1
|
Blaimschein N, Parameswaran H, Nagler G, Manioglu S, Helenius J, Ardelean C, Kuhn A, Guan L, Müller DJ. The insertase YidC chaperones the polytopic membrane protein MelB inserting and folding simultaneously from both termini. Structure 2023; 31:1419-1430.e5. [PMID: 37708891 PMCID: PMC10840855 DOI: 10.1016/j.str.2023.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
The insertion and folding of proteins into membranes is crucial for cell viability. Yet, the detailed contributions of insertases remain elusive. Here, we monitor how the insertase YidC guides the folding of the polytopic melibiose permease MelB into membranes. In vivo experiments using conditionally depleted E. coli strains show that MelB can insert in the absence of SecYEG if YidC resides in the cytoplasmic membrane. In vitro single-molecule force spectroscopy reveals that the MelB substrate itself forms two folding cores from which structural segments insert stepwise into the membrane. However, misfolding dominates, particularly in structural regions that interface the pseudo-symmetric α-helical domains of MelB. Here, YidC takes an important role in accelerating and chaperoning the stepwise insertion and folding process of both MelB folding cores. Our findings reveal a great flexibility of the chaperoning and insertase activity of YidC in the multifaceted folding processes of complex polytopic membrane proteins.
Collapse
Affiliation(s)
- Nina Blaimschein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Hariharan Parameswaran
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gisela Nagler
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | | | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland.
| |
Collapse
|
2
|
Wijesinghe WCB, Min D. Single-Molecule Force Spectroscopy of Membrane Protein Folding. J Mol Biol 2023; 435:167975. [PMID: 37330286 DOI: 10.1016/j.jmb.2023.167975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/19/2023]
Abstract
Single-molecule force spectroscopy is a unique method that can probe the structural changes of single proteins at a high spatiotemporal resolution while mechanically manipulating them over a wide force range. Here, we review the current understanding of membrane protein folding learned by using the force spectroscopy approach. Membrane protein folding in lipid bilayers is one of the most complex biological processes in which diverse lipid molecules and chaperone proteins are intricately involved. The approach of single protein forced unfolding in lipid bilayers has produced important findings and insights into membrane protein folding. This review provides an overview of the forced unfolding approach, including recent achievements and technical advances. Progress in the methods can reveal more interesting cases of membrane protein folding and clarify general mechanisms and principles.
Collapse
Affiliation(s)
- W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Winkelmann I, Uzdavinys P, Kenney IM, Brock J, Meier PF, Wagner LM, Gabriel F, Jung S, Matsuoka R, von Ballmoos C, Beckstein O, Drew D. Crystal structure of the Na +/H + antiporter NhaA at active pH reveals the mechanistic basis for pH sensing. Nat Commun 2022; 13:6383. [PMID: 36289233 PMCID: PMC9606361 DOI: 10.1038/s41467-022-34120-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
The strict exchange of protons for sodium ions across cell membranes by Na+/H+ exchangers is a fundamental mechanism for cell homeostasis. At active pH, Na+/H+ exchange can be modelled as competition between H+ and Na+ to an ion-binding site, harbouring either one or two aspartic-acid residues. Nevertheless, extensive analysis on the model Na+/H+ antiporter NhaA from Escherichia coli, has shown that residues on the cytoplasmic surface, termed the pH sensor, shifts the pH at which NhaA becomes active. It was unclear how to incorporate the pH senor model into an alternating-access mechanism based on the NhaA structure at inactive pH 4. Here, we report the crystal structure of NhaA at active pH 6.5, and to an improved resolution of 2.2 Å. We show that at pH 6.5, residues in the pH sensor rearrange to form new salt-bridge interactions involving key histidine residues that widen the inward-facing cavity. What we now refer to as a pH gate, triggers a conformational change that enables water and Na+ to access the ion-binding site, as supported by molecular dynamics (MD) simulations. Our work highlights a unique, channel-like switch prior to substrate translocation in a secondary-active transporter.
Collapse
Affiliation(s)
- Iven Winkelmann
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Povilas Uzdavinys
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ian M. Kenney
- grid.215654.10000 0001 2151 2636Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ 85287 USA
| | - Joseph Brock
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pascal F. Meier
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lina-Marie Wagner
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Florian Gabriel
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sukkyeong Jung
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Rei Matsuoka
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Christoph von Ballmoos
- grid.5734.50000 0001 0726 5157Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Oliver Beckstein
- grid.215654.10000 0001 2151 2636Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ 85287 USA
| | - David Drew
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Sonar P, Bellucci L, Mossa A, Heidarsson PO, Kragelund BB, Cecconi C. Effects of Ligand Binding on the Energy Landscape of Acyl-CoA-Binding Protein. Biophys J 2020; 119:1821-1832. [PMID: 33080224 PMCID: PMC7677128 DOI: 10.1016/j.bpj.2020.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Binding of ligands is often crucial for function yet the effects of ligand binding on the mechanical stability and energy landscape of proteins are incompletely understood. Here, we use a combination of single-molecule optical tweezers and MD simulations to investigate the effect of ligand binding on the energy landscape of acyl-coenzyme A (CoA)-binding protein (ACBP). ACBP is a topologically simple and highly conserved four-α-helix bundle protein that acts as an intracellular transporter and buffer for fatty-acyl-CoA and is active in membrane assembly. We have previously described the behavior of ACBP under tension, revealing a highly extended transition state (TS) located almost halfway between the unfolded and native states. Here, we performed force-ramp and force-jump experiments, in combination with advanced statistical analysis, to show that octanoyl-CoA binding increases the activation free energy for the unfolding reaction of ACBP without affecting the position of the transition state along the reaction coordinate. It follows that ligand binding enhances the mechanical resistance and thermodynamic stability of the protein, without changing its mechanical compliance. Steered molecular dynamics simulations allowed us to rationalize the results in terms of key interactions that octanoyl-CoA establishes with the four α-helices of ACBP and showed that the unfolding pathway is marginally affected by the ligand. The results show that ligand-induced mechanical stabilization effects can be complex and may prove useful for the rational design of stabilizing ligands.
