1
|
Kolesnikova UK, Scott AD, Van de Velde JD, Burns R, Tikhomirov NP, Pfordt U, Clarke AC, Yant L, Seregin AP, Vekemans X, Laurent S, Novikova PY. Transition to Self-compatibility Associated With Dominant S-allele in a Diploid Siberian Progenitor of Allotetraploid Arabidopsis kamchatica Revealed by Arabidopsis lyrata Genomes. Mol Biol Evol 2023; 40:msad122. [PMID: 37432770 PMCID: PMC10335350 DOI: 10.1093/molbev/msad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
A transition to selfing can be beneficial when mating partners are scarce, for example, due to ploidy changes or at species range edges. Here, we explain how self-compatibility evolved in diploid Siberian Arabidopsis lyrata, and how it contributed to the establishment of allotetraploid Arabidopsis kamchatica. First, we provide chromosome-level genome assemblies for two self-fertilizing diploid A. lyrata accessions, one from North America and one from Siberia, including a fully assembled S-locus for the latter. We then propose a sequence of events leading to the loss of self-incompatibility in Siberian A. lyrata, date this independent transition to ∼90 Kya, and infer evolutionary relationships between Siberian and North American A. lyrata, showing an independent transition to selfing in Siberia. Finally, we provide evidence that this selfing Siberian A. lyrata lineage contributed to the formation of the allotetraploid A. kamchatica and propose that the selfing of the latter is mediated by the loss-of-function mutation in a dominant S-allele inherited from A. lyrata.
Collapse
Affiliation(s)
- Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jozefien D Van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nikita P Tikhomirov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Ursula Pfordt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrew C Clarke
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Levi Yant
- Future Food Beacon of Excellence and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexey P Seregin
- Herbarium (MW), Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Xavier Vekemans
- University Lille, CNRS, UMR 8198—Evo-Eco-Paleo, Lille, France
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
2
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
3
|
Tateyama H, Chimura K, Tsuchimatsu T. Evolution of seed mass associated with mating systems in multiple plant families. J Evol Biol 2021; 34:1981-1987. [PMID: 34662478 PMCID: PMC9298147 DOI: 10.1111/jeb.13949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
In flowering plants, the evolution of self‐fertilization (selfing) from obligate outcrossing is regarded as one of the most prevalent evolutionary transitions. The evolution of selfing is often accompanied by various changes in genomic, physiological and morphological properties. In particular, a set of reproductive traits observed typically in selfing species is called the “selfing syndrome”. A mathematical model based on the kinship theory of genetic imprinting predicted that seed mass should become smaller in selfing species compared with outcrossing congeners, as a consequence of the reduced conflict between maternally and paternally derived alleles in selfing plants. Here, we test this prediction by examining the association between mating system and seed mass across a wide range of taxa (642 species), considering potential confounding factors: phylogenetic relationships and growth form. We focused on three plant families—Solanaceae, Brassicaceae and Asteraceae—where information on mating systems is abundant, and the analysis was performed for each family separately. When phylogenetic relationships were controlled, we consistently observed that selfers (represented by self‐compatible species) tended to have a smaller seed mass compared with outcrossers (represented by self‐incompatible species) in these families. In summary, our analysis suggests that small seeds should also be considered a hallmark of the selfing syndrome, although we note that mating systems have relatively small effects on seed mass variation.
Collapse
Affiliation(s)
- Hirofumi Tateyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Science and Technology, Chiba University, Chiba, Japan
| | - Kaori Chimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Homology-Based Interactions between Small RNAs and Their Targets Control Dominance Hierarchy of Male Determinant Alleles of Self-Incompatibility in Arabidopsis lyrata. Int J Mol Sci 2021; 22:ijms22136990. [PMID: 34209661 PMCID: PMC8268441 DOI: 10.3390/ijms22136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Self-incompatibility (SI) is conserved among members of the Brassicaceae plant family. This trait is controlled epigenetically by the dominance hierarchy of the male determinant alleles. We previously demonstrated that a single small RNA (sRNA) gene is sufficient to control the linear dominance hierarchy in Brassica rapa and proposed a model in which a homology-based interaction between sRNAs and target sites controls the complicated dominance hierarchy of male SI determinants. In Arabidopsis halleri, male dominance hierarchy is reported to have arisen from multiple networks of sRNA target gains and losses. Despite these findings, it remains unknown whether the molecular mechanism underlying the dominance hierarchy is conserved among Brassicaceae. Here, we identified sRNAs and their target sites that can explain the linear dominance hierarchy of Arabidopsis lyrata, a species closely related to A. halleri. We tested the model that we established in Brassica to explain the linear dominance hierarchy in A. lyrata. Our results suggest that the dominance hierarchy of A. lyrata is also controlled by a homology-based interaction between sRNAs and their targets.
Collapse
|
5
|
Mable BK, Brysting AK, Jørgensen MH, Carbonell AKZ, Kiefer C, Ruiz-Duarte P, Lagesen K, Koch MA. Adding Complexity to Complexity: Gene Family Evolution in Polyploids. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
6
|
Novikova PY, Hohmann N, Van de Peer Y. Polyploid Arabidopsis species originated around recent glaciation maxima. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:8-15. [PMID: 29448159 DOI: 10.1016/j.pbi.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
Polyploidy may provide adaptive advantages and is considered to be important for evolution and speciation. Polyploidy events are found throughout the evolutionary history of plants, however they do not seem to be uniformly distributed along the time axis. For example, many of the detected ancient whole-genome duplications (WGDs) seem to cluster around the K/Pg boundary (∼66Mya), which corresponds to a drastic climate change event and a mass extinction. Here, we discuss more recent polyploidy events using Arabidopsis as the most developed plant model at the level of the entire genus. We review the history of the origin of allotetraploid species A. suecica and A. kamchatica, and tetraploid lineages of A. lyrata, A. arenosa and A. thaliana, and discuss potential adaptive advantages. Also, we highlight an association between recent glacial maxima and estimated times of origins of polyploidy in Arabidopsis. Such association might further support a link between polyploidy and environmental challenge, which has been observed now for different time-scales and for both ancient and recent polyploids.
