. [PMID: 28666779 DOI: 10.1016/j.gene.2017.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor 5 (FGF5) has been recognized as an inhibitor to cease animal hair growth, while in contrary, FGF5 short alternative transcript (FGF5s) can induce hair growth by antagonizing FGF5 function. To investigate the role of FGF5s in wool growth in Chinese Merino sheep, we generated transgenic sheep of ectopic expression of FGF5s by injection of recombinant lentivirus into zygote. Totally 20 transgenic sheep were obtained and 12 were alive after birth. Characterization of the transgene revealed that the transgenic sheep showed variety of integrant, ranged from 2 to 11 copies of transgene. The ectopic expression of FGF5s was observed in all transgenic sheep. Further study on the effect of ectopic expression of FGF5s revealed that the wool length of transgenic sheep were significantly longer than that of non-transgenic control, with 9.17cm of transgenic lambs versus 7.58cm of control animals. Notably, besides the increase of wool length, the yearling greasy fleece weight was also concordantly greater than that of wild-type (p<0.01), with 3.22kg of transgenic sheep versus 2.17kg of control lambs (p<0.01) in average. Our results suggested that overexpression of FGF5s could stimulate wool growth and resulted in increase of wool length and greasy wool weight.
Collapse
|
24
|
Desaulniers AT, Cederberg RA, Mills GA, Lents CA, White BR. Production of a gonadotropin-releasing hormone 2 receptor knockdown (GNRHR2 KD) swine line. Transgenic Res 2017; 26:567-575. [PMID: 28534229 PMCID: PMC5504211 DOI: 10.1007/s11248-017-0023-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/11/2017] [Indexed: 11/25/2022]
Abstract
Swine are the only livestock species that produce both the second mammalian isoform of gonadotropin-releasing hormone (GNRH2) and its receptor (GNRHR2). Previously, we reported that GNRH2 and GNRHR2 mediate LH-independent testosterone secretion from porcine testes. To further explore this ligand-receptor complex, a pig model with reduced GNRHR2 expression was developed. Small hairpin RNA sequences targeting porcine GNRHR2 were subcloned into a lentiviral-based vector, lentiviral particles were generated and microinjected into the perivitelline space of zygotes, and embryos were transferred into a recipient. One GNRHR2 knockdown (KD) female was born that subsequently produced 80 piglets from 6 litters with 46 hemizygous progeny (57% transgenic). Hemizygous GNRHR2 KD (n = 10) and littermate control (n = 7) males were monitored at 40, 100, 150, 190, 225 and 300 days of age; body weight and testis size were measured and serum was isolated and assayed for testosterone and luteinizing hormone (LH) concentrations. Body weight of GNRHR2 KD boars was not different from littermate controls (P = 0.14), but testes were smaller (P < 0.05; 331.8 vs. 374.8 cm3, respectively). Testosterone concentrations tended (P = 0.06) to be reduced in GNRHR2 KD (1.6 ng/ml) compared to littermate control (4.2 ng/ml) males, but LH levels were similar (P = 0.47). The abundance of GNRHR2 mRNA was reduced (P < 0.001) by 69% in testicular tissue from mature GNRHR2 KD (n = 5) versus littermate control (n = 4) animals. These swine represent the first genetically-engineered model to elucidate the function of GNRH2 and its receptor in mammals.
Collapse
Affiliation(s)
- A T Desaulniers
- Department of Animal Science, University of Nebraska-Lincoln, A224j Animal Science Building, 3940 Fair Street, Lincoln, NE, 68583-0908, USA
| | - R A Cederberg
- Department of Animal Science, University of Nebraska-Lincoln, A224j Animal Science Building, 3940 Fair Street, Lincoln, NE, 68583-0908, USA
| | - G A Mills
- Department of Animal Science, University of Nebraska-Lincoln, A224j Animal Science Building, 3940 Fair Street, Lincoln, NE, 68583-0908, USA
| | - C A Lents
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, 68933-0166, USA
| | - B R White
- Department of Animal Science, University of Nebraska-Lincoln, A224j Animal Science Building, 3940 Fair Street, Lincoln, NE, 68583-0908, USA.
| |
Collapse
|
25
|
Zeng F, Li Z, Cai G, Gao W, Jiang G, Liu D, Urschitz J, Moisyadi S, Wu Z. Characterization of Growth and Reproduction Performance, Transgene Integration, Expression, and Transmission Patterns in Transgenic Pigs Produced by piggyBac Transposition-Mediated Gene Transfer. Anim Biotechnol 2017; 27:245-55. [PMID: 27565868 DOI: 10.1080/10495398.2016.1178140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance and characterized the transgene insertion, transmission, and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression, and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favorable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition.
