1
|
Chutoam P, Srisucharitpanit K, Intamaso U. Investigating the Immunogenic Properties of a Mutagenized NS3/4A-Based HCV Genotype 3a DNA Vaccine. Viral Immunol 2025; 38:1-11. [PMID: 39792469 DOI: 10.1089/vim.2024.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Additionally, bioinformatics tools were employed to evaluate the impact of the mut-NS3/4A-based DNA vaccine. Analysis revealed increased mut-NS3/4A mRNA levels and target protein abundance compared with the native sequence. Elevated mut-NS3/NS4A levels could result from increased RNA stability and proper protein folding. Physicochemical analyses of the protein demonstrated favorable attributes such as thermostability and solubility. Three-dimensional mut-NS3/4A protein modeling confirmed its high stability and agreement with known protein structures. Additionally, potential immunogenic regions of both T and B cell epitopes were discovered based on peptide binding to major histocompatibility complex molecules of Asian origin. Importantly, these epitopes exhibited nonallergenic and nontoxic characteristics. These findings highlight the potential of the NS3/4A-based DNA construct as a promising candidate for an HCVg3a vaccine tailored for the Asian population, providing valuable insights for future immunotherapeutic approaches.
Collapse
Affiliation(s)
- Palatip Chutoam
- Faculty of Allied Health Sciences, Burapha University, Muang, Thailand
| | | | - Uraiwan Intamaso
- Faculty of Allied Health Sciences, Burapha University, Muang, Thailand
| |
Collapse
|
2
|
Costa GL, Sautto GA. Exploring T-Cell Immunity to Hepatitis C Virus: Insights from Different Vaccine and Antigen Presentation Strategies. Vaccines (Basel) 2024; 12:890. [PMID: 39204016 PMCID: PMC11359689 DOI: 10.3390/vaccines12080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The hepatitis C virus (HCV) is responsible for approximately 50 million infections worldwide. Effective drug treatments while available face access barriers, and vaccine development is hampered by viral hypervariability and immune evasion mechanisms. The CD4+ and CD8+ T-cell responses targeting HCV non-structural (NS) proteins have shown a role in the viral clearance. In this paper, we reviewed the studies exploring the relationship between HCV structural and NS proteins and their effects in contributing to the elicitation of an effective T-cell immune response. The use of different vaccine platforms, such as viral vectors and virus-like particles, underscores their versability and efficacy for vaccine development. Diverse HCV antigens demonstrated immunogenicity, eliciting a robust immune response, positioning them as promising vaccine candidates for protein/peptide-, DNA-, or RNA-based vaccines. Moreover, adjuvant selection plays a pivotal role in modulating the immune response. This review emphasizes the importance of HCV proteins and vaccination strategies in vaccine development. In particular, the NS proteins are the main focus, given their pivotal role in T-cell-mediated immunity and their sequence conservation, making them valuable vaccine targets.
Collapse
Affiliation(s)
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA;
| |
Collapse
|
3
|
Wang J, Zhu H, Gan J, Liang G, Li L, Zhao Y. Engineered mRNA Delivery Systems for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308029. [PMID: 37805865 DOI: 10.1002/adma.202308029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Messenger RNA (mRNA)-based therapeutic strategies have shown remarkable promise in preventing and treating a staggering range of diseases. Optimizing the structure and delivery system of engineered mRNA has greatly improved its stability, immunogenicity, and protein expression levels, which has led to a wider range of uses for mRNA therapeutics. Herein, a thorough analysis of the optimization strategies used in the structure of mRNA is first provided and delivery systems are described in great detail. Furthermore, the latest advancements in biomedical engineering for mRNA technology, including its applications in combatting infectious diseases, treating cancer, providing protein replacement therapy, conducting gene editing, and more, are summarized. Lastly, a perspective on forthcoming challenges and prospects concerning the advancement of mRNA therapeutics is offered. Despite these challenges, mRNA-based therapeutics remain promising, with the potential to revolutionize disease treatment and contribute to significant advancements in the biomedical field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haofang Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaofeng Liang
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| |
Collapse
|
4
|
Melo ARDS, de Macêdo LS, Invenção MDCV, de Moura IA, da Gama MATM, de Melo CML, Silva AJD, Batista MVDA, de Freitas AC. Third-Generation Vaccines: Features of Nucleic Acid Vaccines and Strategies to Improve Their Efficiency. Genes (Basel) 2022; 13:genes13122287. [PMID: 36553554 PMCID: PMC9777941 DOI: 10.3390/genes13122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Gene immunization comprises mRNA and DNA vaccines, which stand out due to their simple design, maintenance, and high efficacy. Several studies indicate promising results in preclinical and clinical trials regarding immunization against ebola, human immunodeficiency virus (HIV), influenza, and human papillomavirus (HPV). The efficiency of nucleic acid vaccines has been highlighted in the fight against COVID-19 with unprecedented approval of their use in humans. However, their low intrinsic immunogenicity points to the need to use strategies capable of overcoming this characteristic and increasing the efficiency of vaccine campaigns. These strategies include the improvement of the epitopes' presentation to the system via MHC, the evaluation of immunodominant epitopes with high coverage against emerging viral subtypes, the use of adjuvants that enhance immunogenicity, and the increase in the efficiency of vaccine transfection. In this review, we provide updates regarding some characteristics, construction, and improvement of such vaccines, especially about the production of synthetic multi-epitope genes, widely employed in the current gene-based vaccines.
Collapse
Affiliation(s)
- Alanne Rayssa da Silva Melo
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Larissa Silva de Macêdo
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Maria da Conceição Viana Invenção
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Ingrid Andrêssa de Moura
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marco Antonio Turiah Machado da Gama
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Cristiane Moutinho Lagos de Melo
- Laboratory of Immunological and Antitumor Analysis, Department of Antibiotics, Bioscience Center, and Keizo Asami Imunophatology Laboratory, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Anna Jéssica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
- Correspondence: ; Tel.: +55-8199-6067-671
| |
Collapse
|
5
|
Abstract
Synthetic messenger RNA (mRNA), once delivered into cells, can be readily translated into proteins by ribosomes, which do not distinguish exogenous mRNAs from endogenous transcripts. Until recently, the intrinsic instability and immunostimulatory property of exogenous RNAs largely hindered the therapeutic application of synthetic mRNAs. Thanks to major technological innovations, such as introduction of chemically modified nucleosides, synthetic mRNAs have become programmable therapeutic reagents. Compared to DNA or protein-based therapeutic reagents, synthetic mRNAs bear several advantages: flexible design, easy optimization, low-cost preparation, and scalable synthesis. Therapeutic mRNAs are commonly designed to encode specific antigens to elicit organismal immune response to pathogens like viruses, express functional proteins to replace defective ones inside cells, or introduce novel enzymes to achieve unique functions like genome editing. Recent years have witnessed stunning progress on the development of mRNA vaccines against SARS-Cov2. This success is built upon our fundamental understanding of mRNA metabolism and translational control, a knowledge accumulated during the past several decades. Given the astronomical number of sequence combinations of four nucleotides, sequence-dependent control of mRNA translation remains incompletely understood. Rational design of synthetic mRNAs with robust translation and optimal stability remains challenging. Massively paralleled reporter assay (MPRA) has been proven to be powerful in identifying sequence elements in controlling mRNA translatability and stability. Indeed, a completely randomized sequence in 5' untranslated region (5'UTR) drives a wide range of translational outputs. In this Account, we will discuss general principles of mRNA translation in eukaryotic cells and elucidate the role of coding and noncoding regions in the translational regulation. From the therapeutic perspective, we will highlight the unique features of 5' cap, 5'UTR, coding region (CDS), stop codon, 3'UTR, and poly(A) tail. By focusing on the design strategies in mRNA engineering, we hope this Account will contribute to the rational design of synthetic mRNAs with broad therapeutic potential.
Collapse
Affiliation(s)
- Longfei Jia
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Bachmann M, Ortega-Ramírez A, Leisle L, Gründer S. Efficient expression of a cnidarian peptide-gated ion channel in mammalian cells. Channels (Austin) 2021; 15:273-283. [PMID: 33522420 PMCID: PMC7889164 DOI: 10.1080/19336950.2021.1882762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 10/24/2022] Open
Abstract
Hydra Na+ channels (HyNaCs) are peptide-gated ion channels of the DEG/ENaC gene family that are directly activated by neuropeptides of the Hydra nervous system. They have previously been successfully characterized in Xenopus oocytes. To establish their expression in mammalian cells, we transiently expressed heteromeric HyNaC2/3/5 in human HEK 293 and monkey COS-7 cells. We found that the expression of HyNaC2/3/5 using native cDNAs was inefficient and that codon optimization strongly increased protein expression and current amplitude in patch-clamp experiments. We used the improved expression of codon-optimized channel subunits to perform Ca2+ imaging and to demonstrate their glycosylation pattern. In summary, we established efficient expression of a cnidarian ion channel in mammalian cell lines.