Collapse
Affiliation(s)
- Polina Yu Novikova
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nora Hohmann
- University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium; Department of Genetics, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
7
|
Sutherland BL, Quarles BM, Galloway LF. Intercontinental dispersal and whole-genome duplication contribute to loss of self-incompatibility in a polyploid complex. AMERICAN JOURNAL OF BOTANY 2018; 105:249-256. [PMID: 29578295 DOI: 10.1002/ajb2.1027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/09/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Angiosperm species often shift from self-incompatibility to self-compatibility following population bottlenecks. Across the range of a species, population bottlenecks may result from multiple factors, each of which may affect the geographic distribution and magnitude of mating-system shifts. We describe how intercontinental dispersal and genome duplication facilitate loss of self-incompatibility. METHODS Self and outcross pollinations were performed on plants from 24 populations of the Campanula rotundifolia polyploid complex. Populations spanned the geographic distribution and three dominant cytotypes of the species (diploid, tetraploid, hexaploid). KEY RESULTS Loss of self-incompatibility was associated with both intercontinental dispersal and genome duplication. European plants were largely self-incompatible, whereas North American plants were intermediately to fully self-compatible. Within both European and North American populations, loss of self-incompatibility increased as ploidy increased. Ploidy change and intercontinental dispersal both contributed to loss of self-incompatibility in North America, but range expansion did not affect self-incompatibility within Europe or North America. CONCLUSIONS When species are subject to population bottlenecks arising through multiple factors, each factor can contribute to self-incompatibility loss. In a widespread polyploid complex, the loss of self-incompatibility can be predicted by the cumulative effects of whole-genome duplication and intercontinental dispersal.
Collapse
Affiliation(s)
- Brittany L Sutherland
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904-4328, USA
| | - Brandie M Quarles
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904-4328, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, Virginia, 22904-4328, USA
| |
Collapse
|
8
|
Novikova PY, Tsuchimatsu T, Simon S, Nizhynska V, Voronin V, Burns R, Fedorenko OM, Holm S, Säll T, Prat E, Marande W, Castric V, Nordborg M. Genome Sequencing Reveals the Origin of the Allotetraploid Arabidopsis suecica. Mol Biol Evol 2017; 34:957-968. [PMID: 28087777 PMCID: PMC5400380 DOI: 10.1093/molbev/msw299] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polyploidy is an example of instantaneous speciation when it involves the formation of a new cytotype that is incompatible with the parental species. Because new polyploid individuals are likely to be rare, establishment of a new species is unlikely unless polyploids are able to reproduce through self-fertilization (selfing), or asexually. Conversely, selfing (or asexuality) makes it possible for polyploid species to originate from a single individual-a bona fide speciation event. The extent to which this happens is not known. Here, we consider the origin of Arabidopsis suecica, a selfing allopolyploid between Arabidopsis thaliana and Arabidopsis arenosa, which has hitherto been considered to be an example of a unique origin. Based on whole-genome re-sequencing of 15 natural A. suecica accessions, we identify ubiquitous shared polymorphism with the parental species, and hence conclusively reject a unique origin in favor of multiple founding individuals. We further estimate that the species originated after the last glacial maximum in Eastern Europe or central Eurasia (rather than Sweden, as the name might suggest). Finally, annotation of the self-incompatibility loci in A. suecica revealed that both loci carry non-functional alleles. The locus inherited from the selfing A. thaliana is fixed for an ancestral non-functional allele, whereas the locus inherited from the outcrossing A. arenosa is fixed for a novel loss-of-function allele. Furthermore, the allele inherited from A. thaliana is predicted to transcriptionally silence the allele inherited from A. arenosa, suggesting that loss of self-incompatibility may have been instantaneous.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.,Vienna Graduate School of Population Genetics, Institut für Populationsgenetik, Vetmeduni, Vienna, Austria
| | - Takashi Tsuchimatsu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Samson Simon
- Université de Lille CNRS, UMR 8198 - Evo-Eco-Paleo, Villeneuve d'Ascq, France
| | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Viktor Voronin
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Robin Burns
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Olga M Fedorenko
- Institute of Biology, Karelian Research Center of the Russian Academy of Sciences, Republic of Karelia, Petrozavodsk, Russia
| | - Svante Holm
- Faculty of Science, Technology and Media, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Torbjörn Säll
- Department of Biology, Lund University, Lund, Sweden
| | - Elisa Prat
- Centre National de Ressources Génomiques Végétales, INRA-CNRGV, Castanet-Tolosan, France
| | - William Marande
- Centre National de Ressources Génomiques Végétales, INRA-CNRGV, Castanet-Tolosan, France
| | - Vincent Castric
- Université de Lille CNRS, UMR 8198 - Evo-Eco-Paleo, Villeneuve d'Ascq, France
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
9
|
What causes mating system shifts in plants? Arabidopsis lyrata as a case study. Heredity (Edinb) 2016; 118:52-63. [PMID: 27804968 PMCID: PMC5176122 DOI: 10.1038/hdy.2016.99] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/24/2023] Open
Abstract
The genetic breakdown of self-incompatibility (SI) and subsequent mating system shifts to inbreeding has intrigued evolutionary geneticists for decades. Most of our knowledge is derived from interspecific comparisons between inbreeding species and their outcrossing relatives, where inferences may be confounded by secondary mutations that arose after the initial loss of SI. Here, we study an intraspecific breakdown of SI and its consequences in North American Arabidopsis lyrata to test whether: (1) particular S-locus haplotypes are associated with the loss of SI and/or the shift to inbreeding; (2) a population bottleneck may have played a role in driving the transition to inbreeding; and (3) the mutation(s) underlying the loss of SI are likely to have occurred at the S-locus. Combining multiple approaches for genotyping, we found that outcrossing populations on average harbour 5 to 9 S-locus receptor kinase (SRK) alleles, but only two, S1 and S19, are shared by most inbreeding populations. Self-compatibility (SC) behaved genetically as a recessive trait, as expected from a loss-of-function mutation. Bulked segregant analysis in SC × SI F2 individuals using deep sequencing confirmed that all SC plants were S1 homozygotes but not all S1 homozygotes were SC. This was also revealed in population surveys, where only a few S1 homozygotes were SC. Together with crossing data, this suggests that there is a recessive factor that causes SC that is physically unlinked to the S-locus. Overall, our results emphasise the value of combining classical genetics with advanced sequencing approaches to resolve long outstanding questions in evolutionary biology.