Collapse
Affiliation(s)
- Fang Zeng
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Zicong Li
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Gengyuan Cai
- c Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou , China
| | - Wenchao Gao
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Gelong Jiang
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Dewu Liu
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| | - Johann Urschitz
- d Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine , University of Hawaii at Manoa , Honolulu , Hawaii , USA
| | - Stefan Moisyadi
- d Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine , University of Hawaii at Manoa , Honolulu , Hawaii , USA.,e Manoa BioSciences , Honolulu , Hawaii , USA
| | - Zhenfang Wu
- a National Engineering Research Center for Breeding Swine Industry, College of Animal Science , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science , South China Agricultural University , Guangzhou , China
| |
Collapse
|
26
|
Abstract
In the past few years, new technologies have arisen that enable higher efficiency of gene editing. With the increase ease of using gene editing technologies, it is important to consider the best method for transferring new genetic material to livestock animals. Microinjection is a technique that has proven to be effective in mice but is less efficient in large livestock animals. Over the years, a variety of methods have been used for cloning as well as gene transfer including; nuclear transfer, sperm mediated gene transfer (SMGT), and liposome-mediated DNA transfer. This review looks at the different success rate of these methods and how they have evolved to become more efficient. As well as gene editing technologies, including Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the most recent clustered regulatory interspaced short palindromic repeats (CRISPRs). Through the advancements in gene-editing technologies, generating transgenic animals is now more accessible and affordable. The goals of producing transgenic animals are to 1) increase our understanding of biology and biomedical science; 2) increase our ability to produce more efficient animals; and 3) produce disease resistant animals. ZFNs, TALENs, and CRISPRs combined with gene transfer methods increase the possibility of achieving these goals.
Collapse
Key Words
- BLG, β-lactoglobulin
- CRISPR
- CRISPRs, clustered regulatory interspaced short palindromic repeats
- EG, embryonic germ
- ES, Embryonic stem
- ESC, Embryonic stem cell
- HDR, homology directed repair
- ICM, inner cell mass
- ICSI, intracytoplasmic sperm injection
- NHEJ, non-homologous end joining
- NT, nuclear transfers
- OBCT, oocyte bisection technique
- PAM, protospacer adjacent motif
- PCR, polymerase chain reaction
- PGCS, primordial germ cells
- RVDs, repeat variable diresidues
- SMGT
- SMGT, sperm mediated gene transfer
- SV40, simian virus 40
- TALEN
- TALENs, transcription activator-like effector nucleases
- ZFN
- ZFN, Zinc-finger nucleases
- gene editing
- gene transfer
- iPSC, induced pluripotent stem cells
- nuclear transfer
- ssODN, single strand oligo nucleotide
Collapse
Affiliation(s)
- Samantha N Lotti
- a Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Kathryn M Polkoff
- a Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Marcello Rubessa
- b Carl R. Woese Institute for Genomic Biology, University of Illinois , Urbana , IL , USA
| | - Matthew B Wheeler
- a Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA.,b Carl R. Woese Institute for Genomic Biology, University of Illinois , Urbana , IL , USA
| |
Collapse
|
27
|
Abstract
Pigs are important livestock for food and have been used in various biomedical studies, particularly translational research, as experimental animals because of their anatomical and physiological similarity to humans. The recent development of genome editing techniques, such as ZFN, TALEN, and CRISPR/Cas9, has rapidly expanded the use of genome editing tools in a variety of animals, resulting in the relatively easy and efficient generation of gene knock-out pigs. In the past few years, there has been a sustained increase in reports describing the development of genetically modified pigs. This chapter introduces our workflow for establishing the genetically modified cells (nuclear donor cells) necessary to create gene knock-out pigs using somatic cell nuclear transfer and focuses on the actual generation of gene knock-out pigs using a cytoplasmic injection method.
Collapse
Affiliation(s)
- Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan.,Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan. .,Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan.
| |
Collapse
|
28
|
Yao J, Huang J, Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet 2016; 135:1093-105. [DOI: 10.1007/s00439-016-1710-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/06/2016] [Indexed: 01/03/2023]
|
29
|
Production of germline transgenic pigs co-expressing double fluorescent proteins by lentiviral vector. Anim Reprod Sci 2016; 174:11-19. [PMID: 27639503 DOI: 10.1016/j.anireprosci.2016.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 11/23/2022]
Abstract
Genomic integration of transgene by lentiviral vector has been proved an efficient method to produce single-transgenic animals. But it failed to create multi-gene transgenic offspring. Here, we have exploited lentivirus to generate the double-transgenic piglets through the female germline. The recombinant lentivirus containing fluorescent proteins genes (DsRed1 and Venus) were injected into the perivitelline space of 2-cell stage in vitro porcine embryos. Compared to control group, there was no significantly decreased in the proportion of blastocysts, and the two fluorescent protein genes were co-expressed in almost all the injected embryos. Total of 32 injected in vitro embryos were transferred to 2 recipients. One recipient gave birth of three live offspring, and one female piglet was identified as genomic transgene integration by PCR analysis. Subsequently, the female transgenic founder was mated naturally with a wild-type boar and gave birth of two litters of total 23 F(1) generation piglets, among which Venus and DsRed1 genes were detected in 11 piglets and 10 kinds of organs by PCR and RT-PCR respectively. The co-expression of two fluorescent proteins was visible in four different frozen tissue sections from the RT-PCR positive piglets, and 3 to 5 copies of the transgenes were detected to be integrated into the second generation genome by southern blotting analysis. The transgenes were heritable and stably integrated in the F(1) generation. The results indicated for the first time that lentiviral vector combined with natural mating has the potential to become a simple and practical technology to create germline double-transgenic livestock or biomedical animals.
