1
|
Zhu H, Li B, Huang T, Wang B, Li S, Yu K, Cai L, Ye Y, Chen S, Zhu H, Xu J, Lu Q, Ji L. Update in the molecular mechanism and biomarkers of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167758. [PMID: 40048937 DOI: 10.1016/j.bbadis.2025.167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes caused by long-term hyperglycemia that leads to microvascular and neuronal damage in the retina. The molecular mechanisms of DR involve oxidative stress, inflammatory responses, neurodegenerative changes, and vascular dysfunction triggered by hyperglycemia. Oxidative stress activates multiple metabolic pathways, such as the polyol, hexosamine, and protein kinase C (PKC) pathways, resulting in the production of, which in turn promote the formation of advanced glycation end products (AGEs). These pathways exacerbate vascular endothelial damage and the release of inflammatory factors, activating inflammatory signaling pathways such as the NF-κB pathway, leading to retinal cell damage and apoptosis. Additionally, DR involves neurodegenerative changes, including the activation of glial cells, neuronal dysfunction, and cell death. Research on the multiomics molecular markers of DR has revealed complex mechanisms at the genetic, epigenetic, and transcriptional levels. Genome-wide association studies (GWASs) have identified multiple genetic loci associated with DR that are involved in metabolic and inflammatory pathways. Noncoding RNAs, such as miRNAs, circRNAs, and lncRNAs, participate in the development of DR by regulating gene expression. Proteomic, metabolomic and lipidomic analyses have revealed specific proteins, metabolites and lipid changes associated with DR, providing potential biomarkers for the early diagnosis and treatment of this disease. This review provides a comprehensive perspective for understanding the molecular network of DR and facilitates the exploration of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Bingqi Li
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Huang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Wang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shuoyu Li
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kuai Yu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Liwei Cai
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuxin Ye
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Siyuan Chen
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haotian Zhu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jin Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Qinkang Lu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Lindan Ji
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Attya M, Taha A, Gamal Eldin SA, Elessawy RA, Mohalhal AA. Vitreous level of tumor necrosis factor alpha in patients with macular edema secondary to retinal vein occlusion. Eur J Ophthalmol 2025:11206721251332791. [PMID: 40232271 DOI: 10.1177/11206721251332791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
PurposeRetinal vein occlusion (RVO) induces ischemia that triggers the release of inflammatory cytokines, including tumor necrosis factor alpha (TNF- α). We aimed at measuring TNF- α level in vitreous samples of treatment naïve RVO patients.Material and Methodsthis is a case control study. The study was conducted on 45 eyes (20 eyes with treatment naïve RVO associated with macular edema & 25 eyes of patients undergoing cataract surgery as control). Vitreous samples were collected using 25 gauge needle connected to 1 milliliters (ml) syringe and the level of TNF- α was assessed using Enzyme-linked Immunosorbent Assay (ELISA) Kits.ResultsThe mean age of RVO cases was 51.50 ± 12.86 years while controls was 55.76 ± 6.88 years (P value =0.192). Vitreous level of TNF-α was statistically significant higher in RVO patients [4.92 ± 0.74 picograms (pg)/ ml] than control [3.54 ± 0.60 pg/ml]; p value < 0.001. Vitreous TNF-α level in ischemic and non-ischemic RVO subgroups was 4.94 ± 0.69 pg/ml and 4.89 ± 0.89 pg/ml respectively that wasn't statistically significant (p value = 0.885) and its level in branch and central RVO subgroups was 5.02 ± 0.79 pg/ml and 4.84 ± 0.73pg/ml respectively not statistically significant (p value = 0.592).ConclusionsTNF-α level is increased in vitreous of RVO associated macular edema patients, thus, it may be involved in its pathogenesis and Anti-TNF-α might be used as treatment targets in the future.
Collapse
Affiliation(s)
- Mohamed Attya
- department of ophthalmology, Cairo University, Cairo, Egypt
| | - Amira Taha
- department of ophthalmology, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
3
|
Deliyanti D, Suphapimol V, Joglekar A, Jayasimhan A, Wilkinson-Berka JL. Immunotherapy with low-dose IL-2 attenuates vascular injury in mice with diabetic and neovascular retinopathy by restoring the balance between Foxp3 + Tregs and CD8 + T cells. Diabetologia 2025:10.1007/s00125-025-06412-8. [PMID: 40133487 DOI: 10.1007/s00125-025-06412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 03/27/2025]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy features damage to the retinal microvasculature that causes vessels to leak and proliferate and can lead to vision loss and blindness. Inflammation contributes to the development of diabetic retinopathy, but little is known about the role of the adaptive immune system, including the benefits of augmenting the Forkhead box protein P3 (Foxp3) regulatory T cell (Treg) compartment. We aimed to determine whether treatment with low-dose IL-2 expands and activates Tregs and reduces CD8+ T cells in the retina, and attenuates retinal inflammation and vasculopathy in murine models of diabetic retinopathy and neovascular retinopathy. METHODS Mouse models of streptozocin-induced diabetes and oxygen-induced retinopathy (OIR) were administered low-dose IL-2 (25,000 U) or vehicle (sterile water) by i.p. injection. Reporter mice expressing Foxp3 as a red fluorescent protein (RFP) conjugate or CD8 as a green fluorescent protein (GFP) conjugate were used to evaluate Foxp3+ Tregs and CD8+ T cells, respectively, in blood, lymphoid organs and retina using flow cytometry or confocal microscopy. Vasculopathy and the expression of angiogenic and inflammatory factors were assessed in the retina. RESULTS Low-dose IL-2 significantly expanded CD4+CD25+Foxp3+ Tregs in the blood and spleen of mouse models of OIR and diabetes (1.4- to 1.9-fold increase, p<0.01). This expansion enhanced Treg functionality, increasing the expression of cytotoxic T-lymphocyte-associated protein4 (CTLA4), programmed cell death protein1 (PD1) and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), and increased the ratio of Tregs to CD8+ T cells. This was accompanied in the retina by a twofold increase in Foxp3+ Tregs (diabetes: 3.01 ± 0.41 vs 5.90 ± 1.25 cells per field, p<0.001; OIR: 4.41 ± 1.48 vs 10.05 ± 2.91 cells per field, p<0.001) and a reduction in CD8+ T cells (diabetes: 4.65 ± 0.58 vs 3.00 ± 0.81 cells per field, p<0.01; OIR: 5.51 ± 1.33 vs 3.17 ± 1.14 cells per field, p<0.01). Low-dose IL-2 reduced the levels of the potent inflammatory factors intercellular adhesion protein1 and TNF and the chemokine IFNγ-inducible protein10 (IP-10) in the retina. Importantly, low-dose IL-2 treatment effectively attenuated retinal vasculopathy, with marked reductions in acellular capillaries (diabetes: 0.48-fold decrease, p<0.001), neovascularisation (OIR: 0.68-fold decrease, p<0.01) and vascular leakage, and expression of vascular endothelial growth factor. CONCLUSIONS/INTERPRETATION This study highlights the therapeutic potential of low-dose IL-2 to reduce retinal inflammation and severe vascular injury by boosting Tregs and reducing CD8+ T cells and inflammatory factors.
Collapse
Affiliation(s)
- Devy Deliyanti
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Varaporn Suphapimol
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Amit Joglekar
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Abhirup Jayasimhan
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Jennifer L Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Kim JS, Jun JH, Lee J, Park S, Kim E, Hwang SJ, Moon H, Baek SH, Kim HK, Park J, Cho Y, Han J, Kim C, Kim J, Yang HM, Lee C, Chung Y, Lee HJ, Jo DG. HDAC6 mediates NLRP3 inflammasome activation in the pathogenesis of diabetic retinopathy. Metabolism 2025; 164:156108. [PMID: 39689826 DOI: 10.1016/j.metabol.2024.156108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR), a major blindness cause in developed countries, is intricately linked to diabetes management and its duration. Here, we demonstrate that HDAC6 mediates NLRP3 inflammasome activation under diabetic conditions, leading to retinal inflammation and degeneration. METHODS This study demonstrated the therapeutic effects of HDAC6 genetic ablation, pharmacological inhibition, and HDAC6-deficient bone marrow transplantation in a diabetes model induced by streptozotocin and a high-fat diet. The therapeutic potential was evaluated from a metabolic perspective, including ocular pathologies such as retinal lesions, neovascularization, and vascular leakage. RESULTS We discovered that inhibition or genetic ablation of HDAC6 markedly alleviates DR symptoms by dampening NLRP3 inflammasome activation and mitigating retinal damage. Moreover, bone marrow transplantation from HDAC6-deficient mice into wild-type counterparts reversed DR symptoms, underscoring the significance of HDAC6 in systemic immune regulation. The study introduces a novel HDAC6 inhibitor, noted for superior bioavailability and blood-retinal barrier permeability, further highlights the therapeutic promise of targeting HDAC6 in DR. CONCLUSIONS Our findings not only underscore the crucial role of HDAC6 in the immune regulatory mechanisms underlying DR pathogenesis through NLRP3 inflammasome activation but also position HDAC6 inhibition as a promising strategy for addressing diabetic complications beyond DR.
Collapse
Affiliation(s)
- Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyun Jun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Pharmacology, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin 16995, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunyoung Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heesu Moon
- School of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Baek
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hark Kyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinsu Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chanhee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun-Mo Yang
- Department of Medical Chemistry, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin 16995, Republic of Korea
| | - Changsik Lee
- Department of Medical Chemistry, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin 16995, Republic of Korea
| | - Yeonseok Chung
- School of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Ren H, Yuan Y, Zhang D, Xing Y, Chen Z. The impact of circadian rhythms on retinal immunity. Chronobiol Int 2025; 42:198-212. [PMID: 39917826 DOI: 10.1080/07420528.2025.2460675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025]
Abstract
The eye is an immune-protected organ, which is driven by factors such as cytokines, chemicals, light, and mechanical stimuli. The circadian clock is an intrinsic timing mechanism that influences the immune activities, such as immune cell count and activity, as well as inflammatory responses. Recent studies have demonstrated that the eye also possesses an intrinsic circadian rhythm, and this rhythmic regulation participates in ocular immune modulation. In this review, we discuss the immunoregulatory mechanisms of the circadian clock within the eye, and reveal new perspectives for the prevention and treatment of ocular diseases.
Collapse
Affiliation(s)
- He Ren
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yilin Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danlei Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Karpagavalli M, Sindal MD, Arunachalam JP, Chidambaram S. miRNAs, piRNAs, and lncRNAs: A triad of non-coding RNAs regulating the neurovascular unit in diabetic retinopathy and their therapeutic potentials. Exp Eye Res 2025; 251:110236. [PMID: 39800284 DOI: 10.1016/j.exer.2025.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow. These interconnections between the neurovascular components get compromised due to hyperglycemia and are further associated with the progression of DR early on in the disease. As a result, therapeutic approaches are needed to avert the advancement of DR by acting at its initial stage to delay or prevent the pathogenesis. Non-coding RNAs (ncRNAs) such as microRNAs, piwi-interacting RNAs, and long non-coding RNAs regulate various cellular components in the neurovascular unit. These ncRNAs are key regulators of neurodegeneration, apoptosis, inflammation, and oxidative stress in DR. In this review, research related to alterations in the expression of ncRNAs and, correspondingly, their effect on the disintegration of the neurovascular coupling will be discussed briefly to understand the potential of ncRNAs as therapeutic targets for treating this debilitating disease.