Collapse
|
10
|
Armstrong JJ, Takebayashi N, Sformo T, Wolf DE. Cold tolerance in Arabidopsis kamchatica. AMERICAN JOURNAL OF BOTANY 2015; 102:439-448. [PMID: 25784477 DOI: 10.3732/ajb.1400373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Cold tolerance is a critically important factor determining how plants will be influenced by climate change, including changes in snowcover and extreme weather events. Although a great deal is known about cold tolerance in Arabidopsis thaliana, it is not highly cold tolerant. This study examined cold tolerance and its genetic diversity in an herbaceous subarctic relative, Arabidopsis kamchatica, which generally occurs in much colder climates.• METHODS Thermal analysis and electrolyte leakage were used to estimate supercooling points and lethal temperatures (LT50) in cold-acclimated and nonacclimated families from three populations of A. kamchatica.• KEY RESULTS Arabidopsis kamchatica was highly cold tolerant, with a mean LT50 of -10.8°C when actively growing, and -21.8°C when cold acclimated. It also was able to supercool to very low temperatures. Surprisingly, actively growing plants supercooled more than acclimated plants (-14.7 vs. -12.7°C). There was significant genetic variation for cold tolerance both within and among populations. However, both cold tolerance and genetic diversity were highest in the midlatitude population rather than in the far north, indicating that adaptations to climate change are most likely to arise in the center of the species range rather than at the edges.• CONCLUSIONS Arabidopsis kamchatica is highly cold tolerant throughout its range. It is far more freeze tolerant than A. thaliana, and supercooled to lower temperatures, suggesting that A. kamchatica provides a valuable complement to A. thaliana for cold tolerance research.
Collapse
Affiliation(s)
- Jessica J Armstrong
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology and Wildlife, 311 Irving I, Fairbanks, Alaska 99775 USA University of Alaska Fairbanks, College of Natural Sciences and Mathematics, 900 Yukon Drive, Room 358, Fairbanks, Alaska 99775 USA
| | - Naoki Takebayashi
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology and Wildlife, 311 Irving I, Fairbanks, Alaska 99775 USA
| | - Todd Sformo
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology and Wildlife, 311 Irving I, Fairbanks, Alaska 99775 USA Department of Wildlife Management/ North Slope Borough, Barrow, Alaska 99723 USA
| | - Diana E Wolf
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology and Wildlife, 311 Irving I, Fairbanks, Alaska 99775 USA
| |
Collapse
|
11
|
Hohmann N, Schmickl R, Chiang TY, Lučanová M, Kolář F, Marhold K, Koch MA. Taming the wild: resolving the gene pools of non-model Arabidopsis lineages. BMC Evol Biol 2014; 14:224. [PMID: 25344686 PMCID: PMC4216345 DOI: 10.1186/s12862-014-0224-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Wild relatives in the genus Arabidopsis are recognized as useful model systems to study traits and evolutionary processes in outcrossing species, which are often difficult or even impossible to investigate in the selfing and annual Arabidopsis thaliana. However, Arabidopsis as a genus is littered with sub-species and ecotypes which make realizing the potential of these non-model Arabidopsis lineages problematic. There are relatively few evolutionary studies which comprehensively characterize the gene pools across all of the Arabidopsis supra-groups and hypothesized evolutionary lineages and none include sampling at a world-wide scale. Here we explore the gene pools of these various taxa using various molecular markers and cytological analyses. RESULTS Based on ITS, microsatellite, chloroplast and nuclear DNA content data we demonstrate the presence of three major evolutionary groups broadly characterized as A. lyrata group, A. halleri group and A. arenosa group. All are composed of further species and sub-species forming larger aggregates. Depending on the resolution of the marker, a few closely related taxa such as A. pedemontana, A. cebennensis and A. croatica are also clearly distinct evolutionary lineages. ITS sequences and a population-based screen based on microsatellites were highly concordant. The major gene pools identified by ITS sequences were also significantly differentiated by their homoploid nuclear DNA content estimated by flow cytometry. The chloroplast genome provided less resolution than the nuclear data, and it remains unclear whether the extensive haplotype sharing apparent between taxa results from gene flow or incomplete lineage sorting in this relatively young group of species with Pleistocene origins. CONCLUSIONS Our study provides a comprehensive overview of the genetic variation within and among the various taxa of the genus Arabidopsis. The resolved gene pools and evolutionary lineages will set the framework for future comparative studies on genetic diversity. Extensive population-based phylogeographic studies will also be required, however, in particular for A. arenosa and their affiliated taxa and cytotypes.