Collapse
|
30
|
Luchetti CG, Bevacqua RJ, Lorenzo MS, Tello MF, Willis M, Buemo CP, Lombardo DM, Salamone DF. Vesicles Cytoplasmic Injection: An Efficient Technique to Produce Porcine Transgene-Expressing Embryos. Reprod Domest Anim 2016; 51:501-8. [PMID: 27260090 DOI: 10.1111/rda.12708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/14/2016] [Indexed: 11/30/2022]
Abstract
The use of vesicles co-incubated with plasmids showed to improve the efficiency of cytoplasmic injection of transgenes in cattle. Here, this technique was tested as a simplified alternative for transgenes delivery in porcine zygotes. To this aim, cytoplasmic injection of the plasmid alone was compared to the injection with plasmids co-incubated with vesicles both in diploid parthenogenic and IVF zygotes. The plasmid pcx-egfp was injected circular (CP) at 3, 30 and 300 ng/μl and linear (LP) at 30 ng/μl. The experimental groups using parthenogenetic zygotes were as follows: CP naked at 3 ng/μl (N = 105), 30 ng/μl (N = 95) and 300 ng/μl (N = 65); Sham (N = 105); control not injected (N = 223); LP naked at 30 ng/μl (N = 78); LP vesicles (N = 115) and Sham vesicles (N = 59). For IVF zygotes: LP naked (N = 44) LP vesicles (N = 94), Sham (N = 59) and control (N = 79). Cleavage, blastocyst and GFP+ rates were analysed by Fisher's test (p < 0.05). The parthenogenic CP naked group showed lower cleavage respect to control (p < 0.05). The highest concentration of plasmids to allow development to blastocyst stage was 30 ng/μl. There were no differences in DNA fragmentation between groups. The parthenogenic LP naked group resulted in high GFP rates (46%) and also allowed the production of GFP blastocysts (33%). The cytoplasmic injection with LP vesicles into parthenogenic zygotes allowed 100% GFP blastocysts. Injected IVF showed higher cleavage rates than control (p < 0.05). In IVF zygotes, only the use of vesicles produced GFP blastocysts. The use of vesicles co-incubated with plasmids improves the transgene expression efficiency for cytoplasmic injection in porcine zygotes and constitutes a simple technique for easy delivery of plasmids.
Collapse
Affiliation(s)
- C G Luchetti
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - R J Bevacqua
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - M S Lorenzo
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - M F Tello
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - M Willis
- Centro de Estudios Biomedicos, Biotecnologicos, Ambientales y Diagnostico (CEBBAD), Universidad Maimonides, Ciudad Autónoma de Buenos Aires, Argentina
| | - C P Buemo
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - D M Lombardo
- Cátedra de Histología y Embriología, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - D F Salamone
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
31
|
Renner S, Dobenecker B, Blutke A, Zöls S, Wanke R, Ritzmann M, Wolf E. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology 2016; 86:406-21. [PMID: 27180329 DOI: 10.1016/j.theriogenology.2016.04.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022]
Abstract
The prevalence of diabetes mellitus, which currently affects 387 million people worldwide, is permanently rising in both adults and adolescents. Despite numerous treatment options, diabetes mellitus is a progressive disease with severe comorbidities, such as nephropathy, neuropathy, and retinopathy, as well as cardiovascular disease. Therefore, animal models predictive of the efficacy and safety of novel compounds in humans are of great value to address the unmet need for improved therapeutics. Although rodent models provide important mechanistic insights, their predictive value for therapeutic outcomes in humans is limited. In recent years, the pig has gained importance for biomedical research because of its close similarity to human anatomy, physiology, size, and, in contrast to non-human primates, better ethical acceptance. In this review, anatomic, biochemical, physiological, and morphologic aspects relevant to diabetes research will be compared between different animal species, that is, mouse, rat, rabbit, pig, and non-human primates. The value of the pig as a model organism for diabetes research will be highlighted, and (dis)advantages of the currently available approaches for the generation of pig models exhibiting characteristics of metabolic syndrome or type 2 diabetes mellitus will be discussed.