Collapse
Affiliation(s)
- Punam Sonar
- Physik-Department E22, Technische Universität München, Garching Germany
| | - Luca Bellucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Alessandro Mossa
- INFN Firenze, Sesto Fiorentino, Italy; Istituto Statale di Istruzione Superiore "Leonardo da Vinci", Firenze, Italy.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy; Center S3, CNR Institute Nanoscience, Modena, Italy.
| |
Collapse
|
5
|
Imaging and Force Spectroscopy of Single Transmembrane Proteins with the Atomic Force Microscope. Methods Mol Biol 2020. [PMID: 31218616 DOI: 10.1007/978-1-4939-9512-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The atomic force microscope (AFM) has opened avenues and provided opportunities to investigate biological soft matter and processes ranging from nanometer (nm) to millimeter (mm). The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever-aptly termed as a "lab on a tip"-can be used as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples have convincingly established AFM as a tool to study the mechanical properties and monitor processes of single proteins and cells with high sensitivity, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of transmembrane proteins in a lipid bilayer (reconstituted or native). Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theory and practical skills.
Collapse
|
6
|
Spoerri PM, Kato HE, Pfreundschuh M, Mari SA, Serdiuk T, Thoma J, Sapra KT, Zhang C, Kobilka BK, Müller DJ. Structural Properties of the Human Protease-Activated Receptor 1 Changing by a Strong Antagonist. Structure 2018; 26:829-838.e4. [DOI: 10.1016/j.str.2018.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/16/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
|
7
|
Differences in the mechanical unfolding pathways of apo- and copper-bound azurins. Sci Rep 2018; 8:1989. [PMID: 29386517 PMCID: PMC5792602 DOI: 10.1038/s41598-018-19755-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/30/2017] [Indexed: 01/20/2023] Open
Abstract
Metalloproteins carry out diverse biological functions including metal transport, electron transfer, and catalysis. At present, the influence of metal cofactors on metalloprotein stability is not well understood. Here, we report the mechanical stability and unfolding pathway of azurin, a cupredoxin family protein with β-barrel topology and type I copper-binding centre. Single-molecule force spectroscopy (SMFS) experiments reveal 2-state and 3-state unfolding pathways for apo-azurin. The intermediate in the 3-state pathway occurs at an unfolding contour length of 7.5 nm from the native state. Steered molecular dynamics (SMD) simulations show that apo-azurin unfolds via a first transition state (TS) where β2Β–β8 and β7–β8 strand pairs rupture to form the intermediate, which subsequently unfolds by the collective rupture of remaining strands. SMFS experiments on holo-azurin exhibit an additional 4-state pathway besides the 2-state and 3-state pathways. The unfolding contour length leading to the first intermediate is 6.7 nm suggesting a sequestration of ~1 nm polypeptide chain length by the copper. SMD simulations reveal atomistic details of the copper sequestration and predict a combined β4–β7 pair and copper coordination sphere rupture to create the third TS in the 4-state pathway. Our systematic studies provide detailed mechanistic insights on modulation of protein mechanical properties by metal-cofactors.
Collapse
|
8
|
Laskowski PR, Pfreundschuh M, Stauffer M, Ucurum Z, Fotiadis D, Müller DJ. High-Resolution Imaging and Multiparametric Characterization of Native Membranes by Combining Confocal Microscopy and an Atomic Force Microscopy-Based Toolbox. ACS NANO 2017; 11:8292-8301. [PMID: 28745869 DOI: 10.1021/acsnano.7b03456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To understand how membrane proteins function requires characterizing their structure, assembly, and inter- and intramolecular interactions in physiologically relevant conditions. Conventionally, such multiparametric insight is revealed by applying different biophysical methods. Here we introduce the combination of confocal microscopy, force-distance curve-based (FD-based) atomic force microscopy (AFM), and single-molecule force spectroscopy (SMFS) for the identification of native membranes and the subsequent multiparametric analysis of their membrane proteins. As a well-studied model system, we use native purple membrane from Halobacterium salinarum, whose membrane protein bacteriorhodopsin was His-tagged to bind nitrilotriacetate (NTA) ligands. First, by confocal microscopy we localize the extracellular and cytoplasmic surfaces of purple membrane. Then, we apply AFM to image single bacteriorhodopsins approaching sub-nanometer resolution. Afterwards, the binding of NTA ligands to bacteriorhodopsins is localized and quantified by FD-based AFM. Finally, we apply AFM-based SMFS to characterize the (un)folding of the membrane protein and to structurally map inter- and intramolecular interactions. The multimethodological approach is generally applicable to characterize biological membranes and membrane proteins at physiologically relevant conditions.
Collapse
Affiliation(s)
- Pawel R Laskowski
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| | - Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| | - Mirko Stauffer
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| |
Collapse
|
9
|
Forced Unfolding Mechanism of Bacteriorhodopsin as Revealed by Coarse-Grained Molecular Dynamics. Biophys J 2017; 111:2086-2098. [PMID: 27851934 DOI: 10.1016/j.bpj.2016.09.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
Developments in atomic force microscopy have opened up a new path toward single-molecular phenomena; in particular, during the process of pulling a membrane protein out of a lipid bilayer. However, the characteristic features of the force-distance (F-D) curve of a bacteriorhodopsin in purple membrane, for instance, have not yet been fully elucidated in terms of physicochemical principles. To address the issue, we performed a computer simulation of bacteriorhodopsin with, to our knowledge, a novel coarse-grained (C-G) model. Peptide planes are represented as rigid spheres, while the surrounding environment consisting of water solvents and lipid bilayers is represented as an implicit continuum. Force-field parameters were determined on the basis of auxiliary simulations and experimental values of transfer free energy of each amino acid from water to membrane. According to Popot's two-stage model, we separated molecular interactions involving membrane proteins into two parts: I) affinity of each amino acid to the membrane and intrahelical hydrogen bonding between main chain peptide bonds; and II) interhelix interactions. Then, only part I was incorporated into the C-G model because we assumed that the part plays a dominant role in the forced unfolding process. As a result, the C-G simulation has successfully reproduced the key features, including peak positions, of the experimental F-D curves in the literature, indicating that the peak positions are essentially determined by the residue-lipid and intrahelix interactions. Furthermore, we investigated the relationships between the energy barrier formation on the forced unfolding pathways and the force peaks of the F-D curves.
Collapse
|
10
|
Jefferson RE, Min D, Corin K, Wang JY, Bowie JU. Applications of Single-Molecule Methods to Membrane Protein Folding Studies. J Mol Biol 2017; 430:424-437. [PMID: 28549924 DOI: 10.1016/j.jmb.2017.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Protein folding is a fundamental life process with many implications throughout biology and medicine. Consequently, there have been enormous efforts to understand how proteins fold. Almost all of this effort has focused on water-soluble proteins, however, leaving membrane proteins largely wandering in the wilderness. The neglect has occurred not because membrane proteins are unimportant but rather because they present many theoretical and technical complications. Indeed, quantitative membrane protein folding studies are generally restricted to a handful of well-behaved proteins. Single-molecule methods may greatly alter this picture, however, because the ability to work at or near infinite dilution removes aggregation problems, one of the main technical challenges of membrane protein folding studies.
