1
|
Wang X, Xu L, Zhou D, Lv Y, Wu J, Zhao Y, Ni M, Zhou W, Zhang K, Wang H, Zhang J. Skin transcriptomic and selection signature analyses identify ASIP as a key gene in cattle coat color determination. Front Genet 2025; 16:1577647. [PMID: 40357365 PMCID: PMC12066557 DOI: 10.3389/fgene.2025.1577647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Objective Coat color is a complex trait and plays an important role in breed identification. However, information regarding genes associated with coat color in cattle is limited, especially at the skin transcriptome level. Methods We investigated the differential expressed genes (DEGs) and genomic selection signal underlying the coat color variation between black and brown cattle breeds. A total of 19 cattle (Brangus, Angus, Simmental, and Guanling) were performed skin transcriptome analysis and 262 cattle (Angus and Simmental) were performed whole genome analysis. Results Angus cattle (black coat) had a significantly higher melanin content in both their hair and skin compared to that of Simmental and Guanling cattle (brown coat). Transcriptomic analysis identified 14,118 expressed genes, with principal component analysis and hierarchical clustering revealing clear differences between black and brown cattle. DEGs analysis across four pairwise breed comparisons highlighted 343 downregulated and 54 upregulated genes common to all comparisons, with the ASIP gene (agouti signaling protein) emerging as a key gene linked to melanogenesis. The ASIP expression was several dozen-fold higher in brown cattle than in black cattle, suggesting a crucial role in coat color determination. Path-way enrichment and gene set enrichment analysis (GSEA) identified the "Melanogenesis" pathway as significantly enriched and central to coat color variation. Genes such as FZD10, WNT6, and ASIP showed differential expression patterns that correlated with coat color. Genomic analysis revealed strong selection signals in the ASIP gene region, with several SNPs exhibiting high linkage disequilibrium. Notably, the mutation type was predominant in Simmental cattle, while the reference allele was more common in Angus cattle. Conclusion Based on the skin transcriptomic and genomic analyses, we found that ASIP was significantly differential expressed between black and brown cattle breeds and under strong positive selection. These findings provide valuable insights into the genetic basis of coat color variation in cattle and highlight the ASIP gene as a critical determinant of this trait.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Longxin Xu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Di Zhou
- Guizhou Provincial Breeding Livestock and Poultry Germplasm Determination Center, Guiyang, China
| | - Yanli Lv
- Guizhou Provincial Breeding Livestock and Poultry Germplasm Determination Center, Guiyang, China
| | - Junda Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yuanfeng Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Mengmeng Ni
- College of Animal Sciences, Guizhou University, Guiyang, China
| | - Wenzhang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Kaikai Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Hua Wang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jipan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Telenson AM, Hsieh RR, Cowen GJ, Sode EP, Kwon JM, Vo AH, Hadhazy M, Page PG, Rao NR, Pesce L, Demonbreun AR, Puckelwartz MJ, Savas JN, McNally EM. A novel, rapidly progressive ataxia due to a spontaneous Myo5a mutation in mice impairs transport proteins and alters mitochondria. FASEB J 2025; 39:e70423. [PMID: 40022605 DOI: 10.1096/fj.202402274r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/01/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Spontaneous mouse mutants have helped define genetic contributions to many phenotypes. Here we report a spontaneous Novel Ataxic Phenotype in mice. Ataxia findings were evident at post-natal day 11 in NAP mice and rapidly worsened, resulting in preweaning lethality. Using genome sequencing and genome-wide mapping, we identified a 3' donor splice variant in exon 14 of Myo5a, encoding an actin-based motor protein. The variant in Myo5a (c.1752g>a) excises exon 14 and ablates MYO5A protein expression, which is implicated in intracellular transport and Griscelli syndrome type I in humans. NAP mice displayed expansion of PAX6-positive cells in the external granule layer of the cerebellum, and mass spectrometry analysis of cerebellar extracts uncovered differentially abundant proteins involved in short-range organelle transport, and specifically proteins implicated with early endosomes. Using cerebellar lysates and primary neurons, we provide evidence for an interaction between MYO5A and ANKFY1, a known effector for the endosomal protein, RAB5A. We also found neurons from NAP mice had elongated mitochondria, linking MYO5A to mitochondrial homeostasis. This allele provides new insight into Myo5a function in developmental neuropathology.
