1
|
Alptekin A, Khan MB, Parvin M, Chowdhury H, Kashif S, Selina FA, Bushra A, Kelleher J, Ghosh S, Williams D, Blumling E, Ara R, Bosomtwi A, Frank JA, Dhandapani KM, Arbab AS. Effects of low-intensity pulsed focal ultrasound-mediated delivery of endothelial progenitor-derived exosomes in tMCAo stroke. Front Neurol 2025; 16:1543133. [PMID: 40271117 PMCID: PMC12014438 DOI: 10.3389/fneur.2025.1543133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Exosomes from different sources have been used for therapeutic purposes to target stroke and other disorders. However, exosomes from endothelial progenitor cells (EPCs) have not been tested in any stroke model, and in vivo bio-distribution study is lacking. Targeted delivery of IV-administered exosomes has been a significant challenge. Delivery of exosomes to the brain is a daunting task, and a blood-brain barrier (BBB)-penetrable peptide is being considered. However, the next step in practical treatment will be delivering naïve (unmodified) exosomes to the stroke site without destroying host tissues or disrupting BBB, or the membranes of the delivery vehicles. Low-intensity-pulsed focused ultrasound (LIPFUS) is approved for clinical use in the musculoskeletal, transcranial brain, and physiotherapy clinics. The objectives of the proposed studies were to determine whether LIPFUS-mediated increased delivery of EPC-derived exosomes enhances stroke recovery and functional improvement in mice with transient middle cerebral artery occlusion (tMCAo) stroke. Methods To enhance exosome delivery to the stroke area, we utilized LIPFUS. We evaluated stroke volume using MRI at different time points and conducted behavioral studies parallel to MRI to determine recovery. Ultimately, we studied brain tissue using immunohistochemistry to assess the extent of stroke and tissue regeneration. Results and Discussion In vivo, imaging showed a higher accumulation of EPC exosomes following LIPFUS without any damage to the underlying brain tissues, increased leakage of albumin, or accumulation of CD45+ cells. Groups of mice (14-16 months old) were treated with Vehicle (PBS), LIPFUS only, EPC-exosomes only, and LIPFUS+EPC-exosomes. LIPFUS + EPC exosomes groups showed a significantly decreased stroke volume on day 7, decreased FluoroJade+ cells, and significantly higher numbers of neovascularization in and around the stroke areas compared to that of other groups.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mohammad B. Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mahrima Parvin
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hasanul Chowdhury
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sawaiz Kashif
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Fowzia A. Selina
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Anika Bushra
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Justin Kelleher
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Santu Ghosh
- Department of Biostatistics, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Dylan Williams
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Emily Blumling
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Roxan Ara
- Small Animal Imaging Core, GCC, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Asamoah Bosomtwi
- Small Animal Imaging Core, GCC, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Joseph A. Frank
- Laboratory of Diagnostic Radiology Research, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ali S. Arbab
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Sterrett MC, Cureton LA, Cohen LN, van Hoof A, Khoshnevis S, Fasken MB, Corbett AH, Ghalei H. Comparative analyses of disease-linked missense mutations in the RNA exosome modeled in budding yeast reveal distinct functional consequences in translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.18.562946. [PMID: 37904946 PMCID: PMC10614903 DOI: 10.1101/2023.10.18.562946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The RNA exosome is a multi-subunit, evolutionarily conserved ribonuclease complex that is essential for processing, decay and surveillance of many cellular RNAs. Missense mutations in genes encoding the structural subunits of the RNA exosome complex cause a diverse range of diseases, collectively known as RNA exosomopathies, often involving neurological and developmental defects. The varied symptoms suggest that different mutations lead to distinct in vivo consequences. To investigate these functional consequences and distinguish whether they are unique to each RNA exosomopathy mutation, we generated a collection of in vivo models by introducing pathogenic missense mutations in orthologous S. cerevisiae genes. Comparative RNA-seq analysis assessing broad transcriptomic changes in each mutant model revealed that three yeast mutant models, rrp4-G226D, rrp40-W195R and rrp46-L191H, which model mutations in the genes encoding EXOSC2, EXOSC3 and EXOSC5, respectively, had the largest transcriptomic differences. While some transcriptomic changes, particularly in transcripts related to ribosome biogenesis, were shared among mutant models, each mutation also induced unique transcriptomic changes. Thus, our data suggests that while there are some shared consequences, there are also distinct differences in RNA exosome function by each variant. Assessment of ribosome biogenesis and translation defects in the three models revealed distinct differences in polysome profiles. Collectively, our results provide the first comparative analyses of RNA exosomopathy mutant models and suggest that different RNA exosome gene mutations result in in vivo consequences that are both unique and shared across each variant, providing further insight into the biology underlying each distinct pathology.
Collapse
Affiliation(s)
- Maria C. Sterrett
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Lauryn A. Cureton
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lauren N. Cohen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sohail Khoshnevis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Milo B. Fasken
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | | | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Park S, Kim HS, Bang K, Han A, Shin B, Seo M, Kim S, Hwang KY. Structural Insights into the Rrp4 Subunit from the Crystal Structure of the Thermoplasma acidophilum Exosome. Biomolecules 2024; 14:621. [PMID: 38927025 PMCID: PMC11201974 DOI: 10.3390/biom14060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The exosome multiprotein complex plays a critical role in RNA processing and degradation. This system governs the regulation of mRNA quality, degradation in the cytoplasm, the processing of short noncoding RNA, and the breakdown of RNA fragments. We determined two crystal structures of exosome components from Thermoplasma acidophilum (Taci): one with a resolution of 2.3 Å that reveals the central components (TaciRrp41 and TaciRrp42), and another with a resolution of 3.5 Å that displays the whole exosome (TaciRrp41, TaciRrp42, and TaciRrp4). The fundamental exosome structure revealed the presence of a heterodimeric complex consisting of TaciRrp41 and TaciRrp42. The structure comprises nine subunits, with TaciRrp41 and TaciRrp42 arranged in a circular configuration, while TaciRrp4 is located at the apex. The RNA degradation capabilities of the TaciRrp4:41:42 complex were verified by RNA degradation assays, consistent with prior findings in other archaeal exosomes. The resemblance between archaeal exosomes and bacterial PNPase suggests a common mechanism for RNA degradation. Despite sharing comparable topologies, the surface charge distributions of TaciRrp4 and other archaea structures are surprisingly distinct. Different RNA breakdown substrates may be responsible for this variation. These newfound structural findings enhance our comprehension of RNA processing and degradation in biological systems.
Collapse
Affiliation(s)
- Seonha Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
- Institute of Bioresources, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Sook Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| | - Kyuhyeon Bang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| | - Ahreum Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| | - Byeongmin Shin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| | - Minjeong Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| | - Sulhee Kim
- Korea BioDefense Research Institute, Korea University, Seoul 02841, Republic of Korea;
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| |
Collapse
|
4
|
Sterrett MC, Farchi D, Strassler SE, Boise LH, Fasken MB, Corbett AH. In vivo characterization of the critical interaction between the RNA exosome and the essential RNA helicase Mtr4 in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2023; 13:jkad049. [PMID: 36861343 PMCID: PMC10411580 DOI: 10.1093/g3journal/jkad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
The RNA exosome is a conserved molecular machine that processes/degrades numerous coding and non-coding RNAs. The 10-subunit complex is composed of three S1/KH cap subunits (human EXOSC2/3/1; yeast Rrp4/40/Csl4), a lower ring of six PH-like subunits (human EXOSC4/7/8/9/5/6; yeast Rrp41/42/43/45/46/Mtr3), and a singular 3'-5' exo/endonuclease DIS3/Rrp44. Recently, several disease-linked missense mutations have been identified in structural cap and core RNA exosome genes. In this study, we characterize a rare multiple myeloma patient missense mutation that was identified in the cap subunit gene EXOSC2. This missense mutation results in a single amino acid substitution, p.Met40Thr, in a highly conserved domain of EXOSC2. Structural studies suggest that this Met40 residue makes direct contact with the essential RNA helicase, MTR4, and may help stabilize the critical interaction between the RNA exosome complex and this cofactor. To assess this interaction in vivo, we utilized the Saccharomyces cerevisiae system and modeled the EXOSC2 patient mutation into the orthologous yeast gene RRP4, generating the variant rrp4-M68T. The rrp4-M68T cells show accumulation of certain RNA exosome target RNAs and show sensitivity to drugs that impact RNA processing. We also identified robust negative genetic interactions between rrp4-M68T and specific mtr4 mutants. A complementary biochemical approach revealed that Rrp4 M68T shows decreased interaction with Mtr4, consistent with these genetic results. This study suggests that the EXOSC2 mutation identified in a multiple myeloma patient impacts the function of the RNA exosome and provides functional insight into a critical interface between the RNA exosome and Mtr4.