Collapse
Affiliation(s)
- Robert E Jefferson
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Duyoung Min
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Karolina Corin
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Jing Yang Wang
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA.
| |
Collapse
|
11
|
Serdiuk T, Balasubramaniam D, Sugihara J, Mari SA, Kaback HR, Müller DJ. YidC assists the stepwise and stochastic folding of membrane proteins. Nat Chem Biol 2016; 12:911-917. [PMID: 27595331 PMCID: PMC5069129 DOI: 10.1038/nchembio.2169] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
How chaperones, insertases and translocases facilitate insertion and folding of complex cytoplasmic proteins into cellular membranes is not fully understood. Here we utilize single-molecule force spectroscopy to observe YidC, a transmembrane chaperone and insertase, sculpting the folding trajectory of the polytopic α-helical membrane protein lactose permease (LacY). In the absence of YidC, unfolded LacY inserts individual structural segments into the membrane; however, misfolding dominates the process so that folding cannot be completed. YidC prevents LacY from misfolding by stabilizing the unfolded state from which LacY inserts structural segments stepwise into the membrane until folding is completed. During stepwise insertion, YidC and the membrane together stabilize the transient folds. Remarkably, the order of insertion of structural segments is stochastic, indicating that LacY can fold along variable pathways toward the native structure. Since YidC is essential in membrane protein biogenesis and LacY is a model for the major facilitator superfamily, our observations have general relevance.
Collapse
Affiliation(s)
- Tetiana Serdiuk
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | - Junichi Sugihara
- Department of Physiology, University of California-Los Angeles, Los Angeles, USA
| | - Stefania A. Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - H. Ronald Kaback
- Department of Physiology, University of California-Los Angeles, Los Angeles, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California-Los Angeles, Los Angeles, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, USA
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| |
Collapse
|
12
|
Ge L, Villinger S, Mari SA, Giller K, Griesinger C, Becker S, Müller DJ, Zweckstetter M. Molecular Plasticity of the Human Voltage-Dependent Anion Channel Embedded Into a Membrane. Structure 2016; 24:585-594. [PMID: 27021164 PMCID: PMC5654509 DOI: 10.1016/j.str.2016.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 12/28/2022]
Abstract
The voltage-dependent anion channel (VDAC) regulates the flux of metabolites and ions across the outer mitochondrial membrane. Regulation of ion flow involves conformational transitions in VDAC, but the nature of these changes has not been resolved to date. By combining single-molecule force spectroscopy with nuclear magnetic resonance spectroscopy we show that the β barrel of human VDAC embedded into a membrane is highly flexible. Its mechanical flexibility exceeds by up to one order of magnitude that determined for β strands of other membrane proteins and is largest in the N-terminal part of the β barrel. Interaction with Ca(2+), a key regulator of metabolism and apoptosis, considerably decreases the barrel's conformational variability and kinetic free energy in the membrane. The combined data suggest that physiological VDAC function depends on the molecular plasticity of its channel.
Collapse
Affiliation(s)
- Lin Ge
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Saskia Villinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefania A Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, University of Göttingen, Am Waldweg 33, 37073 Göttingen, Germany.
| |
Collapse
|
13
|
Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins. Nat Struct Mol Biol 2015; 22:795-802. [PMID: 26344570 DOI: 10.1038/nsmb.3087] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 08/13/2015] [Indexed: 12/27/2022]
Abstract
Chaperones increase the folding yields of soluble proteins by suppressing misfolding and aggregation, but how they modulate the folding of integral membrane proteins is not well understood. Here we use single-molecule force spectroscopy and NMR spectroscopy to observe the periplasmic holdase chaperones SurA and Skp shaping the folding trajectory of the large β-barrel outer-membrane receptor FhuA from Escherichia coli. Either chaperone prevents FhuA from misfolding by stabilizing a dynamic, unfolded state, thus allowing the substrate to search for structural intermediates. During this search, the SurA-chaperoned FhuA polypeptide inserts β-hairpins into the membrane in a stepwise manner until the β-barrel is folded. The membrane acts as a free-energy sink for β-hairpin insertion and physically separates transient folds from chaperones. This stabilization of dynamic unfolded states and the trapping of folding intermediates funnel the FhuA polypeptide toward the native conformation.
Collapse
|
14
|
Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK. Proc Natl Acad Sci U S A 2015; 112:10389-94. [PMID: 26240360 DOI: 10.1073/pnas.1504625112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The regulation of protein function through ligand-induced conformational changes is crucial for many signal transduction processes. The binding of a ligand alters the delicate energy balance within the protein structure, eventually leading to such conformational changes. In this study, we elucidate the energetic and mechanical changes within the subdomains of the nucleotide binding domain (NBD) of the heat shock protein of 70 kDa (Hsp70) chaperone DnaK upon nucleotide binding. In an integrated approach using single molecule optical tweezer experiments, loop insertions, and steered coarse-grained molecular simulations, we find that the C-terminal helix of the NBD is the major determinant of mechanical stability, acting as a glue between the two lobes. After helix unraveling, the relative stability of the two separated lobes is regulated by ATP/ADP binding. We find that the nucleotide stays strongly bound to lobe II, thus reversing the mechanical hierarchy between the two lobes. Our results offer general insights into the nucleotide-induced signal transduction within members of the actin/sugar kinase superfamily.
Collapse
|
15
|
Serdiuk T, Sugihara J, Mari SA, Kaback HR, Müller DJ. Observing a lipid-dependent alteration in single lactose permeases. Structure 2015; 23:754-61. [PMID: 25800555 DOI: 10.1016/j.str.2015.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
Abstract
Lipids of the Escherichia coli membrane are mainly composed of 70%-80% phosphatidylethanolamine (PE) and 20%-25% phosphatidylglycerol (PG). Biochemical studies indicate that the depletion of PE causes inversion of the N-terminal helix bundle of the lactose permease (LacY), and helix VII becomes extramembranous. Here we study this phenomenon using single-molecule force spectroscopy, which is sensitive to the structure of membrane proteins. In PE and PG at a ratio of 3:1, ∼95% of the LacY molecules adopt a native structure. However, when PE is omitted and the membrane contains PG only, LacY almost equally populates a native and a perturbed conformation. The most drastic changes occur at helices VI and VII and the intervening loop. Since helix VII contains Asp237 and Asp240, zwitterionic PE may suppress electrostatic repulsion between LacY and PG in the PE:PG environment. Thus, PE promotes a native fold and prevents LacY from populating a functionally defective, nonnative conformation.