Collapse
Affiliation(s)
- Simone Renner
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany.
| | - Britta Dobenecker
- Chair of Animal Nutrition and Dietetics, Department of Veterinary Science, LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Susanne Zöls
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Mathias Ritzmann
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
32
|
New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology 2016; 86:160-9. [PMID: 27155732 DOI: 10.1016/j.theriogenology.2016.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/08/2015] [Accepted: 03/14/2016] [Indexed: 01/20/2023]
Abstract
Genetically engineered sheep and goats represent useful models applied to proof of concepts, large-scale production of novel products or processes, and improvement of animal traits, which is of interest in biomedicine, biopharma, and livestock. This disruptive biotechnology arose in the 80s by injecting DNA fragments into the pronucleus of zygote-staged embryos. Pronuclear microinjection set the transgenic concept into people's mind but was characterized by inefficient and often frustrating results mostly because of uncontrolled and/or random integration and unpredictable transgene expression. Somatic cell nuclear transfer launched the second wave in the late 90s, solving several weaknesses of the previous technique by making feasible the transfer of a genetically modified and fully characterized cell into an enucleated oocyte, capable of cell reprogramming to generate genetically engineered animals. Important advances were also achieved during the 2000s with the arrival of new techniques like the lentivirus system, transposons, RNA interference, site-specific recombinases, and sperm-mediated transgenesis. We are now living the irruption of the third technological wave in which genome edition is possible by using endonucleases, particularly the CRISPR/Cas system. Sheep and goats were recently produced by CRISPR/Cas9, and for sure, cattle will be reported soon. We will see new genetically engineered farm animals produced by homologous recombination, multiple gene editing in one-step generation and conditional modifications, among other advancements. In the following decade, genome edition will continue expanding our technical possibilities, which will contribute to the advancement of science, the development of clinical or commercial applications, and the improvement of people's life quality around the world.
Collapse
|
33
|
Doran TJ, Cooper CA, Jenkins KA, Tizard MLV. Advances in genetic engineering of the avian genome: "Realising the promise". Transgenic Res 2016; 25:307-19. [PMID: 26820412 DOI: 10.1007/s11248-016-9926-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
This review provides an historic perspective of the key steps from those reported at the 1st Transgenic Animal Research Conference in 1997 through to the very latest developments in avian transgenesis. Eighteen years later, on the occasion of the 10th conference in this series, we have seen breakthrough advances in the use of viral vectors and transposons to transform the germline via the direct manipulation of the chicken embryo, through to the establishment of PGC cultures allowing in vitro modification, expansion into populations to analyse the genetic modifications and then injection of these cells into embryos to create germline chimeras. We have now reached an unprecedented time in the history of chicken transgenic research where we have the technology to introduce precise, targeted modifications into the chicken genome, ranging from; new transgenes that provide improved phenotypes such as increased resilience to economically important diseases; the targeted disruption of immunoglobulin genes and replacement with human sequences to generate transgenic chickens that express "humanised" antibodies for biopharming; and the deletion of specific nucleotides to generate targeted gene knockout chickens for functional genomics. The impact of these advances is set to be realised through applications in chickens, and other bird species as models in scientific research, for novel biotechnology and to protect and improve agricultural productivity.
Collapse
Affiliation(s)
- Timothy J Doran
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Private Bag 24, Geelong, VIC, 3220, Australia.
| | - Caitlin A Cooper
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Private Bag 24, Geelong, VIC, 3220, Australia
| | - Kristie A Jenkins
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Private Bag 24, Geelong, VIC, 3220, Australia
| | - Mark L V Tizard
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Private Bag 24, Geelong, VIC, 3220, Australia
| |
Collapse
|
34
|
Abbasi H, Hosseini SM, Hajian M, Nasiri Z, Bahadorani M, Tahmoorespur M, Nasiri MR, Nasr-Esfahani MH. Lentiviral vector-mediated transduction of goat undifferentiated spermatogonia. Anim Reprod Sci 2015; 163:10-7. [DOI: 10.1016/j.anireprosci.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 08/05/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022]
|
35
|
Meng F, Li H, Wang X, Qin G, Oback B, Shi D. Optimized production of transgenic buffalo embryos and offspring by cytoplasmic zygote injection. J Anim Sci Biotechnol 2015; 6:44. [PMID: 26500768 PMCID: PMC4617447 DOI: 10.1186/s40104-015-0044-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/29/2015] [Indexed: 12/05/2022] Open
Abstract
Background Cytoplasmic injection of exogenous DNA into zygotes is a promising technique to generate transgenic livestock. However, it is still relatively inefficient and has not yet been demonstrated to work in buffalo. We sought to improve two key technical parameters of the procedure, namely i) how much linear DNA to inject and ii) when to inject it. For this, we introduced a constitutively expressed enhanced green fluorescent protein (EGFP) plasmid into buffalo zygotes. Results First, we found that the proportion of EGFP-expressing blastocysts derived from zygotes injected with 20 or 50 ng/μL DNA was significantly higher than from those injected with 5 μg/mL. However, 50 ng/μL exogenous DNA compromised blastocyst development compared to non-injected IVF controls. Therefore the highest net yield of EGFP-positive blastocysts was achieved at 20 ng/μL DNA. Second, zygotes injected early (7–8 h post-insemination [hpi]) developed better than those injected at mid (12–13 hpi) or late (18–19 hpi) time points. Blastocysts derived from early injections were also more frequently EGFP-positive. As a consequence, the net yield of EGFP-expressing blastocysts was more than doubled using early vs late injections (16.4 % vs 7.7 %). With respect to blastocyst quality, we found no significant difference in cell numbers of EGFP-positive blastocysts vs non-injected blastocysts. Following embryo transfer of six EGFP-positive blastocysts into four recipient animals, two viable buffalo calves were born. Biopsied ear tissues from both buffalo calves were analyzed for transgene presence and expression by Southern blot, PCR and confocal laser scanning microscopy, respectively. This confirmed that both calves were transgenic. Conclusions Our cytoplasmic injection protocol improved generation of transgenic embryos and resulted in the first transgenic buffalo calves produced by this method.