Collapse
Affiliation(s)
- Alexander M Telenson
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ryan R Hsieh
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gabrielle J Cowen
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Eoin P Sode
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jason M Kwon
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andy H Vo
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Patrick G Page
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nalini R Rao
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lorenzo Pesce
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Blain SA, Justen HC, Langdon QK, Delmore KE. Repeatable Selection on Large Ancestry Blocks in an Avian Hybrid Zone. Mol Biol Evol 2025; 42:msaf044. [PMID: 39992157 PMCID: PMC11886783 DOI: 10.1093/molbev/msaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/29/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Hybrid zones create natural tests of genetic incompatibilities by combining loci from 2 species in the same genetic background in the wild, making them useful for identifying loci involved in both intrinsic and ecological (extrinsic) isolation. Two Swainson's thrush subspecies form a hybrid zone in western North America. These coastal and inland subspecies exhibit dramatic differences in migration routes; their hybrids exhibit poor migratory survival, suggesting that ecological incompatibilities maintain this zone. We used a panel of ancestry informative markers to identify repeated patterns of selection and introgression across 4 hybrid populations that span the entire length of the Swainson's thrush hybrid zone. Two repeatable patterns consistent with selection against incompatibilities-steep genomic clines and few transitions between ancestry states-were found in large genetic blocks on chromosomes 1 and 5. The block on chromosome 1 showed evidence for inland subspecies introgression while the block on chromosome 5 exhibited coastal subspecies introgression. Some regions previously associated with migratory phenotypes, including migratory orientation, or exhibiting misexpression between the subspecies exhibited signatures of selection in the hybrid zone. Both selection and introgression across the genome were shaped by genomic structural features and evolutionary history, with stronger selection and reduced introgression in regions of low recombination, high subspecies differentiation, positive selection within the subspecies, and on macrochromosomes. Cumulatively, these results suggest that linkage among loci interacts with divergent selection and past divergent evolution between species to strengthen barriers to gene flow within hybrid zones.
Collapse
Affiliation(s)
- Stephanie A Blain
- Biology Department, Texas A&M University, College Station, TX, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Hannah C Justen
- Biology Department, Texas A&M University, College Station, TX, USA
| | - Quinn K Langdon
- Department of Biology, Stanford University, Stanford, CA, USA
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Kira E Delmore
- Biology Department, Texas A&M University, College Station, TX, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
deMayo JA, Ragland GJ. (Limited) Predictability of thermal adaptation in invertebrates. J Exp Biol 2025; 228:JEB249450. [PMID: 40052398 DOI: 10.1242/jeb.249450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Evolutionary genomic approaches provide powerful tools to understand variation in and evolution of physiological processes. Untargeted genomic or transcriptomic screens can identify functionally annotated candidate genes linked to specific physiological processes, in turn suggesting evolutionary roles for these processes. Such studies often aim to inform modeling of the potential of natural populations to adapt to climate change, but these models are most accurate when evolutionary responses are repeatable, and thus predictable. Here, we synthesize the evolutionary genetic and comparative transcriptomic literature on terrestrial and marine invertebrates to assess whether evolutionary responses to temperature are repeatable within populations, across populations and across species. There is compelling evidence for repeatability, sometimes even across species. However, responses to laboratory selection and geographic variation across thermal gradients appear to be highly idiosyncratic. We also survey whether genetic/transcriptomic studies repeatedly identify candidate genes in three functional groups previously associated with the response to thermal stress: heat shock protein (Hsp) genes, proteolysis genes and immunity genes. Multiple studies across terrestrial and marine species identify candidates included in these gene sets. Yet, each of the gene sets are identified in only a minority of studies. Together, these patterns suggest that there is limited predictability of evolutionary responses to natural selection, including across studies within species. We discuss specific patterns for the candidate gene sets, implications for predictive modeling, and other potential applications of evolutionary genetics in elucidating physiology and gene function. Finally, we discuss limitations of inferences from available evolutionary genetic studies and directions for future research.
Collapse
Affiliation(s)
- James A deMayo
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St, Denver, CO 80204, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St, Denver, CO 80204, USA
| |
Collapse
|
5
|
Tu S, Kageyama T, Seo J, Zhou Y, Fukuda J. Development of in vitro hair pigmentation model using hair follicle organoids. J Biosci Bioeng 2025; 139:141-146. [PMID: 39672752 DOI: 10.1016/j.jbiosc.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Hair color is formed through a series of processes such as melanin synthesis and storage in melanosomes, transfer from melanocytes, and reception by hair matrix cells in the hair bulb. Because gray hair is caused by the deterioration of a single or multiple of these processes, understanding the mechanisms responsible for these processes is crucial for developing therapeutic strategies. Recently, a robust approach for preparing hair follicle organoids (HFOs) was reported, in which hair follicle morphogenesis, including hair shaft elongation, was tracked in vitro. Here, we investigated whether HFOs could be used to assess genes involved in hair pigmentation. HFOs generated hair follicles and pigmented shafts during the in vitro culturing process. The knockdown of genes associated with melanosome production (Bcl2 and Mitf) and transport (MyoX, PAR2, and Rab11b) significantly increased the number of gray hairs in HFOs. This organoid model may be a promising platform for better understanding hair pigmentation and screening drugs for gray hair.