Collapse
Affiliation(s)
- Michèle Bachmann
- Department of Physiology, RWTH Aachen University, Aachen, Germany
| | | | - Lilia Leisle
- Department of Physiology, RWTH Aachen University, Aachen, Germany
| | - Stefan Gründer
- Department of Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Masgutov R, Zeinalova A, Bogov A, Masgutova G, Salafutdinov I, Garanina E, Syromiatnikova V, Idrisova K, Mullakhmetova A, Andreeva D, Mukhametova L, Kadyrov A, Pankov I, Rizvanov A. Angiogenesis and nerve regeneration induced by local administration of plasmid pBud-coVEGF165-coFGF2 into the intact rat sciatic nerve. Neural Regen Res 2021; 16:1882-1889. [PMID: 33510097 PMCID: PMC8328758 DOI: 10.4103/1673-5374.306090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) are well-known growth factors involved in the regeneration of various tissues and organs, including peripheral nerve system. In the present study, we elucidated the local and systemic effects of plasmid construct рBud-coVEGF165-coFGF2 injected into the epineurium of intact rat sciatic nerve. Results of histological examination of sciatic nerve and multiplex immunoassays of serum showed the absence of immunogenicity and biosafety of plasmid рBud-coVEGF165-coFGF2. Moreover, local administration of plasmid DNA construct resulted in significantly decreased levels of pro-inflammatory cytokines in the peripheral blood, including tumor necrosis factor α (TNFα) and interleukin-12, and significantly increased levels of cytokines and chemokines including Regulated upon Activation, Normal T Cell Expressed and Presumably Secrete (RANTES), epidermal growth factor, interleukin-2, and monocyte chemoattractant protein 1. These changes in the peripheral blood on day 7 after injection of plasmid construct рBud-coVEGF165-coFGF2 show that the plasmid construct has systemic effects and may modulate immune response. At the same time, reverse transcription-polymerase chain reaction revealed transient expression of coFGF2, coVEGF165, ratFGF2 and ratVEGFA with direct transport of transcripts from distal part to proximal part of the sciatic nerve. Immunohistochemical staining revealed prolonged presence of VEGFA in sciatic nerve till 14 days post-injection. These findings suggest that local administration of plasmid construct рBud-coVEGF165-coFGF2 at a concentration of 30 ng/µL results in the formation of pro-angiogenic stimuli and, and the plasmid construct, used as a drug for gene therapy, might potentially facilitate regeneration of the sciatic nerve. The study was approved by the Animal Ethics Committee of Kazan Federal University, procedures were approved by the Local Ethics Committee (approval No. 5) on May 27, 2014.
Collapse
Affiliation(s)
- Ruslan Masgutov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University; Republican Clinical Hospital, Kazan, Russia
| | - Alina Zeinalova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Galina Masgutova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ilnur Salafutdinov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina Garanina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriia Syromiatnikova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kamilla Idrisova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adelya Mullakhmetova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Dina Andreeva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Liliya Mukhametova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adilet Kadyrov
- Department of Traumatology and Orthopedics, Kazan State Medical Academy, Kazan, Russia
| | - Igor Pankov
- Department of Traumatology and Orthopedics, Kazan State Medical Academy, Kazan, Russia
| | - Albert Rizvanov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
8
|
Mira C, Yepes JO, Henao LF, Montoya Guzmán M, Navas MC. EXPRESIÓN DE LA PROTEÍNA CORE DEL VIRUS DE LA HEPATITIS C EN CÉLULAS HEPG2 USANDO EL VIRUS DEL BOSQUE DE SEMLIKI. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v26n1.79365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El Virus de la Hepatitis C (VHC) codifica la proteína Core. Core, además de ser la subunidad de la cápside, participa en diferentes mecanismos de patogénesis de la infección por VHC. Dado que el sistema de replicación in vitrodel VHC presenta limitaciones, el uso de vectores virales podría ser una herramienta útil para estudiar las propiedades de la proteína Core. Con el fin de validar el vector con el Virus del Bosque de Semliki (SFV) para el estudio de Core en células HepG2, se evaluó la expresión de la proteína verde fluorescente (GFP) y la proteína Core utilizando este vector viral. Las expresiones de GFP y Core se detectaron en células HepG2 transducidas con rSFV de 24 a 96 horas postransducción. La expresión de la proteína Core fue inferior a la expresión de GFP en las células HepG2. Teniendo en cuenta que la proteína Core del VHC puede regular la actividad del gen p53, se evaluó el nivel transcripcional de este gen. Se observó una disminución en el nivel de mARN de p53 en las células luego de la transducción, comparado con las células control. Aunque las células transducidas con rSFV-Core presentaron el menor nivel de mARN de p53,la diferencia no fue significativa comparada con las células transducidas con rSFV-GFP. Los resultados confirman que rSFV permite la expresión transitoria de proteínas heterólogas en líneas celulares de hepatoma humano. Se necesitan estudios adicionales para determinar si la expresión disminuida de Core puede deberse a degradación de la proteína viral.
Collapse
|
9
|
Lee H, Hwang IS, Vasamsetti BMK, Rallabandi HR, Park MR, Byun SJ, Yang H, Ock SA, Lee HC, Woo JS, Hwang S, Oh KB. Codon optimized membrane cofactor protein expression in α 1, 3 galactosyltransferase knockout pig cells improve protection against cytotoxicity of monkey serum. 3 Biotech 2020; 10:108. [PMID: 32095422 DOI: 10.1007/s13205-020-2091-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, we attempted to upgrade GT -MCP/-MCP pig genetically to express MCP at a higher level and additionally thrombomodulin (TBM), which have respective roles as a complement regulatory protein and a coagulation inhibitor. We constructed a dicistronic cassette consisting of codon-optimized MCP (mMCP) and TBM (m-pI2), designed for ubiquitous expression of MCP and endothelium specific expression of TBM. The cassette was confirmed to allow extremely increased MCP expression compared with non-modified MCP, and an endothelial-specific TBM expression. We thus transfected m-pI2 into ear-skin fibroblasts isolated from a GT -MCP/-MCP pig. By twice selection using magnetically activated cell sorting (MACS), and single-cell culture, we were able to obtain clones over 90% expressing MCP. The cells of a clone were provided as a donor for nuclear transfer resulting in the generation of a GT -MCP/-MCP /mMCP/TBM pig, which was confirmed to be carrying cells expressing MCP and functioning as an inhibitor against the cytotoxic effect of normal monkey serum, comparable with donor cells. Collectively, these results demonstrated an effective approach for upgrading transgenic pig, and we assumed that upgraded pig would increase graft survival.
Collapse
Affiliation(s)
- Heasun Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Bala Murali Krishna Vasamsetti
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Harikrishna Reddy Rallabandi
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Sung-June Byun
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Hwi-Cheul Lee
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Jae-Seok Woo
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongwipatjwi-ro, Wanju-gun, Jeollabuk-do, 55365 Korea
| |
Collapse
|
10
|
Weng Y, Li C, Yang T, Hu B, Zhang M, Guo S, Xiao H, Liang XJ, Huang Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv 2020; 40:107534. [PMID: 32088327 DOI: 10.1016/j.biotechadv.2020.107534] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
Messenger RNA (mRNA)-based therapeutics hold the potential to cause a major revolution in the pharmaceutical industry because they can be used for precise and individualized therapy, and enable patients to produce therapeutic proteins in their own bodies without struggling with the comprehensive manufacturing issues associated with recombinant proteins. Compared with the current therapeutics, the production of mRNA is much cost-effective, faster and more flexible because it can be easily produced by in vitro transcription, and the process is independent of mRNA sequence. Moreover, mRNA vaccines allow people to develop personalized medications based on sequencing results and/or personalized conditions rapidly. Along with the great potential from bench to bedside, technical obstacles facing mRNA pharmaceuticals are also obvious. The stability, immunogenicity, translation efficiency, and delivery are all pivotal issues need to be addressed. In the recently published research results, these issues are gradually being overcome by state-of-the-art development technologies. In this review, we describe the structural properties and modification technologies of mRNA, summarize the latest advances in developing mRNA delivery systems, review the preclinical and clinical applications, and put forward our views on the prospect and challenges of developing mRNA into a new class of drug.
Collapse
Affiliation(s)
- Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Tongren Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
11
|
Molouki A, Nagy A. Rescue of recombinant Newcastle disease virus: a promising vector with two decades of intensive vaccine research. Future Virol 2019. [DOI: 10.2217/fvl-2019-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two decades have passed since the first reverse genetics system for the rescue of recombinant Newcastle disease virus was developed. Since then, the recombinant Newcastle disease virus vector has shown promising results as a safe and potent vector for development of many vaccines for both avian and human use. Herein, we review several technical topics that would be useful to further understanding of this technology. First, the effect of using helper plasmids encoding proteins belonging to strains other than the full-length cDNA and the possible incorporation of these expressed proteins into progeny virus will be discussed. Then, we will discuss the effect of removal of additional G residues from the T7 initiation sequence and finally, we will review different ways to improve rescue efficiency.