Collapse
Affiliation(s)
| | | | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
7
|
Oliveira S, Guimarães P, Campos EJ, Fernandes R, Martins J, Castelo-Branco M, Serranho P, Matafome P, Bernardes R, Ambrósio AF. Retinal OCT-Derived Texture Features as Potential Biomarkers for Early Diagnosis and Progression of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2025; 66:7. [PMID: 39760689 PMCID: PMC11717131 DOI: 10.1167/iovs.66.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose Diabetic retinopathy (DR) is usually diagnosed many years after diabetes onset. Indeed, an early diagnosis of DR remains a notable challenge, and, thus, developing novel approaches for earlier disease detection is of utmost importance. We aim to explore the potential of texture analysis of optical coherence tomography (OCT) retinal images in detecting retinal changes in streptozotocin (STZ)-induced diabetic animals at "silent" disease stages when early retinal molecular and cellular changes that cannot be clinically detectable are already occurring. Methods Volume OCT scans and electroretinograms were acquired before and 1, 2, and 4 weeks after diabetes induction. Automated OCT image segmentation was performed, followed by retinal thickness and texture analysis. Blood-retinal barrier breakdown, glial reactivity, and neuroinflammation were also assessed. Results Type 1 diabetes induced significant early changes in several texture metrics. At week 4 of diabetes, autocorrelation, correlation, homogeneity, information measure of correlation II (IMCII), inverse difference moment normalized (IDN), inverse difference normalized (INN), and sum average texture metrics decreased in all retinal layers. Similar effects were observed for correlation, homogeneity, IMCII, IDN, and INN at week 2. Moreover, the values of those seven-texture metrics described above decreased throughout the disease progression. In diabetic animals, subtle retinal thinning and impaired retinal function were detected, as well as an increase in the number of Iba1-positive cells (microglia/macrophages) and a subtle decrease in the tight junction protein immunoreactivity, which did not induce any physiologically relevant effect on the blood-retinal barrier. Conclusions The effects of diabetes on the retina can be spotted through retinal texture analysis in the early stages of the disease. Changes in retinal texture are concomitant with biological retinal changes, thus unlocking the potential of texture analysis for the early diagnosis of DR. However, this requires to be proven in clinical studies.
Collapse
Affiliation(s)
- Sara Oliveira
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Pedro Guimarães
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- University of Coimbra, Faculty of Medicine (FMUC), Coimbra, Portugal
| | - Elisa Julião Campos
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering (DEQ), Faculty of Sciences and Technology (FCTUC), Coimbra, Portugal
- University of Coimbra, Center for Neuroscience and Cell Biology (CNC-UC), Coimbra, Portugal
| | - Rosa Fernandes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - João Martins
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- University of Coimbra, Faculty of Medicine (FMUC), Coimbra, Portugal
| | - Pedro Serranho
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Universidade Aberta, Department of Sciences and Technology, Lisbon, Portugal
| | - Paulo Matafome
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Institute of Physiology, Faculty of Medicine, Coimbra, Portugal
- Polytechnic University of Coimbra, Health and Technology Research Center (H&TRC), Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Rui Bernardes
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- University of Coimbra, Faculty of Medicine (FMUC), Coimbra, Portugal
| | - António Francisco Ambrósio
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
8
|
Xue Y, Ye L, Huang C, Ye H. Lights and Shadows of Cytokines in Age-Related Eye Diseases: A Narrative Literature Review. J Biochem Mol Toxicol 2025; 39:e70121. [PMID: 39756061 DOI: 10.1002/jbt.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
The eye is considered to be an immune-privileged region. However, several parts of the eye have distinct mechanisms for delivering immune cells to the injury sites or even in response to aging. Although these immune responses are intended to be protective, the visual acuity can be compromised by the release of pro-inflammatory cytokines by immune cells, which induce chronic inflammation and fibrosis. Age-related eye diseases (AREDs) are the primary cause of vision impairment (VI) in the elderly, with a poor comprehension of their pathophysiology. Age-related eye diseases affect both the anterior and posterior segments, resulting in diminished quality of life and risk of irreversible blindness. Immune system dysregulation and the upregulation of pro-inflammatory cytokines have been linked to AREDs, underscoring the need to comprehend inflammation's impact on ocular disorders to enhance patient symptom management. In this framework, the PubMed database was searched using the medical subject headings (MeSH) terms "Age-related eye diseases," "dry eye syndrome," "glaucoma," "cataract," "diabetic retinopathy," "inflammation," "interleukin," and "cytokine" with the aim of overview the role of cytokines in AREDs and discuss their potential therapeutic approaches.
Collapse
Affiliation(s)
- Yuyu Xue
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Lu Ye
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Chan Huang
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Hejiang Ye
- Department of Ophthalmology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
10
|
Stark AK, Penn JS. Prostanoid signaling in retinal cells elicits inflammatory responses relevant to early-stage diabetic retinopathy. J Neuroinflammation 2024; 21:329. [PMID: 39716241 PMCID: PMC11667846 DOI: 10.1186/s12974-024-03319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Inflammation is a critical driver of the early stages of diabetic retinopathy (DR) and offers an opportunity for therapeutic intervention before irreversible damage and vision loss associated with later stages of DR ensue. Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown mixed efficacy in slowing early DR progression, notably including severe adverse side effects likely due to their nonselective inhibition of all downstream signaling intermediates. In this study, we investigated the role of prostanoids, the downstream signaling lipids whose production is inhibited by NSAIDs, in promoting inflammation relevant to early-stage DR in two human retinal cell types: Müller glia and retinal microvascular endothelial cells. When cultured in multiple conditions modeling distinct aspects of systemic diabetes, Müller glia significantly increased production of prostaglandin E2 (PGE2), whereas retinal endothelial cells significantly increased production of prostaglandin F2α (PGF2α). Müller glia stimulated with PGE2 or PGF2α increased proinflammatory cytokine levels dose-dependently. These effects were blocked by selective antagonists to the EP2 receptor of PGE2 or the FP receptor of PGF2α, respectively. In contrast, only PGF2α stimulated adhesion molecule expression in retinal endothelial cells and leukocyte adhesion to cultured endothelial monolayers, effects that were fully prevented by FP receptor antagonist treatment. Together these results identify PGE2-EP2 and PGF2α-FP signaling as novel, selective targets for future studies and therapeutic development to mitigate or prevent retinal inflammation characteristic of early-stage DR.
Collapse
Affiliation(s)
- Amy K Stark
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| | - John S Penn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Chew S, Tran T, Sanfilippo P, Lim LL, Sandhu SS, Wickremasinghe S. Elevated aqueous TNF-α levels are associated with more severe functional and anatomic findings in eyes with diabetic macular oedema. Clin Exp Ophthalmol 2024; 52:981-990. [PMID: 39072984 PMCID: PMC11620847 DOI: 10.1111/ceo.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Intravitreal ranibizumab for diabetic macular oedema (DMO) has been recently shown to modulate levels of aqueous cytokines. This study investigates the associations between changes in aqueous cytokine levels following intravitreal ranibizumab therapy and the corresponding anatomical and functional changes in the eye. METHODS Twenty-five patients comprising 30 eyes diagnosed with DMO were prospectively recruited. All eyes received three loading dose ranibizumab injections at baseline, week 4 and week 8, followed by pro re nata treatment based on best-corrected visual acuity (BCVA) and central macular thickness (CMT) up to week 48. Prior to ranibizumab administration, aqueous samples were collected from all eyes, and subsequent sampling was performed at week 8. Levels of 32 cytokines were assessed at baseline and at week 8. RESULTS At baseline, higher aqueous TNF-α levels were associated with poorer BCVA (p = 0.033), greater macular volume (p = 0.017) and worse diabetic retinopathy (p = 0.047). Higher levels of IL-7 were associated with poorer BCVA and greater macular volume (MV). Following treatment with ranibizumab there was a significant correlation with reduction of aqueous TNF-α and improvements in BCVA and MV, both at 6 months (BCVA [r = -0.558, p = 0.001], MV [r = 0.410, p = 0.024]) and 12-months (BCVA [r = -0.413, p = 0.023], MV [r = 0.482, p = 0.008]). The change in VEGF concentration following ranibizumab treatment did not correlate with either BCVA or MV improvements (p > 0.05). CONCLUSIONS Higher levels of aqueous TNF-α and IL-7 correlated with worse DMO, both anatomically and functionally. Reductions in levels of aqueous TNF-α, but not VEGF, post ranibizumab treatment were associated with improvement in BCVA and MV.
Collapse
Affiliation(s)
- Sky Chew
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
- The Royal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
| | - Tuan Tran
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
- The Royal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
| | - Paul Sanfilippo
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
| | - Lyndell L. Lim
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
- The Royal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
| | - Sukhpal S. Sandhu
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
- The Royal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
| | - Sanjeewa Wickremasinghe
- Centre for Eye Research AustraliaUniversity of MelbourneEast MelbourneVictoriaAustralia
- The Royal Victorian Eye and Ear HospitalEast MelbourneVictoriaAustralia
| |
Collapse
|
12
|
Padovani-Claudio DA, Morales MS, Smith TE, Ontko CD, Namburu NS, Palmer SA, Jhala MG, Ramos CJ, Capozzi ME, McCollum GW, Penn JS. Induction, amplification, and propagation of diabetic retinopathy-associated inflammatory cytokines between human retinal microvascular endothelial and Müller cells and in the mouse retina. Cell Signal 2024; 124:111454. [PMID: 39384004 DOI: 10.1016/j.cellsig.2024.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Ocular levels of IL-1β, TNFα, IL-8, and IL-6 correlate with progression of diabetic retinopathy (DR). Müller cells (MC), which are crucial to maintaining retinal homeostasis, are targets and sources of these cytokines. We explored the relative capacities of these four DR-associated cytokines to amplify inflammatory signal expression both in and between human MC (hMC) and retinal microvascular endothelial cells (hRMEC) and in the mouse retina. Of the four cytokines, IL-1β was the most potent stimulus of transcriptomic alterations in hMC and hRMEC in vitro, as well as in the mouse retina after intravitreal injection in vivo. Stimulation with IL-1β significantly induced expression of all four transcripts in hMC and hRMEC. TNFα significantly induced expression of some, but not all, of the four transcripts in each cell, while neither IL-8 nor IL-6 showed significant induction in either cell. Similarly, conditioned media (CM) derived from hMC or hRMEC treated with IL-1β, but not TNFα, upregulated inflammatory cytokine transcripts in the reciprocal cell type. hRMEC responses to hMC-derived CM were dependent on IL-1R activation. In addition, we observed a correlation between cytokine expression changes following direct and CM stimulation and NFκB-p65 nuclear translocation in both hMC and hRMEC. Finally, in mice, intravitreal injections of IL-1β, but not TNFα, induced retinal expression of Il1b and CXCL8 homologues Cxcl1, Cxcl2, Cxcl3, and Cxcl5, encoding pro-angiogenic chemokines. Our results suggest that expression of IL-1β, TNFα, IL-8, and IL-6 may be initiated, propagated, and sustained by autocrine and paracrine signals in hRMEC and hMC through a process involving IL-1β and NFκB. Targeting these signals may help thwart inflammatory amplification, preventing progression to vision-threatening stages and preserving sight.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Monica S Morales
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Taylor E Smith
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 1161 21st Ave S., Nashville, TN 37232, USA.
| | - Neeraj S Namburu
- College of Arts and Sciences, Vanderbilt University, 2400 Vanderbilt Pl., Nashville, TN 37232, USA.