Collapse
Affiliation(s)
- Maria C Sterrett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Daniela Farchi
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Sarah E Strassler
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Alptekin A, Parvin M, Chowdhury HI, Rashid MH, Arbab AS. Engineered exosomes for studies in tumor immunology. Immunol Rev 2022; 312:76-102. [PMID: 35808839 DOI: 10.1111/imr.13107] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Exosomes are a type of extracellular vesicle (EV) with diameters of 30-150 nm secreted by most of the cells into the extracellular spaces and can alter the microenvironment through cell-to-cell interactions by fusion with the plasma membrane and subsequent endocytosis and release of the cargo. Because of their biocompatibility, low toxicity and immunogenicity, permeability (even through the blood-brain barrier (BBB)), stability in biological fluids, and ability to accumulate in the lesions with higher specificity, investigators have started making designer's exosomes or engineered exosomes to carry biologically active protein on the surface or inside the exosomes as well as using exosomes to carry drugs, micro RNA, and other products to the site of interest. In this review, we have discussed biogenesis, markers, and contents of various exosomes including exosomes of immune cells. We have also discussed the current methods of making engineered and designer's exosomes as well as the use of engineered exosomes targeting different immune cells in the tumors, stroke, as well as at peripheral blood. Genetic engineering and customizing exosomes create an unlimited opportunity to use in diagnosis and treatment. Very little use has been discovered, and we are far away to reach its limits.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Mahrima Parvin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | | | | | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
6
|
Sterrett MC, Enyenihi L, Leung SW, Hess L, Strassler SE, Farchi D, Lee RS, Withers ES, Kremsky I, Baker RE, Basrai MA, van Hoof A, Fasken MB, Corbett AH. A budding yeast model for human disease mutations in the EXOSC2 cap subunit of the RNA exosome complex. RNA (NEW YORK, N.Y.) 2021; 27:1046-1067. [PMID: 34162742 PMCID: PMC8370739 DOI: 10.1261/rna.078618.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene EXOSC2 cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF (short stature, hearing loss, retinitis pigmentosa, and distinctive facies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic EXOSC2 missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous S. cerevisiae gene RRP4 The resulting rrp4 mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in rrp4-G226D cells that model EXOSC2 p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in EXOSC2 impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.
Collapse
Affiliation(s)
- Maria C Sterrett
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia 30322, USA
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Liz Enyenihi
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Sara W Leung
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Laurie Hess
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Sarah E Strassler
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia 30322, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Daniela Farchi
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Richard S Lee
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Elise S Withers
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Isaac Kremsky
- Loma Linda University School of Medicine, Loma Linda, California 92350, USA
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
7
|
Slavotinek A, Misceo D, Htun S, Mathisen L, Frengen E, Foreman M, Hurtig JE, Enyenihi L, Sterrett MC, Leung SW, Schneidman-Duhovny D, Estrada-Veras J, Duncan JL, Haaxma CA, Kamsteeg EJ, Xia V, Beleford D, Si Y, Douglas G, Treidene HE, van Hoof A, Fasken MB, Corbett AH. Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness. Hum Mol Genet 2021; 29:2218-2239. [PMID: 32504085 DOI: 10.1093/hmg/ddaa108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
The RNA exosome is an essential ribonuclease complex required for processing and/or degradation of both coding and non-coding RNAs. We identified five patients with biallelic variants in EXOSC5, which encodes a structural subunit of the RNA exosome. The clinical features of these patients include failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. While we ascertained five patients, three patients with distinct variants of EXOSC5 were studied in detail. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. The additional two patients ascertained are siblings who had an early frameshift mutation in EXOSC5 and the p.Thr114Ile missense variant that were inherited in trans. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess consequences of pathogenic EXOSC5 variants. Loss of function for exosc5 in zebrafish results in shortened and curved tails/bodies, reduced eye/head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants cause defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. These findings expand the number of genes encoding RNA exosome subunits linked to human disease while also suggesting that disease mechanism varies depending on the specific pathogenic variant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Stephanie Htun
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Linda Mathisen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Michelle Foreman
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Jennifer E Hurtig
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Liz Enyenihi
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Sara W Leung
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering and the Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Juvianee Estrada-Veras
- Department of Pediatrics-Medical Genetics and Metabolism, Uniformed Services University/Walter Reed NMMC Bethesda, MD 20889, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Vivian Xia
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Daniah Beleford
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Yue Si
- GeneDx Inc., MD 20877, USA
| | | | - Hans Einar Treidene
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo 0450, Norway
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Unciuleac MC, Ghosh S, de la Cruz MJ, Goldgur Y, Shuman S. Structure and mechanism of Mycobacterium smegmatis polynucleotide phosphorylase. RNA (NEW YORK, N.Y.) 2021; 27:rna.078822.121. [PMID: 34088850 PMCID: PMC8284320 DOI: 10.1261/rna.078822.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/01/2021] [Indexed: 05/05/2023]
Abstract
Polynucleotide phosphorylase (PNPase) catalyzes stepwise phosphorolysis of the 3'-terminal phosphodiesters of RNA chains to yield nucleoside diphosphate products. In the reverse reaction PNPase acts as a polymerase, using NDPs as substrates to add NMPs to the 3'-OH terminus of RNA chains while expelling inorganic phosphate. The apparent essentiality of PNPase for growth of M. tuberculosis militates for mycobacterial PNPase as a potential drug target. A cryo-EM structure of Mycobacterium smegmatis PNPase (MsmPNPase) reveals a characteristic ring-shaped homotrimer in which each protomer consists of two RNase PH-like domains and an intervening α-helical module on the inferior surface of the ring. The C-terminal KH and S1 domains, which impart RNA specificity to MsmPNPase, are on the opposite face of the core ring and are conformationally mobile. Single particle reconstructions of MsmPNPase in the act of poly(A) synthesis highlight a 3'-terminal (rA)4 oligonucleotide and two magnesium ions in the active site and an adenine nucleobase in the central tunnel. We identify amino acids that engage the 3' segment of the RNA chain (Phe68, Arg105, Arg112, Arg430, Arg431) and the two metal ions (Asp526, Asp532, Gln546, Asp548) and we infer those that bind inorganic phosphate (Thr470, Ser471, His435, Lys534). Alanine mutagenesis pinpointed RNA and phosphate contacts as essential (Arg105, Arg431, Lys534, Thr470+Ser471), important (Arg112, Arg430), or unimportant (Phe68) for PNPase activity. Severe phosphorolysis and polymerase defects accompanying alanine mutations of the enzymic metal ligands suggest a two-metal mechanism of catalysis by MsmPNPase.