Collapse
Affiliation(s)
- Nora Hohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
| | - Roswitha Schmickl
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, Cheng-Kung University, Tainan, Taiwan.
| | - Magdalena Lučanová
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic.
| | - Filip Kolář
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic.
| | - Karol Marhold
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Institute of Botany Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-845 23, Slovakia.
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
| |
Collapse
|
12
|
Dufresne F, Stift M, Vergilino R, Mable BK. Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Mol Ecol 2013; 23:40-69. [DOI: 10.1111/mec.12581] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Affiliation(s)
- France Dufresne
- Département de Biologie; Université du Québec à Rimouski; Québec QC Canada G5L 3A1
| | - Marc Stift
- Department of Biology; University of Konstanz; Konstanz D 78457 Germany
| | - Roland Vergilino
- Department of Integrative Biology; University of Guelph; Guelph ON Canada N1G 2W1
| | - Barbara K. Mable
- Institute of Biodiversity; Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
13
|
Tsuchimatsu T, Kaiser P, Yew CL, Bachelier JB, Shimizu KK. Recent loss of self-incompatibility by degradation of the male component in allotetraploid Arabidopsis kamchatica. PLoS Genet 2012; 8:e1002838. [PMID: 22844253 PMCID: PMC3405996 DOI: 10.1371/journal.pgen.1002838] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 06/04/2012] [Indexed: 01/01/2023] Open
Abstract
The evolutionary transition from outcrossing to self-fertilization (selfing) through the loss of self-incompatibility (SI) is one of the most prevalent events in flowering plants, and its genetic basis has been a major focus in evolutionary biology. In the Brassicaceae, the SI system consists of male and female specificity genes at the S-locus and of genes involved in the female downstream signaling pathway. During recent decades, much attention has been paid in particular to clarifying the genes responsible for the loss of SI. Here, we investigated the pattern of polymorphism and functionality of the female specificity gene, the S-locus receptor kinase (SRK), in allotetraploid Arabidopsis kamchatica. While its parental species, A. lyrata and A. halleri, are reported to be diploid and mainly self-incompatible, A. kamchatica is self-compatible. We identified five highly diverged SRK haplogroups, found their disomic inheritance and, for the first time in a wild allotetraploid species, surveyed the geographic distribution of SRK at the two homeologous S-loci across the species range. We found intact full-length SRK sequences in many accessions. Through interspecific crosses with the self-incompatible and diploid congener A. halleri, we found that the female components of the SI system, including SRK and the female downstream signaling pathway, are still functional in these accessions. Given the tight linkage and very rare recombination of the male and female components on the S-locus, this result suggests that the degradation of male components was responsible for the loss of SI in A. kamchatica. Recent extensive studies in multiple Brassicaceae species demonstrate that the loss of SI is often derived from mutations in the male component in wild populations, in contrast to cultivated populations. This is consistent with theoretical predictions that mutations disabling male specificity are expected to be more strongly selected than mutations disabling female specificity, or the female downstream signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies, Institute of Plant Biology, and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Higashi H, Ikeda H, Setoguchi H. Population fragmentation causes randomly fixed genotypes in populations of Arabidopsis kamchatica in the Japanese Archipelago. JOURNAL OF PLANT RESEARCH 2012; 125:223-233. [PMID: 21618072 DOI: 10.1007/s10265-011-0436-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 05/08/2011] [Indexed: 05/30/2023]
Abstract
Populations of arctic alpine plants likely disappeared and re-colonised several times at the southern edge of their distributions during glacial and interglacial cycles throughout the Quaternary. Range shift and population fragmentation after a glacial period would affect the genetic structure of such plants in southernmost populations. We aimed to elucidate how climatic oscillations influenced the population subsistence of alpine plants in the Japanese Archipelago as one of the southernmost populations, by inferring the genetic structure of Arabidopsis kamchatica subsp. kamchatica and the intraspecific littoral taxon, subsp. kawasakiana. We identified genotypes based on the haplotypes of five nuclear genes and two chloroplast DNA spacers for 164 individuals from 24 populations. Most populations harboured only one private genotype, whereas few polymorphisms were found in each population. Two genetic genealogies were found, suggesting that northern Japanese populations of alpine subsp. kamchatica, subsp. kawasakiana and the northerly subsp. kamchatica in eastern Russia and Alaska clustered and differentiated from populations in central Honshu, western Japan and Taiwan. During climatic oscillations, the genetic structure of extant southernmost populations would have been shaped by strong genetic drift under population fragmentation and randomly fixed to a single genotype among their ancestral polymorphisms.