| | - Samuel A Palmer
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Marvarakumari G Jhala
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - Megan E Capozzi
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | - Gary W McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 1161 21st Ave S., Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Coughlin BA, Christian B, Trombley B, Mohr S. Interleukin-1 receptor-dependent and -independent caspase-1 activity in retinal cells mediated by receptor interacting protein 2. Front Cell Dev Biol 2024; 12:1467799. [PMID: 39483336 PMCID: PMC11525982 DOI: 10.3389/fcell.2024.1467799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Inflammation and cell death play an important role in the pathogenesis of diabetic retinopathy. Previously we observed sustained activation of pro-inflammatory caspase-1 in retinas of diabetic animals and patients. In this study, we aimed to look at mechanisms underlying chronic caspase-1 activation in vitro and in vivo. Methods Non-diabetic and diabetic wild type and IL-1 receptor (IL-1R1) knockout mice were used for in vivo experiments. Diabetes was induced using STZ (streptozotocin). Human Müller cells were used for in vitro studies. Cells were treated with either 5 mM or 25 mM glucose or interleukin-1beta (IL-1β) in the presence or absence of IL-1 receptor antagonist (IL-1ra) or siRNA against RIP2 (receptor interacting protein-2) for up to 96 h. Outcome measurements to assess Müller cell functions included measurements of caspase-1 activity using a fluorescence peptide substrate, production of IL-1β by Elisa, and cell death using trypan blue exclusion assays. Results Our in vivo results demonstrate that caspase-1 activation progresses from an IL-1R1 independent mechanism at 10 weeks of diabetes to an IL-1R1 dependent mechanism at 20 weeks indicating that feedback through IL-1R1 is crucial for sustained caspase-1 activity in retinas of mice. A similar hyperglycemia-mediated caspase-1/IL-1β/IL-1R1 feedback signaling was detected in vitro in human Müller cells which was prevented by treatment with IL-1ra. Our data also indicate that hyperglycemia induces caspase-1 activation initially but IL-1β sustains caspase-1 activation via caspase-1/IL-1β/IL-1R1 feedback and we identified RIP2 as mediator for both hyperglycemia- and IL-1β-induced caspase-1 activation. Activation of caspase-1/IL-1β/IL-1R1 feedback signaling caused Müller cell death which was prevented by RIP2 knockdown. Discussion We conclude that any intervention in caspase-1/IL-1β/IL-1R1 feedback signaling presents novel therapeutic options for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
| | | | | | - Susanne Mohr
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
Hu Q, Zhang X, Peng H, Guan J, Huang Z, Jiang B, Sun D. A New Modulator of Neuroinflammation in Diabetic Retinopathy: USP25. Inflammation 2024; 47:1520-1535. [PMID: 38436811 PMCID: PMC11343827 DOI: 10.1007/s10753-024-01991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Diabetic retinopathy (DR) is a diabetes-associated complication that poses a threat to vision, distinguished by persistent and mild inflammation of the retinal microvasculature. The activation of microglia plays a crucial role in driving this pathological progression. Previous investigations have demonstrated that ubiquitin-specific peptidase 25 (USP25), a deubiquitinating enzyme, is involved in the regulation of immune cell activity. Nevertheless, the precise mechanisms through which USP25 contributes to the development of DR remain incompletely elucidated. Firstly, we have demonstrated the potential mechanism by which ROCKs can facilitate microglial activation and augment the synthesis of inflammatory mediators through the modulation of NF-κB signaling pathways in a high-glucose milieu. Furthermore, our study has provided novel insights by demonstrating that the regulatory role of USP25 in the secretion of proinflammatory factors is mediated through the involvement of ROCK in modulating the expression of NF-κB and facilitating the nuclear translocation of the phosphatase NF-κB. This regulatory mechanism plays a crucial role in modulating the activation of microglial cells within a high-glycemic environment. Hence, USP25 emerges as a pivotal determinant for the inflammatory activation of microglial cells, and its inhibition exhibits a dual effect of promoting retinal neuron survival while suppressing the inflammatory response in the retina. In conclusion, the promotion of diabetic retinopathy (DR) progression by USP25 is attributed to its facilitation of microglial activation induced by high glucose levels, a process mediated by the ROCK pathway. These findings highlight the importance of considering USP25 as a potential therapeutic target for the management of diabetic neuroinflammation.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongsong Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jitian Guan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 157 Baojian Road, Harbin, 150086, China.
| |
Collapse
|
15
|
Guan J, Abudouaini H, Lin K, Yang K. Emerging insights into the role of IL-1 inhibitors and colchicine for inflammation control in type 2 diabetes. Diabetol Metab Syndr 2024; 16:140. [PMID: 38918878 PMCID: PMC11197348 DOI: 10.1186/s13098-024-01369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), a prevalent chronic metabolic disorder, is closely linked to persistent low-grade inflammation, significantly contributing to its development and progression. This review provides a comprehensive examination of the inflammatory mechanisms underlying T2DM, focusing on the role of the NLRP3 inflammasome and interleukin-1β (IL-1β) in mediating inflammatory responses. We discuss the therapeutic potential of IL-1 inhibitors and colchicine, highlighting their mechanisms in inhibiting the NLRP3 inflammasome and reducing IL-1β production. Recent studies indicate that these agents could effectively mitigate inflammation, offering promising avenues for the prevention and management of T2DM. By exploring the intricate connections between metabolic disturbances and chronic inflammation, this review underscores the need for novel anti-inflammatory strategies to address T2DM and its complications.
Collapse
Affiliation(s)
- Jianbin Guan
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Haimiti Abudouaini
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Kaiyuan Lin
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Kaitan Yang
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
- Truma Rehabilitation Department, Honghui-Hospital,Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
16
|
Reddy SK, Devi V, Seetharaman ATM, Shailaja S, Bhat KMR, Gangaraju R, Upadhya D. Cell and molecular targeted therapies for diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1416668. [PMID: 38948520 PMCID: PMC11211264 DOI: 10.3389/fendo.2024.1416668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic retinopathy (DR) stands as a prevalent complication in the eye resulting from diabetes mellitus, predominantly associated with high blood sugar levels and hypertension as individuals age. DR is a severe microvascular complication of both type I and type II diabetes mellitus and the leading cause of vision impairment. The critical approach to combatting and halting the advancement of DR lies in effectively managing blood glucose and blood pressure levels in diabetic patients; however, this is seldom achieved. Both human and animal studies have revealed the intricate nature of this condition involving various cell types and molecules. Aside from photocoagulation, the sole therapy targeting VEGF molecules in the retina to prevent abnormal blood vessel growth is intravitreal anti-VEGF therapy. However, a substantial portion of cases, approximately 30-40%, do not respond to this treatment. This review explores distinctive pathophysiological phenomena of DR and identifiable cell types and molecules that could be targeted to mitigate the chronic changes occurring in the retina due to diabetes mellitus. Addressing the significant research gap in this domain is imperative to broaden the treatment options available for managing DR effectively.
Collapse
Affiliation(s)
- Shivakumar K. Reddy
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Amritha T. M. Seetharaman
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - S. Shailaja
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kumar M. R. Bhat
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
17
|
Harju N, Hytti M, Kolari O, Nisula H, Loukovaara S, Kauppinen A. Anti-inflammatory potential of simvastatin and amfenac in ARPE-19 cells; insights in preventing re-detachment and proliferative vitreoretinopathy after rhegmatogenous retinal detachment surgery. Int Ophthalmol 2024; 44:158. [PMID: 38530532 PMCID: PMC10965607 DOI: 10.1007/s10792-024-03067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE Rhegmatogenous retinal detachment is a severe vision-threatening complication that can result into proliferative vitreoretinopathy (PVR) and re-detachment of the retina if recovery from surgery fails. Inflammation and changes in retinal pigment epithelial (RPE) cells are important contributors to the disease. Here, we studied the effects of simvastatin and amfenac on ARPE-19 cells under inflammatory conditions. METHODS ARPE-19 cells were pre-treated with simvastatin and/or amfenac for 24 h after which interleukin (IL)-1α or IL-1β was added for another 24 h. After treatments, lactate dehydrogenase release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) processing, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity, prostaglandin E2 (PGE2) level, and extracellular levels of IL-6, IL-8, monocytic chemoattractant protein (MCP-1), vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor, as well as the production of reactive oxygen species (ROS) were determined. RESULTS Pre-treatment of human ARPE-19 cells with simvastatin reduced the production of IL-6, IL-8, and MCP-1 cytokines, PGE2 levels, as well as NF-κB activity upon inflammation, whereas amfenac reduced IL-8 and MCP-1 release but increased ROS production. Together, simvastatin and amfenac reduced the release of IL-6, IL-8, and MCP-1 cytokines as well as NF-κB activity but increased the VEGF release upon inflammation in ARPE-19 cells. CONCLUSION Our present study supports the anti-inflammatory capacity of simvastatin as pre-treatment against inflammation in human RPE cells, and the addition of amfenac complements the effect. The early modulation of local conditions in the retina can prevent inflammation induced PVR formation and subsequent retinal re-detachment.
Collapse
Affiliation(s)
- Niina Harju
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
- Head and Neck Center, Ophthalmology Research Unit, Helsinki University Central Hospital, Helsinki, Finland.
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Onni Kolari
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Nisula
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sirpa Loukovaara
- Department of Ophthalmology, Unit of Vitreoretinal Surgery, and Individualized Drug Therapy Research Program, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
18
|
Liu PY, Hong KF, Liu YD, Sun ZY, Zhao TT, Li XL, Lao CC, Tan SF, Zhang HY, Zhao YH, Xie Y, Xu YH. Total flavonoids of Astragalus protects glomerular filtration barrier in diabetic kidney disease. Chin Med 2024; 19:27. [PMID: 38365794 PMCID: PMC10870499 DOI: 10.1186/s13020-024-00903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a prevalent complication of diabetes and the leading cause of end-stage renal disease. Recent evidence suggests that total flavonoids of Astragalus (TFA) has promising effects on diabetes; however, its influence on DKD and the underlying mechanism remains unclear. METHODS In this study, we induced the DKD model using streptozotocin (STZ) in male C57BL/6J mice and utilized glomerular endothelial cell (GEC) lines for in vitro investigations. We constructed a network pharmacology analysis to understand the mechanism of TFA in DKD. The mechanism of TFA action on DKD was investigated through Western blot analysis and multi-immunological methods. RESULTS Our findings revealed that TFA significantly reduced levels of urinary albumin (ALB). Network pharmacology and intracellular pathway experiments indicated the crucial involvement of the PI3K/AKT signaling pathway in mediating these effects. In vitro experiments showed that TFA can preserve the integrity of the glomerular filtration barrier by inhibiting the expression of inflammatory factors TNF-alpha and IL-8, reducing oxidative stress. CONCLUSION Our findings demonstrated that TFA can ameliorates the progression of DKD by ameliorating renal fibrosis and preserving the integrity of the kidney filtration barrier. These results provide pharmacological evidence supporting the use of TFA in the treatment of kidney diseases.
Collapse
Affiliation(s)
- Pei-Yu Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People's Republic of China
| | - Kin-Fong Hong
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People's Republic of China
| | - Ya-Di Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People's Republic of China
| | - Zhong-Yan Sun
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People's Republic of China
| | - Ting-Ting Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People's Republic of China
| | - Xu-Ling Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People's Republic of China
| | - Chi-Chou Lao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People's Republic of China
| | - Shu-Feng Tan
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People's Republic of China
| | - Hai-Ying Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People's Republic of China
| | - Yong-Hua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - You-Hua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, People's Republic of China.
| |
Collapse
|
19
|
Maurissen TL, Spielmann AJ, Schellenberg G, Bickle M, Vieira JR, Lai SY, Pavlou G, Fauser S, Westenskow PD, Kamm RD, Ragelle H. Modeling early pathophysiological phenotypes of diabetic retinopathy in a human inner blood-retinal barrier-on-a-chip. Nat Commun 2024; 15:1372. [PMID: 38355716 PMCID: PMC10866954 DOI: 10.1038/s41467-024-45456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Diabetic retinopathy (DR) is a microvascular disorder characterized by inner blood-retinal barrier (iBRB) breakdown and irreversible vision loss. While the symptoms of DR are known, disease mechanisms including basement membrane thickening, pericyte dropout and capillary damage remain poorly understood and interventions to repair diseased iBRB microvascular networks have not been developed. In addition, current approaches using animal models and in vitro systems lack translatability and predictivity to finding new target pathways. Here, we develop a diabetic iBRB-on-a-chip that produces pathophysiological phenotypes and disease pathways in vitro that are representative of clinical diagnoses. We show that diabetic stimulation of the iBRB-on-a-chip mirrors DR features, including pericyte loss, vascular regression, ghost vessels, and production of pro-inflammatory factors. We also report transcriptomic data from diabetic iBRB microvascular networks that may reveal drug targets, and examine pericyte-endothelial cell stabilizing strategies. In summary, our model recapitulates key features of disease, and may inform future therapies for DR.