Collapse
|
9
|
Bathke J, Gauernack AS, Rupp O, Weber L, Preusser C, Lechner M, Rossbach O, Goesmann A, Evguenieva-Hackenberg E, Klug G. iCLIP analysis of RNA substrates of the archaeal exosome. BMC Genomics 2020; 21:797. [PMID: 33198623 PMCID: PMC7667871 DOI: 10.1186/s12864-020-07200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Background The archaeal exosome is an exoribonucleolytic multiprotein complex, which degrades single-stranded RNA in 3′ to 5′ direction phosphorolytically. In a reverse reaction, it can add A-rich tails to the 3′-end of RNA. The catalytic center of the exosome is in the aRrp41 subunit of its hexameric core. Its RNA-binding subunits aRrp4 and aDnaG confer poly(A) preference to the complex. The archaeal exosome was intensely characterized in vitro, but still little is known about its interaction with natural substrates in the cell, particularly because analysis of the transcriptome-wide interaction of an exoribonuclease with RNA is challenging. Results To determine binding sites of the exosome to RNA on a global scale, we performed individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) analysis with antibodies directed against aRrp4 and aRrp41 of the chrenarchaeon Sulfolobus solfataricus. A relatively high proportion (17–19%) of the obtained cDNA reads could not be mapped to the genome. Instead, they corresponded to adenine-rich RNA tails, which are post-transcriptionally synthesized by the exosome, and to circular RNAs (circRNAs). We identified novel circRNAs corresponding to 5′ parts of two homologous, transposase-related mRNAs. To detect preferred substrates of the exosome, the iCLIP reads were compared to the transcript abundance using RNA-Seq data. Among the strongly enriched exosome substrates were RNAs antisense to tRNAs, overlapping 3′-UTRs and RNAs containing poly(A) stretches. The majority of the read counts and crosslink sites mapped in mRNAs. Furthermore, unexpected crosslink sites clustering at 5′-ends of RNAs was detected. Conclusions In this study, RNA targets of an exoribonuclease were analyzed by iCLIP. The data documents the role of the archaeal exosome as an exoribonuclease and RNA-tailing enzyme interacting with all RNA classes, and underlines its role in mRNA turnover, which is important for adaptation of prokaryotic cells to changing environmental conditions. The clustering of crosslink sites near 5′-ends of genes suggests simultaneous binding of both RNA ends by the S. solfataricus exosome. This may serve to prevent translation of mRNAs dedicated to degradation in 3′-5′ direction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07200-x.
Collapse
Affiliation(s)
- Jochen Bathke
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany.,Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - A Susann Gauernack
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Oliver Rupp
- Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Lennart Weber
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | - Christian Preusser
- Institute of Biochemistry, Justus-Liebig-University, 35392, Giessen, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology & Department of Pharmaceutical Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Justus-Liebig-University, 35392, Giessen, Germany
| | - Alexander Goesmann
- Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | | | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University, 35392, Giessen, Germany
| |
Collapse
|
10
|
Morton DJ, Jalloh B, Kim L, Kremsky I, Nair RJ, Nguyen KB, Rounds JC, Sterrett MC, Brown B, Le T, Karkare MC, McGaughey KD, Sheng S, Leung SW, Fasken MB, Moberg KH, Corbett AH. A Drosophila model of Pontocerebellar Hypoplasia reveals a critical role for the RNA exosome in neurons. PLoS Genet 2020; 16:e1008901. [PMID: 32645003 PMCID: PMC7373318 DOI: 10.1371/journal.pgen.1008901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 07/21/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
The RNA exosome is an evolutionarily-conserved ribonuclease complex critically important for precise processing and/or complete degradation of a variety of cellular RNAs. The recent discovery that mutations in genes encoding structural RNA exosome subunits cause tissue-specific diseases makes defining the role of this complex within specific tissues critically important. Mutations in the RNA exosome component 3 (EXOSC3) gene cause Pontocerebellar Hypoplasia Type 1b (PCH1b), an autosomal recessive neurologic disorder. The majority of disease-linked mutations are missense mutations that alter evolutionarily-conserved regions of EXOSC3. The tissue-specific defects caused by these amino acid changes in EXOSC3 are challenging to understand based on current models of RNA exosome function with only limited analysis of the complex in any multicellular model in vivo. The goal of this study is to provide insight into how mutations in EXOSC3 impact the function of the RNA exosome. To assess the tissue-specific roles and requirements for the Drosophila ortholog of EXOSC3 termed Rrp40, we utilized tissue-specific RNAi drivers. Depletion of Rrp40 in different tissues reveals a general requirement for Rrp40 in the development of many tissues including the brain, but also highlight an age-dependent requirement for Rrp40 in neurons. To assess the functional consequences of the specific amino acid substitutions in EXOSC3 that cause PCH1b, we used CRISPR/Cas9 gene editing technology to generate flies that model this RNA exosome-linked disease. These flies show reduced viability; however, the surviving animals exhibit a spectrum of behavioral and morphological phenotypes. RNA-seq analysis of these Drosophila Rrp40 mutants reveals increases in the steady-state levels of specific mRNAs and ncRNAs, some of which are central to neuronal function. In particular, Arc1 mRNA, which encodes a key regulator of synaptic plasticity, is increased in the Drosophila Rrp40 mutants. Taken together, this study defines a requirement for the RNA exosome in specific tissues/cell types and provides insight into how defects in RNA exosome function caused by specific amino acid substitutions that occur in PCH1b can contribute to neuronal dysfunction.
Collapse
Affiliation(s)
- Derrick J. Morton
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Binta Jalloh
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lily Kim
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Isaac Kremsky
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Rishi J. Nair
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Khuong B. Nguyen
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - J. Christopher Rounds
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maria C. Sterrett
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
| | - Brianna Brown
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Thalia Le
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Maya C. Karkare
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Kathryn D. McGaughey
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Shaoyi Sheng
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Sara W. Leung
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Milo B. Fasken
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anita H. Corbett
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| |
Collapse
|
11
|
Lingaraju M, Schuller JM, Falk S, Gerlach P, Bonneau F, Basquin J, Benda C, Conti E. To Process or to Decay: A Mechanistic View of the Nuclear RNA Exosome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:155-163. [PMID: 32493762 DOI: 10.1101/sqb.2019.84.040295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The RNA exosome was originally discovered in yeast as an RNA-processing complex required for the maturation of 5.8S ribosomal RNA (rRNA), one of the constituents of the large ribosomal subunit. The exosome is now known in eukaryotes as the major 3'-5' RNA degradation machine involved in numerous processing, turnover, and surveillance pathways, both in the nucleus and the cytoplasm. Yet its role in maturing the 5.8S rRNA in the pre-60S ribosomal particle remains probably the most intricate and emblematic among its functions, as it involves all the RNA unwinding, degradation, and trimming activities embedded in this macromolecular complex. Here, we propose a comprehensive mechanistic model, based on current biochemical and structural data, explaining the dual functions of the nuclear exosome-the constructive versus the destructive mode.
Collapse
Affiliation(s)
- Mahesh Lingaraju
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Jan M Schuller
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Sebastian Falk
- Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, 1030, Vienna, Austria
| | - Piotr Gerlach
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Fabien Bonneau
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Jérôme Basquin
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Christian Benda
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| | - Elena Conti
- Max-Planck-Institute of Biochemistry, Department of Structural Cell Biology, D-82152 Martinsried/Munich, Germany
| |
Collapse
|
12
|
Schütz S, Sprangers R. Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:56-84. [PMID: 32130959 DOI: 10.1016/j.pnmrs.2019.09.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 05/21/2023]
Abstract
A major goal in structural biology is to unravel how molecular machines function in detail. To that end, solution-state NMR spectroscopy is ideally suited as it is able to study biological assemblies in a near natural environment. Based on methyl TROSY methods, it is now possible to record high-quality data on complexes that are far over 100 kDa in molecular weight. In this review, we discuss the theoretical background of methyl TROSY spectroscopy, the information that can be extracted from methyl TROSY spectra and approaches that can be used to assign methyl resonances in large complexes. In addition, we touch upon insights that have been obtained for a number of challenging biological systems, including the 20S proteasome, the RNA exosome, molecular chaperones and G-protein-coupled receptors. We anticipate that methyl TROSY methods will be increasingly important in modern structural biology approaches, where information regarding static structures is complemented with insights into conformational changes and dynamic intermolecular interactions.
Collapse
Affiliation(s)
- Stefan Schütz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
13
|
Weick EM, Zinder JC, Lima CD. Strategies for Generating RNA Exosome Complexes from Recombinant Expression Hosts. Methods Mol Biol 2020; 2062:417-425. [PMID: 31768988 PMCID: PMC8565498 DOI: 10.1007/978-1-4939-9822-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The eukaryotic RNA exosome is a conserved and ubiquitous multiprotein complex that possesses multiple RNase activities and is involved in a diverse array of RNA degradation and processing events. While much of our current understanding of RNA exosome function has been elucidated using genetics and cell biology based studies of protein functions, in particular in S. cerevisiae, many important contributions in the field have been enabled through use of in vitro reconstituted complexes. Here, we present an overview of our approach to purify exosome components from recombinant sources and reconstitute them into functional complexes. Three chapters following this overview provide detailed protocols for reconstituting exosome complexes from S. cerevisiae, S. pombe, and H. sapiens. We additionally provide insight on some of the drawbacks of these methods and highlight several important discoveries that have been achieved using reconstituted complexes.