Collapse
Affiliation(s)
- Aidin Molouki
- Department of Avian Disease Research & Diagnostic, Razi Vaccine & Serum Research Institute, Agricultural Research Education & Extension Organization (AREEO), Karaj, Iran
| | - Abdou Nagy
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Ash Sharqyiah 44519, Egypt
| |
Collapse
|
12
|
Pouriayevali MH, Bamdad T, Sadat SM, Sadeghi SA, Sabahi F, Mahdavi M, Aghasadeghi MR. Listeriolysin O immunogenetic adjuvant enhanced potency of hepatitis C virus NS3 DNA vaccine. IUBMB Life 2019; 71:1645-1652. [PMID: 31298809 DOI: 10.1002/iub.2109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a major health problem all over the world. Among HCV proteins, nonstructural protein 3 (NS3) is one of the most promising target for anti-HCV therapy and a candidate for vaccine design. DNA vaccine is an efficient approach to stimulate antigen-specific immunity but the main problem with that is less immunogenic efficiency in comparison with traditional vaccines. Several approaches have been applied to enhance the immunogenicity of DNA. Recently, bacteria-derived substances are considered as one of the most attractive adjuvants for vaccines, which among them, Listeriolysin O (LLO) of Listeria monocytogenes is a toxin with an extremely immunogenic feature. We investigated detoxified form of LLO gene as genetic adjuvant to modulate NS3 DNA vaccine potency. Immunogenic truncated NS3 gene sequence of HCV (1095-1380aa) and detoxified LLO gene region (5-441aa) were amplified by PCR and cloned into the pcDNA3.1 plasmid separately. The expression of recombinant proteins (pc-NS3, pLLO) was confirmed in HEK293T cell line by western blotting. BALB/c mice models received three doses of different formula of plasmids in two-week intervals and two weeks after the final immunization, the immune responses were evaluated by specific total antibody level, lymphocyte proliferation, cytotoxicity, and cytokine levels assays. To evaluate in vivo cytotoxic activity, tumor challenge was performed. The recombinant plasmids were successfully expressed in mammalian cell line, and coadministration of pc-NS3 with pLLO induced the highest titer of total IgG against NS3 antigen compared with other controls. Determination of IgG subclasses confirmed the efficient increase in mixed responses with Th1 dominancy. Furthermore, significant levels of cytokines (p < .05) and lymphocyte proliferation responses (p < .05) indicated the superiority of this regimen. The findings may have important implication for LLO gene application as genetic adjuvant in immune response against HCV.
Collapse
Affiliation(s)
- Mohammad H Pouriayevali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Taravat Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed M Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed A Sadeghi
- Department of Research and Development of Hepatitis A vaccine, Pasteur Institute of Iran, Alborz, Iran
| | - Farzaneh Sabahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
13
|
Levander S, Holmström F, Frelin L, Ahlén G, Rupp D, Long G, Bartenschlager R, Sällberg M. Immune-mediated effects targeting hepatitis C virus in a syngeneic replicon cell transplantation mouse model. Gut 2018; 67. [PMID: 28646094 PMCID: PMC6204962 DOI: 10.1136/gutjnl-2016-313579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE HCV is characterised by its ability to establish chronic infection in hepatocytes and to replicate in the presence of an inflammation. We mimicked this situation in vivo in immune-competent mice by syngeneic transplantation of HCV replicon-containing mouse hepatoma cells. DESIGN A total of 5 million H-2b positive Hep56.1D cells, carrying a subgenomic genotype (gt) 2a replicon (HCV replicon cells) or stably expressing comparable levels of the HCV NS3/4A protease/helicase complex (NS3/4A hepatoma cells), were injected subcutaneously into syngeneic H-2b-restricted mice. Kinetics of tumour growth, HCV RNA replication levels and HCV-specific immune responses were monitored. For immune monitoring, new H-2b-restricted cytotoxic T cell epitopes within the gt2a NS3/4A region were mapped. Immune mice were generated by DNA-based vaccination. RESULTS HCV replicon and NS3/4A hepatoma cells generated solid tumours in vivo. Similar to what is seen in human HCV infection did HCV RNA replicate in the presence of inflammation. NS3/4A-specific CD8+ T cells seemed to transiently reduce HCV RNA levels. Both CD4+ and CD8+ T cells were required for protection against tumour growth. Vaccine-induced NS3/4A(gt2a)-specific T cells protected against HCV replicon tumours in wild-type, but not in HCV NS3/4A(gt1a)-transgenic mice with dysfunctional HCV-specific T cells. Importantly, as in human HCV infection, HCV replicon cells neither primed nor boosted a strong NS3/4A-specific T cell response. CONCLUSION Syngeneic transplantation of mouse HCV replicon cells into immune-competent animals mirrors many in vivo events in humans. This system is versatile and can be applied to any genetically modified H-2b-restricted mouse strain.
Collapse
Affiliation(s)
- Sepideh Levander
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Fredrik Holmström
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Solna, Sweden
| | - Daniel Rupp
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany,Division of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Gang Long
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany,Unit of Virus Assembly and Host, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany,German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany,Division of Virus-AssociatedCarcinogenesis, German Cancer Research Center, Heidelberg, germany
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden,Karolinska University Laboratory, Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Codon optimization and improved delivery/immunization regimen enhance the immune response against wild-type and drug-resistant HIV-1 reverse transcriptase, preserving its Th2-polarity. Sci Rep 2018; 8:8078. [PMID: 29799015 PMCID: PMC5967322 DOI: 10.1038/s41598-018-26281-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
DNA vaccines require a considerable enhancement of immunogenicity. Here, we optimized a prototype DNA vaccine against drug-resistant HIV-1 based on a weak Th2-immunogen, HIV-1 reverse transcriptase (RT). We designed expression-optimized genes encoding inactivated wild-type and drug-resistant RTs (RT-DNAs) and introduced them into mice by intradermal injections followed by electroporation. RT-DNAs were administered as single or double primes with or without cyclic-di-GMP, or as a prime followed by boost with RT-DNA mixed with a luciferase-encoding plasmid (“surrogate challenge”). Repeated primes improved cellular responses and broadened epitope specificity. Addition of cyclic-di-GMP induced a transient increase in IFN-γ production. The strongest anti-RT immune response was achieved in a prime-boost protocol with electroporation by short 100V pulses done using penetrating electrodes. The RT-specific response, dominated by CD4+ T-cells, targeted epitopes at aa 199–220 and aa 528–543. Drug-resistance mutations disrupted the epitope at aa 205–220, while the CTL epitope at aa 202–210 was not affected. Overall, multiparametric optimization of RT strengthened its Th2- performance. A rapid loss of RT/luciferase-expressing cells in the surrogate challenge experiment revealed a lytic potential of anti-RT response. Such lytic CD4+ response would be beneficial for an HIV vaccine due to its comparative insensitivity to immune escape.
Collapse
|
15
|
|
16
|
Hacobian A, Hercher D. Pushing the Right Buttons: Improving Efficacy of Therapeutic DNA Vectors. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:226-239. [PMID: 29264951 DOI: 10.1089/ten.teb.2017.0353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene therapy represents a potent therapeutical application for regenerative medicine. So far, viral and nonviral approaches suffer from major drawbacks hindering efficient gene therapeutic applicability: the immunogenicity of viral systems on the one hand, and the low gene transfer efficiency of nonviral systems on the other hand. Therefore, there is a high demand for improvements of therapeutical systems at several levels. This review summarizes different DNA vector modifications to enhance biological efficacy and efficiency of therapeutical vectors, aiming for low toxicity, high specificity, and biological efficacy-the cornerstones for successful translation of gene therapy into the clinic. We aim to provide a step-by-step instruction to optimize their vectors to achieve the desired outcome of gene therapy. Our review provides the means to either construct a potent gene therapeutic vector de novo or to specifically address a bottleneck in the chain of events mandatory for therapeutic success. Although most of the introduced techniques can be translated into different areas, this review primarily addresses improvements for applications in transient gene therapy in the field of tissue engineering.
Collapse
Affiliation(s)
- Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Department of Molecular Biology, AUVA Research Center, The Austrian Cluster for Tissue Regeneration , Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Department of Molecular Biology, AUVA Research Center, The Austrian Cluster for Tissue Regeneration , Vienna, Austria
| |
Collapse
|
17
|
Kitagawa K, Oda T, Saito H, Araki A, Gonoi R, Shigemura K, Hashii Y, Katayama T, Fujisawa M, Shirakawa T. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein. Cancer Immunol Immunother 2017; 66:787-798. [PMID: 28299466 PMCID: PMC11028424 DOI: 10.1007/s00262-017-1984-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/05/2017] [Indexed: 01/12/2023]
Abstract
Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4+T and CD8+T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.
Collapse
Affiliation(s)
- Koichi Kitagawa
- Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tsugumi Oda
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hiroki Saito
- Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ayame Araki
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Reina Gonoi
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Katsumi Shigemura
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Toshiro Shirakawa
- Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
18
|
Abstract
DNA vaccines offer many advantages over other anti-tumor vaccine approaches due to their simplicity, ease of manufacturing, and safety. Results from several clinical trials in patients with cancer have demonstrated that DNA vaccines are safe and can elicit immune responses. However, to date few DNA vaccines have progressed beyond phase I clinical trial evaluation. Studies into the mechanism of action of DNA vaccines in terms of antigen-presenting cell types able to directly present or cross-present DNA-encoded antigens, and the activation of innate immune responses due to DNA itself, have suggested opportunities to increase the immunogenicity of these vaccines. In addition, studies into the mechanisms of tumor resistance to anti-tumor vaccination have suggested combination approaches that can increase the anti-tumor effect of DNA vaccines. This review focuses on these mechanisms of action and mechanisms of resistance using DNA vaccines, and how this information is being used to improve the anti-tumor effect of DNA vaccines. These approaches are then specifically discussed in the context of human prostate cancer, a disease for which DNA vaccines have been and continue to be explored as treatments.