Collapse
Affiliation(s)
- Fanli Meng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 75 Xiuling Road, Nanning, 530005 P.R China ; Present address: AgResearch Ltd., Ruakura Research Centre, Reproductive Technologies, 10 Bisley Road, Private Bag 3123, Hamilton, New Zealand
| | - Hui Li
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 75 Xiuling Road, Nanning, 530005 P.R China
| | - Xiaoli Wang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 75 Xiuling Road, Nanning, 530005 P.R China
| | - Guangsheng Qin
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 75 Xiuling Road, Nanning, 530005 P.R China
| | - Björn Oback
- Present address: AgResearch Ltd., Ruakura Research Centre, Reproductive Technologies, 10 Bisley Road, Private Bag 3123, Hamilton, New Zealand
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 75 Xiuling Road, Nanning, 530005 P.R China
| |
Collapse
|
36
|
Watanabe M, Kobayashi M, Nagaya M, Matsunari H, Nakano K, Maehara M, Hayashida G, Takayanagi S, Sakai R, Umeyama K, Watanabe N, Onodera M, Nagashima H. Production of transgenic cloned pigs expressing the far-red fluorescent protein monomeric Plum. J Reprod Dev 2015; 61:169-177. [PMID: 25739316 PMCID: PMC4498373 DOI: 10.1262/jrd.2014-153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/31/2014] [Indexed: 12/22/2022] Open
Abstract
Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36-37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.
Collapse
Affiliation(s)
- Masahito Watanabe
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Abstract
Traditional methods for DNA transfection are often inefficient and toxic for terminally differentiated cells, such as cardiac myocytes. Vector-based gene transfer is an efficient approach for introducing exogenous cDNA into these types of primary cell cultures. In this chapter, separate protocols for adult rat cardiac myocyte isolation and gene transfer with recombinant adenovirus are provided and are routinely utilized for studying the effects of sarcomeric proteins on myofilament function.
Collapse
|
39
|
Dmochewitz M, Wolf E. Genetic engineering of pigs for the creation of translational models of human pathologies. Anim Front 2015. [DOI: 10.2527/af.2015-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michaela Dmochewitz
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
40
|
|
41
|
Wang Y, Zhou XY, Xiang PY, Wang LL, Tang H, Xie F, Li L, Wei H. The meganuclease I-SceI containing nuclear localization signal (NLS-I-SceI) efficiently mediated mammalian germline transgenesis via embryo cytoplasmic microinjection. PLoS One 2014; 9:e108347. [PMID: 25250567 PMCID: PMC4177210 DOI: 10.1371/journal.pone.0108347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/18/2014] [Indexed: 12/23/2022] Open
Abstract
The meganuclease I-SceI has been effectively used to facilitate transgenesis in fish eggs for nearly a decade. I-SceI-mediated transgenesis is simply via embryo cytoplasmic microinjection and only involves plasmid vectors containing I-SceI recognition sequences, therefore regarding the transgenesis process and application of resulted transgenic organisms, I-SceI-mediated transgenesis is of minimal bio-safety concerns. However, currently no transgenic mammals derived from I-SceI-mediated transgenesis have been reported. In this work, we found that the native I-SceI molecule was not capable of facilitating transgenesis in mammalian embryos via cytoplasmic microinjection as it did in fish eggs. In contrast, the I-SceI molecule containing mammalian nuclear localization signal (NLS-I-SceI) was shown to be capable of transferring DNA fragments from cytoplasm into nuclear in porcine embryos, and cytoplasmic microinjection with NLS-I-SceI mRNA and circular I-SceI recognition sequence-containing transgene plasmids resulted in transgene expression in both mouse and porcine embryos. Besides, transfer of the cytoplasmically microinjected mouse and porcine embryos into synchronized recipient females both efficiently resulted in transgenic founders with germline transmission competence. These results provided a novel method to facilitate mammalian transgenesis using I-SceI, and using the NLS-I-SceI molecule, a simple, efficient and species-neutral transgenesis technology based on embryo cytoplasmic microinjection with minimal bio-safety concerns can be established for mammalian species. As far as we know, this is the first report for transgenic mammals derived from I-SceI-mediated transgenesis via embryo cytoplasmic microinjection.