Collapse
Affiliation(s)
- Eva-Maria Weick
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John C Zinder
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
14
|
Evguenieva-Hackenberg E, Gauernack AS, Hou L, Klug G. Enzymatic Analysis of Reconstituted Archaeal Exosomes. Methods Mol Biol 2020; 2062:63-79. [PMID: 31768972 DOI: 10.1007/978-1-4939-9822-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The archaeal exosome is a protein complex with phosphorolytic activity. It is built of a catalytically active hexameric ring containing the archaeal Rrp41 and Rrp42 proteins, and a heteromeric RNA-binding platform. The platform contains a heterotrimer of the archaeal Rrp4 and Csl4 proteins (which harbor S1 and KH or Zn-ribbon RNA binding domains), and comprises additional archaea-specific subunits. The latter are represented by the archaeal DnaG protein, which harbors a novel RNA-binding domain and tightly interacts with the majority of the exosome isoforms, and Nop5, known as a part of an rRNA methylating complex and found to associate with the archaeal exosome at late stationary phase. Although in the cell the archaeal exosome exists in different isoforms with heterotrimeric Rrp4-Csl4-caps, in vitro it is possible to reconstitute complexes with defined, homotrimeric caps and to study the impact of each RNA-binding subunit on exoribonucleolytic degradation and on polynucleotidylation of RNA. Here we describe procedures for reconstitution of isoforms of the Sulfolobus solfataricus exosome and for set-up of RNA degradation and polyadenylation assays.
Collapse
Affiliation(s)
| | - A Susann Gauernack
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Linlin Hou
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriele Klug
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
15
|
Abstract
The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| | - Derrick J Morton
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie K Jones
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Sara W Leung
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Anita H Corbett
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Schmid M, Jensen TH. The Nuclear RNA Exosome and Its Cofactors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:113-132. [PMID: 31811632 DOI: 10.1007/978-3-030-31434-7_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The RNA exosome is a highly conserved ribonuclease endowed with 3'-5' exonuclease and endonuclease activities. The multisubunit complex resides in both the nucleus and the cytoplasm, with varying compositions and activities between the two compartments. While the cytoplasmic exosome functions mostly in mRNA quality control pathways, the nuclear RNA exosome partakes in the 3'-end processing and complete decay of a wide variety of substrates, including virtually all types of noncoding (nc) RNAs. To handle these diverse tasks, the nuclear exosome engages with dedicated cofactors, some of which serve as activators by stimulating decay through oligoA addition and/or RNA helicase activities or, as adaptors, by recruiting RNA substrates through their RNA-binding capacities. Most nuclear exosome cofactors contain the essential RNA helicase Mtr4 (MTR4 in humans). However, apart from Mtr4, nuclear exosome cofactors have undergone significant evolutionary divergence. Here, we summarize biochemical and functional knowledge about the nuclear exosome and exemplify its cofactor variety by discussing the best understood model organisms-the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and human cells.
Collapse
Affiliation(s)
- Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
17
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|
18
|
Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB. The RNA exosome and RNA exosome-linked disease. RNA (NEW YORK, N.Y.) 2018; 24:127-142. [PMID: 29093021 PMCID: PMC5769741 DOI: 10.1261/rna.064626.117] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The RNA exosome is an evolutionarily conserved, ribonuclease complex that is critical for both processing and degradation of a variety of RNAs. Cofactors that associate with the RNA exosome likely dictate substrate specificity for this complex. Recently, mutations in genes encoding both structural subunits of the RNA exosome and its cofactors have been linked to human disease. Mutations in the RNA exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are similar autosomal-recessive, neurodegenerative diseases. Mutations in the RNA exosome gene EXOSC2 cause a distinct syndrome with various tissue-specific phenotypes including retinitis pigmentosa and mild intellectual disability. Mutations in genes that encode RNA exosome cofactors also cause tissue-specific diseases with complex phenotypes. How mutations in these genes give rise to distinct, tissue-specific diseases is not clear. In this review, we discuss the role of the RNA exosome complex and its cofactors in human disease, consider the amino acid changes that have been implicated in disease, and speculate on the mechanisms by which exosome gene mutations could underlie dysfunction and disease.
Collapse
Affiliation(s)
- Derrick J Morton
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Stephanie K Jones
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Sara W Leung
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Milo B Fasken
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| |
Collapse
|
19
|
Gauernack AS, Lassek C, Hou L, Dzieciolowski J, Evguenieva-Hackenberg E, Klug G. Nop5 interacts with the archaeal RNA exosome. FEBS Lett 2017; 591:4039-4048. [PMID: 29159940 DOI: 10.1002/1873-3468.12915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/02/2023]
Abstract
The archaeal exosome, a protein complex responsible for phosphorolytic degradation and tailing of RNA, has an RNA-binding platform containing Rrp4, Csl4, and DnaG. Aiming to detect novel interaction partners of the exosome, we copurified Nop5, which is a part of an rRNA methylating ribonucleoprotein complex, with the exosome of Sulfolobus solfataricus grown to a late stationary phase. We demonstrated the capability of Nop5 to bind to the exosome with a homotrimeric Rrp4-cap and to increase the proportion of polyadenylated RNAin vitro, suggesting that Nop5 is a dual-function protein. Since tailing of RNA probably serves to enhance RNA degradation, association of Nop5 with the archaeal exosome in the stationary phase may enhance tailing and degradation of RNA as survival strategy.
Collapse
Affiliation(s)
- A Susann Gauernack
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Germany
| | - Christian Lassek
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Germany
| | - Linlin Hou
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Germany
| | - Julia Dzieciolowski
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | | | - Gabriele Klug
- Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
20
|
Stone CM, Butt LE, Bufton JC, Lourenco DC, Gowers DM, Pickford AR, Cox PA, Vincent HA, Callaghan AJ. Inhibition of homologous phosphorolytic ribonucleases by citrate may represent an evolutionarily conserved communicative link between RNA degradation and central metabolism. Nucleic Acids Res 2017; 45:4655-4666. [PMID: 28334892 PMCID: PMC5416783 DOI: 10.1093/nar/gkx114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/17/2017] [Accepted: 02/14/2017] [Indexed: 12/05/2022] Open
Abstract
Ribonucleases play essential roles in all aspects of RNA metabolism, including the coordination of post-transcriptional gene regulation that allows organisms to respond to internal changes and environmental stimuli. However, as inherently destructive enzymes, their activity must be carefully controlled. Recent research exemplifies the repertoire of regulatory strategies employed by ribonucleases. The activity of the phosphorolytic exoribonuclease, polynucleotide phosphorylase (PNPase), has previously been shown to be modulated by the Krebs cycle metabolite citrate in Escherichia coli. Here, we provide evidence for the existence of citrate-mediated inhibition of ribonucleases in all three domains of life. In silico molecular docking studies predict that citrate will bind not only to bacterial PNPases from E. coli and Streptomyces antibioticus, but also PNPase from human mitochondria and the structurally and functionally related archaeal exosome complex from Sulfolobus solfataricus. Critically, we show experimentally that citrate also inhibits the exoribonuclease activity of bacterial, eukaryotic and archaeal PNPase homologues in vitro. Furthermore, bioinformatics data, showing key citrate-binding motifs conserved across a broad range of PNPase homologues, suggests that this regulatory mechanism may be widespread. Overall, our data highlight a communicative link between ribonuclease activity and central metabolism that may have been conserved through the course of evolution.
Collapse
Affiliation(s)
- Carlanne M. Stone
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Louise E. Butt
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Joshua C. Bufton
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Daniel C. Lourenco
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Darren M. Gowers
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Andrew R. Pickford
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Paul A. Cox
- School of Pharmacy and Biomedical Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| |
Collapse
|
21
|
The Rrp4-exosome complex recruits and channels substrate RNA by a unique mechanism. Nat Chem Biol 2017; 13:522-528. [PMID: 28288106 PMCID: PMC5392361 DOI: 10.1038/nchembio.2328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022]
Abstract
The exosome is a large molecular machine that is involved in RNA degradation and processing. Here, we address how the trimeric Rrp4 cap enhances the activity of the archaeal enzyme complex. Using methyl TROSY NMR methods we identified a 50 Å long RNA binding path on each Rrp4 protomer. We show that the Rrp4 cap can thus recruit three substrates simultaneously, one of which is degraded in the core while two others are positioned for subsequent degradation rounds. The local interaction energy between the substrate and the Rrp4-exosome increases from the periphery of the complex towards the active sites. Importantly, the intrinsic interaction strength between the cap and the substrate is weakened as soon as substrates enter the catalytic barrel, which provides a means to reduce friction during substrate movements towards the active sites. Our data thus reveal a sophisticated exosome–substrate interaction mechanism that enables efficient RNA degradation.