Collapse
Affiliation(s)
- Christopher D Zahm
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Viswa Teja Colluru
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Douglas G McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
19
|
Kitagawa K, Omoto C, Oda T, Araki A, Saito H, Shigemura K, Katayama T, Hotta H, Shirakawa T. Oral Combination Vaccine, Comprising Bifidobacterium Displaying Hepatitis C Virus Nonstructural Protein 3 and Interferon-α, Induces Strong Cellular Immunity Specific to Nonstructural Protein 3 in Mice. Viral Immunol 2017; 30:196-203. [PMID: 28112593 DOI: 10.1089/vim.2016.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously generated an oral hepatitis C virus (HCV) vaccine using Bifidobacterium displaying the HCV nonstructural protein 3 (NS3) polypeptide. NS3-specific cellular immunity is important for viral clearance and recovery from HCV infection. In this study, we enhanced the cellular immune responses induced by our oral HCV vaccine, Bifidobacterium longum 2165 (B. longum 2165), by combining interferon-α (IFN-α) as an adjuvant with the vaccine in a mouse experimental model. IFN-α is a widely used cytokine meeting the standard of care (SOC) for HCV infection and plays various immunoregulatory roles. We treated C57BL/6N mice with B. longum 2165 every other day and/or IFN-α twice a week for a month and then analyzed the immune responses using spleen cells. We determined the induction of NS3-specific cellular immunity by cytokine quantification, intracellular cytokine staining, and a cytotoxic T lymphocyte (CTL) assay targeting EL4 tumor cells expressing NS3/4A protein (EL4-NS3/4A). We also treated mice bearing EL4-NS3/4A tumor with the combination therapy in vivo. The results confirmed that the combination therapy of B. longum 2165 and IFN-α induced significantly higher IFN-γ secretion, higher population of CD4+T and CD8+T cells secreting IFN-γ, and higher CTL activity against EL4-NS3/4A cells compared with the control groups of phosphate-buffered saline, B. longum 2165 alone, and IFN-α alone (p < 0.05). We also confirmed that the combination therapy strongly enhanced tumor growth inhibitory effects in vivo with no serious adverse effects (p < 0.05). These results suggest that the combination of B. longum 2165 and IFN-α could induce a strong cellular immunity specific to NS3 protein as a combination therapy augmenting the current SOC immunotherapy against chronic HCV infection.
Collapse
Affiliation(s)
- Koichi Kitagawa
- 1 Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Chika Omoto
- 2 Division of Infectious Disease Control, Department of International Health, Kobe University Graduate School of Health Sciences , Kobe, Japan
| | - Tsugumi Oda
- 2 Division of Infectious Disease Control, Department of International Health, Kobe University Graduate School of Health Sciences , Kobe, Japan
| | - Ayame Araki
- 2 Division of Infectious Disease Control, Department of International Health, Kobe University Graduate School of Health Sciences , Kobe, Japan
| | - Hiroki Saito
- 1 Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Katsumi Shigemura
- 2 Division of Infectious Disease Control, Department of International Health, Kobe University Graduate School of Health Sciences , Kobe, Japan .,3 Division of Urology, Department of Surgery Related, Kobe University Graduate School of Medicine , Kobe, Japan
| | - Takane Katayama
- 4 Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University , Kyoto, Japan
| | - Hak Hotta
- 2 Division of Infectious Disease Control, Department of International Health, Kobe University Graduate School of Health Sciences , Kobe, Japan
| | - Toshiro Shirakawa
- 1 Division of Translational Research for Biologics, Department of Internal Related, Kobe University Graduate School of Medicine , Kobe, Japan .,2 Division of Infectious Disease Control, Department of International Health, Kobe University Graduate School of Health Sciences , Kobe, Japan .,3 Division of Urology, Department of Surgery Related, Kobe University Graduate School of Medicine , Kobe, Japan .,5 Department of Advanced Medical Science, Kobe University Graduate School of Science , Technology and Innovation, Kobe, Japan
| |
Collapse
|
20
|
Codon Optimization Leads to Functional Impairment of RD114-TR Envelope Glycoprotein. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:102-114. [PMID: 28344996 PMCID: PMC5363313 DOI: 10.1016/j.omtm.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/04/2017] [Indexed: 01/13/2023]
Abstract
Lentiviral vectors (LVs) are a highly valuable tool for gene transfer currently exploited in basic, applied, and clinical studies. Their optimization is therefore very important for the field of vectorology and gene therapy. A key molecule for LV function is the envelope because it guides cell entry. The most commonly used in transiently produced LVs is the vesicular stomatitis virus glycoprotein (VSV-G) envelope, whose continuous expression is, however, toxic for stable LV producer cells. In contrast, the feline endogenous retroviral RD114-TR envelope is suitable for stable LV manufacturing, being well tolerated by producer cells under constitutive expression. We have previously reported successful, transient and stable production of LVs pseudotyped with RD114-TR for good transduction of T lymphocytes and CD34+ cells. To further improve RD114-TR-pseudotyped LV cell entry by increasing envelope expression, we codon-optimized the RD114-TR open reading frame (ORF). Here we show that, despite the RD114-TRco precursor being produced at a higher level than the wild-type counterpart, it is unexpectedly not duly glycosylated, exported to the cytosol, and processed. Correct cleavage of the precursor in the functional surface and transmembrane subunits is prevented in vivo, and, consequently, the unprocessed precursor is incorporated into LVs, making them inactive.
Collapse
|
21
|
Abstract
The hepatitis C virus (HCV) is a major cause of severe liver disease worldwide. It is estimated that around 130-170 million individuals are chronic carriers of the infection and they are over time at an increased risk of developing severe liver disease. HCV is often referred to as a silent epidemic because the majority of infected individuals do not develop any symptoms. Hence, many individuals are diagnosed at a late stage and thus in need of immediate treatment. Today we have very effective direct-acting antivirals (DAAs), which cure more than 90-95 % of all treated patients. However, this treatment is associated with high-costs and the use is limited to the patients with most advanced liver disease in high-income countries. Notably, a majority of the chronic HCV carriers live in resource-poor countries and do not have access to the new effective DAAs. We therefore need to develop alternative treatments for chronic HCV infection such as therapeutic vaccines. The idea with therapeutic vaccines is to reactivate the infected patient's own immune system. It is well known that patients with chronic HCV infection have dysfunctional immune responses to the virus. Hence, the vaccine should activate HCV-specific T cells that will home to the liver and eradicate the HCV infected hepatocytes. Importantly, one should also consider the combination of a therapeutic vaccine and DAAs as a treatment strategy to equip the resolving patients with post-cure HCV-specific immune responses. This would provide patients with a better protection against reinfection. Numerous genetic vaccine candidates for HCV have been developed and tested in clinical trials with limited effects on viral load and in general inefficient activation of HCV-specific immune responses. In this chapter we describe the rational of developing highly immunogenic vaccines for HCV. Different strategies to improve vaccine immunogenicity and methods to evaluate vaccine efficacy are described. Detailed description of vaccine delivery by intramuscular immunization in combination with in vivo electroporation/electrotransfer (EP/ET) is covered, as well as immunological analysis of primed immune responses by determination of interferon-γ (IFN-γ) production by ELISpot assay and direct ex vivo quantification of HCV NS3/4A-specific CD8+ T cells by pentamer staining. To analyze the in vivo functionality of primed NS3/4A-specific T cells we utilized the in vivo bioluminescence imaging technology. In conclusion, this chapter describes a method to design HCV vaccines and also a protocol to assess their efficacy.
Collapse
Affiliation(s)
- Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86, Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86, Stockholm, Sweden.
| |
Collapse
|
22
|
Optimization of codon usage of the envelope protein E2 gene from various genotypes of hepatitis C virus to predict the expression level in Pichia pastoris. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Xia F, Li X, Li X, Zheng D, Sun Q, Liu J, Li Y, Hua J, Qi B. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes. PLoS One 2016; 11:e0158103. [PMID: 27433934 PMCID: PMC4951033 DOI: 10.1371/journal.pone.0158103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/12/2016] [Indexed: 12/23/2022] Open
Abstract
Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of foreign genes in yeast and Arabidopsis.
Collapse
Affiliation(s)
- Fei Xia
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Xueying Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Desong Zheng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Quanxi Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Jiang Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Yaxiao Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Jinping Hua
- Department of Plant Genetics & Breeding, College of Agronomy and Biotechnology, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Baoxiu Qi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
- * E-mail:
| |
Collapse
|
24
|
Villanueva E, Martí-Solano M, Fillat C. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness. Sci Rep 2016; 6:27546. [PMID: 27278133 PMCID: PMC4899721 DOI: 10.1038/srep27546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/20/2016] [Indexed: 11/09/2022] Open
Abstract
Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.