Collapse
Affiliation(s)
- Tetiana Serdiuk
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Junichi Sugihara
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Stefania A Mari
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - H Ronald Kaback
- Department of Physiology, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
16
|
Ramanujam V, Kotamarthi HC, Ainavarapu SRK. Ca2+ binding enhanced mechanical stability of an archaeal crystallin. PLoS One 2014; 9:e94513. [PMID: 24728085 PMCID: PMC3984160 DOI: 10.1371/journal.pone.0094513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/12/2014] [Indexed: 12/22/2022] Open
Abstract
Structural topology plays an important role in protein mechanical stability. Proteins with β-sandwich topology consisting of Greek key structural motifs, for example, I27 of muscle titin and 10FNIII of fibronectin, are mechanically resistant as shown by single-molecule force spectroscopy (SMFS). In proteins with β-sandwich topology, if the terminal strands are directly connected by backbone H-bonding then this geometry can serve as a “mechanical clamp”. Proteins with this geometry are shown to have very high unfolding forces. Here, we set out to explore the mechanical properties of a protein, M-crystallin, which belongs to β-sandwich topology consisting of Greek key motifs but its overall structure lacks the “mechanical clamp” geometry at the termini. M-crystallin is a Ca2+ binding protein from Methanosarcina acetivorans that is evolutionarily related to the vertebrate eye lens β and γ-crystallins. We constructed an octamer of crystallin, (M-crystallin)8, and using SMFS, we show that M-crystallin unfolds in a two-state manner with an unfolding force ∼90 pN (at a pulling speed of 1000 nm/sec), which is much lower than that of I27. Our study highlights that the β-sandwich topology proteins with a different strand-connectivity than that of I27 and 10FNIII, as well as lacking “mechanical clamp” geometry, can be mechanically resistant. Furthermore, Ca2+ binding not only stabilizes M-crystallin by 11.4 kcal/mol but also increases its unfolding force by ∼35 pN at the same pulling speed. The differences in the mechanical properties of apo and holo M-crystallins are further characterized using pulling speed dependent measurements and they show that Ca2+ binding reduces the unfolding potential width from 0.55 nm to 0.38 nm. These results are explained using a simple two-state unfolding energy landscape.
Collapse
Affiliation(s)
- Venkatraman Ramanujam
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Hema Chandra Kotamarthi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | |
Collapse
|
17
|
Abstract
The lactose permease (LacY) of Escherichia coli, a paradigm for the major facilitator superfamily, catalyzes the coupled stoichiometric translocation of a galactopyranoside and an H(+) across the cytoplasmic membrane. To catalyze transport, LacY undergoes large conformational changes that allow alternating access of sugar- and H(+)-binding sites to either side of the membrane. Despite strong evidence for an alternating access mechanism, it remains unclear how H(+)- and sugar-binding trigger the cascade of interactions leading to alternating conformational states. Here we used dynamic single-molecule force spectroscopy to investigate how substrate binding induces this phenomenon. Galactoside binding strongly modifies kinetic, energetic, and mechanical properties of the N-terminal 6-helix bundle of LacY, whereas the C-terminal 6-helix bundle remains largely unaffected. Within the N-terminal 6-helix bundle, the properties of helix V, which contains residues critical for sugar binding, change most radically. Particularly, secondary structures forming the N-terminal domain exhibit mechanically brittle properties in the unbound state, but highly flexible conformations in the substrate-bound state with significantly increased lifetimes and energetic stability. Thus, sugar binding tunes the properties of the N-terminal domain to initiate galactoside/H(+) symport. In contrast to wild-type LacY, the properties of the conformationally restricted mutant Cys154→Gly do not change upon sugar binding. It is also observed that the single mutation of Cys154→Gly alters intramolecular interactions so that individual transmembrane helices manifest different properties. The results support a working model of LacY in which substrate binding induces alternating conformational states and provides insight into their specific kinetic, energetic, and mechanical properties.
Collapse
|
18
|
Suárez-Germà C, Domènech Ò, Montero MT, Hernández-Borrell J. Effect of lactose permease presence on the structure and nanomechanics of two-component supported lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:842-52. [DOI: 10.1016/j.bbamem.2013.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 01/24/2023]
|
19
|
Peptide transporter DtpA has two alternate conformations, one of which is promoted by inhibitor binding. Proc Natl Acad Sci U S A 2013; 110:E3978-86. [PMID: 24082128 DOI: 10.1073/pnas.1312959110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Peptide transporters (PTRs) of the large PTR family facilitate the uptake of di- and tripeptides to provide cells with amino acids for protein synthesis and for metabolic intermediates. Although several PTRs have been structurally and functionally characterized, how drugs modulate peptide transport remains unclear. To obtain insight into this mechanism, we characterize inhibitor binding to the Escherichia coli PTR dipeptide and tripeptide permease A (DtpA), which shows substrate specificities similar to its human homolog hPEPT1. After demonstrating that Lys[Z-NO2]-Val, the strongest inhibitor of hPEPT1, also acts as a high-affinity inhibitor for DtpA, we used single-molecule force spectroscopy to localize the structural segments stabilizing the peptide transporter and investigated which of these structural segments change stability upon inhibitor binding. This characterization was done with DtpA embedded in the lipid membrane and exposed to physiologically relevant conditions. In the unbound state, DtpA adopts two main alternate conformations in which transmembrane α-helix (TMH) 2 is either stabilized (in ∼43% of DtpA molecules) or not (in ∼57% of DtpA molecules). The two conformations are understood to represent the inward- and outward-facing conformational states of the transporter. With increasing inhibitor concentration, the conformation characterized by a stabilized TMH 2 becomes increasingly prevalent, reaching ∼92% at saturation. Our measurements further suggest that Lys[Z-NO2]-Val interacts with discrete residues in TMH 2 that are important for ligand binding and substrate affinity. These interactions in turn stabilize TMH 2, thereby promoting the inhibited conformation of DtpA.