Collapse
|
22
|
Insight into the RNA Exosome Complex Through Modeling Pontocerebellar Hypoplasia Type 1b Disease Mutations in Yeast. Genetics 2016; 205:221-237. [PMID: 27777260 DOI: 10.1534/genetics.116.195917] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022] Open
Abstract
Pontocerebellar hypoplasia type 1b (PCH1b) is an autosomal recessive disorder that causes cerebellar hypoplasia and spinal motor neuron degeneration, leading to mortality in early childhood. PCH1b is caused by mutations in the RNA exosome subunit gene, EXOSC3 The RNA exosome is an evolutionarily conserved complex, consisting of nine different core subunits, and one or two 3'-5' exoribonuclease subunits, that mediates several RNA degradation and processing steps. The goal of this study is to assess the functional consequences of the amino acid substitutions that have been identified in EXOSC3 in PCH1b patients. To analyze these EXOSC3 substitutions, we generated the corresponding amino acid substitutions in the Saccharomyces cerevisiae ortholog of EXOSC3, Rrp40 We find that the rrp40 variants corresponding to EXOSC3-G31A and -D132A do not affect yeast function when expressed as the sole copy of the essential Rrp40 protein. In contrast, the rrp40-W195R variant, corresponding to EXOSC3-W238R in PCH1b patients, impacts cell growth and RNA exosome function when expressed as the sole copy of Rrp40 The rrp40-W195R protein is unstable, and does not associate efficiently with the RNA exosome in cells that also express wild-type Rrp40 Consistent with these findings in yeast, the levels of mouse EXOSC3 variants are reduced compared to wild-type EXOSC3 in a neuronal cell line. These data suggest that cells possess a mechanism for optimal assembly of functional RNA exosome complex that can discriminate between wild-type and variant exosome subunits. Budding yeast can therefore serve as a useful tool to understand the molecular defects in the RNA exosome caused by PCH1b-associated amino acid substitutions in EXOSC3, and potentially extending to disease-associated substitutions in other exosome subunits.
Collapse
|
23
|
Audin MJC, Wurm JP, Cvetkovic MA, Sprangers R. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation. Nucleic Acids Res 2016; 44:2962-73. [PMID: 26837575 PMCID: PMC4824110 DOI: 10.1093/nar/gkw062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/25/2016] [Indexed: 11/30/2022] Open
Abstract
The exosome plays an important role in RNA degradation and processing. In archaea, three Rrp41:Rrp42 heterodimers assemble into a barrel like structure that contains a narrow RNA entrance pore and a lumen that contains three active sites. Here, we demonstrate that this quaternary structure of the exosome is important for efficient RNA degradation. We find that the entrance pore of the barrel is required for nM substrate affinity. This strong interaction is crucial for processive substrate degradation and prevents premature release of the RNA from the enzyme. Using methyl TROSY NMR techniques, we establish that the 3′ end of the substrate remains highly flexible inside the lumen. As a result, the RNA jumps between the three active sites that all equally participate in substrate degradation. The RNA jumping rate is, however, much faster than the cleavage rate, indicating that not all active site:substrate encounters result in catalysis. Enzymatic turnover therefore benefits from the confinement of the active sites and substrate in the lumen, which ensures that the RNA is at all times bound to one of the active sites. The evolution of the exosome into a hexameric complex and the optimization of its catalytic efficiency were thus likely co-occurring events.
Collapse
Affiliation(s)
- Maxime J C Audin
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Jan Philip Wurm
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Milos A Cvetkovic
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Remco Sprangers
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Hou L, Klug G, Evguenieva-Hackenberg E. Archaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome. Nucleic Acids Res 2014; 42:12691-706. [PMID: 25326320 PMCID: PMC4227792 DOI: 10.1093/nar/gku969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The archaeal exosome is a phosphorolytic 3′–5′ exoribonuclease complex. In a reverse reaction it synthesizes A-rich RNA tails. Its RNA-binding cap comprises the eukaryotic orthologs Rrp4 and Csl4, and an archaea-specific subunit annotated as DnaG. In Sulfolobus solfataricus DnaG and Rrp4 but not Csl4 show preference for poly(rA). Archaeal DnaG contains N- and C-terminal domains (NTD and CTD) of unknown function flanking a TOPRIM domain. We found that the NT and TOPRIM domains have comparable, high conservation in all archaea, while the CTD conservation correlates with the presence of exosome. We show that the NTD is a novel RNA-binding domain with poly(rA)-preference cooperating with the TOPRIM domain in binding of RNA. Consistently, a fusion protein containing full-length Csl4 and NTD of DnaG led to enhanced degradation of A-rich RNA by the exosome. We also found that DnaG strongly binds native and invitro transcribed rRNA and enables its polynucleotidylation by the exosome. Furthermore, rRNA-derived transcripts with heteropolymeric tails were degraded faster by the exosome than their non-tailed variants. Based on our data, we propose that archaeal DnaG is an RNA-binding protein, which, in the context of the exosome, is involved in targeting of stable RNA for degradation.
Collapse
Affiliation(s)
- Linlin Hou
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | | |
Collapse
|
25
|
Evguenieva-Hackenberg E, Hou L, Glaeser S, Klug G. Structure and function of the archaeal exosome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:623-35. [DOI: 10.1002/wrna.1234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 11/10/2022]
Affiliation(s)
| | - Linlin Hou
- Institute of Microbiology and Molecular Biology; University of Giessen; Giessen Germany
| | - Stefanie Glaeser
- Institute of Applied Microbiology; University of Giessen; Giessen Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology; University of Giessen; Giessen Germany
| |
Collapse
|
26
|
Januszyk K, Lima CD. The eukaryotic RNA exosome. Curr Opin Struct Biol 2014; 24:132-40. [PMID: 24525139 DOI: 10.1016/j.sbi.2014.01.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 12/24/2022]
Abstract
The eukaryotic RNA exosome is an essential multi-subunit ribonuclease complex that contributes to the degradation or processing of nearly every class of RNA in both the nucleus and cytoplasm. Its nine-subunit core shares structural similarity to phosphorolytic exoribonucleases such as bacterial PNPase. PNPase and the RNA exosome core feature a central channel that can accommodate single stranded RNA although unlike PNPase, the RNA exosome core is devoid of ribonuclease activity. Instead, the core associates with Rrp44, an endoribonuclease and processive 3'→5' exoribonuclease, and Rrp6, a distributive 3'→5' exoribonuclease. Recent biochemical and structural studies suggest that the exosome core is essential because it coordinates Rrp44 and Rrp6 recruitment, RNA can pass through the central channel, and the association with the core modulates Rrp44 and Rrp6 activities.
Collapse
Affiliation(s)
- Kurt Januszyk
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA; Howard Hughes Medical Institute, Structural Biology Program, Sloan-Kettering Institute, 1275 York Avenue, NY, USA.
| |
Collapse
|
27
|
Rorbach J, Bobrowicz A, Pearce S, Minczuk M. Polyadenylation in bacteria and organelles. Methods Mol Biol 2014; 1125:211-27. [PMID: 24590792 DOI: 10.1007/978-1-62703-971-0_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Polyadenylation is a posttranscriptional modification present throughout all the kingdoms of life with important roles in regulation of RNA stability, translation, and quality control. Functions of polyadenylation in prokaryotic and organellar RNA metabolism are still not fully characterized, and poly(A) tails appear to play contrasting roles in different systems. Here we present a general overview of the polyadenylation process and the factors involved in its regulation, with an emphasis on the diverse functions of 3' end modification in the control of gene expression in different biological systems.