Collapse
Affiliation(s)
- Eneko Villanueva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Martí-Solano
- Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Pompeu Fabra University, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
25
|
Holmström F, Chen M, Balasiddaiah A, Sällberg M, Ahlén G, Frelin L. Functional differences in hepatitis C virus nonstructural (NS) 3/4A- and 5A-specific T cell responses. Sci Rep 2016; 6:24991. [PMID: 27141891 PMCID: PMC4855235 DOI: 10.1038/srep24991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
The hepatitis C virus nonstructural (NS) 3/4A and NS5A proteins are major targets for the new direct-acting antiviral compounds. Both viral proteins have been suggested as modulators of the response to the host cell. We have shown that NS3/4A- and NS5A-specific T cell receptors confer different effector functions, and that killing of NS3/4A-expressing hepatocytes is highly dependent on IFN-γ. We here characterize the functional differences in the T cell responses to NS3/4A and NS5A. NS3/4A- and NS5A-specific T cells could be induced at various frequencies in wild-type-, NS3/4A-, and NS5A-transgenic mice. Priming of NS5A-specific T cells required a high DNA dose, and was unlike NS3/4A dependent on both CD4+ and CD8+ T cells, but less influenced by CD25+/GITR+ regulatory T cells. The presence of IL-12 greatly improved specific CD8+ T cell priming by NS3/4A but not by NS5A, suggesting a less dependence of IFN-γ for NS5A. This notion was supported by the observation that NS5A-specific T cells could eliminate NS5A-expressing hepatocytes also in the absence of IFN-γ-receptor-2. This supports that NS3/4A- and NS5A-specific T cells become activated and eliminate antigen expressing, or infected hepatocytes, by distinct mechanisms, and that NS5A-specific T cells show an overall less dependence of IFN-γ.
Collapse
Affiliation(s)
- Fredrik Holmström
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Margaret Chen
- Department of Dental Medicine, Karolinska Institutet, Huddinge, S-141 04 Stockholm, Sweden
| | - Anangi Balasiddaiah
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.,Department of Dental Medicine, Karolinska Institutet, Huddinge, S-141 04 Stockholm, Sweden
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| |
Collapse
|
26
|
Levander S, Sällberg M, Ahlén G, Frelin L. A non-human hepadnaviral adjuvant for hepatitis C virus-based genetic vaccines. Vaccine 2016; 34:2821-33. [PMID: 27109565 DOI: 10.1016/j.vaccine.2016.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/19/2022]
Abstract
Human hepatitis B virus (HBV) core antigen (HBcAg) can act as an adjuvant in hepatitis C virus (HCV)-based DNA vaccines. Since two billion people are, or have been, in contact with HBV, one may question the use of human HBV sequences as adjuvant. We herein evaluated non-human stork hepatitis B virus core gene-sequences from stork as DNA vaccine adjuvants. Full-length and fragmented stork HBcAg gene-sequences were added to an HCV non-structural (NS) 3/4A gene (NS3/4A-stork-HBcAg). This resulted in an enhanced priming of HCV-specific IFN-γ and IL-2 responses in both wild-type (wt)- and NS3/4A-transgenic (Tg) mice, the latter with dysfunctional NS3/4A-specific T cells. The NS3/4A-stork-HBcAg vaccine primed NS3/4A-specific T cells in hepatitis B e antigen (HBeAg)-Tg mice with dysfunctional T cells to HBcAg and HBeAg. Repeated immunizations boosted expansion of IFN-γ and IL-2-producing NS3/4A-specific T cells in wt- and NS3/4A-Tg mice. Importantly, NS3/4A-stork-HBcAg-DNA induced in vivo long-term functional memory T cell responses, whose maintenance required CD4(+) T cells. Thus, avian HBcAg gene-sequences from stork can effectively act as a DNA vaccine adjuvant. This technology can most likely be universally expanded to other genetic vaccine antigens, as this completely avoids the use of sequences from a human virus where a pre-existing immunity may interfere with its adjuvant effect.
Collapse
Affiliation(s)
- Sepideh Levander
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| | - Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden.
| |
Collapse
|
27
|
Lee MF, Song PP, Lin TM, Chiu YT, Chen YH. For t 2 DNA vaccine prevents Forcipomyia taiwana (biting midge) allergy in a mouse model. Allergy 2016; 71:522-31. [PMID: 26715616 DOI: 10.1111/all.12832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Forcipomyia taiwana (biting midge) is the most prevalent allergenic biting insect in Taiwan, and 60% of the exposed subjects develop allergic reactions. Subjects with insect allergy frequently limit their outdoor activities to avoid the annoyingly intense itchy allergic reactions, leading to significant worsening of their quality of life. Allergen-specific immunotherapy is the only known therapy that provides long-term host immune tolerance to the allergen, but is time-consuming and cumbersome. This study tested whether the For t 2 DNA vaccine can prevent allergic symptoms in For t 2-sensitized mice. MATERIALS AND METHODS Two consecutive shots of For t 2 DNA vaccine were given to mice with a 7-day interval before sensitization with recombinant For t 2 proteins, using the two-step sensitization protocol reported previously. RESULTS The For t 2 DNA vaccine at 50 μg prevented the production of For t 2-specific IgE (P < 0.05), as well as midge allergen-challenge-induced scratch bouts, midge allergen-induced IL-13 and IL-4 production from splenocytes, and inflammatory cell infiltrations in the lesions 48 h after intradermal challenge. CONCLUSIONS This study is the first to demonstrate that DNA vaccine encoding midge allergen is effective in preventing allergic skin inflammation induced by biting midge. Immunotherapy using For t 2 DNA vaccine can protect mice from being sensitized by midge allergen and may be a promising treatment for biting midge allergy in the future.
Collapse
Affiliation(s)
- M.-F. Lee
- Department of Medical Research; Taichung Veterans General Hospital; Taichung Taiwan
| | - P.-P. Song
- Division of Allergy, Immunology and Rheumatology; Taichung Veterans General Hospital; Taichung Taiwan
| | - T.-M. Lin
- Division of Allergy, Immunology and Rheumatology; Taichung Veterans General Hospital; Taichung Taiwan
| | - Y.-T. Chiu
- Department of Medical Research; Taichung Veterans General Hospital; Taichung Taiwan
| | - Y.-H. Chen
- Division of Allergy, Immunology and Rheumatology; Taichung Veterans General Hospital; Taichung Taiwan
- Department of Life Science; Tunghai University; Taichung Taiwan
- Faculty of Medicine; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
28
|
Ahlén G, Frelin L, Holmström F, Smetham G, Augustyn S, Sällberg M. A targeted controlled force injection of genetic material in vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16016. [PMID: 27069951 PMCID: PMC4813609 DOI: 10.1038/mtm.2016.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
A general limitation in gene delivery is the cellular uptake in lager animals including humans. Several approaches have been tested including liposomes, micro-needles, in vivo electro-transfer, ballistic delivery, and needle-free delivery. All these techniques have individual limitations. One approach reproducibly delivering genetic material in muscle tissue in nonhuman primates is hydrodynamic injection, a forced injection of a volume equaling the volume of the tissue to be transfected thereby causing an increased local pressure resulting in an improved uptake of genetic material. We transferred the principle of hydrodynamic injection to a device, where a small injection volume can be delivered to a targeted tissue volume, termed in vivo intracellular injection (IVIN). The device is based on needle(s) with apertures along the needle shafts, where multiple needles can fix the tissue volume to be transfected. The apertures direct the injection from a central needle outward or inward to the centroid of a geometric arrangement thereby targeting the tissue to be transfected. With a controlled force, this results in a targeted injection with increased transfection efficiency. We here show that the IVIN technology reproducibly improved plasmid uptake and expression and the immunogenicity. The IVIN technology can be generally applied to a targeted delivery of genetic materials.
Collapse
Affiliation(s)
- Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Fredrik Holmström
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | | | | | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| |
Collapse
|
29
|
Chemokine-adjuvanted electroporated DNA vaccine induces substantial protection from simian immunodeficiency virus vaginal challenge. Mucosal Immunol 2016; 9:13-23. [PMID: 25943275 PMCID: PMC4636490 DOI: 10.1038/mi.2015.31] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/11/2015] [Indexed: 02/07/2023]
Abstract
There have been encouraging results for the development of an effective HIV vaccine. However, many questions remain regarding the quality of immune responses and the role of mucosal antibodies. We addressed some of these issues by using a simian immunodeficiency virus (SIV) DNA vaccine adjuvanted with plasmid-expressed mucosal chemokines combined with an intravaginal SIV challenge in rhesus macaque (RhM) model. We previously reported on the ability of CCR9 and CCR10 ligand (L) adjuvants to enhance mucosal and systemic IgA and IgG responses in small animals. In this study, RhMs were intramuscularly immunized five times with either DNA or DNA plus chemokine adjuvant delivered by electroporation followed by challenge with SIVsmE660. Sixty-eight percent of all vaccinated animals (P<0.01) remained either uninfected or had aborted infection compared with only 14% in the vaccine naïve group. The highest protection was observed in the CCR10L chemokines group, where six of nine animals had aborted infection and two remained uninfected, leading to 89% protection (P<0.001). The induction of mucosal SIV-specific antibodies and neutralization titers correlated with trends in protection. These results indicate the need to further investigate the contribution of chemokine adjuvants to modulate immune responses and the role of mucosal antibodies in SIV/HIV protection.