Collapse
Affiliation(s)
- Hiroyuki Higashi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
15
|
Tedder A, Ansell SW, Lao X, Vogel JC, Mable BK. Sporophytic self-incompatibility genes and mating system variation in Arabis alpina. ANNALS OF BOTANY 2011; 108:699-713. [PMID: 21821832 PMCID: PMC3170156 DOI: 10.1093/aob/mcr157] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Sporophytic self-incompatibility (SI) prevents inbreeding in many members of the Brassicaceae, and has been well documented in a variety of high-profile species. Arabis alpina is currently being developed as a model system for studying the ecological genetics of arctic-alpine environments, and is the focus of numerous studies on population structure and alpine phylogeography. Although it is highly inbreeding throughout most of its range, populations in central Italy have been identified that show inbreeding coefficients (F(IS)) more typical of self-incompatible relatives. The purpose of this study was to establish whether this variation is due to a functioning SI system. METHODS Outcrossing rate estimates were calculated based on 16 allozyme loci and self-compatibility assessed based on controlled pollinations for six Italian populations that have previously been shown to vary in F(IS) values. Putative SRK alleles (the gene controlling the female component of SI in other Brassicaceae) amplified from A. alpina were compared with those published for other species. Linkage of putative SRK alleles and SI phenotypes was assessed using a diallel cross. KEY RESULTS Functional avoidance of inbreeding is demonstrated in three populations of A. alpina, corresponding with previous F(IS) values. The presence is described of 15 putative SRK-like alleles, which show high sequence identity to known alleles from Brassica and Arabidopsis and the high levels of synonymous and nonsynonymous variation typical of genes under balancing selection. Also, orthologues of two other members of the S-receptor kinase gene family, Aly8 (ARK3) and Aly9 (AtS1) are identified. Further to this, co-segregation between some of the putative S-alleles and compatibility phenotypes was demonstrated using a full-sibling cross design. CONCLUSIONS The results strongly suggest that, as with other species in the Brassicaceae, A. alpina has a sporophytic SI system but shows variation in the strength of SI within and between populations.
Collapse
Affiliation(s)
- A. Tedder
- Division of Ecology and Evolutionary Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - S. W. Ansell
- Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - X. Lao
- Nara Institute of Science and Technology, Nara 630-0101, Japan
| | - J. C. Vogel
- Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - B. K. Mable
- Division of Ecology and Evolutionary Biology, University of Glasgow, Glasgow G12 8QQ, UK
- For correspondence. E-mail
| |
Collapse
|
16
|
Abstract
The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation.
Collapse
|
17
|
Schmickl R, Jørgensen MH, Brysting AK, Koch MA. The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol Biol 2010; 10:98. [PMID: 20377907 PMCID: PMC2858744 DOI: 10.1186/1471-2148-10-98] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 04/08/2010] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND The genomes of higher plants are, on the majority, polyploid, and hybridisation is more frequent in plants than in animals. Both polyploidisation and hybridisation contribute to increased variability within species, and may transfer adaptations between species in a changing environment. Studying these aspects of evolution within a diversified species complex could help to clarify overall spatial and temporal patterns of plant speciation. The Arabidopsis lyrata complex, which is closely related to the model plant Arabidopsis thaliana, is a perennial, outcrossing, herbaceous species complex with a circumpolar distribution in the Northern Hemisphere as well as a disjunct Central European distribution in relictual habitats. This species complex comprises three species and four subspecies, mainly diploids but also several tetraploids, including one natural hybrid. The complex is ecologically, but not fully geographically, separated from members of the closely related species complex of Arabidopsis halleri, and the evolutionary histories of both species compexes have largely been influenced by Pleistocene climate oscillations. RESULTS Using DNA sequence data from the nuclear encoded cytosolic phosphoglucoisomerase and Internal Transcribed Spacers 1 and 2 of the ribosomal DNA, as well as the trnL/F region from the chloroplast genome, we unravelled the phylogeography of the various taxonomic units of the A. lyrata complex. We demonstrate the existence of two major gene pools in Central Europe and Northern America. These two major gene pools are constructed from different taxonomic units. We also confirmed that A. kamchatica is the allotetraploid hybrid between A. lyrata and A. halleri, occupying the amphi-Beringian area in Eastern Asia and Northern America. This species closes the large distribution gap of the various other A. lyrata segregates. Furthermore, we revealed a threefold independent allopolyploid origin of this hybrid species in Japan, China, and Kamchatka. CONCLUSIONS Unglaciated parts of the Eastern Austrian Alps and arctic Eurasia, including Beringia, served as major glacial refugia of the Eurasian A. lyrata lineage, whereas A. halleri and its various subspecies probably survived in refuges in Central Europe and Eastern Asia with a large distribution gap in between. The North American A. lyrata lineage probably survived the glaciation in the southeast of North America. The dramatic climatic changes during glaciation and deglaciation cycles promoted not only secondary contact and formation of the allopolyploid hybrid A. kamchatica, but also provided the environment that allowed this species to fill a large geographic gap separating the two genetically different A. lyrata lineages from Eurasia and North America. With our example focusing on the evolutionary history of the A. lyrata species complex, we add substantial information to a broad evolutionary framework for future investigations within this emerging model system in molecular and evolutionary biology.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Heidelberg University, Heidelberg Institute of Plant Sciences, Biodiversity and Plant Systematics, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Marte H Jørgensen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Marcus A Koch
- Heidelberg University, Heidelberg Institute of Plant Sciences, Biodiversity and Plant Systematics, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| |
Collapse
|
18
|
Brennan AC, Hiscock SJ. Expression and inheritance of sporophytic self-incompatibility in synthetic allohexaploid Senecio cambrensis (Asteraceae). THE NEW PHYTOLOGIST 2010; 186:251-61. [PMID: 19895670 DOI: 10.1111/j.1469-8137.2009.03082.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Allopolyploid speciation is common in plants and is frequently associated with shifts from outcrossing, for example self-incompatibility, to inbreeding (i.e. selfing). Senecio cambrensis is a recently evolved allohexaploid species that formed following hybridization between diploid self-incompatible S. squalidus and tetraploid self-compatible S. vulgaris. Studies of reproduction in wild populations of S. cambrensis have concluded that it is self-compatible. Here, we investigated self-compatibility in synthetic lines of S. cambrensis generated via hybridization and colchicine-induced polyploidization and wild S. cambrensis using controlled crossing experiments. Synthetic F(1)S. cambrensis individuals were all self-compatible but, in F(2) and later generations, self-incompatible individuals were identified at frequencies of 6.7-9.2%. Self-incompatibility was also detected in wild sampled individuals at a frequency of 12.2%. The mechanism and genetics of self-incompatibility were tested in synthetic S. cambrensis and found to be similar to those of its paternal parent S. squalidus (i.e. sporophytic). These results show, for the first time, that functional sporophytic self-incompatibility can be inherited and expressed in allopolyploids as early as the second (F(2)) generation. Wild S. cambrensis should therefore be considered as possessing a mixed mating system with the potential for evolution towards either inbreeding or outcrossing.