Collapse
Affiliation(s)
- Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
- * E-mail: (YW); (HW)
| | - Xiao-Yang Zhou
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Peng-Ying Xiang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Lu-Lu Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Huan Tang
- China Three Gorges Museum, Chongqing, China
| | - Fei Xie
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Liang Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
- * E-mail: (YW); (HW)
| |
Collapse
|
42
|
Garas LC, Murray JD, Maga EA. Genetically engineered livestock: ethical use for food and medical models. Annu Rev Anim Biosci 2014; 3:559-75. [PMID: 25387117 DOI: 10.1146/annurev-animal-022114-110739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in the production of genetically engineered (GE) livestock have resulted in a variety of new transgenic animals with desirable production and composition changes. GE animals have been generated to improve growth efficiency, food composition, and disease resistance in domesticated livestock species. GE animals are also used to produce pharmaceuticals and as medical models for human diseases. The potential use of these food animals for human consumption has prompted an intense debate about food safety and animal welfare concerns with the GE approach. Additionally, public perception and ethical concerns about their use have caused delays in establishing a clear and efficient regulatory approval process. Ethically, there are far-reaching implications of not using genetically engineered livestock, at a detriment to both producers and consumers, as use of this technology can improve both human and animal health and welfare.
Collapse
|
43
|
Park KE, Telugu BPVL. Role of stem cells in large animal genetic engineering in the TALENs-CRISPR era. Reprod Fertil Dev 2014; 26:65-73. [PMID: 24305178 DOI: 10.1071/rd13258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The establishment of embryonic stem cells (ESCs) and gene targeting technologies in mice has revolutionised the field of genetics. The relative ease with which genes can be knocked out, and exogenous sequences introduced, has allowed the mouse to become the prime model for deciphering the genetic code. Not surprisingly, the lack of authentic ESCs has hampered the livestock genetics field and has forced animal scientists into adapting alternative technologies for genetic engineering. The recent discovery of the creation of induced pluripotent stem cells (iPSCs) by upregulation of a handful of reprogramming genes has offered renewed enthusiasm to animal geneticists. However, much like ESCs, establishing authentic iPSCs from the domestic animals is still beset with problems, including (but not limited to) the persistent expression of reprogramming genes and the lack of proven potential for differentiation into target cell types both in vitro and in vivo. Site-specific nucleases comprised of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulated interspaced short palindromic repeats (CRISPRs) emerged as powerful genetic tools for precisely editing the genome, usurping the need for ESC-based genetic modifications even in the mouse. In this article, in the aftermath of these powerful genome editing technologies, the role of pluripotent stem cells in livestock genetics is discussed.
Collapse
Affiliation(s)
- Ki-Eun Park
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
44
|
Embryo development, fetal growth and postnatal phenotype of eGFP lambs generated by lentiviral transgenesis. Transgenic Res 2014; 24:31-41. [PMID: 25048992 DOI: 10.1007/s11248-014-9816-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Lentiviral technology has been recently proposed to generate transgenic farm animals more efficiently and easier than traditional techniques. The objective was to evaluate several parameters of lambs obtained by lentiviral transgenesis in comparison with non-transgenic counterparts. In vitro produced embryos were microinjected (TG group) at two-cell stage with a lentiviral construct containing enhanced green fluorescent protein (eGFP) gene, while embryos produced by in vitro fertilization (IVF group) or intrauterine insemination (IUI group) were not microinjected. Microinjection technique efficiently generated eight-cell transgenic embryos (97.4%; 114/117). Development rate on day 5 after fertilization was similar for TG (39.3%, 46/117) and IVF embryos (39.6%, 44/111). Pregnancy rate was detected in 50.0% (6/12) of recipient ewes with TG embryos, in 46.7% (7/15) with IVF embryos, and in 65.0% (13/20) of IUI ewes (P = NS). Nine lambs were born in TG group, six lambs in IVF group, and 16 lambs in IUI group. All TG lambs (9/9) were GFP positive to real-time PCR and eight (88.9%) showed a strong and evident GFP expression in mucosae, eyes and keratin tissues. Fetal growth monitored every 15 day by ultrasonography did not show significant differences. Transgenic lambs neither differ in morphometric variables in comparison with non transgenic IVF lambs within 3 months after birth. Transmission of the transgene to the progeny was observed in green fluorescent embryos produced by IVF using semen from the TG founder lambs. In conclusion, this study demonstrates the high efficiency of lentiviral technology to produce transgenic sheep, with no clinic differences in comparison with non transgenic lambs.