Collapse
|
20
|
Zocher M, Bippes CA, Zhang C, Müller DJ. Single-molecule force spectroscopy of G-protein-coupled receptors. Chem Soc Rev 2013; 42:7801-15. [PMID: 23799399 DOI: 10.1039/c3cs60085h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The applicability of single-molecule force spectroscopy (SMFS) to characterize membrane proteins in vitro is developing rapidly and opening a wide range of fascinating possibilities to study how intra- and intermolecular interactions determine their structural stability and functional state. In particular, understanding how molecular interactions contribute to the functional state of G-protein-coupled receptors (GPCRs) is of importance because they mediate most of our physiological responses and act as therapeutic targets for a broad spectrum of diseases. In our review we focus on SMFS to characterize GPCRs embedded in their physiologically relevant membranes and exposed to physiologically relevant conditions. SMFS uses a molecularly sharp stylus to grasp the terminal end of a GPCR and to quickly unfold the receptor while recording interaction forces. The positional accuracy of SMFS localizes these interactions to structural segments of the GPCR whereas the sensitivity of SMFS enables their stabilizing interaction forces to be quantified. To further investigate the kinetic, energetic and mechanical properties of the structural segments, dynamic SMFS (DFS) probes their stability over a wide range of loading rates. These parameters provide insight into the energy landscape that provides information on the structural and functional properties of the GPCRs. Selected highlights exemplify the application of SMFS to characterize inter- and intramolecular interactions, which change the properties of GPCRs in relation to their functional state (e.g., ligand binding), diseased state (e.g., mutation), or lipid environment such as cholesterol.
Collapse
Affiliation(s)
- Michael Zocher
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| | | | | | | |
Collapse
|
21
|
Whited AM, Park PSH. Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:56-68. [PMID: 23603221 DOI: 10.1016/j.bbamem.2013.04.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Membrane proteins are embedded in lipid bilayers and facilitate the communication between the external environment and the interior of the cell. This communication is often mediated by the binding of ligands to the membrane protein. Understanding the nature of the interaction between a ligand and a membrane protein is required to both understand the mechanism of action of these proteins and for the development of novel pharmacological drugs. The highly hydrophobic nature of membrane proteins and the requirement of a lipid bilayer for native function have hampered the structural and molecular characterizations of these proteins under physiologically relevant conditions. Atomic force microscopy offers a solution to studying membrane proteins and their interactions with ligands under physiologically relevant conditions and can provide novel insights about the nature of these critical molecular interactions that facilitate cellular communication. In this review, we provide an overview of the atomic force microscopy technique and discuss its application in the study of a variety of questions related to the interaction between a membrane protein and a ligand. This article is part of a Special Issue entitled: Structural and biophysical characterization of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Allison M Whited
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
22
|
Kawamura S, Gerstung M, Colozo AT, Helenius J, Maeda A, Beerenwinkel N, Park PSH, Müller DJ. Kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin. Structure 2013; 21:426-37. [PMID: 23434406 DOI: 10.1016/j.str.2013.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/05/2013] [Accepted: 01/15/2013] [Indexed: 11/20/2022]
Abstract
Rhodopsin, the photoreceptor pigment of the retina, initiates vision upon photon capture by its covalently linked chromophore 11-cis-retinal. In the absence of light, the chromophore serves as an inverse agonist locking the receptor in the inactive dark state. In the absence of chromophore, the apoprotein opsin shows low-level constitutive activity. Toward revealing insight into receptor properties controlled by the chromophore, we applied dynamic single-molecule force spectroscopy to quantify the kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin in native membranes from the retina of mice. Both rhodopsin and opsin are stabilized by ten structural segments. Compared to dark-state rhodopsin, the structural segments stabilizing opsin showed higher interaction strengths and mechanical rigidities and lower conformational variabilities, lifetimes, and free energies. These changes outline a common mechanism toward activating G-protein-coupled receptors. Additionally, we detected that opsin was more pliable and frequently stabilized alternate structural intermediates.
Collapse
Affiliation(s)
- Shiho Kawamura
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sapra KT. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers. Methods Mol Biol 2013; 974:73-110. [PMID: 23404273 DOI: 10.1007/978-1-62703-275-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.
Collapse
Affiliation(s)
- K Tanuj Sapra
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Rahman LN, McKay F, Giuliani M, Quirk A, Moffatt BA, Harauz G, Dutcher JR. Interactions of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes at cold and ambient temperatures-surface morphology and single-molecule force measurements show phase separation, and reveal tertiary and quaternary associations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:967-80. [PMID: 23219803 DOI: 10.1016/j.bbamem.2012.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/22/2012] [Accepted: 11/23/2012] [Indexed: 12/28/2022]
Abstract
Dehydrins (group 2 late embryogenesis abundant proteins) are intrinsically-disordered proteins that are expressed in plants experiencing extreme environmental conditions such as drought or low temperature. Their roles include stabilizing cellular proteins and membranes, and sequestering metal ions. Here, we investigate the membrane interactions of the acidic dehydrin TsDHN-1 and the basic dehydrin TsDHN-2 derived from the crucifer Thellungiella salsuginea that thrives in the Canadian sub-Arctic. We show using compression studies with a Langmuir-Blodgett trough that both dehydrins can stabilize lipid monolayers with a lipid composition mimicking the composition of the plant outer mitochondrial membrane, which had previously been shown to induce ordered secondary structures (disorder-to-order transitions) in the proteins. Ellipsometry of the monolayers during compression showed an increase in monolayer thickness upon introducing TsDHN-1 (acidic) at 4°C and TsDHN-2 (basic) at room temperature. Atomic force microscopy of supported lipid bilayers showed temperature-dependent phase transitions and domain formation induced by the proteins. These results support the conjecture that acidic dehydrins interact with and potentially stabilize plant outer mitochondrial membranes in conditions of cold stress. Single-molecule force spectroscopy of both proteins pulled from supported lipid bilayers indicated the induced formation of tertiary conformations in both proteins, and potentially a dimeric association for TsDHN-2.
Collapse
Affiliation(s)
- Luna N Rahman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Zocher M, Fung JJ, Kobilka BK, Müller DJ. Ligand-specific interactions modulate kinetic, energetic, and mechanical properties of the human β2 adrenergic receptor. Structure 2012; 20:1391-402. [PMID: 22748765 DOI: 10.1016/j.str.2012.05.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 11/28/2022]
Abstract
G protein-coupled receptors (GPCRs) are a class of versatile proteins that transduce signals across membranes. Extracellular stimuli induce inter- and intramolecular interactions that change the functional state of GPCRs and activate intracellular messenger molecules. How these interactions are established and how they modulate the functional state of GPCRs remain to be understood. We used dynamic single-molecule force spectroscopy to investigate how ligand binding modulates the energy landscape of the human β2 adrenergic receptor (β2 AR). Five different ligands representing either agonists, inverse agonists or neutral antagonists established a complex network of interactions that tuned the kinetic, energetic, and mechanical properties of functionally important structural regions of β2 AR. These interactions were specific to the efficacy profile of the ligands investigated and suggest that the functional modulation of GPCRs follows structurally well-defined interaction patterns.