Collapse
Affiliation(s)
- Thomas L Maurissen
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Alena J Spielmann
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Gabriella Schellenberg
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marc Bickle
- Roche Pharma Research and Early Development, Institute of Human Biology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jose Ricardo Vieira
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Si Ying Lai
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Georgios Pavlou
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sascha Fauser
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Peter D Westenskow
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Héloïse Ragelle
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
20
|
Wang X, Xu C, Bian C, Ge P, Lei J, Wang J, Xiao T, Fan Y, Gu Q, Li HY, Xu J, Hu Z, Xie P. M2 microglia-derived exosomes promote vascular remodeling in diabetic retinopathy. J Nanobiotechnology 2024; 22:56. [PMID: 38336783 PMCID: PMC10854107 DOI: 10.1186/s12951-024-02330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic retinopathy (DR) is a vision-threatening diabetic complication that is characterized by microvasculature impairment and immune dysfunction. The present study demonstrated that M2 microglia intensively participated in retinal microangiopathy in human diabetic proliferative membranes, mice retinas, retinas of mice with oxygen-induced retinopathy (OIR) mice, and retinas of streptozotocin-induced DR mice. Further in vivo and in vitro experiments showed that exosomes derived from M2 polarized microglia (M2-exo) could reduce pericyte apoptosis and promote endothelial cell proliferation, thereby promoting vascular remodeling and reducing vascular leakage from the diabetic retina. These effects were further enhanced by M2-exo that facilitated M2 polarization of retinal microglia. Collectively, the study demonstrated the capability of M2-exo to induce retinal microvascular remodeling, which may provide a new therapeutic strategy for the treatment of DR.
Collapse
Affiliation(s)
- Xingxing Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Changlin Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Cunxin Bian
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Pengfei Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Lei
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jingfan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianhao Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuanyuan Fan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qinyuan Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hong-Ying Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jingyi Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
21
|
Urcar Gelen S, Ozkanlar S, Gedikli S, Atasever M. The investigation of the effects of monosodium glutamate on healthy rats and rats with STZ-induced diabetes. J Biochem Mol Toxicol 2024; 38:e23612. [PMID: 38084638 DOI: 10.1002/jbt.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
Monosodium glutamate (MSG, E621) is a flavor-enhancing food additive used widely in the food preparation industry and consumed regularly. It is considered that long-term consumption of MSG causes metabolic syndrome and obesity. Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood sugar, polyuria, polydipsia, and polyphagia, in which insulin secreted from pancreatic β cells is inadequate for maintaining blood glucose homeostasis. Rats were application 65 mg/kg streptozotocin (STZ) solution intraperitoneally and a diabetes model was created. For this purpose, freshly prepared STZ was injected into the peritoneum. Tumor necrosis factor-α, interleukin (IL)-10, IL-6, and IL-1β levels in STZ, MSG, and STZ + MSG groups were found to be significantly increased in inflammation parameters measured on the 28th day of administration when compared to the Control Group (p < 0.001). Also, although malondialdehyde (MDA) levels increased significantly in the STZ + MSG group when compared to the control group (p < 0.001), glutathione (GSH), and superoxide dismutase (SOD) levels were significantly decreased in the STZ, MSG, and STZ + MSG groups when compared to the control group (p < 0.001). Also, although glucose levels increased significantly in STZ and STZ + MSG at the end of the 28th day (p < 0.01), insulin levels decreased in STZ, MSG, and STZ + MSG groups when compared to the control groups (p < 0.01). As a result, it was found that STZ and MSG application significantly increased cytokine production, increased MDA, which is an oxidant parameter in pancreatic tissue, and decreased antioxidants (GSH and SOD) when compared to the control groups. It was also found that MSG disrupted the normal histological structure in pancreatic cells, and the damage was much more in both exocrine and endocrine pancreatic areas in the STZ + MSG group when compared to the STZ and MSG groups. It was considered that with the increased use of MSG, the susceptibility to DM might increase along with tissue damage significantly in diabetic groups, therefore, MSG must be used in a limited and controlled manner.
Collapse
Affiliation(s)
- Sevda Urcar Gelen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Seckin Ozkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Semin Gedikli
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mustafa Atasever
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
22
|
Yu W, Yang B, Xu S, Gao Y, Huang Y, Wang Z. Diabetic Retinopathy and Cardiovascular Disease: A Literature Review. Diabetes Metab Syndr Obes 2023; 16:4247-4261. [PMID: 38164419 PMCID: PMC10758178 DOI: 10.2147/dmso.s438111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetic complications can be divided into macrovascular complications such as cardiovascular disease and cerebrovascular disease and microvascular complications such as diabetic retinopathy, diabetic nephropathy and diabetic neuropathy. Among them, cardiovascular disease (CVD) is an important cause of death in diabetic patients. Diabetes retinopathy (DR) is one of the main reasons for the increasing disability rate of diabetes. In recent years, some studies have found that because DR and CVD have a common pathophysiological basis, the occurrence of DR and CVD are inseparable, and to a certain extent, DR can predict the occurrence of CVD. With the development of technology, the fundus parameters of DR can be quantitatively analyzed as an independent risk factor of CVD. In addition, the cytokines related to DR can also be used for early screening of DR. Although many advances have been made in the treatment of CVD, its situation of prevention and treatment is still not optimistic. This review hopes to discuss the feasibility of DR in predicting CVD from the common pathophysiological mechanism of DR and CVD, the new progress of diagnostic techniques for DR, and the biomarkers for early screening of DR.
Collapse
Affiliation(s)
- Wenhua Yu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Bo Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Siting Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yun Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yan Huang
- Department of Ophthalmology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
23
|
Geng Z, Tan J, Xu J, Chen Q, Gu P, Dai X, Kuang X, Ji S, Liu T, Li C. ADAMTS5 promotes neovascularization via autophagic degradation of PEDF in proliferative diabetic retinopathy. Exp Eye Res 2023; 234:109597. [PMID: 37490993 DOI: 10.1016/j.exer.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Proliferative diabetic retinopathy (PDR) adversely affects visual function. Extracellular matrix proteins (ECM) contribute significantly to the development of PDR. A Disintegrin and Metalloproteinase with Thrombospondin motifs 5 (ADAMTS5) is a member of ECM proteins. ADAMTS5 participates in angiogenesis and inflammation in diverse diseases. However, the role of ADAMTS5 in PDR remains elusive. Multiplex beam array technology was used to analyze vitreous humor of PDR patients and normal people. ELISA and Western blot were used to detect the expression of ADAMTS5, PEDF and autophagy related factors. Immunofluorescence assay was used to mark the expression and localization of ADAMTS5 and PEDF. The neovascularization was detected by tube formation test. Our results revealed that ADAMTS5 expression was increased in the vitreous humor of PDR patients and oxygen-induced retinopathy (OIR) mice retinas. Inhibiting ADAMTS5 alleviated pathological angiogenesis and upregulated PEDF expression in the OIR mice. In addition, ADAMTS5 inhibited PEDF secretion in ARPE-19 cells in vitro studies, thereby inhibiting the migration of HMEC-1. Mechanically, ADAMTS5 promoted the autophagic degradation of PEDF. Collectively, inhibition of ADAMTS5 during OIR suppresses pathological angiogenesis. Our study provides a new approach for resolving pathological angiogenesis in PDR.
Collapse
Affiliation(s)
- Zhao Geng
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Tan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Xu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qifang Chen
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Peilin Gu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyan Dai
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Xunjie Kuang
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuxing Ji
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ting Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China.
| | - Chongyi Li
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
24
|
Reynolds L, Luo Z, Singh K. Diabetic complications and prospective immunotherapy. Front Immunol 2023; 14:1219598. [PMID: 37483613 PMCID: PMC10360133 DOI: 10.3389/fimmu.2023.1219598] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The incidence of Diabetes Mellitus is increasing globally. Individuals who have been burdened with diabetes for many years often develop complications as a result of hyperglycemia. More and more research is being conducted highlighting inflammation as an important factor in disease progression. In all kinds of diabetes, hyperglycemia leads to activation of alternative glucose metabolic pathways, resulting in problematic by-products including reactive oxygen species and advanced glycation end products. This review takes a look into the pathogenesis of three specific diabetic complications; retinopathy, nephropathy and neuropathy as well as their current treatment options. By considering recent research papers investigating the effects of immunotherapy on relevant conditions in animal models, multiple strategies are suggested for future treatment and prevention of diabetic complications with an emphasis on molecular targets associated with the inflammation.
Collapse
|
25
|
Vos S, Aaron R, Weng M, Daw J, Rodriguez-Rivera E, Subauste CS. CD40 Upregulation in the Retina of Patients With Diabetic Retinopathy: Association With TRAF2/TRAF6 Upregulation and Inflammatory Molecule Expression. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37294707 PMCID: PMC10259673 DOI: 10.1167/iovs.64.7.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/16/2023] [Indexed: 06/11/2023] Open
Abstract
Purpose CD40 is upregulated in the retinas of diabetic mice, drives pro-inflammatory molecule expression, and promotes diabetic retinopathy. The role of CD40 in diabetic retinopathy in humans is unknown. Upregulation of CD40 and its downstream signaling molecules TNF receptor associated factors (TRAFs) is a key feature of CD40-driven inflammatory disorders. We examined the expression of CD40, TRAF2, and TRAF6 as well as pro-inflammatory molecules in retinas from patients with diabetic retinopathy. Methods Posterior poles from patients with diabetic retinopathy and non-diabetic controls were stained with antibodies against von Willebrand factor (labels endothelial cells), cellular retinaldehyde-binding protein (CRALBP), or vimentin (both label Müller cells) plus antibodies against CD40, TRAF2, TRAF6, ICAM-1, CCL2, TNF-α, and/or phospho-Tyr783 phospholipase Cγ1 (PLCγ1). Sections were analyzed by confocal microscopy. Results CD40 expression was increased in endothelial and Müller cells from patients with diabetic retinopathy. CD40 was co-expressed with ICAM-1 in endothelial cells and with CCL2 in Müller cells. TNF-α was detected in retinal cells from these patients, but these cells lacked endothelial/Müller cell markers. CD40 in Müller cells from patients with diabetic retinopathy co-expressed activated phospholipase Cγ1, a molecule that induces TNF-α expression in myeloid cells in mice. CD40 upregulation in endothelial cells and Müller cells from patients with diabetic retinopathy was accompanied by TRAF2 and TRAF6 upregulation. Conclusions CD40, TRAF2, and TRAF6 are upregulated in patients with diabetic retinopathy. CD40 associates with expression of pro-inflammatory molecules. These findings suggest that CD40-TRAF signaling may promote pro-inflammatory responses in the retinas of patients with diabetic retinopathy.