Collapse
Affiliation(s)
- Joanna Rorbach
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK,
| | | | | | | |
Collapse
|
28
|
Makino DL, Conti E. Structure determination of an 11-subunit exosome in complex with RNA by molecular replacement. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2226-35. [PMID: 24189234 PMCID: PMC3817696 DOI: 10.1107/s0907444913011438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/26/2013] [Indexed: 11/17/2022]
Abstract
The RNA exosome is an evolutionarily conserved multi-protein complex involved in the 3' degradation of a variety of RNA transcripts. In the nucleus, the exosome participates in the maturation of structured RNAs, in the surveillance of pre-mRNAs and in the decay of a variety of noncoding transcripts. In the cytoplasm, the exosome degrades mRNAs in constitutive and regulated turnover pathways. Several structures of subcomplexes of eukaryotic exosomes or related prokaryotic exosome-like complexes are known, but how the complete assembly is organized to fulfil processive RNA degradation has been unclear. An atomic snapshot of a Saccharomyces cerevisiae 420 kDa exosome complex bound to an RNA substrate in the pre-cleavage state of a hydrolytic reaction has been determined. Here, the crystallographic steps towards the structural elucidation, which was carried out by molecular replacement, are presented.
Collapse
Affiliation(s)
- Debora Lika Makino
- Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Elena Conti
- Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
29
|
Unciuleac MC, Shuman S. Discrimination of RNA from DNA by polynucleotide phosphorylase. Biochemistry 2013; 52:6702-11. [PMID: 23980617 DOI: 10.1021/bi401041v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polynucleotide phosphorylase (PNPase) plays synthetic and degradative roles in bacterial RNA metabolism; it is also thought to participate in bacterial DNA transactions. Here we used chimeric polynucleotides, composed of alternating RNA and DNA tracts, to analyze whether and how Mycobacterium smegmatis PNPase discriminates RNA from DNA during the 3'-phosphorolysis reaction. We find that a kinetic block to 3'-phosphorolysis of a DNA tract within an RNA polynucleotide is exerted when resection has progressed to the point that a 3'-monoribonucleotide flanks the impeding DNA segment. The position of the pause one nucleotide before the first deoxynucleotide encountered is independent of DNA tract length. However, the duration of the pause is affected by DNA tract length, being transient for a single deoxynucleotide and durable when two or more consecutive deoxynucleotides are encountered. Substituting manganese for magnesium as the metal cofactor allows PNPase to "nibble" into the DNA tract. A 3'-phosphate group prevents RNA phosphorolysis when the metal cofactor is magnesium. With manganese, PNPase can resect an RNA 3'-phosphate end, albeit 80-fold slower than a 3'-OH. We discuss the findings in light of the available structures of PNPase and the archaeal exosome·RNA·phosphate complex and propose a model for catalysis whereby the metal cofactor interacts with the scissile phosphodiester and the penultimate ribose.
Collapse
|
30
|
Audin MJC, Dorn G, Fromm SA, Reiss K, Schütz S, Vorländer MK, Sprangers R. The Archaeal Exosome: Identification and Quantification of Site-Specific Motions That Correlate with Cap and RNA Binding. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Schneider C, Tollervey D. Threading the barrel of the RNA exosome. Trends Biochem Sci 2013; 38:485-93. [PMID: 23910895 PMCID: PMC3838930 DOI: 10.1016/j.tibs.2013.06.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022]
Abstract
A wide range of in vivo targets for the exosome complex has been established. RNA polymerase III transcripts have emerged as major substrates. The human nucleus has spatially localized forms of the exosome, with matching cofactors. Structural analyses reveal a highly conserved RNA path through the eukaryotic exosome.
In eukaryotes, the exosome complex degrades RNA backbones and plays key roles in RNA processing and surveillance. It was predicted that RNA substrates are threaded through a central channel. This pathway is conserved between eukaryotic and archaeal complexes, even though nuclease activity was lost from the nine-subunit eukaryotic core (EXO-9) and transferred to associated proteins. The exosome cooperates with nuclear and cytoplasmic cofactors, including RNA helicases Mtr4 and Ski2, respectively. Structures of an RNA-bound exosome and both helicases revealed how substrates are channeled through EXO-9 to the associated nuclease Rrp44. Recent high-throughput analyses provided fresh insights relating exosome structure to its diverse in vivo functions. They also revealed surprisingly high degradation rates for newly synthesized RNAs, particularly RNA polymerase III transcripts.
Collapse
Affiliation(s)
- Claudia Schneider
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
32
|
Audin MJC, Dorn G, Fromm SA, Reiss K, Schütz S, Vorländer MK, Sprangers R. The archaeal exosome: identification and quantification of site-specific motions that correlate with cap and RNA binding. Angew Chem Int Ed Engl 2013; 52:8312-6. [PMID: 23804404 PMCID: PMC3840697 DOI: 10.1002/anie.201302811] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 11/16/2022]
Affiliation(s)
- Maxime J C Audin
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
34
|
S1 and KH domains of polynucleotide phosphorylase determine the efficiency of RNA binding and autoregulation. J Bacteriol 2013; 195:2021-31. [PMID: 23457244 DOI: 10.1128/jb.00062-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand the roles of the KH and S1 domains in RNA binding and polynucleotide phosphorylase (PNPase) autoregulation, we have identified and investigated key residues in these domains. A convenient pnp::lacZ fusion reporter strain was used to assess autoregulation by mutant PNPase proteins lacking the KH and/or S1 domains or containing point mutations in those domains. Mutant enzymes were purified and studied by using in vitro band shift and phosphorolysis assays to gauge binding and enzymatic activity. We show that reductions in substrate affinity accompany impairment of PNPase autoregulation. A remarkably strong correlation was observed between β-galactosidase levels reflecting autoregulation and apparent KD values for the binding of a model RNA substrate. These data show that both the KH and S1 domains of PNPase play critical roles in substrate binding and autoregulation. The findings are discussed in the context of the structure, binding sites, and function of PNPase.
Collapse
|
35
|
Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 2013; 495:70-5. [DOI: 10.1038/nature11870] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/21/2012] [Indexed: 01/18/2023]
|
36
|
Attack from both ends: mRNA degradation in the crenarchaeon Sulfolobus solfataricus. Biochem Soc Trans 2013; 41:379-83. [DOI: 10.1042/bst20120282] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNA stability control and degradation are employed by cells to control gene expression and to adjust the level of protein synthesis in response to physiological needs. In all domains of life, mRNA decay can commence in the 5′–3′ as well as in the 3′–5′-direction. Consequently, mechanisms are in place conferring protection on mRNAs at both ends. Upon deprotection, dedicated enzymes/enzyme complexes access either end and trigger 5′–3′ or 3′–5′-directional decay. In the present paper, we first briefly review the general mRNA decay pathways in Bacteria and Eukarya, and then focus on 5′–3′ and 3′–5′-directional decay in the crenarchaeon Sulfolobus solfataricus, which is executed by a RNase J-like ribonuclease and the exosome complex respectively. In addition, we describe mechanisms that stabilize mRNAs at the 5′- as well as at the 3′-end.
Collapse
|
37
|
Chlebowski A, Lubas M, Jensen TH, Dziembowski A. RNA decay machines: the exosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:552-60. [PMID: 23352926 DOI: 10.1016/j.bbagrm.2013.01.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
The multisubunit RNA exosome complex is a major ribonuclease of eukaryotic cells that participates in the processing, quality control and degradation of virtually all classes of RNA in Eukaryota. All this is achieved by about a dozen proteins with only three ribonuclease activities between them. At first glance, the versatility of the pathways involving the exosome and the sheer multitude of its substrates are astounding. However, after fifteen years of research we have some understanding of how exosome activity is controlled and applied inside the cell. The catalytic properties of the eukaryotic exosome are fairly well described and attention is now drawn to how the interplay between these activities impacts cell physiology. Also, it has become evident that exosome function relies on many auxiliary factors, which are intensely studied themselves. In this way, the focus of exosome research is slowly leaving the test tube and moving back into the cell. The exosome also has an interesting evolutionary history, which is evident within the eukaryotic lineage but only fully appreciated when considering similar protein complexes found in Bacteria and Archaea. Thus, while we keep this review focused on the most comprehensively described yeast and human exosomes, we shall point out similarities or dissimilarities to prokaryotic complexes and proteins where appropriate. The article is divided into three parts. In Part One we describe how the exosome is built and how it manifests in cells of different organisms. In Part Two we detail the enzymatic properties of the exosome, especially recent data obtained for holocomplexes. Finally, Part Three presents an overview of the RNA metabolism pathways that involve the exosome. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
38
|
Hou L, Klug G, Evguenieva-Hackenberg E. The archaeal DnaG protein needs Csl4 for binding to the exosome and enhances its interaction with adenine-rich RNAs. RNA Biol 2013; 10:415-24. [PMID: 23324612 PMCID: PMC3672285 DOI: 10.4161/rna.23450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The archaeal RNA-degrading exosome contains a catalytically active hexameric core, an RNA-binding cap formed by Rrp4 and Csl4 and the protein annotated as DnaG (bacterial type primase) with so-far-unknown functions in RNA metabolism. We found that the archaeal DnaG binds to the Csl4-exosome but not to the Rrp4-exosome of Sulfolobus solfataricus. In vitro assays revealed that DnaG is a poly(A)-binding protein enhancing the degradation of adenine-rich transcripts by the Csl4-exosome. DnaG is the second poly(A)-binding protein besides Rrp4 in the heteromeric, RNA-binding cap of the S. solfataricus exosome. This apparently reflects the need for effective and selective recruitment of adenine-rich RNAs to the exosome in the RNA metabolism of S. solfataricus.