Collapse
|
19
|
Shimizu-Inatsugi R, Lihová J, Iwanaga H, Kudoh H, Marhold K, Savolainen O, Watanabe K, Yakubov VV, Shimizu KK. The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri. Mol Ecol 2009; 18:4024-48. [PMID: 19754506 DOI: 10.1111/j.1365-294x.2009.04329.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyploidization, or genome duplication, has played a critical role in the diversification of animals, fungi and plants. Little is known about the population structure and multiple origins of polyploid species because of the difficulty in identifying multiple homeologous nuclear genes. The allotetraploid species Arabidopsis kamchatica is closely related to the model species Arabidopsis thaliana and is distributed in a broader climatic niche than its parental species. Here, we performed direct sequencing of homeologous pairs of the low-copy nuclear genes WER and CHS by designing homeolog-specific primers, and obtained also chloroplast and ribosomal internal transcribed spacer sequences. Phylogenetic analysis showed that 50 individuals covering the distribution range including North America are allopolyploids derived from Arabidopsis lyrata and Arabidopsis halleri. Three major clusters within A. kamchatica were detected using Bayesian clustering. One cluster has widespread distribution. The other two are restricted to the southern part of the distribution range including Japan, where the parent A. lyrata is not currently distributed. This suggests that the mountains in Central Honshu and surrounding areas in Japan served as refugia during glacial-interglacial cycles and retained this diversity. We also found that multiple haplotypes of nuclear and chloroplast sequences of A. kamchatica are identical to those of their parental species. This indicates that multiple diploid individuals contributed to the origin of A. kamchatica. The haplotypes of low-copy nuclear genes in Japan suggest independent polyploidization events rather than introgression. Our findings suggest that self-compatibility and gene silencing occurred independently in different origins.
Collapse
|
20
|
Schierup MH, Bechsgaard JS, Christiansen FB. Selection at work in self-incompatible Arabidopsis lyrata. II. Spatial distribution of S haplotypes in Iceland. Genetics 2008; 180:1051-9. [PMID: 18780752 PMCID: PMC2567355 DOI: 10.1534/genetics.108.088799] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 08/04/2008] [Indexed: 11/18/2022] Open
Abstract
We survey the distribution of haplotypes at the self-incompatibility (SI) locus of Arabidopsis lyrata (Brassicaceae) at 12 locations spread over the species' natural distribution in Iceland. Previous investigations of the system have identified 34 functionally different S haplotypes maintained by frequency-dependent selection and arranged them into four classes of dominance in their phenotypic expression. On the basis of this model of dominance and the island model of population subdivision, we compare the distribution of S haplotypes with that expected from population genetic theory. We observe 18 different S haplotypes, recessive haplotypes being more common than dominant ones, and dominant ones being shared by fewer populations. As expected, differentiation, although significant, is very low at the S locus even over distances of up to 300 km. The frequency of the most recessive haplotype is slightly larger than expected for a panmictic population, but consistent with a subdivided population with the observed differentiation. Frequencies in nature reflect effects of segregation distortion previously observed in controlled crosses. The dynamics of the S-locus variation are, however, well represented by a 12-island model and our simplified model of dominance interactions.
Collapse
Affiliation(s)
- Mikkel H Schierup
- Department of Ecology and Genetics, Institute of Biology, University of Aarhus, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
21
|
Sugisaka J, Kudoh H. Breeding system of the annual Cruciferae, Arabidopsis kamchatica subsp. kawasakiana. JOURNAL OF PLANT RESEARCH 2008; 121:65-68. [PMID: 17982712 DOI: 10.1007/s10265-007-0119-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 09/19/2007] [Indexed: 05/25/2023]
Abstract
The breeding system of an annual Cruciferae, Arabidopsis kamchatica subsp. kawasakiana, was studied in three natural populations. We applied four experimental treatments, open pollination, bagging, emasculation + bagging, and emasculation + hand-pollination + bagging. None of the emasculated flowers with bags produced fruits but we observed high fruit sets in the other three treatments. The results confirmed that A. kamchatica subsp. kawasakiana is a self-compatible, non-apomictic species that can produce seeds through auto-pollination. Considering the life cycle as an annual, increased reproductive assurance through auto-pollination should be critical for the maintenance of populations of A. kamchatica subsp. kawasakiana.