Collapse
Affiliation(s)
- Sarah Vos
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Rachel Aaron
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Matthew Weng
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jad Daw
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Emmanuel Rodriguez-Rivera
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Carlos S. Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
26
|
Bikbova G, Oshitari T, Bikbov M. Diabetic Neuropathy of the Retina and Inflammation: Perspectives. Int J Mol Sci 2023; 24:ijms24119166. [PMID: 37298118 DOI: 10.3390/ijms24119166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
A clear connection exists between diabetes and atherosclerotic cardiovascular disease. Consequently, therapeutic approaches that target both diseases are needed. Clinical trials are currently underway to explore the roles of obesity, adipose tissue, gut microbiota, and pancreatic beta cell function in diabetes. Inflammation plays a key role in diabetes pathophysiology and associated metabolic disorders; thus, interest has increased in targeting inflammation to prevent and control diabetes. Diabetic retinopathy is known as a neurodegenerative and vascular disease that occurs after some years of poorly controlled diabetes. However, increasing evidence points to inflammation as a key figure in diabetes-associated retinal complications. Interconnected molecular pathways, such as oxidative stress, and the formation of advanced glycation end-products, are known to contribute to the inflammatory response. This review describes the possible mechanisms of the metabolic changes in diabetes that involve inflammatory pathways.
Collapse
Affiliation(s)
- Guzel Bikbova
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan
- Ufa Eye Research Institute, Pushkin Street 90, Ufa 450077, Russia
| | - Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan
- Department of Ophthalmology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan
| | - Mukharram Bikbov
- Ufa Eye Research Institute, Pushkin Street 90, Ufa 450077, Russia
| |
Collapse
|
27
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
28
|
Peripheral Blood Mononuclear Cells from Patients with Type 1 Diabetes and Diabetic Retinopathy Produce Higher Levels of IL-17A, IL-10 and IL-6 and Lower Levels of IFN-γ-A Pilot Study. Cells 2023; 12:cells12030467. [PMID: 36766809 PMCID: PMC9913819 DOI: 10.3390/cells12030467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammation is key to the pathogenesis of diabetic retinopathy (DR). This prospective study investigated alterations in inflammatory cytokines in peripheral blood mononuclear cells (PBMCs) in 41 people with type 1 diabetes (T1D), sub-grouped into mild non-proliferative DR (mNPDR; n = 13) and active and inactive (each n = 14) PDR. Age/gender-matched healthy controls (n = 13) were included. PBMCs were isolated from blood samples. Intracellular cytokine expression by PBMCs after 16-h stimulation (either E. coli lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate plus ionomycin, D-glucose or D-mannitol) were assessed by flow cytometry. Cytokine production in plasma, non-stimulated and LPS-stimulated PBMC supernatant was also assessed. Increased BMC IL-10 secretion and reduced expression of IL-6 and IFN-γ in CD3+ cells were observed in mNPDR. Reduced IL-6 and IL-10 secretion, and higher levels of intracellular IL-6 expression, especially in CD11b+ PBMCs, was detected in aPDR; levels were positively correlated with DR duration. Patients with T1D demonstrated increased intracellular expression of IL-17A in myeloid cells and reduced IFN-γ expression in CD3+ cells. Plasma levels of IL-1R1 were increased in mNPDR compared with controls. Results suggest that elevated PBMC-released IL-10, IL-6, in particular myeloid-produced IL-17A, may be involved in early stages of DR. IL-6-producing myeloid cells may play a role in PDR development.
Collapse
|
29
|
Fickweiler W, Mitzner M, Jacoba CMP, Sun JK. Circulatory Biomarkers and Diabetic Retinopathy in Racial and Ethnic Populations. Semin Ophthalmol 2023:1-11. [PMID: 36710371 DOI: 10.1080/08820538.2023.2168488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clinical staging systems for diagnosis and treatment of diabetic retinopathy (DR) must closely relate to endpoints that are both relevant for patients and feasible for physicians to implement. Current DR staging systems for clinical eye care and research provide detailed phenotypic characterization to predict patient outcomes in diabetes but have limitations. Biochemical biomarkers provide a rich pool of potential candidates for new DR staging systems that can be readily measured in accessible fluids. Circulating biomarkers that are specific to the retina and relate to angiogenesis and inflammation have been suggested as relevant for DR. Although there is a lack of multi-ethnic studies evaluating circulatory biomarkers in DR, variability in circulatory biomarkers have been reported in people from different ethnic and racial backgrounds. Therefore, there is a need for future studies to evaluate individual or combinations of biomarkers in diverse populations with DR from different ethnic and racial backgrounds.
Collapse
Affiliation(s)
- Ward Fickweiler
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Margalit Mitzner
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
| | - Cris Martin P Jacoba
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jennifer K Sun
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Tsai T, Alwees M, Asaad MA, Theile J, Kakkassery V, Dick HB, Schultz T, Joachim SC. Increased Angiopoietin-1 and -2 levels in human vitreous are associated with proliferative diabetic retinopathy. PLoS One 2023; 18:e0280488. [PMID: 36662891 PMCID: PMC9858353 DOI: 10.1371/journal.pone.0280488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Diabetic retinopathy is a frequent complication of diabetes mellitus and a leading cause of blindness in adults. The objective of this study was to elucidate the diabetic retinopathy pathophysiology in more detail by comparing protein alterations in human vitreous of different diabetic retinopathy stages. METHODS Vitreous samples were obtained from 116 patients undergoing pars plana vitrectomy. Quantitative immunoassays were performed of angiogenic factors (VEGF-A, PIGF, Angiopoietin-1, Angiopoietin-2, Galectin-1) as well as cytokines (IL-1β, IL-8, IFN-γ, TNF-α, CCL3) in samples from control patients (patients who don't suffer from diabetes; n = 58) as well as diabetes mellitus patients without retinopathy (n = 25), non-proliferative diabetic retinopathy (n = 12), and proliferative diabetic retinopathy patients (n = 21). In addition, correlation analysis of protein levels in vitreous samples and fasting glucose values of these patients as well as correlation analyses of protein levels and VEGF-A were performed. RESULTS We detected up-regulated levels of VEGF-A (p = 0.001), PIGF (p<0.001), Angiopoietin-1 (p = 0.005), Angiopoietin-2 (p<0.001), IL-1β (p = 0.012), and IL-8 (p = 0.018) in proliferative diabetic retinopathy samples. Interestingly, we found a strong positive correlation between Angiopoietin-2 and VEGF-A levels as well as a positive correlation between Angiopoietin-1 and VEGF-A. CONCLUSION This indicated that further angiogenic factors, besides VEGF, but also pro-inflammatory cytokines are involved in disease progression and development of proliferative diabetic retinopathy. In contrast, factors other than angiogenic factors seem to play a crucial role in non-proliferative diabetic retinopathy development. A detailed breakdown of the pathophysiology contributes to future detection and treatment of the disease.
Collapse
Affiliation(s)
- Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Mohannad Alwees
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Mohammad Ali Asaad
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Janine Theile
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Vinodh Kakkassery
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Ophthalmology, University of Luebeck, Luebeck, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Tim Schultz
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Protective Effects of Human Pericyte-like Adipose-Derived Mesenchymal Stem Cells on Human Retinal Endothelial Cells in an In Vitro Model of Diabetic Retinopathy: Evidence for Autologous Cell Therapy. Int J Mol Sci 2023; 24:ijms24020913. [PMID: 36674425 PMCID: PMC9860961 DOI: 10.3390/ijms24020913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Diabetic retinopathy (DR) is characterized by morphologic and metabolic alterations in endothelial cells (ECs) and pericytes (PCs) of the blood-retinal barrier (BRB). The loss of interendothelial junctions, increased vascular permeability, microaneurysms, and finally, EC detachment are the main features of DR. In this scenario, a pivotal role is played by the extensive loss of PCs. Based on previous results, the aim of this study was to assess possible beneficial effects exerted by adipose mesenchymal stem cells (ASCs) and their pericyte-like differentiated phenotype (P-ASCs) on human retinal endothelial cells (HRECs) in high glucose conditions (25 mM glucose, HG). P-ASCs were more able to preserve BRB integrity than ASCs in terms of (a) increased transendothelial electrical resistance (TEER); (b) increased expression of adherens junction and tight junction proteins (VE-cadherin and ZO-1); (c) reduction in mRNA levels of inflammatory cytokines TNF-α, IL-1β, and MMP-9; (d) reduction in the angiogenic factor VEGF and in fibrotic TGF-β1. Moreover, P-ASCs counteracted the HG-induced activation of the pro-inflammatory phospho-ERK1/2/phospho-cPLA2/COX-2 pathway. Finally, crosstalk between HRECs and ASCs or P-ASCs based on the PDGF-B/PDGFR-β axis at the mRNA level is described herein. Thus, P-ASCs might be considered valuable candidates for therapeutic approaches aimed at countering BRB disruption in DR.
Collapse
|
32
|
Teh RQ, Liu GS, Wang JH. Bioinformatics Tools for Bulk Gene Expression Deconvolution in Diabetic Retinopathy. Methods Mol Biol 2023; 2678:107-115. [PMID: 37326707 DOI: 10.1007/978-1-0716-3255-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Retinal neovascularization is one of the leading causes of vision loss and a hallmark of proliferative diabetic retinopathy (PDR). The immune system is observed to be involved in the pathogenesis of diabetic retinopathy (DR). The specific immune cell type that contributes to retinal neovascularization can be identified via a bioinformatics analysis of RNA sequencing (RNA-seq) data, known as deconvolution analysis. Previous study has identified the infiltration of macrophages in the retina of rats with hypoxia-induced retinal neovascularization and patients with PDR through a deconvolution algorithm, known as CIBERSORTx. Here, we describe the protocols of using CIBERSORTx to perform the deconvolution analysis and downstream analysis of RNA-seq data.
Collapse
Affiliation(s)
- Ru Qi Teh
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia.
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Wang JH, Lin FL, Chen J, Zhu L, Chuang YF, Tu L, Ma C, Ling D, Hewitt AW, Tseng CL, Shah MH, Bui BV, van Wijngaarden P, Dusting GJ, Wang PY, Liu GS. TAK1 blockade as a therapy for retinal neovascularization. Pharmacol Res 2023; 187:106617. [PMID: 36535572 DOI: 10.1016/j.phrs.2022.106617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Retinal neovascularization, or pathological angiogenesis in the retina, is a leading cause of blindness in developed countries. Transforming growth factor-β-activated kinase 1 (TAK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) activated by TGF-β1 and other proinflammatory cytokines. TAK1 is also a key mediator of proinflammatory signals and plays an important role in maintaining vascular integrity upon proinflammatory cytokine stimulation such as TNFα. However, its role in pathological angiogenesis, particularly in retinal neovascularization, remains unclear. Here, we investigate the regulatory role of TAK1 in human endothelial cells responding to inflammatory stimuli and in a rat model of oxygen-induced retinopathy (OIR) featured retinal neovascularization. Using TAK1 knockout human endothelial cells that subjected to inflammatory stimuli, transcriptome analysis revealed that TAK1 is required for activation of NFκB signaling and mediates its downstream gene expression related to endothelial activation and angiogenesis. Moreover, pharmacological inhibition of TAK1 by 5Z-7-oxozeaenol attenuated angiogenic activities of endothelial cells. Transcriptome analysis also revealed enrichment of TAK1-mediated NFκB signaling pathway in the retina of OIR rats and retinal neovascular membrane from patients with proliferative diabetic retinopathy. Intravitreal injection of 5Z-7-oxozeaenol significantly reduced hypoxia-induced inflammation and microglial activation, thus attenuating aberrant retinal angiogenesis in OIR rats. Our data suggest that inhibition of TAK1 may have therapeutic potential for the treatment of retinal neovascular pathologies.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jinying Chen
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510603, China
| | - Linxin Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Yu-Fan Chuang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Leilei Tu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510603, China
| | - Chenkai Ma
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, NSW 1670, Australia
| | - Damien Ling
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Manisha H Shah
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Peng-Yuan Wang
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia; Aier Eye Institute, Changsha, Hunan 410015, China.