Collapse
|
30
|
An Enhanced Synthetic Multiclade DNA Prime Induces Improved Cross-Clade-Reactive Functional Antibodies when Combined with an Adjuvanted Protein Boost in Nonhuman Primates. J Virol 2015; 89:9154-66. [PMID: 26085155 DOI: 10.1128/jvi.00652-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/06/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The search for an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine remains a pressing need. The moderate success of the RV144 Thai clinical vaccine trial suggested that vaccine-induced HIV-1-specific antibodies can reduce the risk of HIV-1 infection. We have made several improvements to the DNA platform and have previously shown that improved DNA vaccines alone are capable of inducing both binding and neutralizing antibodies in small-animal models. In this study, we explored how an improved DNA prime and recombinant protein boost would impact HIV-specific vaccine immunogenicity in rhesus macaques (RhM). After DNA immunization with either a single HIV Env consensus sequence or multiple constructs expressing HIV subtype-specific Env consensus sequences, we detected both CD4(+) and CD8(+) T-cell responses to all vaccine immunogens. These T-cell responses were further increased after protein boosting to levels exceeding those of DNA-only or protein-only immunization. In addition, we observed antibodies that exhibited robust cross-clade binding and neutralizing and antibody-dependent cellular cytotoxicity (ADCC) activity after immunization with the DNA prime-protein boost regimen, with the multiple-Env formulation inducing a more robust and broader response than the single-Env formulation. The magnitude and functionality of these responses emphasize the strong priming effect improved DNA immunogens can induce, which are further expanded upon protein boost. These results support further study of an improved synthetic DNA prime together with a protein boost for enhancing anti-HIV immune responses. IMPORTANCE Even with effective antiretroviral drugs, HIV remains an enormous global health burden. Vaccine development has been problematic in part due to the high degree of diversity and poor immunogenicity of the HIV Env protein. Studies suggest that a relevant HIV vaccine will likely need to induce broad cellular and humoral responses from a simple vaccine regimen due to the resource-limited setting in which the HIV pandemic is most rampant. DNA vaccination lends itself well to increasing the amount of diversity included in a vaccine due to the ease of manufacturing multiple plasmids and formulating them as a single immunization. By increasing the number of Envs within a formulation, we were able to show an increased breadth of responses as well as improved functionality induced in a nonhuman primate model. This increased breadth could be built upon, leading to better coverage against circulating strains with broader vaccine-induced protection.
Collapse
|
31
|
Yu W, Grubor-Bauk B, Mullick R, Das S, Gowans EJ. Immunocompetent mouse models to evaluate intrahepatic T cell responses to HCV vaccines. Hum Vaccin Immunother 2015; 10:3576-8. [PMID: 25483684 DOI: 10.4161/hv.34343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite considerable progress in the development of immunocompetent mouse models using different high end technologies, most available small animal models for HCV study are unsuitable for challenge experiments, which are vital for vaccine development, as they fail to measure the T cell response in liver. A recently developed intra-hepatic challenge model results in HCV antigen expression in mouse hepatocytes and through the detection of the surrogate marker, SEAP, in serum, the effect of prior vaccination can be monitored longitudinally.
Collapse
Affiliation(s)
- Wenbo Yu
- a Discipline of Surgery ; University of Adelaide; Basil Hetzel Institute ; Adelaide , SA , Australia
| | | | | | | | | |
Collapse
|
32
|
Ranjbar MM, Gupta SK, Ghorban K, Nabian S, Sazmand A, Taheri M, Esfandyari S, Taheri M. Designing and Modeling of Complex DNA Vaccine Based on Tropomyosin Protein of Boophilus Genus Tick. Appl Biochem Biotechnol 2014; 175:323-39. [DOI: 10.1007/s12010-014-1245-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/10/2014] [Indexed: 12/13/2022]
|
33
|
Yu W, Grubor-Bauk B, Gargett T, Garrod T, Gowans EJ. A novel challenge model to evaluate the efficacy of hepatitis C virus vaccines in mice. Vaccine 2014; 32:3409-16. [DOI: 10.1016/j.vaccine.2014.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/02/2014] [Indexed: 01/23/2023]
|
34
|
Long-term functional duration of immune responses to HCV NS3/4A induced by DNA vaccination. Gene Ther 2014; 21:739-50. [PMID: 24871581 PMCID: PMC4126484 DOI: 10.1038/gt.2014.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/18/2014] [Accepted: 04/14/2014] [Indexed: 12/26/2022]
Abstract
We have investigated the ability of hepatitis C virus non-structural (NS) 3/4A-DNA-based vaccines to activate long-term cell-mediated immune responses in mice. Wild-type and synthetic codon optimized (co) NS3/4A DNA vaccines have previously been shown to be immunogenic in mice, rabbits and humans, although we have very poor knowledge about the longevity of the immune responses primed. We therefore analyzed the functionality of primed NS3/4A-specific immune responses in BALB/c (H-2d) and/or C57BL/6J (H-2b) mice 1, 2, 3, 4, 6, 12 and 16 months after the last immunization. Mice were immunized one, two, three or four times using gene gun delivery to the skin or by intramuscular administration. Immunological responses after immunization were monitored by protection against in vivo challenge of NS3/4A-expressing syngeneic tumor cells. In addition, functionality of the NS3/4A-specific T cells was analyzed by a standard cytotoxicity assay. First, we identified a new unique murine H-2d-restricted NS3/4A cytotoxic T lymphocyte (CTL) epitope, which enabled us to study the epitope-specific immune responses. Our results show that the coNS3/4A vaccine was highly immunogenic by determination of interferon-γ/tumor necrosis factor-α production and lytic cytotoxic T cells, which could efficiently inhibit in vivo tumor growth. Importantly, we showed that one to four monthly immunizations protected mice from tumor development when challenged up to 16 months after the last immunization. When determining the functionality of NS3/4A-specific T cells in vitro, we showed detectable lytic activity up to 12 months after the last immunization. Thus, NS3/4A-based DNA vaccines activate potent cellular immune responses that are present and function in both BALB/c and C57BL/6J mice up to 12–16 months after the last immunization. The induction of long-term immunity after NS3/4A DNA immunization has not been shown previously and supports the use of NS3/4A in hepatitis C virus vaccine compositions.
Collapse
|
35
|
Alphavirus-based vaccines encoding nonstructural proteins of hepatitis C virus induce robust and protective T-cell responses. Mol Ther 2013; 22:881-90. [PMID: 24370701 DOI: 10.1038/mt.2013.287] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/17/2013] [Indexed: 01/07/2023] Open
Abstract
An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all- or a part of the conserved nonstructural proteins (nsPs) of HCV. We demonstrated that an rSFV vector was able to encode a transgene as large as 6.1 kb without affecting its vaccine immunogenicity. Prime-boost immunizations of mice with rSFV expressing all nsPs induced strong and long-lasting NS3-specific CD8(+) T-cell responses. The strength and functional heterogeneity of the T-cell response was similar to that induced with rSFV expressing only NS3/4A. Furthermore this leads to a significant growth delay and negative selection of HCV-expressing EL4 tumors in an in vivo mouse model. In general, as broad-spectrum T-cell responses are only seen in patients with resolved HCV infection, this rSFV-based vector, which expresses all nsPs, inducing robust T-cell activity has a potential for the treatment of HCV infections.
Collapse
|
36
|
Abstract
DNA immunization was discovered in early 1990s, and its use has been expanded from vaccine studies to a broader range of biomedical research areas, such as the generation of high-quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation, and gene gun. In addition, several common considerations related to DNA immunization are discussed.
Collapse
Affiliation(s)
- Shixia Wang
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Shan Lu
- University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
37
|
Flingai S, Czerwonko M, Goodman J, Kudchodkar SB, Muthumani K, Weiner DB. Synthetic DNA vaccines: improved vaccine potency by electroporation and co-delivered genetic adjuvants. Front Immunol 2013; 4:354. [PMID: 24204366 PMCID: PMC3816528 DOI: 10.3389/fimmu.2013.00354] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/20/2013] [Indexed: 01/07/2023] Open
Abstract
In recent years, DNA vaccines have undergone a number of technological advancements that have incited renewed interest and heightened promise in the field. Two such improvements are the use of genetically engineered cytokine adjuvants and plasmid delivery via in vivo electroporation (EP), the latter of which has been shown to increase antigen delivery by nearly 1000-fold compared to naked DNA plasmid delivery alone. Both strategies, either separately or in combination, have been shown to augment cellular and humoral immune responses in not only mice, but also in large animal models. These promising results, coupled with recent clinical trials that have shown enhanced immune responses in humans, highlight the bright prospects for DNA vaccines to address many human diseases.