Collapse
Affiliation(s)
- Jiro Sugisaka
- Division of Life Science, Graduate School of Science and Technology, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | | |
Collapse
|
22
|
Luttikhuizen PC, Stift M, Kuperus P, VAN Tienderen PH. Genetic diversity in diploid vs. tetraploidRorippa amphibia(Brassicaceae). Mol Ecol 2007; 16:3544-53. [PMID: 17845429 DOI: 10.1111/j.1365-294x.2007.03411.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The frequency of polyploidy increases with latitude in the Northern Hemisphere, especially in deglaciated, recently colonized areas. The cause or causes of this pattern are largely unknown, but a greater genetic diversity of individual polyploid plants due to a doubled genome and/or a hybrid origin is seen as a likely factor underlying selective advantages related to life in extreme climates and/or colonization ability. A history of colonization in itself, as well as a recent origin, and possibly a limited number of polyploidization events would all predict less genetic diversity in polyploids than in diploids. The null hypothesis of higher gene diversity in polyploids has to date hardly been quantified and is here tested in self-incompatible Rorippa amphibia (Brassicaceae). The species occurs in diploid and tetraploid forms and displays clear geographical polyploidy in Europe. On the basis of eight microsatellite loci it can be concluded that the level of gene diversity is higher in tetraploids than in diploids, to an extent that is expected under neutral evolution when taking into account the larger effective population size in the doubled cytotype. There is thus no evidence for reduced genetic diversity in the tetraploids. The evidence presented here may mean that the tetraploids' origin is not recent, has not been affected by bottlenecks and/or that tetraploids were formed multiple times while an effect of introgression may also play a role.
Collapse
Affiliation(s)
- Pieternella C Luttikhuizen
- Universiteit van Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Experimental Plant Systematics, PO Box 94062, 1090 GB Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Kamau E, Charlesworth B, Charlesworth D. Linkage disequilibrium and recombination rate estimates in the self-incompatibility region of Arabidopsis lyrata. Genetics 2007; 176:2357-69. [PMID: 17565949 PMCID: PMC1950637 DOI: 10.1534/genetics.107.072231] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/17/2007] [Indexed: 11/18/2022] Open
Abstract
Genetic diversity is unusually high at loci in the S-locus region of the self-incompatible species of the flowering plant, Arabidopsis lyrata, not just in the S loci themselves, but also at two nearby loci. In a previous study of a single natural population from Iceland, we attributed this elevated polymorphism to linkage disequilibrium (LD) between variants at loci close to the S locus and the S alleles, which are maintained in the population by balancing selection. With the four S-flanking loci whose diversity we previously studied, we could not determine the extent of the region linked to the S loci in which neutral sites are affected. We also could not exclude the possibility of a population bottleneck, or of admixture, as causes of the LD. We have now studied four more distant loci flanking the S-locus region, and more populations, and we analyze the results using a theoretical model of the effect of balancing selection on diversity at linked neutral sites within and between different functional S-allelic classes. In the model, diversity is a function of the number of selectively maintained alleles and the recombination distances from the selectively maintained sites. We use the model to estimate the number of different functional S alleles, their turnover rate, and recombination rates between the S-locus region and other loci. Our estimates suggest that there is a small region of very low recombination surrounding the S-locus region.
Collapse
Affiliation(s)
- Esther Kamau
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, W. Mains Road, Edinburgh, United Kingdom
| | | | | |
Collapse
|
24
|
Bechsgaard JS, Castric V, Charlesworth D, Vekemans X, Schierup MH. The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr. Mol Biol Evol 2006; 23:1741-50. [PMID: 16782760 DOI: 10.1093/molbev/msl042] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A recent investigation found evidence that the transition of Arabidopsis thaliana from ancestral self-incompatibility (SI) to full self-compatibility occurred very recently and suggested that this occurred through a selective fixation of a nonfunctional allele (PsiSCR1) at the SCR gene, which determines pollen specificity in the incompatibility response. The main evidence is the lack of polymorphism at the SCR locus in A. thaliana. However, the nearby SRK gene, which determines stigma specificity in self-incompatible Brassicaceae species, has extremely high sequence diversity, with 3 very divergent SRK haplotypes, 2 of them present in multiple strains. Such high diversity is extremely unusual in this species, and it suggests the possibility that multiple, different SRK haplotypes may have been preserved from A. thaliana's self-incompatible ancestor. To study the evolution of S-haplotypes in the A. thaliana lineage, we searched the 2 most closely related Arabidopsis species Arabidopsis lyrata and Arabidopsis halleri, in which most populations have retained SI, and found SRK sequences corresponding to all 3 A. thaliana haplogroup sequences. Our molecular evolutionary analyses of these 3 S-haplotypes provide an independent estimate of the timing of the breakdown of SI and again exclude an ancient transition to selfing in A. thaliana. Comparing sequences of each of the 3 haplogroups between species, we find that 2 of the 3 SRK sequences (haplogroups A and B) are similar throughout their length, suggesting that little or no recombination with other SRK alleles has occurred since these species diverged. The diversity difference between the SCR and SRK loci in A. thaliana, however, suggests crossing-over, either within SRK or between the SCR and SRK loci. If the loss of SI involved fixation of the PsiSCR1 sequence, the exchange must have occurred during its fixation. Divergence between the species is much lower at the S-locus, compared with reference loci, and we discuss two contributory possibilities. Introgression may have occurred between A. lyrata and A. halleri and between their ancestral lineage and A. thaliana, at least for some period after their split. In addition, the coalescence times of sequences of individual S-haplogroups are expected to be less than those of alleles at non-S-loci.