Collapse
Affiliation(s)
- Linlin Hou
- Institute of Microbiology and Molecular Biology; Heinrich-Buff-Ring; Giessen, Germany
| | | | | |
Collapse
|
39
|
Crystal structure of a 9-subunit archaeal exosome in pre-catalytic states of the phosphorolytic reaction. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:721869. [PMID: 23319881 PMCID: PMC3539426 DOI: 10.1155/2012/721869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022]
Abstract
The RNA exosome is an important protein complex that functions in the 3′ processing and degradation of RNA in archaeal and eukaryotic organisms. The archaeal exosome is functionally similar to bacterial polynucleotide phosphorylase (PNPase) and RNase PH enzymes as it uses inorganic phosphate (Pi) to processively cleave RNA substrates releasing nucleoside diphosphates. To shed light on the mechanism of catalysis, we have determined the crystal structures of mutant archaeal exosome in complex with either Pi or with both RNA and Pi at resolutions of 1.8 Å and 2.5 Å, respectively. These structures represent views of precatalytic states of the enzyme and allow the accurate determination of the substrate binding geometries. In the structure with both Pi and RNA bound, the Pi closely approaches the phosphate of the 3′-end nucleotide of the RNA and is in a perfect position to perform a nucleophilic attack. The presence of negative charge resulting from the close contacts between the phosphates appears to be neutralized by conserved positively charged residues in the active site of the archaeal exosome. The high degree of structural conservation between the archaeal exosome and the PNPase including the requirement for divalent metal ions for catalysis is discussed.
Collapse
|
40
|
Klauer AA, van Hoof A. Genetic interactions suggest multiple distinct roles of the arch and core helicase domains of Mtr4 in Rrp6 and exosome function. Nucleic Acids Res 2012; 41:533-41. [PMID: 23143101 PMCID: PMC3592479 DOI: 10.1093/nar/gks1013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The RNA exosome is responsible for a wide variety of RNA processing and degradation reactions. The activity and specificity of the RNA exosome is thought to be controlled by a number of cofactors. Mtr4 is an essential RNA-dependent adenosine triphosphatase that is required for all of the nuclear functions of the RNA exosome. The crystal structure of Mtr4 uncovered a domain that is conserved in the RNA exosome cofactors Mtr4 and Ski2 but not in other helicases, suggesting it has an important role related to exosome activation. Rrp6 provides the nuclear exosome with one of its three nuclease activities, and previous findings suggested that the arch domain is specifically required for Rrp6 functions. Here, we report that the genetic interactions between the arch domain of Mtr4 and Rrp6 cannot be explained by the arch domain solely acting in Rrp6-dependent processing reactions. Specifically, we show that the arch domain is not required for all Rrp6 functions, and that the arch domain also functions independently of Rrp6. Finally, we show that the arch domain of Ski2, the cytoplasmic counterpart of Mtr4, is required for Ski2’s function, thereby confirming that the arch domains of these cofactors function independently of Rrp6.
Collapse
Affiliation(s)
- A Alejandra Klauer
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston and The University of Texas Graduate School of Biomedical Sciences, 6431 Fannin Street, MSB 1.212, Houston, TX 77030, USA
| | | |
Collapse
|
41
|
Hardwick SW, Luisi BF. Rarely at rest: RNA helicases and their busy contributions to RNA degradation, regulation and quality control. RNA Biol 2012; 10:56-70. [PMID: 23064154 DOI: 10.4161/rna.22270] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA helicases are compact, machine-like proteins that can harness the energy of nucleoside triphosphate binding and hydrolysis to dynamically remodel RNA structures and protein-RNA complexes. Through such activities, helicases participate in virtually every process associated with the expression of genetic information. Often found as components of multi-enzyme assemblies, RNA helicases facilitate the processivity of RNA degradation, the remodeling of protein interactions during maturation of structured RNA precursors, and fidelity checks of RNA quality. In turn, the assemblies modulate and guide the activities of the helicases. We describe the roles of RNA helicases with a conserved "DExD/H box" sequence motif in representative examples of such machineries from bacteria, archaea and eukaryotes. The recurrent occurrence of such helicases in complex assemblies throughout the course of evolution suggests a common requirement for their activities to meet cellular demands for the dynamic control of RNA metabolism.
Collapse
|
42
|
Abstract
The composition of the multisubunit eukaryotic RNA exosome was described more than a decade ago, and structural studies conducted since that time have contributed to our mechanistic understanding of factors that are required for 3'-to-5' RNA processing and decay. This chapter describes the organization of the eukaryotic RNA exosome with a focus on presenting results related to the noncatalytic nine-subunit exosome core as well as the hydrolytic exo- and endoribonuclease Rrp44 (Dis3) and the exoribonuclease Rrp6. This is achieved in large part by describing crystal structures of Rrp44, Rrp6, and the nine-subunit exosome core with an emphasis on how these molecules interact to endow the RNA exosome with its catalytic activities.
Collapse
Affiliation(s)
- Elizabeth V Wasmuth
- Structural Biology Program, Sloan-Kettering Institute, New York, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, USA
| | | |
Collapse
|
43
|
Johnson SJ, Jackson RN. Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 2012; 10:33-43. [PMID: 22995828 DOI: 10.4161/rna.22101] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ski2-like RNA helicases are large multidomain proteins involved in a variety of RNA processing and degradation events. Recent structures of Mtr4, Ski2 and Brr2 provide our first view of these intricate helicases. Here we review these structures, which reveal a conserved ring-like architecture that extends beyond the canonical RecA domains to include a winged helix and ratchet domain. Comparison of apo- and RNA-bound Mtr4 structures suggests a role for the winged helix domain as a molecular hub that coordinates RNA interacting events throughout the helicase. Unique accessory domains provide expanded diversity and functionality to each Ski2-like family member. A common theme is the integration of Ski2-like RNA helicases into larger protein assemblies. We describe the central role of Mtr4 and Ski2 in formation of complexes that activate RNA decay by the eukaryotic exosome. The current structures provide clues into what promises to be a fascinating view of these dynamic assemblies.
Collapse
Affiliation(s)
- Sean J Johnson
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA.
| | | |
Collapse
|
44
|
Hamp T, Rost B. Alternative protein-protein interfaces are frequent exceptions. PLoS Comput Biol 2012; 8:e1002623. [PMID: 22876170 PMCID: PMC3410849 DOI: 10.1371/journal.pcbi.1002623] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
The intricate molecular details of protein-protein interactions (PPIs) are crucial for function. Therefore, measuring the same interacting protein pair again, we expect the same result. This work measured the similarity in the molecular details of interaction for the same and for homologous protein pairs between different experiments. All scores analyzed suggested that different experiments often find exceptions in the interfaces of similar PPIs: up to 22% of all comparisons revealed some differences even for sequence-identical pairs of proteins. The corresponding number for pairs of close homologs reached 68%. Conversely, the interfaces differed entirely for 12-29% of all comparisons. All these estimates were calculated after redundancy reduction. The magnitude of interface differences ranged from subtle to the extreme, as illustrated by a few examples. An extreme case was a change of the interacting domains between two observations of the same biological interaction. One reason for different interfaces was the number of copies of an interaction in the same complex: the probability of observing alternative binding modes increases with the number of copies. Even after removing the special cases with alternative hetero-interfaces to the same homomer, a substantial variability remained. Our results strongly support the surprising notion that there are many alternative solutions to make the intricate molecular details of PPIs crucial for function.