Collapse
Affiliation(s)
- Seleeke Flingai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | | | | | | | | | | |
Collapse
|
38
|
Weiland O, Ahlén G, Diepolder H, Jung MC, Levander S, Fons M, Mathiesen I, Sardesai NY, Vahlne A, Frelin L, Sällberg M. Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther 2013; 21:1796-805. [PMID: 23752314 PMCID: PMC3776630 DOI: 10.1038/mt.2013.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022] Open
Abstract
Clearance of infections caused by the hepatitis C virus (HCV) correlates with HCV-specific T cell function. We therefore evaluated therapeutic vaccination in 12 patients with chronic HCV infection. Eight patients also underwent a subsequent standard-of-care (SOC) therapy with pegylated interferon (IFN) and ribavirin. The phase I/IIa clinical trial was performed in treatment naive HCV genotype 1 patients, receiving four monthly vaccinations in the deltoid muscles with 167, 500, or 1,500 μg codon-optimized HCV nonstructural (NS) 3/4A-expressing DNA vaccine delivered by in vivo electroporation (EP). Enrollment was done with 2 weeks interval between patients for safety reasons. Treatment was safe and well tolerated. The vaccinations significantly improved IFN-γ-producing responses to HCV NS3 during the first 6 weeks of therapy. Five patients experienced 2-10 weeks 0.6-2.4 log10 reduction in serum HCV RNA. Six out of eight patients starting SOC therapy within 1-30 months after the last vaccine dose were cured. This first-in-man therapeutic HCV DNA vaccine study with the vaccine delivered by in vivo EP shows transient effects in patients with chronic HCV genotype 1 infection. The interesting result noted after SOC therapy suggests that therapeutic vaccination can be explored in a combination with SOC treatment.
Collapse
Affiliation(s)
- Ola Weiland
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gustaf Ahlén
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helmut Diepolder
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Maria-Christina Jung
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
- ImmuSystems, Munich, Germany
| | - Sepideh Levander
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael Fons
- Inovio Pharmaceuticals, Blue Bell, Pennsylvania, USA
| | | | | | - Anders Vahlne
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- ChronTech Pharma AB, Huddinge, Sweden
| | - Lars Frelin
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
39
|
Fournillier A, Frelin L, Jacquier E, Ahlén G, Brass A, Gerossier E, Holmström F, Broderick KE, Sardesai NY, Bonnefoy JY, Inchauspé G, Sällberg M. A heterologous prime/boost vaccination strategy enhances the immunogenicity of therapeutic vaccines for hepatitis C virus. J Infect Dis 2013; 208:1008-19. [PMID: 23776192 PMCID: PMC3749006 DOI: 10.1093/infdis/jit267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/27/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We explored the concept of heterologous prime/boost vaccination using 2 therapeutic vaccines currently in clinical development aimed at treating chronically infected hepatitis C virus (HCV) patients: prime with a DNA-based vaccine expressing HCV genotype 1a NS3/4A proteins (ChronVac-C) and boost with a modified vaccinia virus Ankara vaccine expressing genotype 1b NS3/4/5B proteins (MVATG16643). METHODS Two ChronVac-C immunizations 4 weeks apart were delivered intramuscularly in combination with in vivo electroporation and subsequently 5 or 12 weeks later boosted by 3 weekly subcutaneous injections of MVATG16643. Two mouse strains were used, and we evaluated quality, magnitude, and functionality of the T cells induced. RESULTS DNA prime/MVA boost regimen induced significantly higher levels of interferon γ (IFN-γ) or interleukin 2 (IL-2) ELISpot responses compared with each vaccine alone, independent of the time of analysis and the time interval between vaccinations. Both CD8⁺ and CD4⁺ T-cell responses as well as the spectrum of epitopes recognized was improved. A significant increase in polyfunctional IFN-γ/tumor necrosis factor α (TNF-α)/CD107a⁺ CD8⁺ T cells was detected following ChronVac-C/MVATG16643 vaccination (from 3% to 25%), and prime/boost was the only regimen that activated quadrifunctional T cells (IFN-γ/TNF-α/CD107a/IL-2). In vivo functional protective capacity of DNA prime/MVA boost was demonstrated in a Listeria-NS3-1a challenge model. CONCLUSIONS We provide a proof-of-concept that immunogenicity of 2 HCV therapeutic vaccines can be improved using their combination, which merits further clinical development.
Collapse
Affiliation(s)
- Anne Fournillier
- Département des Maladies Infectieuses, Transgene SA, Centre d'Infectiologie, Lyon, France
| | - Lars Frelin
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Emilie Jacquier
- Département des Maladies Infectieuses, Transgene SA, Centre d'Infectiologie, Lyon, France
| | - Gustaf Ahlén
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anette Brass
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Estelle Gerossier
- Département des Maladies Infectieuses, Transgene SA, Centre d'Infectiologie, Lyon, France
| | - Fredrik Holmström
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | - Jean-Yves Bonnefoy
- Département des Maladies Infectieuses, Transgene SA, Centre d'Infectiologie, Lyon, France
| | - Geneviève Inchauspé
- Département des Maladies Infectieuses, Transgene SA, Centre d'Infectiologie, Lyon, France
| | - Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
40
|
Naderi M, Saeedi A, Moradi A, Kleshadi M, Zolfaghari MR, Gorji A, Ghaemi A. Interleukin-12 as a genetic adjuvant enhances hepatitis C virus NS3 DNA vaccine immunogenicity. Virol Sin 2013; 28:167-73. [PMID: 23709057 DOI: 10.1007/s12250-013-3291-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/28/2013] [Indexed: 01/27/2023] Open
Abstract
Hepatitis C virus (HCV) chronic infection is a worldwide health problem, and numerous efforts have been invested to develop novel vaccines. An efficient vaccine requires broad immune response induction against viral proteins. To achieve this goal, we constructed a DNA vaccine expressing nonstructural 3 (NS3) gene (pcDNA3.1-HCV-NS3) and assessed the immune response in C57BL/6 mice. In this study, the NS3 gene was amplified with a nested-reverse transcriptase-polymerase chain reaction (RT-PCR) method using sera of HCV-infected patients with genotype 1a. The resulting NS3 gene was subcloned into a pcDNA3.1 eukaryotic expression vector, and gene expression was detected by western blot. The resultant DNA vaccine was co-administered with interleukin-12 (IL-12) as an adjuvant to female C57BL/6 mice. After the final immunizations, lymphocyte proliferation, cytotoxicity, and cytokine levels were assessed to measure immune responses. Our data suggest that co-administration of HCV NS3 DNA vaccine with IL-12 induces production of significant levels of both IL-4 and interferon (IFN)-γ (p<0.05). Cytotoxicity and lymphocyte proliferation responses of vaccinated mice were significantly increased compared to control (p<0.05). Collectively, our results demonstrated that co-administration of HCV NS3 and IL-12 displayed strong immunogenicity in a murine model.
Collapse
Affiliation(s)
- Malihe Naderi
- Department of Microbiology, Qom branch, Islamic Azad University, Qom 37185-364, Iran
| | | | | | | | | | | | | |
Collapse
|
41
|
Methods for monitoring gene gun-induced HBV- and HCV-specific immune responses in mouse models. Methods Mol Biol 2013; 940:239-67. [PMID: 23104348 DOI: 10.1007/978-1-62703-110-3_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The hepatitis B and C viruses (HBV/HCV) are major causes for chronic liver disease globally. For HBV new antiviral compounds can suppress the viral replication for years, but off-therapy responses are rare. Current therapies based on interferon and ribavirin can cure 45-85% of the treated HCV-infected patients largely depending on the viral genotype. New regimens including protease inhibitors will be introduced during 2011 and these will increase the cure rates for the hardest to treat HCV genotype 1 from 45 to 65%. Here a major need is to replace the immunomodulatory effects of interferon and/or ribavirin. Thus, therapeutic vaccines have a place in both chronic HBV and HCV infection. Unfortunately, none of these viruses can infect mice whereby substitute models are needed. We have used several types of murine models to predict the clinical efficacy of therapeutic vaccines for chronic HBV and HCV infections. In this chapter we describe transdermal delivery of genetic vaccines using the Helios Gene Gun device. A central role is that the model should have generally functional immune response, but with selective defects towards HBV and/or HCV. Thus, mice with stable integrated transgenes are useful. However, as a simple model to study the hepatic entry and functionality of a HBV- and/or HCV-specific immune responses other models are needed, where a killed transgenic hepatocyte is replaced by a healthy non-transgenic hepatocyte. Here we can effectively apply a technique termed hydrodynamic injection, which makes 10-30% of hepatocytes transiently transgenic for any plasmid. Within this chapter the methods used to characterize transiently transgenic mice are described. The main methods are the hydrodynamic injection technique, detection of transgene expression by immuno-precipitation, western blot, and immunohistochemistry. Finally, the in vivo functionality of T cells can be determined by using stably transfected syngeneic tumor cell lines expressing HBV and/or HCV proteins. The tumor challenge model enables studies of in vivo T cell function, whereas the cytotoxicity assay is used to determine T cell function in vitro. Overall, these models effectively reveal the efficiency by which various vaccine technologies, including biolistic DNA vaccination can kill the "infected" hepatocyte.