Collapse
Affiliation(s)
- Jesper S Bechsgaard
- Ecology and Genetics, Institute of Biological Sciences, University of Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
25
|
Hagenblad J, Bechsgaard J, Charlesworth D. Linkage disequilibrium between incompatibility locus region genes in the plant Arabidopsis lyrata. Genetics 2006; 173:1057-73. [PMID: 16582433 PMCID: PMC1526524 DOI: 10.1534/genetics.106.055780] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have studied diversity in Arabidopsis lyrata of sequences orthologous to the ARK3 gene of A. thaliana. Our main goal was to test for recombination in the S-locus region. In A. thaliana, the single-copy ARK3 gene is closely linked to the non-functional copies of the self-incompatibility loci, and the ortholog in A. lyrata (a self-incompatible species) is in the homologous genome region and is known as Aly8. It is thus of interest to test whether Aly8 sequence diversity is elevated due to close linkage to the highly polymorphic incompatibility locus, as is theoretically predicted. However, Aly8 is not a single-copy gene, and the presence of paralogs could also lead to the appearance of elevated diversity. We established a typing approach based on different lengths of Aly8 PCR products and show that most A. lyrata haplotypes have a single copy, but some have two gene copies, both closely linked to the incompatibility locus, one being a pseudogene. We determined the phase of multiple haplotypes in families of plants from Icelandic and other populations. Different Aly8 sequence types are associated with different SRK alleles, while haplotypes with the same SRK sequences tend to have the same Aly8 sequence. There is evidence of some exchange of sequences between different Aly8 sequences, making it difficult to determine which ones are allelic or to estimate the diversity. However, the homogeneity of the Aly8 sequences of each S-haplotype suggests that recombination between the loci has been very infrequent over the evolutionary history of these populations. Overall, the results suggest that recombination rarely occurs in the interval between the S-loci and Aly8 and that linkage to the S-loci can probably account for the observed high Aly8 diversity.
Collapse
Affiliation(s)
- Jenny Hagenblad
- Institute of Evolutionary Biology, University of Edinburgh, UK
| | | | | |
Collapse
|
26
|
Charlesworth D, Vekemans X, Castric V, Glémin S. Plant self-incompatibility systems: a molecular evolutionary perspective. THE NEW PHYTOLOGIST 2005; 168:61-9. [PMID: 16159321 DOI: 10.1111/j.1469-8137.2005.01443.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Incompatibility recognition systems preventing self-fertilization have evolved several times in independent lineages of Angiosperm plants, and three main model systems are well characterized at the molecular level [the gametophytic self-incompatibility (SI) systems of Solanaceae, Rosaceae and Anthirrhinum, the very different system of poppy, and the system in Brassicaceae with sporophytic control of pollen SI reactions]. In two of these systems, the genes encoding both components of pollen-pistil recognition are now known, showing clearly that these two proteins are distinct, that is, SI is a lock-and-key mechanism. Here, we review recent findings in the three well-studied systems in the light of these results and analyse their implications for understanding polymorphism and coevolution of the two SI genes, in the context of a tightly linked genome region.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratory, King's Buildings, Edinburgh EH9 3JT, UK.
| | | | | | | |
Collapse
|
27
|
Schierup MH, Bechsgaard JS, Nielsen LH, Christiansen FB. Selection at work in self-incompatible Arabidopsis lyrata: mating patterns in a natural population. Genetics 2005; 172:477-84. [PMID: 16157671 PMCID: PMC1456200 DOI: 10.1534/genetics.105.045682] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identification and characterization of the self-incompatibility genes in Brassicaceae species now allow typing of self-incompatibility haplotypes in natural populations. In this study we sampled and mapped all 88 individuals in a small population of Arabidopsis lyrata from Iceland. The self-incompatibility haplotypes at the SRK gene were typed for all the plants and some of their progeny and used to investigate the realized mating patterns in the population. The observed frequencies of haplotypes were found to change considerably from the parent generation to the offspring generation around their deterministic equilibria as determined from the known dominance relations among haplotypes. We provide direct evidence that the incompatibility system discriminates against matings among adjacent individuals. Multiple paternity is very common, causing mate availability among progeny of a single mother to be much larger than expected for single paternity.
Collapse
Affiliation(s)
- Mikkel H Schierup
- Department of Ecology and Genetics, Institute of Biological Sciences, University of Aarhus, 8000 Aarhus C., Denmark.
| | | | | | | |
Collapse
|
28
|
Prigoda NL, Nassuth A, Mable BK. Phenotypic and genotypic expression of self-incompatibility haplotypes in Arabidopsis lyrata suggests unique origin of alleles in different dominance classes. Mol Biol Evol 2005; 22:1609-20. [PMID: 15858208 DOI: 10.1093/molbev/msi153] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The highly divergent alleles of the SRK gene in outcrossing Arabidopsis lyrata have provided important insights into the evolutionary history of self-incompatibility (SI) alleles and serve as an ideal model for studies of the evolutionary and molecular interactions between alleles in cell-cell recognition systems in general. One tantalizing question is how new specificities arise in systems that require coordination between male and female components. Allelic recruitment via gene conversion has been proposed as one possibility, based on the division of DNA sequences at the SRK locus into two distinctive groups: (1) sequences whose relationships are not well resolved and display the long branch lengths expected for a gene under balancing selection (Class A); and (2) sequences falling into a well-supported group with shorter branch lengths (Class B) that are closely related to an unlinked paralogous locus. The purpose of this study was to determine if differences in phenotype (site of expression assayed using allele-specific reverse transcription-polymerase chain reaction) or function (dominance relationships assayed through controlled pollinations) accompany the sequence-based classification. Expression of Class A alleles was restricted to floral tissues, as predicted for genes involved in the SI response. In contrast, Class B alleles, despite being tightly linked to the SI phenotype, were unexpectedly expressed in both leaves and floral tissues; the same pattern found for a related unlinked paralogous sequence. Whereas Class A included haplotypes in three different dominance classes, all Class B haplotypes were found to be recessive to all except one Class A haplotype. In addition, mapping of expression and dominance patterns onto an S-domain-based genealogy suggested that allelic dominance may be determined more by evolutionary history than by frequency-dependent selection for lowered dominance as some theories suggest. The possibility that interlocus gene conversion might have contributed to allelic diversity is discussed.
Collapse
Affiliation(s)
- Nadia L Prigoda
- Department of Botany, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|