Collapse
Affiliation(s)
- Tobias Hamp
- TUM, Bioinformatik - I12, Informatik, Garching, Germany
| | - Burkhard Rost
- TUM, Bioinformatik - I12, Informatik, Garching, Germany
- Institute of Advanced Study (IAS), TUM, Garching, Germany
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Witharana C, Roppelt V, Lochnit G, Klug G, Evguenieva-Hackenberg E. Heterogeneous complexes of the RNA exosome in Sulfolobus solfataricus. Biochimie 2012; 94:1578-87. [PMID: 22503705 DOI: 10.1016/j.biochi.2012.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/30/2012] [Indexed: 11/17/2022]
Abstract
The archaeal exosome is a protein complex involved in the degradation and the posttranscriptional tailing of RNA. The proteins Rrp41, Rrp42, Rrp4, Csl4 and DnaG are major subunits of the exosome in Sulfolobus solfataricus. In vitro, Rrp41 and Rrp42 form a catalytically active hexamer, to which an RNA-binding cap of Rrp4 and/or Csl4 is attached. Rrp4 confers strong poly(A) specificity to the exosome. The majority of Rrp41 and DnaG is detectable in the insoluble fraction and is localized at the cell periphery. The aim of this study was to analyze whether there are differences in the composition of the soluble and the insoluble exosomes. We found that the soluble exosome contains less DnaG and less Csl4 than the insoluble exosome which co-sediments with ribosomal subunits in sucrose density gradients. EF1-alpha was co-precipitated with the soluble exosome from S100 fractions using DnaG-directed antibodies, and from density gradient fractions using Rrp41-specific antibodies, strongly suggesting that EF1-alpha is an interaction partner of the soluble exosome. Furthermore, Csl4 was co-immunoprecipitated with the exosome using Rrp4-specific antibodies and vice versa, demonstrating the presence of heteromeric RNA-binding caps in vivo. To address the mechanism for poly(A) recognition by Rrp4, an exosome with an RNA-binding cap composed of truncated Rrp4 lacking the KH domain was reconstituted and analyzed. Although the deletion of the KH domain negatively influenced the degradation activity of the exosome, the poly(A) specificity was retained, showing that the KH domain is dispensable for the strong poly(A) preference of Rrp4.
Collapse
Affiliation(s)
- Chamindri Witharana
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | | | | | | | | |
Collapse
|
46
|
RNA binding and RNA remodeling activities of the half-a-tetratricopeptide (HAT) protein HCF107 underlie its effects on gene expression. Proc Natl Acad Sci U S A 2012; 109:5651-6. [PMID: 22451905 DOI: 10.1073/pnas.1200318109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The half-a-tetratricopeptide repeat (HAT) motif is a helical repeat motif found in proteins that influence various aspects of RNA metabolism, including rRNA biogenesis, RNA splicing, and polyadenylation. This functional association with RNA suggested that HAT repeat tracts might bind RNA. However, RNA binding activity has not been reported for any HAT repeat tract, and recent literature has emphasized a protein binding role. In this study, we show that a chloroplast-localized HAT protein, HCF107, is a sequence-specific RNA binding protein. HCF107 consists of 11 tandem HAT repeats and short flanking regions that are also predicted to form helical hairpins. The minimal HCF107 binding site spans ∼11 nt, consistent with the possibility that HAT repeats bind RNA through a modular one repeat-1 nt mechanism. Binding of HCF107 to its native RNA ligand in the psbH 5' UTR remodels local RNA structure and protects the adjacent RNA from exonucleases in vitro. These activities can account for the RNA stabilizing, RNA processing, and translational activation functions attributed to HCF107 based on genetic data. We suggest that analogous activities contribute to the functions of HAT domains found in ribonucleoprotein complexes in the nuclear-cytosolic compartment.
Collapse
|
47
|
Bernstein J, Toth EA. Yeast nuclear RNA processing. World J Biol Chem 2012; 3:7-26. [PMID: 22312453 PMCID: PMC3272586 DOI: 10.4331/wjbc.v3.i1.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/27/2011] [Accepted: 12/04/2011] [Indexed: 02/05/2023] Open
Abstract
Nuclear RNA processing requires dynamic and intricately regulated machinery composed of multiple enzymes and their cofactors. In this review, we summarize recent experiments using Saccharomyces cerevisiae as a model system that have yielded important insights regarding the conversion of pre-RNAs to functional RNAs, and the elimination of aberrant RNAs and unneeded intermediates from the nuclear RNA pool. Much progress has been made recently in describing the 3D structure of many elements of the nuclear degradation machinery and its cofactors. Similarly, the regulatory mechanisms that govern RNA processing are gradually coming into focus. Such advances invariably generate many new questions, which we highlight in this review.
Collapse
Affiliation(s)
- Jade Bernstein
- Jade Bernstein, Eric A Toth, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | |
Collapse
|
48
|
Halbach F, Rode M, Conti E. The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome. RNA (NEW YORK, N.Y.) 2012; 18:124-34. [PMID: 22114319 PMCID: PMC3261734 DOI: 10.1261/rna.029553.111] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ski2 is a cytoplasmic RNA helicase that functions together with the exosome in the turnover and quality control of mRNAs. Ski2 is conserved in eukaryotes and is related to the helicase Mtr4, a cofactor of the nuclear exosome involved in the processing and quality control of a variety of structured RNAs. We have determined the 2.4 Å resolution crystal structure of the 113 kDa helicase region of Saccharomyces cerevisiae Ski2. The structure shows that Ski2 has an overall architecture similar to that of Mtr4, with a core DExH region and an extended insertion domain. The insertion is not required for the formation of the Ski2-Ski3-Ski8 complex, but is instead an RNA-binding domain. While this is reminiscent of the Mtr4 insertion, there are specific structural and biochemical differences between the two helicases. The insertion of yeast Mtr4 consists of a β-barrel domain that is flexibly attached to a helical stalk, contains a KOW signature motif, and binds in vitro-transcribed tRNA(i)(Met), but not single-stranded RNA. The β-barrel domain of yeast Ski2 does not contain a KOW motif and is tightly packed against the helical stalk, forming a single structural unit maintained by a zinc-binding site. Biochemically, the Ski2 insertion has broad substrate specificity, binding both single-stranded and double-stranded RNAs. We speculate that the Ski2 and Mtr4 insertion domains have evolved with different properties tailored to the type of transcripts that are the substrates of the cytoplasmic and nuclear exosome.
Collapse
Affiliation(s)
- Felix Halbach
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Michaela Rode
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
- Corresponding author.E-mail .
| |
Collapse
|
49
|
Lubas M, Chlebowski A, Dziembowski A, Jensen TH. Biochemistry and Function of RNA Exosomes. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:1-30. [DOI: 10.1016/b978-0-12-404740-2.00001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Lin CL, Wang YT, Yang WZ, Hsiao YY, Yuan HS. Crystal structure of human polynucleotide phosphorylase: insights into its domain function in RNA binding and degradation. Nucleic Acids Res 2011; 40:4146-57. [PMID: 22210891 PMCID: PMC3351181 DOI: 10.1093/nar/gkr1281] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human polynucleotide phosphorylase (hPNPase) is a 3′-to-5′ exoribonuclease that degrades specific mRNA and miRNA, and imports RNA into mitochondria, and thus regulates diverse physiological processes, including cellular senescence and homeostasis. However, the RNA-processing mechanism by hPNPase, particularly how RNA is bound via its various domains, remains obscure. Here, we report the crystal structure of an S1 domain-truncated hPNPase at a resolution of 2.1 Å. The trimeric hPNPase has a hexameric ring-like structure formed by six RNase PH domains, capped with a trimeric KH pore. Our biochemical and mutagenesis studies suggest that the S1 domain is not critical for RNA binding, and conversely, that the conserved GXXG motif in the KH domain directly participates in RNA binding in hPNPase. Our studies thus provide structural and functional insights into hPNPase, which uses a KH pore to trap a long RNA 3′ tail that is further delivered into an RNase PH channel for the degradation process. Structural RNA with short 3′ tails are, on the other hand, transported but not digested by hPNPase.
Collapse
Affiliation(s)
- Chia Liang Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | | | | | | |
Collapse
|