Collapse
|
42
|
Holmström F, Pasetto A, Nähr V, Brass A, Kriegs M, Hildt E, Broderick KE, Chen M, Ahlén G, Frelin L. A synthetic codon-optimized hepatitis C virus nonstructural 5A DNA vaccine primes polyfunctional CD8+ T cell responses in wild-type and NS5A-transgenic mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:1113-24. [PMID: 23284053 DOI: 10.4049/jimmunol.1201497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hepatitis C virus (HCV) nonstructural (NS) 5A protein has been shown to promote viral persistence by interfering with both innate and adaptive immunity. At the same time, the HCV NS5A protein has been suggested as a target for antiviral therapy. In this study, we performed a detailed characterization of HCV NS5A immunogenicity in wild-type (wt) and immune tolerant HCV NS5A-transgenic (Tg) C57BL/6J mice. We evaluated how efficiently HCV NS5A-based genetic vaccines could activate strong T cell responses. Truncated and full-length wt and synthetic codon-optimized NS5A genotype 1b genes were cloned into eukaryotic expression plasmids, and the immunogenicity was determined after i.m. immunization in combination with in vivo electroporation. The NS5A-based genetic vaccines primed high Ab levels, with IgG titers of >10(4) postimmunization. With respect to CD8(+) T cell responses, the coNS5A gene primed more potent IFN-γ-producing and lytic cytotoxic T cells in wt mice compared with NS5A-Tg mice. In addition, high frequencies of NS5A-specific CD8(+) T cells were found in wt mice after a single immunization. To test the functionality of the CTL responses, the ability to inhibit growth of NS5A-expressing tumor cells in vivo was analyzed after immunization. A single dose of coNS5A primed tumor-inhibiting responses in both wt and NS5A-Tg mice. Finally, immunization with the coNS5A gene primed polyfunctional NS5A-specific CD8(+) T cell responses. Thus, the coNS5A gene is a promising therapeutic vaccine candidate for chronic HCV infections.
Collapse
Affiliation(s)
- Fredrik Holmström
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The development of gene-based vectors for immunization. Vaccines (Basel) 2013. [PMCID: PMC7151937 DOI: 10.1016/b978-1-4557-0090-5.00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, Jones TE, Landry S, Pan T, Weitzman MD, David M. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 2012; 491:125-8. [PMID: 23000900 DOI: 10.1038/nature11433] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 07/23/2012] [Indexed: 01/26/2023]
Abstract
In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination.
Collapse
Affiliation(s)
- Manqing Li
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ip PP, Nijman HW, Wilschut J, Daemen T. Therapeutic vaccination against chronic hepatitis C virus infection. Antiviral Res 2012; 96:36-50. [PMID: 22841700 DOI: 10.1016/j.antiviral.2012.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/25/2012] [Accepted: 07/13/2012] [Indexed: 12/12/2022]
Abstract
Approximately 170 million people worldwide are chronic carriers of Hepatitis C virus (HCV). To date, there is no prophylactic vaccine available against HCV. The standard-of-care therapy for HCV infection involves a combination of pegylated interferon-α and ribavirin. This therapy, which is commonly associated with side effects, has a curative rate varying from 43% (HCV genotype 1) to 80% (HCV genotype 2). In 2011, two direct-acting antiviral agents, telaprevir and boceprevir, were approved by the US Food and drug Administration and are now being used in combination with standard-of-care therapy in selected patients infected with HCV genotype 1. Although both drugs are promising, resulting in a shortening of therapy, these drugs also induce additional side effects and have reduced efficacy in patients who did not respond to standard-of-care previously. An alternative approach would be to treat HCV by stimulating the immune system with a therapeutic vaccine ideally aimed at (i) the eradication of HCV-infected cells and (ii) neutralization of infectious HCV particles. The challenge is to develop therapeutic vaccination strategies that are either at least as effective as antiviral drugs but with lower side effects, or vaccines that, when combined with antiviral drugs, can circumvent long-term use of these drugs thereby reducing their side effects. In this review, we summarize and discuss recent preclinical developments in the area of therapeutic vaccination against chronic HCV infection. Although neutralizing antibodies have been described to exert protective immunity, clinical studies on the induction of neutralizing antibodies in therapeutic settings are limited. Therefore, we will primarily discuss therapeutic vaccines which aim to induce effective cellular immune response against HCV.
Collapse
Affiliation(s)
- Peng Peng Ip
- Department of Medical Microbiology, Molecular Virology Section, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | | | | |
Collapse
|
46
|
Ahlén G, Chen A, Roe B, Falkeborn T, Frelin L, Hall WW, Sällberg M, Söderholm J. Limited effect on NS3-NS4A protein cleavage after alanine substitutions within the immunodominant HLA-A2-restricted epitope of the hepatitis C virus genotype 3a non-structural 3/4A protease. J Gen Virol 2012; 93:1680-1686. [PMID: 22592266 DOI: 10.1099/vir.0.043745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been well established that immunological escape mutations within the hepatitis C virus genotype (gt) 1a non-structural (NS) 3/4A protease are partly prevented by a reduction in viral protease fitness. Surprisingly little is known about whether similar mutations affect proteases from other genotypes. In the present study, we assessed both the HLA-A2-restricted CTL response and gt3a NS3/4A protease fitness. Similar to gt1, the 1073-1081 epitope was immunodominant within the gt3a-specific HLA-A2-restricted CTL response, despite sequence similarity of only 56 % between the gt1a and gt3a genes. However, unlike the gt1a NS3/4A protease, all residues within the gt3a 1073-1081 epitope could be replaced sequentially by alanine while retaining protease activity, at least in part.
Collapse
Affiliation(s)
- Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Antony Chen
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Barbara Roe
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tina Falkeborn
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, S-581 83 Linköping, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Jonas Söderholm
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, F68, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| |
Collapse
|
47
|
Abstract
Despite many years of research, human DNA vaccines have yet to fulfill their early promise. Over the past 15 years, multiple generations of DNA vaccines have been developed and tested in preclinical models for prophylactic and therapeutic applications in the areas of infectious disease and cancer, but have failed in the clinic. Thus, while DNA vaccines have achieved successful licensure for veterinary applications, their poor immunogenicity in humans when compared with traditional protein-based vaccines has hindered their progress. Many strategies have been attempted to improve DNA vaccine potency including use of more efficient promoters and codon optimization, addition of traditional or genetic adjuvants, electroporation, intradermal delivery and various prime-boost strategies. This review summarizes these advances in DNA vaccine technologies and attempts to answer the question of when DNA vaccines might eventually be licensed for human use.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| |
Collapse
|
48
|
Tipping the Proteome with Gene-Based Vaccines: Weighing in on the Role of Nanomaterials. JOURNAL OF NANOTECHNOLOGY 2012. [DOI: 10.1155/2012/843170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since the first generation of DNA vaccines was introduced in 1988, remarkable improvements have been made to improve their efficacy and immunogenicity. Although human clinical trials have shown that delivery of DNA vaccines is well tolerated and safe, the potency of these vaccines in humans is somewhat less than optimal. The development of a gene-based vaccine that was effective enough to be approved for clinical use in humans would be one of, if not the most important, advance in vaccines to date. This paper highlights the literature relating to gene-based vaccines, specifically DNA vaccines, and suggests possible approaches to boost their performance. In addition, we explore the idea that combining RNA and nanomaterials may hold the key to successful gene-based vaccines for prevention and treatment of disease.
Collapse
|
49
|
Bordbar B, Gnidehou S, Ndam NT, Doritchamou J, Moussiliou A, Quiviger M, Deloron P, Scherman D, Bigey P. Electroporation-mediated genetic vaccination for antigen mapping: application to Plasmodium falciparum VAR2CSA protein. Bioelectrochemistry 2011; 87:132-7. [PMID: 22265101 DOI: 10.1016/j.bioelechem.2011.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/22/2011] [Accepted: 12/21/2011] [Indexed: 01/28/2023]
Abstract
Genetic vaccination, consisting in delivering a genetically engineered plasmid DNA by a non-viral vector or technique into a tissue, is currently of great interest. New delivery technique including DNA transfer by electroporation recently greatly improved the potency of this concept. Because it avoids the step of producing a recombinant protein, it is particularly of use in studying the immunogenic properties of large proteins. Here we describe the use of electroporation mediated DNA immunization to identify important protective epitopes from the large VAR2CSA protein from Plasmodium falciparum implicated in the pathology of placental malaria. Immunizing mice and rabbit with DNA plasmids encoding different fragments of VAR2CSA leads to high titer antisera. Moreover an N-terminal region of the protein was found to induce protective functional antibodies.
Collapse
Affiliation(s)
- Bita Bordbar
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rochard A, Scherman D, Bigey P. Genetic immunization with plasmid DNA mediated by electrotransfer. Hum Gene Ther 2011; 22:789-98. [PMID: 21631165 DOI: 10.1089/hum.2011.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The concept of DNA immunization was first advanced in the early 1990s, but was not developed because of an initial lack of efficiency. Recent technical advances in plasmid design and gene delivery techniques have allowed renewed interest in the idea. Particularly, a better understanding of genetic immunization has led to construction of optimized plasmids and the use of efficient molecular adjuvants. The field also took great advantage of new delivery techniques such as electrotransfer. This is a simple physical technique consisting of injecting plasmid DNA into a target tissue and applying an electric field, allowing up to a thousandfold more expression of the transgene than naked DNA. DNA immunization mediated by electrotransfer is now effective in a variety of preclinical models against infectious or acquired diseases such as cancer or autoimmune diseases, and is making its way through the clinics in several ongoing phase I human clinical trials. This review will briefly describe genetic immunization mediated by electrotransfer and the main fields of application.
Collapse
Affiliation(s)
- Alice Rochard
- Unité de Pharmacologie Chimique et Génétique et d'Imagerie, CNRS, UMR8151, Paris, F-75006 France
| | | | | |
Collapse
|