Collapse
Affiliation(s)
- Michael Zocher
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstr. 26, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
26
|
Zocher M, Roos C, Wegmann S, Bosshart PD, Dötsch V, Bernhard F, Müller DJ. Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins. ACS NANO 2012; 6:961-71. [PMID: 22196235 DOI: 10.1021/nn204624p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Single-molecule force spectroscopy (SMFS) can quantify and localize inter- and intramolecular interactions that determine the folding, stability, and functional state of membrane proteins. To conduct SMFS the membranes embedding the membrane proteins must be imaged and localized in a rather time-consuming manner. Toward simplifying the investigation of membrane proteins by SMFS, we reconstituted the light-driven proton pump bacteriorhodopsin into lipid nanodiscs. The advantage of using nanodiscs is that membrane proteins can be handled like water-soluble proteins and characterized with similar ease. SMFS characterization of bacteriorhodopsin in native purple membranes and in nanodiscs reveals no significant alterations of structure, function, unfolding intermediates, and strengths of inter- and intramolecular interactions. This demonstrates that lipid nanodiscs provide a unique approach for in vitro studies of native membrane proteins using SMFS and open an avenue to characterize membrane proteins by a wide variety of SMFS approaches that have been established on water-soluble proteins.
Collapse
Affiliation(s)
- Michael Zocher
- Biosystems Science and Engineering (BSSE), ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Stewart MP, Toyoda Y, Hyman AA, Muller DJ. Force probing cell shape changes to molecular resolution. Trends Biochem Sci 2011; 36:444-50. [DOI: 10.1016/j.tibs.2011.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 11/25/2022]
|
28
|
Aggarwal V, Kulothungan SR, Balamurali MM, Saranya SR, Varadarajan R, Ainavarapu SRK. Ligand-modulated parallel mechanical unfolding pathways of maltose-binding proteins. J Biol Chem 2011; 286:28056-65. [PMID: 21659518 DOI: 10.1074/jbc.m111.249045] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein folding and unfolding are complex phenomena, and it is accepted that multidomain proteins generally follow multiple pathways. Maltose-binding protein (MBP) is a large (a two-domain, 370-amino acid residue) bacterial periplasmic protein involved in maltose uptake. Despite the large size, it has been shown to exhibit an apparent two-state equilibrium unfolding in bulk experiments. Single-molecule studies can uncover rare events that are masked by averaging in bulk studies. Here, we use single-molecule force spectroscopy to study the mechanical unfolding pathways of MBP and its precursor protein (preMBP) in the presence and absence of ligands. Our results show that MBP exhibits kinetic partitioning on mechanical stretching and unfolds via two parallel pathways: one of them involves a mechanically stable intermediate (path I) whereas the other is devoid of it (path II). The apoMBP unfolds via path I in 62% of the mechanical unfolding events, and the remaining 38% follow path II. In the case of maltose-bound MBP, the protein unfolds via the intermediate in 79% of the cases, the remaining 21% via path II. Similarly, on binding to maltotriose, a ligand whose binding strength with the polyprotein is similar to that of maltose, the occurrence of the intermediate is comparable (82% via path I) with that of maltose. The precursor protein preMBP also shows a similar behavior upon mechanical unfolding. The percentages of molecules unfolding via path I are 53% in the apo form and 68% and 72% upon binding to maltose and maltotriose, respectively, for preMBP. These observations demonstrate that ligand binding can modulate the mechanical unfolding pathways of proteins by a kinetic partitioning mechanism. This could be a general mechanism in the unfolding of other large two-domain ligand-binding proteins of the bacterial periplasmic space.
Collapse
Affiliation(s)
- Vasudha Aggarwal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
| | | | | | | | | | | |
Collapse
|
29
|
Casuso I, Rico F, Scheuring S. Biological AFM: where we come from - where we are - where we may go. J Mol Recognit 2011; 24:406-13. [DOI: 10.1002/jmr.1081] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Müller SA, Müller DJ, Engel A. Assessing the structure and function of single biomolecules with scanning transmission electron and atomic force microscopes. Micron 2011; 42:186-95. [DOI: 10.1016/j.micron.2010.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 11/30/2022]
|
31
|
Kawamura S, Colozo AT, Müller DJ, Park PSH. Conservation of molecular interactions stabilizing bovine and mouse rhodopsin. Biochemistry 2010; 49:10412-20. [PMID: 21038881 PMCID: PMC2999666 DOI: 10.1021/bi101345x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rhodopsin is the light receptor that initiates phototransduction in rod photoreceptor cells. The structure and function of rhodopsin are tightly linked to molecular interactions that stabilize and determine the receptor's functional state. Single-molecule force spectroscopy (SMFS) was used to localize and quantify molecular interactions that structurally stabilize bovine and mouse rhodopsin from native disk membranes of rod photoreceptor cells. The mechanical unfolding of bovine and mouse rhodopsin revealed nine major unfolding intermediates, each intermediate defining a structurally stable segment in the receptor. These stable structural segments had similar localization and occurrence in both bovine and mouse samples. For each structural segment, parameters describing their unfolding energy barrier were determined by dynamic SMFS. No major differences were observed between bovine and mouse rhodopsin, thereby implying that the structures of both rhodopsins are largely stabilized by similar molecular interactions.