| |
Collapse
|
34
|
Alharbi KS, Nadeem MS, Afzal O, Alzarea SI, Altamimi ASA, Almalki WH, Mubeen B, Iftikhar S, Shah L, Kazmi I. Gingerol, a Natural Antioxidant, Attenuates Hyperglycemia and Downstream Complications. Metabolites 2022; 12:metabo12121274. [PMID: 36557312 PMCID: PMC9782005 DOI: 10.3390/metabo12121274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperglycemia is seen in approximately 68 percent of patients admitted to a medical intensive care unit (ICU). In many acute circumstances, such as myocardial infarction, brain, injury and stroke, it is an independent predictor of mortality. Hyperglycemia is induced by a mix of genetic, environmental, and immunologic variables in people with type 1 diabetes. These factors cause pancreatic beta cell death and insulin insufficiency. Insulin resistance and irregular insulin production cause hyperglycemia in type 2 diabetes patients. Hyperglycemia activates a number of complicated interconnected metabolic processes. Hyperglycemia is a major contributor to the onset and progression of diabetes' secondary complications such as neuropathy, nephropathy, retinopathy, cataracts, periodontitis, and bone and joint issues. Studies on the health benefits of ginger and its constituent's impact on hyperglycemia and related disorders have been conducted and gingerol proved to be a potential pharmaceutically active constituent of ginger (Zingiber officinale) that has been shown to lower blood sugar levels, because it possesses antioxidant properties and it functions as an antioxidant in the complicated biochemical process that causes hyperglycemia to be activated. Gingerol not only helps in treating hyperglycemia but also shows effectivity against diseases related to it, such as cardiopathy, kidney failure, vision impairments, bone and joint problems, and teeth and gum infections. Moreover, fresh ginger has various gingerol analogues, with 6-gingerol being the most abundant. However, it is necessary to investigate the efficacy of its other analogues against hyperglycemia and associated disorders at various concentrations in order to determine the appropriate dose for treating these conditions.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.S.N.); (I.K.)
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Luqman Shah
- Department of Biochemistry, Faculty of Science, Hazara University, Mansehra 21300, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.S.N.); (I.K.)
| |
Collapse
|
35
|
Becker K, Weigelt CM, Fuchs H, Viollet C, Rust W, Wyatt H, Huber J, Lamla T, Fernandez-Albert F, Simon E, Zippel N, Bakker RA, Klein H, Redemann NH. Transcriptome analysis of AAV-induced retinopathy models expressing human VEGF, TNF-α, and IL-6 in murine eyes. Sci Rep 2022; 12:19395. [PMID: 36371417 PMCID: PMC9653384 DOI: 10.1038/s41598-022-23065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
Retinopathies are multifactorial diseases with complex pathologies that eventually lead to vision loss. Animal models facilitate the understanding of the pathophysiology and identification of novel treatment options. However, each animal model reflects only specific disease aspects and understanding of the specific molecular changes in most disease models is limited. Here, we conducted transcriptome analysis of murine ocular tissue transduced with recombinant Adeno-associated viruses (AAVs) expressing either human VEGF-A, TNF-α, or IL-6. VEGF expression led to a distinct regulation of extracellular matrix (ECM)-associated genes. In contrast, both TNF-α and IL-6 led to more comparable gene expression changes in interleukin signaling, and the complement cascade, with TNF-α-induced changes being more pronounced. Furthermore, integration of single cell RNA-Sequencing data suggested an increase of endothelial cell-specific marker genes by VEGF, while TNF-α expression increased the expression T-cell markers. Both TNF-α and IL-6 expression led to an increase in macrophage markers. Finally, transcriptomic changes in AAV-VEGF treated mice largely overlapped with gene expression changes observed in the oxygen-induced retinopathy model, especially regarding ECM components and endothelial cell-specific gene expression. Altogether, our study represents a valuable investigation of gene expression changes induced by VEGF, TNF-α, and IL-6 and will aid researchers in selecting appropriate animal models for retinopathies based on their agreement with the human pathophysiology.
Collapse
Affiliation(s)
- Kolja Becker
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carina M. Weigelt
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Fuchs
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Coralie Viollet
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Werner Rust
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Hannah Wyatt
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jochen Huber
- grid.420061.10000 0001 2171 7500Clinical Development & Operations Corporate, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Thorsten Lamla
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Francesc Fernandez-Albert
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Eric Simon
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Nina Zippel
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Remko A. Bakker
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Klein
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Norbert H. Redemann
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
36
|
Potential Roles of Anti-Inflammatory Plant-Derived Bioactive Compounds Targeting Inflammation in Microvascular Complications of Diabetes. Molecules 2022; 27:molecules27217352. [PMID: 36364178 PMCID: PMC9657994 DOI: 10.3390/molecules27217352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders, the characteristics of which include chronic hyperglycemia owing to defects in insulin function, insulin secretion, or both. Inflammation plays a crucial role in DM pathogenesis and innate immunity in the development of microvascular complications of diabetes. In addition, hyperglycemia and DM mediate a proinflammatory microenvironment that can result in various microvascular complications, including diabetic nephropathy (DNP), diabetic neuropathy (DN), and diabetic retinopathy (DR). DNP is a major cause of end-stage renal disease. DNP can lead to albuminuria, decreased filtration, mesangium expansion, thickening of the basement membrane, and eventually renal failure. Furthermore, inflammatory cells can accumulate in the interstitium and glomeruli to deteriorate DNP. DN is another most prevalent microvascular complication of DM and the main cause of high mortality, disability, and a poor quality of life. DNs have a wide range of clinical manifestations because of the types of fiber dysfunctions and complex structures of the peripheral nervous system. DR is also a microvascular and multifactorial disease, as well as a major cause of visual impairment globally. Pathogenesis of DR is yet to be fully revealed, however, numerous studies have already confirmed the role of inflammation in the onset and advancement of DR. Despite evidence, and better knowledge regarding the pathogenesis of these microvascular complications of diabetes, there is still a deficiency of effective therapies. Bioactive compounds are mainly derived from plants, and these molecules have promising therapeutic potential. In this review, evidence and molecular mechanisms regarding the role of inflammation in various microvascular complications of diabetes including DNP, DN, and DR, have been summarized. The therapeutic potential of several bioactive compounds derived from plants in the treatment of these microvascular complications of diabetes has also been discussed.
Collapse
|
37
|
Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy. Neural Regen Res 2022; 18:976-982. [PMID: 36254977 PMCID: PMC9827774 DOI: 10.4103/1673-5374.355743] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diabetic retinopathy, characterized as a microangiopathy and neurodegenerative disease, is the leading cause of visual impairment in diabetic patients. Many clinical features observed in diabetic retinopathy, such as capillary occlusion, acellular capillaries and retinal non-perfusion, aggregate retinal ischemia and represent relatively late events in diabetic retinopathy. In fact, retinal microvascular injury is an early event in diabetic retinopathy involving multiple biochemical alterations, and is manifested by changes to the retinal neurovascular unit and its cellular components. Currently, intravitreal anti-vascular endothelial growth factor therapy is the first-line treatment for diabetic macular edema, and benefits the patient by decreasing the edema and improving visual acuity. However, a significant proportion of patients respond poorly to anti-vascular endothelial growth factor treatments, indicating that factors other than vascular endothelial growth factor are involved in the pathogenesis of diabetic macular edema. Accumulating evidence confirms that low-grade inflammation plays a critical role in the pathogenesis and development of diabetic retinopathy as multiple inflammatory factors, such as interleukin-1β, monocyte chemotactic protein-1 and tumor necrosis factor -α, are increased in the vitreous and retina of diabetic retinopathy patients. These inflammatory factors, together with growth factors such as vascular endothelial growth factor, contribute to blood-retinal barrier breakdown, vascular damage and neuroinflammation, as well as pathological angiogenesis in diabetic retinopathy, complicated by diabetic macular edema and proliferative diabetic retinopathy. In addition, retinal cell types including microglia, Müller glia, astrocytes, retinal pigment epithelial cells, and others are activated, to secrete inflammatory mediators, aggravating cell apoptosis and subsequent vascular leakage. New therapies, targeting these inflammatory molecules or related signaling pathways, have the potential to inhibit retinal inflammation and prevent diabetic retinopathy progression. Here, we review the relevant literature to date, summarize the inflammatory mechanisms underlying the pathogenesis of diabetic retinopathy, and propose inflammation-based treatments for diabetic retinopathy and diabetic macular edema.
Collapse
Affiliation(s)
- Lei Tang
- Department of Ophthalmology of Tongji Hospital, Tongji Eye Institute, Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital, Tongji Eye Institute, Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China,Correspondence to: Guo-Tong Xu, ; Jing-Fa Zhang, .
| | - Jing-Fa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University, Shanghai, China,National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China,Correspondence to: Guo-Tong Xu, ; Jing-Fa Zhang, .
| |
Collapse
|
38
|
Fouda AY, Xu Z, Suwanpradid J, Rojas M, Shosha E, Lemtalsi T, Patel C, Xing J, Zaidi SA, Zhi W, Stansfield BK, Cheng PNM, Narayanan SP, Caldwell RW, Caldwell RB. Targeting proliferative retinopathy: Arginase 1 limits vitreoretinal neovascularization and promotes angiogenic repair. Cell Death Dis 2022; 13:745. [PMID: 36038541 PMCID: PMC9424300 DOI: 10.1038/s41419-022-05196-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
Current therapies for treatment of proliferative retinopathy focus on retinal neovascularization (RNV) during advanced disease and can trigger adverse side-effects. Here, we have tested a new strategy for limiting neurovascular injury and promoting repair during early-stage disease. We have recently shown that treatment with a stable, pegylated drug form of the ureohydrolase enzyme arginase 1 (A1) provides neuroprotection in acute models of ischemia/reperfusion injury, optic nerve crush, and ischemic stroke. Now, we have determined the effects of this treatment on RNV, vascular repair, and retinal function in the mouse oxygen-induced retinopathy (OIR) model of retinopathy of prematurity (ROP). Our studies in the OIR model show that treatment with pegylated A1 (PEG-A1), inhibits pathological RNV, promotes angiogenic repair, and improves retinal function by a mechanism involving decreased expression of TNF, iNOS, and VEGF and increased expression of FGF2 and A1. We further show that A1 is expressed in myeloid cells and areas of RNV in retinal sections from mice with OIR and human diabetic retinopathy (DR) patients and in blood samples from ROP patients. Moreover, studies using knockout mice with hemizygous deletion of A1 show worsened RNV and retinal injury, supporting the protective role of A1 in limiting the OIR-induced pathology. Collectively, A1 is critically involved in reparative angiogenesis and neuroprotection in OIR. Pegylated A1 may offer a novel therapy for limiting retinal injury and promoting repair during proliferative retinopathy.
Collapse
Affiliation(s)
- Abdelrahman Y Fouda
- University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Zhimin Xu
- Vascular Biology Center, Augusta University, Augusta, GA, USA.,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Jutamas Suwanpradid
- Vascular Biology Center, Augusta University, Augusta, GA, USA.,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Modesto Rojas
- Vascular Biology Center, Augusta University, Augusta, GA, USA.,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Esraa Shosha
- University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tahira Lemtalsi
- Vascular Biology Center, Augusta University, Augusta, GA, USA.,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Chintan Patel
- Vascular Biology Center, Augusta University, Augusta, GA, USA.,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Ji Xing
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, USA
| | - Syed A Zaidi
- Vascular Biology Center, Augusta University, Augusta, GA, USA.,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA
| | - Brain K Stansfield
- Vascular Biology Center, Augusta University, Augusta, GA, USA.,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Paul Ning-Man Cheng
- Bio-cancer Treatment International, 511-513, Bioinformatics Building, Hong Kong Science Park, Tai Po, Hong Kong SAR, China
| | - S Priya Narayanan
- Vascular Biology Center, Augusta University, Augusta, GA, USA.,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA, USA
| | - R William Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA. .,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA.