Collapse
|
45
|
Li Z, Zeng F, Meng F, Xu Z, Zhang X, Huang X, Tang F, Gao W, Shi J, He X, Liu D, Wang C, Urschitz J, Moisyadi S, Wu Z. Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids. Biol Reprod 2014; 90:93. [PMID: 24671876 DOI: 10.1095/biolreprod.113.116905] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The process of transgenesis involves the introduction of a foreign gene, the transgene, into the genome of an animal. Gene transfer by pronuclear microinjection (PNI) is the predominant method used to produce transgenic animals. However, this technique does not always result in germline transgenic offspring and has a low success rate for livestock. Alternate approaches, such as somatic cell nuclear transfer using transgenic fibroblasts, do not show an increase in efficiency compared to PNI, while viral-based transgenesis is hampered by issues regarding transgene size and biosafety considerations. We have recently described highly successful transgenesis experiments with mice using a piggyBac transposase-based vector, pmhyGENIE-3. This construct, a single and self-inactivating plasmid, contains all the transpositional elements necessary for successful gene transfer. In this series of experiments, our laboratories have implemented cytoplasmic injection (CTI) of pmGENIE-3 for transgene delivery into in vivo-fertilized pig zygotes. More than 8.00% of the injected embryos developed into transgenic animals containing monogenic and often single transgenes in their genome. However, the CTI technique was unsuccessful during the injection of in vitro-fertilized pig zygotes. In summary, here we have described a method that is not only easy to implement, but also demonstrated the highest efficiency rate for nonviral livestock transgenesis.
Collapse
Affiliation(s)
- Zicong Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Takahashi T, Hanazawa K, Inoue T, Sato K, Sedohara A, Okahara J, Suemizu H, Yagihashi C, Yamamoto M, Eto T, Konno Y, Okano H, Suematsu M, Sasaki E. Birth of healthy offspring following ICSI in in vitro-matured common marmoset (Callithrix jacchus) oocytes. PLoS One 2014; 9:e95560. [PMID: 24751978 PMCID: PMC3994092 DOI: 10.1371/journal.pone.0095560] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/27/2014] [Indexed: 11/18/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI), an important method used to treat male subfertility, is applied in the transgenic technology of sperm-mediated gene transfer. However, no study has described successful generation of offspring using ICSI in the common marmoset, a small non-human primate used as a model for biomedical translational research. In this study, we investigated blastocyst development and the subsequent live offspring stages of marmoset oocytes matured in vitro and fertilized by ICSI. To investigate the optimal timing of performing ICSI, corrected immature oocytes were matured in vitro and ICSI was performed at various time points (1–2 h, 2–4 h, 4–6 h, 6–8 h, and 8–10 h after extrusion of the first polar body (PB)). Matured oocytes were then divided randomly into two groups: one was used for in vitro fertilization (IVF) and the other for ICSI. To investigate in vivo development of embryos followed by ICSI, 6-cell- to 8-cell-stage embryos and blastocysts were nonsurgically transferred into recipient marmosets. Although no significant differences were observed in the fertilization rate of blastocysts among ICSI timing after the first PB extrusion, the blastocyst rate at 1–2 h was lowest among groups at 2–4 h, 4–6 h, 6–8 h, and 8–10 h. Comparing ICSI to IVF, the fertilization rates obtained in ICSI were higher than in IVF (p>0.05). No significant difference was noted in the cleaved blastocyst rate between ICSI and IVF. Following the transfer of 37 ICSI blastocysts, 4 of 20 recipients became pregnant, while with the transfer of 21 6-cell- to 8-cell-stage ICSI embryos, 3 of 8 recipients became pregnant. Four healthy offspring were produced and grew normally. These are the first marmoset offspring produced by ICSI, making it an effective fertilization method for marmosets.