Collapse
Affiliation(s)
- Shiho Kawamura
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Alejandro T. Colozo
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Paul S.-H. Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
32
|
Dorobantu LS, Gray MR. Application of atomic force microscopy in bacterial research. SCANNING 2010; 32:74-96. [PMID: 20695026 DOI: 10.1002/sca.20177] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The atomic force microscope (AFM) has evolved from an imaging device into a multifunctional and powerful toolkit for probing the nanostructures and surface components on the exterior of bacterial cells. Currently, the area of application spans a broad range of interesting fields from materials sciences, in which AFM has been used to deposit patterns of thiol-functionalized molecules onto gold substrates, to biological sciences, in which AFM has been employed to study the undesirable bacterial adhesion to implants and catheters or the essential bacterial adhesion to contaminated soil or aquifers. The unique attribute of AFM is the ability to image bacterial surface features, to measure interaction forces of functionalized probes with these features, and to manipulate these features, for example, by measuring elongation forces under physiological conditions and at high lateral resolution (<1 A). The first imaging studies showed the morphology of various biomolecules followed by rapid progress in visualizing whole bacterial cells. The AFM technique gradually developed into a lab-on-a-tip allowing more quantitative analysis of bacterial samples in aqueous liquids and non-contact modes. Recently, force spectroscopy modes, such as chemical force microscopy, single-cell force spectroscopy, and single-molecule force spectroscopy, have been used to map the spatial arrangement of chemical groups and electrical charges on bacterial surfaces, to measure cell-cell interactions, and to stretch biomolecules. In this review, we present the fascinating options offered by the rapid advances in AFM with emphasizes on bacterial research and provide a background for the exciting research articles to follow.
Collapse
Affiliation(s)
- Loredana S Dorobantu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
33
|
Assessing Biological Samples with Scanning Probes. SINGLE MOLECULE SPECTROSCOPY IN CHEMISTRY, PHYSICS AND BIOLOGY 2010. [DOI: 10.1007/978-3-642-02597-6_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Ligand Binding Mechanics of Maltose Binding Protein. J Mol Biol 2009; 393:1097-105. [DOI: 10.1016/j.jmb.2009.08.066] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/15/2009] [Accepted: 08/28/2009] [Indexed: 02/02/2023]
|
35
|
Single-molecule force spectroscopy distinguishes target binding modes of calmodulin. Proc Natl Acad Sci U S A 2009; 106:14361-6. [PMID: 19667195 DOI: 10.1073/pnas.0904654106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The eukaryotic signaling protein calmodulin (CaM) can bind to more than 300 known target proteins to regulate numerous functions in our body in a calcium-dependent manner. How CaM distinguishes between these various targets is still largely unknown. Here, we investigate fluctuations of the complex formation of CaM and its target peptide sequences using single-molecule force spectroscopy by AFM. By applying mechanical force, we can steer a single CaM molecule through its folding energy landscape from the fully unfolded state to the native target-bound state revealing equilibrium fluctuations between numerous intermediate states. We find that the prototypical CaM target sequence skMLCK, a fragment from skeletal muscle myosin light chain kinase, binds to CaM in a highly cooperative way, while only a lower degree of interdomain binding cooperativity emerges for CaMKK, a target peptide from CaM-dependent kinase kinase. We identify minimal binding motifs for both of these peptides, confirming that affinities of target peptides are not exclusively determined by their pattern of hydrophobic anchor residues. Our results reveal an association mode for CaMKK in which the peptide binds strongly to only partially Ca(2+)-saturated CaM. This binding mode might allow for a fine-tuning of the intracellular response to changes in Ca(2+) concentration.
Collapse
|
36
|
Alsteens D, Dupres V, Klotz SA, Gaur NK, Lipke PN, Dufrêne YF. Unfolding individual als5p adhesion proteins on live cells. ACS NANO 2009; 3:1677-82. [PMID: 19534503 PMCID: PMC2888673 DOI: 10.1021/nn900078p] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Elucidating the molecular mechanisms behind the strength and mechanics of cell adhesion proteins is of central importance in cell biology and offers exciting avenues for the identification of potential drug targets. Here we use single-molecule force spectroscopy to investigate the adhesive and mechanical properties of the widely expressed Als5p cell adhesion protein from the opportunistic pathogen Candida albicans . We show that the forces required to unfold individual tandem repeats of the protein are in the 150-250 pN range, both on isolated molecules and on live cells. We also find that the unfolding probability increases with the number of tandem repeats and correlates with the level of cell adherence. We suggest that the modular and flexible nature of Als5p conveys both strength and toughness to the protein, making it ideally suited for cell adhesion. The single-molecule measurements presented here open new avenues for understanding the mechanical properties of adhesion molecules from mammalian and microbial cells and may help us to elucidate their potential implications in diseases such as inflammation, cancer, and infection.
Collapse
Affiliation(s)
- David Alsteens
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | - Vincent Dupres
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | - Nand K. Gaur
- Southern Arizona Veterans Administration Health Care System, Tucson, Arizona
| | | | - Yves F. Dufrêne
- Unité de Chimie des Interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
37
|
Bippes CA, Zeltina A, Casagrande F, Ratera M, Palacin M, Muller DJ, Fotiadis D. Substrate binding tunes conformational flexibility and kinetic stability of an amino acid antiporter. J Biol Chem 2009; 284:18651-63. [PMID: 19419962 DOI: 10.1074/jbc.m109.004267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.
Collapse
Affiliation(s)
- Christian A Bippes
- Biotechnology Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Atomic force microscopy of biological membranes. Biophys J 2009; 96:329-38. [PMID: 19167286 DOI: 10.1016/j.bpj.2008.09.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/15/2008] [Indexed: 11/21/2022] Open
Abstract
Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes.
Collapse
|
39
|
Strategies to prepare and characterize native membrane proteins and protein membranes by AFM. Curr Opin Colloid Interface Sci 2008. [DOI: 10.1016/j.cocis.2007.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Struckmeier J, Wahl R, Leuschner M, Nunes J, Janovjak H, Geisler U, Hofmann G, Jähnke T, Müller DJ. Fully automated single-molecule force spectroscopy for screening applications. NANOTECHNOLOGY 2008; 19:384020. [PMID: 21832579 DOI: 10.1088/0957-4484/19/38/384020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
With the introduction of single-molecule force spectroscopy (SMFS) it has become possible to directly access the interactions of various molecular systems. A bottleneck in conventional SMFS is collecting the large amount of data required for statistically meaningful analysis. Currently, atomic force microscopy (AFM)-based SMFS requires the user to tediously 'fish' for single molecules. In addition, most experimental and environmental conditions must be manually adjusted. Here, we developed a fully automated single-molecule force spectroscope. The instrument is able to perform SMFS while monitoring and regulating experimental conditions such as buffer composition and temperature. Cantilever alignment and calibration can also be automatically performed during experiments. This, combined with in-line data analysis, enables the instrument, once set up, to perform complete SMFS experiments autonomously.