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA, USA. .,Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA. .,Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
39
|
Lazzara F, Longo AM, Giurdanella G, Lupo G, Platania CBM, Rossi S, Drago F, Anfuso CD, Bucolo C. Vitamin D3 preserves blood retinal barrier integrity in an in vitro model of diabetic retinopathy. Front Pharmacol 2022; 13:971164. [PMID: 36091806 PMCID: PMC9458952 DOI: 10.3389/fphar.2022.971164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
The impairment of the blood retinal barrier (BRB) represents one of the main features of diabetic retinopathy, a secondary microvascular complication of diabetes. Hyperglycemia is a triggering factor of vascular cells damage in diabetic retinopathy. The aim of this study was to assess the effects of vitamin D3 on BRB protection, and to investigate its regulatory role on inflammatory pathways. We challenged human retinal endothelial cells with high glucose (HG) levels. We found that vitamin D3 attenuates cell damage elicited by HG, maintaining cell viability and reducing the expression of inflammatory cytokines such as IL-1β and ICAM-1. Furthermore, we showed that vitamin D3 preserved the BRB integrity as demonstrated by trans-endothelial electrical resistance, permeability assay, and cell junction morphology and quantification (ZO-1 and VE-cadherin). In conclusion this in vitro study provided new insights on the retinal protective role of vitamin D3, particularly as regard as the early phase of diabetic retinopathy, characterized by BRB breakdown and inflammation.
Collapse
Affiliation(s)
- Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Anna Maria Longo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Giurdanella
- Faculty of Medicine and Surgery, University of Enna “Kore”, Enna, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, Catania, Italy
- *Correspondence: Claudio Bucolo,
| |
Collapse
|
40
|
Giblin MJ, Ontko CD, Penn JS. Effect of cytokine-induced alterations in extracellular matrix composition on diabetic retinopathy-relevant endothelial cell behaviors. Sci Rep 2022; 12:12955. [PMID: 35902594 PMCID: PMC9334268 DOI: 10.1038/s41598-022-12683-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Retinal vascular basement membrane (BM) thickening is an early structural abnormality of diabetic retinopathy (DR). Recent studies suggest that BM thickening contributes to the DR pathological cascade; however, much remains to be elucidated about the exact mechanisms by which BM thickening develops and subsequently drives other pathogenic events in DR. Therefore, we undertook a systematic analysis to understand how human retinal microvascular endothelial cells (hRMEC) and human retinal pericytes (hRP) change their expression of key extracellular matrix (ECM) constituents when treated with diabetes-relevant stimuli designed to model the three major insults of the diabetic environment: hyperglycemia, dyslipidemia, and inflammation. TNFα and IL-1β caused the most potent and consistent changes in ECM expression in both hRMEC and hRP. We also demonstrate that conditioned media from IL-1β-treated human Müller cells caused dose-dependent, significant increases in collagen IV and agrin expression in hRMEC. After narrowing our focus to inflammation-induced changes, we sought to understand how ECM deposited by hRMEC and hRP under inflammatory conditions affects the behavior of naïve hRMEC. Our data demonstrated that diabetes-relevant alterations in ECM composition alone cause both increased adhesion molecule expression by and increased peripheral blood mononuclear cell (PBMC) adhesion to naïve hRMEC. Taken together, these data demonstrate novel roles for inflammation and pericytes in driving BM pathology and suggest that inflammation-induced ECM alterations may advance other pathogenic behaviors in DR, including leukostasis.
Collapse
Affiliation(s)
- Meredith J Giblin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, USA.
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - John S Penn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
41
|
Tumor necrosis factor-α and matrix metalloproteinase-9 cooperatively exacerbate neurovascular degeneration in the neonatal rat retina. Cell Tissue Res 2022; 390:173-187. [PMID: 35895162 DOI: 10.1007/s00441-022-03670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Matrix metalloproteinases (MMPs) and tumor necrosis factor (TNF)-α contribute to the pathogenesis of several ocular diseases. Previous studies have shown that MMP-9 activation plays an important role in capillary degeneration in injured retinas. In this study, we aimed to determine the roles of TNF-α in capillary degeneration and MMP-9 activation in the injured retina. In rats, retinal injury was induced by intravitreal injection of N-methyl-D-aspartic acid (NMDA, 200 nmol) at postnatal day 7. We examined (1) the effects of blocking MMP-9 and TNF-α signaling pathway on capillary degeneration, (2) changes in protein levels and distribution of MMP-9 and TNF-α, and (3) the interaction between MMP-9 and TNF-α in regulating the expression level of each protein in retinas of NMDA-injected eyes. Intravitreal injection of GM6001, an MMP inhibitor, or TNF-α neutralizing antibody (anti-TNF-α Ab) attenuated capillary degeneration in retinas of NMDA-injected eyes. Protein levels of TNF-α increased 2 h after NMDA injection, whereas those of MMP-9 increased 4 h after the injection. Anti-TNF-α Ab suppressed activation of MMP-9 in retinas of NMDA-injected eyes, whereas GM6001 diminished the TNF-α protein expression. Incubation of recombinant TNF-α with supernatants of homogenized retina increased protein levels and activity of MMP-9. These results suggest that TNF-α and MMP-9 collaboratively increase their expression levels in the retina following neurodegeneration, thus leading to retinal capillary degeneration. The cooperative interaction between MMP-9 and TNF-α could be involved in the exacerbation of retinal neurovascular degeneration.
Collapse
|
42
|
Impact of Primary RPE Cells in a Porcine Organotypic Co-Cultivation Model. Biomolecules 2022; 12:biom12070990. [PMID: 35883547 PMCID: PMC9313304 DOI: 10.3390/biom12070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
The pathological events of age-related macular degeneration are characterized by degenerative processes involving the photoreceptor cells, retinal pigment epithelium (RPE), and the Bruch's membrane as well as choroidal alterations. To mimic in vivo interactions between photoreceptor cells and RPE cells ex vivo, complex models are required. Hence, the aim of this study was to establish a porcine organotypic co-cultivation model and enlighten the interactions of photoreceptor and RPE cells, with a special emphasis on potential neuroprotective effects. Porcine neuroretina explants were cultured with primary porcine RPE cells (ppRPE) or medium derived from these cells (=conditioned medium). Neuroretina explants cultured alone served as controls. After eight days, RT-qPCR and immunohistology were performed to analyze photoreceptors, synapses, macroglia, microglia, complement factors, and pro-inflammatory cytokines (e.g., IL1B, IL6, TNF) in the neuroretina samples. The presence of ppRPE cells preserved photoreceptors, whereas synaptical density was unaltered. Interestingly, on an immunohistological as well as on an mRNA level, microglia and complement factors were comparable in all groups. Increased IL6 levels were noted in ppRPE and conditioned medium samples, while TNF was only upregulated in the ppRPE group. IL1B was elevated in conditioned medium samples. In conclusion, a co-cultivation of ppRPE cells and neuroretina seem to have beneficial effects on the neuroretina, preserving photoreceptors and maintaining synaptic vesicles in vitro. This organotypic co-cultivation model can be used to investigate the complex interactions between the retina and RPE cells, gain further insight into neurodegenerative pathomechanisms occurring in retinal diseases, and evaluate potential therapeutics.
Collapse
|
43
|
Li Y, Gappy S, Liu X, Sassalos T, Zhou T, Hsu A, Zhang A, Edwards PA, Gao H, Qiao X. Metformin suppresses pro-inflammatory cytokines in vitreous of diabetes patients and human retinal vascular endothelium. PLoS One 2022; 17:e0268451. [PMID: 35802672 PMCID: PMC9269956 DOI: 10.1371/journal.pone.0268451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/01/2022] [Indexed: 01/04/2023] Open
Abstract
Metformin is a traditional anti-hyperglycemic medication that has recently been shown to benefit vascular complications of diabetes via an anti-inflammatory mechanism other than glycemic control. This study aims to test the hypothesis that metformin suppresses diabetic retinopathy (DR) associated intraocular inflammation. Human vitreous from control and proliferative diabetic retinopathy (PDR) patients with or without long-term metformin treatment (> 5 years) were collected for multiple inflammatory cytokines measurements with a cytokine array kit. The vast majority of the measurable cytokines in PDR vitreous has a lower level in metformin group than non-metformin group. Although the p values are not significant due to a relatively small sample size and large deviations, the 95% confidence interval (CI) for the mean difference between the two groups shows some difference in the true values should not be neglected. Using quantitative ELISA, soluble intercellular adhesion molecule -1 (ICAM-1) and monocyte chemoattractant protein -1 (MCP-1) presented with significantly lower concentrations in metformin group versus non-metformin group. Metformin group also has significantly less up-regulated cytokines and diminished positive correlations among the cytokines when compared to non-metformin group. Possible role of AMP-activated protein kinase (AMPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in metformin’s anti-inflammatory effects were studied in human retinal vascular endothelial cells (hRVECs) cultured in normal glucose (NG) and high glucose (HG) conditions. Metformin inhibited HG-induced ICAM-1, IL-8, and MCP-1 via AMPK activation, whereas pharmacological AMPK inhibition had no effect on its inhibition of NF-κB p65, sICAM-1, and tumor necrosis factor-α (TNF-α). Metformin-induced suppression of the inflammatory cytokines could also be mediated through its direct inhibition of NF-κB, independent of AMPK pathway. This is a proof-of-concept study that found metformin treatment was associated with reduced inflammatory responses in vitreous of diabetes patients and retinal vascular endothelial cells, supporting the rationale for using metformin to treat DR at an early stage.
Collapse
Affiliation(s)
- Yue Li
- Department of Ophthalmology, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| | - Shawn Gappy
- Department of Ophthalmology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Xiuli Liu
- Department of Ophthalmology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Therese Sassalos
- Department of Ophthalmology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Tongrong Zhou
- Department of Ophthalmology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Andrew Hsu
- Department of Ophthalmology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Alice Zhang
- Department of Ophthalmology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Paul A. Edwards
- Department of Ophthalmology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Hua Gao
- Department of Ophthalmology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Xiaoxi Qiao
- Department of Ophthalmology, Henry Ford Hospital, Detroit, Michigan, United States of America
| |
Collapse
|
44
|
Regulation of the Proliferation of Diabetic Vascular Endothelial Cells by Degrading Endothelial Cell Functional Genes with QKI-7. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6177809. [PMID: 35711530 PMCID: PMC9187461 DOI: 10.1155/2022/6177809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 12/02/2022]
Abstract
Background Diabetes has emerged as one of the most serious and common chronic diseases of our times, causing life-threatening, disabling and costly complications, and reducing life expectancy. Studies have shown that cardiovascular morbidity is 1–3 times higher in diabetic patients than in normal people. There are many clinical and experimental data that prove that most of the complications of diabetes are related to atherosclerosis, which suggests that chronic hyperglycemia may induce an imbalance in the proliferation of vascular endothelial cells. Purpose This study aims to explore the relationship between QKI-7 and vascular endothelial cell dysfunction and lay a foundation for further clarifying the molecular mechanism of endothelial cell damage in the process of diabetes with atherosclerosis. Methods We chose blood samples and pluripotent stem cells and vascular endothelial cells of hospitalized patients with diabetes and diabetes atherosclerosis as research subjects. The expression levels of endothelial cell proliferation and genes related to endothelial cell proliferation were analyzed by RT-qPCR and Western blot, to study the influence of QKi-7 on the physiological state of endothelial cells. Through gene knockdown experiment, the effects of QKi-7 knockdown on functional genes and physiological functions of endothelial cells were analyzed. Finally, RNA immunoprecipitation was used to test the mutual effect among QKI-7 and the transcription level of functional genes, and the mRNA attenuation experiment proved that QKI-7 participated in the degradation process of functional genes. Results The findings of the RT-qPCR and Western blot tests revealed that QKI-7 was highly expressed in blood samples of diabetic patients and atherosclerosis as well as in endothelial cells induced by human pluripotent stem cells and human vascular endothelial cells after high-glucose treatment. Overexpression and high glucose of QKI-7 resulted in inhibiting expressed function genes CD144, NLGN1, and TSG6 and upregulation of inflammatory factors TNF-α, IL-1β, and IFN-γ, leading to excessive proliferation of endothelial cells. After QKI-7 gene knockdown, the expression levels of CD144, NLGN1, and TSG6, inflammatory factors TNF-α, IL-1β, and IFN-γ, and the cell proliferation rate all returned to normal levels. RNA immunoprecipitation showed that QKi-7 interacted with CD144, NLGN1, and TSG6 mRNAs and was involved in the transcriptional degradation of functional genes through their interactions. Conclusion This research initially revealed the relevant molecular mechanism of QKI-7 leading to the excessive proliferation of endothelial cells in diabetic and atherosclerotic patients. In view of the role of QKI-7 in diabetic vascular complications, we provided a potential target for clinical diabetes treatment strategies in the future.