Collapse
Affiliation(s)
- Tsukasa Takahashi
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kisaburo Hanazawa
- Department of Oncology, Juntendo University Nerima Hospital, Nerima-ku, Tokyo, Japan
| | - Takashi Inoue
- Marmoset Research Department, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Kenya Sato
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Ayako Sedohara
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Junko Okahara
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Hiroshi Suemizu
- Department of Biomedical Research, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Chie Yagihashi
- Department of Biomedical Research, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Masafumi Yamamoto
- Department of Biomedical Research, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Tomoo Eto
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Yusuke Konno
- Altair Corporation, Kohoku-ku, Yokohama-shi, Kanagawa, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa, Japan
- Keio Advanced Research Center, Keio University, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
47
|
Dolezalova D, Hruska-Plochan M, Bjarkam CR, Sørensen JCH, Cunningham M, Weingarten D, Ciacci JD, Juhas S, Juhasova J, Motlik J, Hefferan MP, Hazel T, Johe K, Carromeu C, Muotri A, Bui J, Strnadel J, Marsala M. Pig models of neurodegenerative disorders: Utilization in cell replacement-based preclinical safety and efficacy studies. J Comp Neurol 2014; 522:2784-801. [DOI: 10.1002/cne.23575] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Dasa Dolezalova
- Department of Anesthesiology; University of California; San Diego La Jolla CA USA
| | | | - Carsten R. Bjarkam
- Department of Neurosurgery; Aalborg University Hospital; Aalborg Denmark
- Department of Biomedicine; Institute of Anatomy, University of Aarhus; Aarhus Denmark
| | | | - Miles Cunningham
- MRC 312, McLean Hospital, Harvard Medical School; Belmont MA 02478 USA
| | - David Weingarten
- UCSD Division of Neurosurgery; University of California; San Diego CA USA
| | - Joseph D. Ciacci
- UCSD Division of Neurosurgery; University of California; San Diego CA USA
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | | | | | | | - Cassiano Carromeu
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Alysson Muotri
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Jack Bui
- Department of Pathology; University of California; San Diego CA USA
| | - Jan Strnadel
- Department of Pathology; University of California; San Diego CA USA
| | - Martin Marsala
- Department of Anesthesiology; University of California; San Diego La Jolla CA USA
- Institute of Neurobiology, Slovak Academy of Sciences; Kosice Slovakia
| |
Collapse
|
48
|
Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nat Protoc 2014; 9:810-27. [DOI: 10.1038/nprot.2014.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Larsson HM, Gorostidi F, Hubbell JA, Barrandon Y, Frey P. Clonal, self-renewing and differentiating human and porcine urothelial cells, a novel stem cell population. PLoS One 2014; 9:e90006. [PMID: 24587183 PMCID: PMC3935977 DOI: 10.1371/journal.pone.0090006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 01/01/2023] Open
Abstract
Although urothelial progenitor-like cells have been described in the human urinary tract, the existence of stem cells remains to be proven. Using a culture system that favors clonogenic epithelial cell growth, we evaluated and characterized clonal human urothelial cells. We isolated human urothelial cells that were clonogenic, capable of self-renewal and could develop into fully differentiated urothelium once re-implanted into the subcapsular space of nude mice. In addition to final urothelial cell differentiation, spontaneous formation of bladder-like microstructures was observed. By examining an epithelial stem cell signature marker, we found p63 to correlate with the self-renewal capacity of the isolated human urothelial clonal populations. Since a clinically relevant, long-term model for functional reconstitution of human cells does not exist, we sought to establish a culture method for porcine urothelial cells in a clinically relevant porcine model. We isolated cells from porcine ureter, urethra and bladder that were clonogenic and capable of self-renewal and differentiation into fully mature urothelium. In conclusion, we could isolate human and porcine cell populations, behaving as urothelial stem cells and showing clonogenicity, self-renewal and, once re-implanted, morphological differentiation.
Collapse
Affiliation(s)
- Hans M. Larsson
- Laboratory for Regenerative Medicine and Pharmacobiology, Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Francois Gorostidi
- Laboratory of Experimental Surgery, Department of Experimental Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Laboratory of Stem Cell Dynamics, Institute for Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A. Hubbell
- Laboratory for Regenerative Medicine and Pharmacobiology, Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yann Barrandon
- Laboratory of Experimental Surgery, Department of Experimental Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Laboratory of Stem Cell Dynamics, Institute for Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Peter Frey
- Laboratory for Regenerative Medicine and Pharmacobiology, Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory of Experimental Pediatric Urology, Department of Pediatric Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
50
|
Chandrashekran A, Sarkar R, Thrasher A, Fraser SE, Dibb N, Casimir C, Winston R, Readhead C. Efficient generation of transgenic mice by lentivirus‐mediated modification of spermatozoa. FASEB J 2013; 28:569-76. [DOI: 10.1096/fj.13-233999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anil Chandrashekran
- Department of Surgery and CancerDivision of CancerInstitute of Reproductive and Developmental Biology (IRDB)Imperial College LondonLondonUK
| | - Rupa Sarkar
- Department of Surgery and CancerDivision of CancerInstitute of Reproductive and Developmental Biology (IRDB)Imperial College LondonLondonUK
| | - Adrian Thrasher
- Molecular Immunology UnitUniversity College London Institute of Child HealthLondonUK
| | - Scott E. Fraser
- Biological Imaging CenterBeckman InstituteCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Nicholas Dibb
- Department of Surgery and CancerDivision of CancerInstitute of Reproductive and Developmental Biology (IRDB)Imperial College LondonLondonUK
| | - Colin Casimir
- Department of Natural SciencesSchool of Science and TechnologyMiddlesex UniversityLondonUK
| | - Robert Winston
- Department of Surgery and CancerDivision of CancerInstitute of Reproductive and Developmental Biology (IRDB)Imperial College LondonLondonUK
| | - Carol Readhead
- Biological Imaging CenterBeckman InstituteCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|