Collapse
Affiliation(s)
- Jens Struckmeier
- Cellular Machines, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, D-01307 Dresden, Germany. nAmbition GmbH, Tatzberg 47, D-01307 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Puchner EM, Alexandrovich A, Kho AL, Hensen U, Schäfer LV, Brandmeier B, Gräter F, Grubmüller H, Gaub HE, Gautel M. Mechanoenzymatics of titin kinase. Proc Natl Acad Sci U S A 2008; 105:13385-90. [PMID: 18765796 PMCID: PMC2527993 DOI: 10.1073/pnas.0805034105] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Indexed: 12/13/2022] Open
Abstract
Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent autophosphorylation and substrate turnover.
Collapse
Affiliation(s)
- Elias M. Puchner
- Chair for Applied Physics, Center for Integrated Protein Science Munich and Center for Nanoscience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany
| | - Alexander Alexandrovich
- Cardiovascular Division and Randall Division for Cell and Molecular Biophysics. King's College London, London SE1 1UL, United Kingdom; and
| | - Ay Lin Kho
- Cardiovascular Division and Randall Division for Cell and Molecular Biophysics. King's College London, London SE1 1UL, United Kingdom; and
| | - Ulf Hensen
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Lars V. Schäfer
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Birgit Brandmeier
- Cardiovascular Division and Randall Division for Cell and Molecular Biophysics. King's College London, London SE1 1UL, United Kingdom; and
| | - Frauke Gräter
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Hermann E. Gaub
- Chair for Applied Physics, Center for Integrated Protein Science Munich and Center for Nanoscience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany
| | - Mathias Gautel
- Cardiovascular Division and Randall Division for Cell and Molecular Biophysics. King's College London, London SE1 1UL, United Kingdom; and
| |
Collapse
|
42
|
Cisneros DA, Oberbarnscheidt L, Pannier A, Klare JP, Helenius J, Engelhard M, Oesterhelt F, Muller DJ. Transducer Binding Establishes Localized Interactions to Tune Sensory Rhodopsin II. Structure 2008; 16:1206-13. [DOI: 10.1016/j.str.2008.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 04/11/2008] [Accepted: 04/11/2008] [Indexed: 12/13/2022]
|
43
|
Role of extracellular glutamic acids in the stability and energy landscape of bacteriorhodopsin. Biophys J 2008; 95:3407-18. [PMID: 18621827 DOI: 10.1529/biophysj.108.131904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriorhodopsin (BR), a specialized nanomachine, converts light energy into a proton gradient to power Halobacterium salinarum. In this work, we analyze the mechanical stability of a BR triple mutant in which three key extracellular residues, Glu(9), Glu(194), and Glu(204), were mutated simultaneously to Gln. These three Glu residues are involved in a network of hydrogen bonds, in cation binding, and form part of the proton release pathway of BR. Changes in these features and the robust photocycle dynamics of wild-type (WT) BR are apparent when the three extracellular Glu residues are mutated to Gln. It is speculated that such functional changes of proteins go hand in hand with changes in their mechanical properties. Here, we apply single-molecule dynamic force spectroscopy to investigate how the Glu to Gln mutations change interactions, reaction pathways, and the energy barriers of the structural regions of WT BR. The altered heights and positions of individual energy barriers unravel the changes in the mechanical and the unfolding kinetic properties of the secondary structures of WT BR. These changes in the mechanical unfolding energy landscape cause the proton pump to choose unfolding pathways differently. We suggest that, in a similar manner, the changed mechanical properties of mutated BR alter the functional energy landscape favoring different reaction pathways in the light-induced proton pumping mechanism.
Collapse
|
44
|
Affiliation(s)
- Daniel J. Muller
- Biotechnology Center, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
45
|
Janovjak H, Sapra KT, Kedrov A, Müller DJ. From valleys to ridges: exploring the dynamic energy landscape of single membrane proteins. Chemphyschem 2008; 9:954-66. [PMID: 18348129 DOI: 10.1002/cphc.200700662] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Membrane proteins are involved in essential biological processes such as energy conversion, signal transduction, solute transport and secretion. All biological processes, also those involving membrane proteins, are steered by molecular interactions. Molecular interactions guide the folding and stability of membrane proteins, determine their assembly, switch their functional states or mediate signal transduction. The sequential steps of molecular interactions driving these processes can be described by dynamic energy landscapes. The conceptual energy landscape allows to follow the complex reaction pathways of membrane proteins while its modifications describe why and how pathways are changed. Single-molecule force spectroscopy (SMFS) detects, quantifies and locates interactions within and between membrane proteins. SMFS helps to determine how these interactions change with temperature, point mutations, oligomerization and the functional states of membrane proteins. Applied in different modes, SMFS explores the co-existence and population of reaction pathways in the energy landscape of the protein and thus reveals detailed insights into local mechanisms, determining its structural and functional relationships. Here we review how SMFS extracts the defining parameters of an energy landscape such as the barrier position, reaction kinetics and roughness with high precision.
Collapse
Affiliation(s)
- Harald Janovjak
- Department. of Molecular & Cell Biology, University of California, Berkeley, 279 Life Sciences Addition, Berkeley, CA 94720-3200, USA
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Andreas Engel
- Maurice E. Müller Institute for Structural Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland;
| | - Hermann E. Gaub
- Center for Nanoscience and Physics Department, University Munich, 80799 Munich, Germany;
| |
Collapse
|
47
|
Müller DJ, Dufrêne YF. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. NATURE NANOTECHNOLOGY 2008; 3:261-9. [PMID: 18654521 DOI: 10.1038/nnano.2008.100] [Citation(s) in RCA: 474] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Daniel J Müller
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, D-01307 Dresden, Germany.
| | | |
Collapse
|
48
|
Bertz M, Rief M. Mechanical Unfoldons as Building Blocks of Maltose-binding Protein. J Mol Biol 2008; 378:447-58. [DOI: 10.1016/j.jmb.2008.02.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/05/2008] [Accepted: 02/14/2008] [Indexed: 10/22/2022]
|
49
|
Müller DJ, Wu N, Palczewski K. Vertebrate membrane proteins: structure, function, and insights from biophysical approaches. Pharmacol Rev 2008; 60:43-78. [PMID: 18321962 PMCID: PMC2561275 DOI: 10.1124/pr.107.07111] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function.
Collapse
Affiliation(s)
- Daniel J Müller
- Biotechnology Center, University of Technology, Dresden, Germany
| | | | | |
Collapse
|
50
|
Examining the Dynamic Energy Landscape of an Antiporter upon Inhibitor Binding. J Mol Biol 2008; 375:1258-66. [DOI: 10.1016/j.jmb.2007.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/08/2007] [Accepted: 11/12/2007] [Indexed: 11/19/2022]
|