Collapse
|
45
|
Amorim M, Martins B, Caramelo F, Gonçalves C, Trindade G, Simão J, Barreto P, Marques I, Leal EC, Carvalho E, Reis F, Ribeiro-Rodrigues T, Girão H, Rodrigues-Santos P, Farinha C, Ambrósio AF, Silva R, Fernandes R. Putative Biomarkers in Tears for Diabetic Retinopathy Diagnosis. Front Med (Lausanne) 2022; 9:873483. [PMID: 35692536 PMCID: PMC9174990 DOI: 10.3389/fmed.2022.873483] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Tear fluid biomarkers may offer a non-invasive strategy for detecting diabetic patients with increased risk of developing diabetic retinopathy (DR) or increased disease progression, thus helping both improving diagnostic accuracy and understanding the pathophysiology of the disease. Here, we assessed the tear fluid of nondiabetic individuals, diabetic patients with no DR, and diabetic patients with nonproliferative DR (NPDR) or with proliferative DR (PDR) to find putative biomarkers for the diagnosis and staging of DR. Methods Tear fluid samples were collected using Schirmer test strips from a cohort with 12 controls and 54 Type 2 Diabetes (T2D) patients, and then analyzed using mass spectrometry (MS)-based shotgun proteomics and bead-based multiplex assay. Tear fluid-derived small extracellular vesicles (EVs) were analyzed by transmission electron microscopy, Western Blotting, and nano tracking. Results Proteomics analysis revealed that among the 682 reliably quantified proteins in tear fluid, 42 and 26 were differentially expressed in NPDR and PDR, respectively, comparing to the control group. Data are available via ProteomeXchange with identifier PXD033101. By multicomparison analyses, we also found significant changes in 32 proteins. Gene ontology (GO) annotations showed that most of these proteins are associated with oxidative stress and small EVs. Indeed, we also found that tear fluid is particularly enriched in small EVs. T2D patients with NPDR have higher IL-2/-5/-18, TNF, MMP-2/-3/-9 concentrations than the controls. In the PDR group, IL-5/-18 and MMP-3/-9 concentrations were significantly higher, whereas IL-13 was lower, compared to the controls. Conclusions Overall, the results show alterations in tear fluid proteins profile in diabetic patients with retinopathy. Promising candidate biomarkers identified need to be validated in a large sample cohort.
Collapse
Affiliation(s)
- Madania Amorim
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Beatriz Martins
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Francisco Caramelo
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | | | | | - Jorge Simão
- Coimbra University Hospital, Coimbra, Portugal
| | - Patrícia Barreto
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Inês Marques
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Ermelindo Carreira Leal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Eugénia Carvalho
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Cláudia Farinha
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra University Hospital, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Rufino Silva
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Coimbra University Hospital, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
- *Correspondence: Rosa Fernandes
| |
Collapse
|
46
|
Nashine S, Cohen P, Wan J, Kenney C. Effect of Humanin G (HNG) on inflammation in age-related macular degeneration (AMD). Aging (Albany NY) 2022; 14:4247-4269. [PMID: 35576057 PMCID: PMC9186758 DOI: 10.18632/aging.204074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022]
Abstract
Inflammation plays a crucial role in the etiology and pathogenesis of AMD (Age-related Macular Degeneration). Humanin G (HNG) is a Mitochondrial Derived Peptide (MDP) that is cytoprotective in AMD and can protect against mitochondrial and cellular stress induced by damaged AMD mitochondria. The goal of this study was to test our hypothesis that inflammation-associated marker protein levels are increased in AMD and treatment with HNG leads to reduction in their protein levels. Humanin protein levels were measured in the plasma of AMD patients and normal subjects using ELISA assay. Humanin G was added to AMD and normal (control) cybrids which had identical nuclei from mitochondria-deficient ARPE-19 cells but differed in mitochondrial DNA (mtDNA) content derived from clinically characterized AMD patients and normal (control) subjects. Cell lysates were extracted from untreated and HNG-treated AMD and normal cybrids, and the Luminex XMAP multiplex assay was used to measure the levels of inflammatory proteins. AMD plasma showed reduced Humanin protein levels, but higher protein levels of inflammation markers compared to control plasma samples. In AMD RPE cybrid cells, Humanin G reduced the CD62E/ E-Selectin, CD62P/ P-Selectin, ICAM-1, TNF-α, MIP-1α, IFN–γ, IL-1β, IL-13, and IL-17A protein levels, thereby suggesting that Humanin G may rescue from mtDNA-mediated inflammation in AMD cybrids. In conclusion, we present novel findings that: A) show reduced Humanin protein levels in AMD plasma vs. normal plasma; B) suggest the role of inflammatory markers in AMD pathogenesis, and C) highlight the positive effects of Humanin G in reducing inflammation in AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Pinchas Cohen
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Junxiang Wan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA.,Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
47
|
Zhu BT. Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: the methanol-formaldehyde-formic acid hypothesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:415-451. [PMID: 35607958 PMCID: PMC9828688 DOI: 10.3724/abbs.2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia in diabetic patients is associated with abnormally-elevated cellular glucose levels. It is hypothesized that increased cellular glucose will lead to increased formation of endogenous methanol and/or formaldehyde, both of which are then metabolically converted to formic acid. These one-carbon metabolites are known to be present naturally in humans, and their levels are increased under diabetic conditions. Mechanistically, while formaldehyde is a cross-linking agent capable of causing extensive cytotoxicity, formic acid is an inhibitor of mitochondrial cytochrome oxidase, capable of inducing histotoxic hypoxia, ATP deficiency and cytotoxicity. Chronic increase in the production and accumulation of these toxic one-carbon metabolites in diabetic patients can drive the pathogenesis of ocular as well as other diabetic complications. This hypothesis is supported by a large body of experimental and clinical observations scattered in the literature. For instance, methanol is known to have organ- and species-selective toxicities, including the characteristic ocular lesions commonly seen in humans and non-human primates, but not in rodents. Similarly, some of the diabetic complications (such as ocular lesions) also have a characteristic species-selective pattern, closely resembling methanol intoxication. Moreover, while alcohol consumption or combined use of folic acid plus vitamin B is beneficial for mitigating acute methanol toxicity in humans, their use also improves the outcomes of diabetic complications. In addition, there is also a large body of evidence from biochemical and cellular studies. Together, there is considerable experimental support for the proposed hypothesis that increased metabolic formation of toxic one-carbon metabolites in diabetic patients contributes importantly to the development of various clinical complications.
Collapse
Affiliation(s)
- Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen518172China
- Department of PharmacologyToxicology and TherapeuticsSchool of MedicineUniversity of Kansas Medical CenterKansas CityKS66160USA
| |
Collapse
|
48
|
Astaxanthin ameliorates hyperglycemia induced inflammation via PI3K/Akt–NF–κB signaling in ARPE-19 cells and diabetic rat retina. Eur J Pharmacol 2022; 926:174979. [DOI: 10.1016/j.ejphar.2022.174979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 01/12/2023]
|
49
|
Au NPB, Ma CHE. Neuroinflammation, Microglia and Implications for Retinal Ganglion Cell Survival and Axon Regeneration in Traumatic Optic Neuropathy. Front Immunol 2022; 13:860070. [PMID: 35309305 PMCID: PMC8931466 DOI: 10.3389/fimmu.2022.860070] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Traumatic optic neuropathy (TON) refers to a pathological condition caused by a direct or indirect insult to the optic nerves, which often leads to a partial or permanent vision deficit due to the massive loss of retinal ganglion cells (RGCs) and their axonal fibers. Retinal microglia are immune-competent cells residing in the retina. In rodent models of optic nerve crush (ONC) injury, resident retinal microglia gradually become activated, form end-to-end alignments in the vicinity of degenerating RGC axons, and actively internalized them. Some activated microglia adopt an amoeboid morphology that engulf dying RGCs after ONC. In the injured optic nerve, the activated microglia contribute to the myelin debris clearance at the lesion site. However, phagocytic capacity of resident retinal microglia is extremely poor and therefore the clearance of cellular and myelin debris is largely ineffective. The presence of growth-inhibitory myelin debris and glial scar formed by reactive astrocytes inhibit the regeneration of RGC axons, which accounts for the poor visual function recovery in patients with TON. In this Review, we summarize the current understanding of resident retinal microglia in RGC survival and axon regeneration after ONC. Resident retinal microglia play a key role in facilitating Wallerian degeneration and the subsequent axon regeneration after ONC. However, they are also responsible for producing pro-inflammatory cytokines, chemokines, and reactive oxygen species that possess neurotoxic effects on RGCs. Intraocular inflammation triggers a massive influx of blood-borne myeloid cells which produce oncomodulin to promote RGC survival and axon regeneration. However, intraocular inflammation induces chronic neuroinflammation which exacerbates secondary tissue damages and limits visual function recovery after ONC. Activated retinal microglia is required for the proliferation of oligodendrocyte precursor cells (OPCs); however, sustained activation of retinal microglia suppress the differentiation of OPCs into mature oligodendrocytes for remyelination after injury. Collectively, controlled activation of retinal microglia and infiltrating myeloid cells facilitate axon regeneration and nerve repair. Recent advance in single-cell RNA-sequencing and identification of microglia-specific markers could improve our understanding on microglial biology and to facilitate the development of novel therapeutic strategies aiming to switch resident retinal microglia’s phenotype to foster neuroprotection.
Collapse
Affiliation(s)
- Ngan Pan Bennett Au
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Chi Him Eddie Ma,
| |
Collapse
|
50
|
Wang SK, Cepko CL. Targeting Microglia to Treat Degenerative Eye Diseases. Front Immunol 2022; 13:843558. [PMID: 35251042 PMCID: PMC8891158 DOI: 10.3389/fimmu.2022.843558] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia have been implicated in many degenerative eye disorders, including retinitis pigmentosa, age-related macular degeneration, glaucoma, diabetic retinopathy, uveitis, and retinal detachment. While the exact roles of microglia in these conditions are still being discovered, evidence from animal models suggests that they can modulate the course of disease. In this review, we highlight current strategies to target microglia in the eye and their potential as treatments for both rare and common ocular disorders. These approaches include depleting microglia with chemicals or radiation, reprogramming microglia using homeostatic signals or other small molecules, and inhibiting the downstream effects of microglia such as by blocking cytokine activity or phagocytosis. Finally, we describe areas of future research needed to fully exploit the therapeutic value of microglia in eye diseases.
Collapse
Affiliation(s)
- Sean K. Wang
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
- *Correspondence: Constance L. Cepko,
| |
Collapse
|