Collapse
Affiliation(s)
- Shan Tu
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Jieun Seo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Yinghui Zhou
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
6
|
Liao Y, Han T, Jiang D, Zhu C, Shi G, Li G, Shi H. Functions of thyroid hormone signaling in regulating melanophore, iridophore, erythrophore, and pigment pattern formation in spotted scat (Scatophagus argus). BMC Genomics 2025; 26:79. [PMID: 39871198 PMCID: PMC11773731 DOI: 10.1186/s12864-025-11286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Spotted scat, a marine aquaculture fish, has variable body color development stages during their ontogenesis. However, the regulatory mechanism of body color patterns formation was poorly understood. Thyroid hormones (TH) function as an important endocrine factor in regulating metamorphosis. In this study, exogenous thyroid hormones 3,5,3'-L-triiodothyronine (T3) and its inhibitor thiourea (TU) were used to treat spotted scat juveniles during the metamorphosis stage (from 60 to 90 dpf). The function and molecular mechanism of thyroid hormone signaling in regulating body color patterns formation was revealed, using the micro-observation of pigments cells distribution, colorimetric evaluation and carotenoids concentration measurement by spectrophotometry, and comparative transcriptome analysis. RESULTS Spotted scat body color patterns consisted of whole body black color, black bar, black and red spots, and its final pattern was formed through the metamorphosis. When spotted scat were treated with the inhibitor TU to disrupt thyroid hormone signaling, the levels of T3 and T4 were significantly decreased, the melanophores numbers were significantly increased, as well as the expression of genes involved in melanin synthesis and melanophore differentiation (tyr, tyrp1, dct, mitf, pmel, oca2, slc24a5, and erbb3) was significantly increased. Besides, the expression of genes associated with carotenoids and pteridine metabolism (apod, pnpla2, rdh12, stard10, xdh, abca1, retsat, scarb1, rgs2, and gch1) and carotenoids accumulation were stimulated, when thyroid hormone signaling was disrupted by TU. On the contrary, the levels of T3 and T4 were significantly elevated in spotted scat treated with T3, which could weaken the skin redness and reduce the number of black spots and melanophores, as well as the number and diameter of larval erythrophores. Notably, unlike melanophores and erythrophores, the differentiation of iridophore was promoted by thyroid hormones, gene related to iridophore differentiation (fhl2-l, fhl2, ltk, id2a, alx4) and guanine metabolism (gmps, hprt1, ppat, impdh1b) were up-regulated after T3 treatment, but they were down-regulated after TU treatment. CONCLUSIONS Above results showed that thyroid hormone signaling might play critical roles in regulation pigments synthesis and deposition, thereby affecting pigment cells (melanophores, iridophores and erythrophores) formation and body color patterns. The mechanisms of hyperthyroid and hypothyroid on different pigment cells development were different. Excess thyroid hormone might impact the rearrangement of melanophore by regulating cell cycle, resulting in the abnormalities of black spots in spotted scat. Meanwhile, the excessed thyroid hormone could reduce the number and diameter of larval erythrophores, as well as weaken the skin redness of juvenile erythrophores, but they were enhanced by the disruption of thyroid hormone. However, the formation of iridophore differentiation and guanine synthesis genes expression were stimulated by thyroid hormones. These findings provide new insights for exploring the formation of body color patterns in fish, and help to elucidate the molecular mechanism of thyroid hormone in regulating pigment cell development and body coloration, and may also contribute to selective breeding of ornamental fish.
Collapse
Affiliation(s)
- Yongguan Liao
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Tong Han
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dongneng Jiang
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunhua Zhu
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China
| | - Gang Shi
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - GuangLi Li
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hongjuan Shi
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
7
|
Desmarquet-Trin Dinh C, Manceau M. Structure, function and formation of the amniote skin pattern. Dev Biol 2025; 517:203-216. [PMID: 39326486 DOI: 10.1016/j.ydbio.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
From feather and hair dotted arrays to pigmented stripes and spots, the spatial distribution of skin appendages and colouration often forms visible ornaments crucial for fitness in the coat of birds and mammals. These geometrical motifs are extremely diverse in nature. Yet, phenotypic surveys evidenced common themes in variation: the orientation, appendage-specificity or pigmentation of a given region may be conserved across groups or species. Here, we review naturalist observations of natural variation in the anatomy and ecological function of the skin pattern in amniotes. We then describe several decades of genetics, mathematical modelling and experimental embryology work aiming at understanding the molecular and morphogenetic mechanisms responsible for pattern formation. We discuss how these studies provided evidence that the morphological trends and differences representative of the phenotypic landscape of skin patterns in wild amniote species is rooted in the mechanisms controlling the production of distinct compartments in the embryonic skin.
Collapse
Affiliation(s)
| | - Marie Manceau
- Centre for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, France.
| |
Collapse
|
8
|
Kamitaki N, Hujoel MLA, Mukamel RE, Gebara E, McCarroll SA, Loh PR. A sequence of SVA retrotransposon insertions in ASIP shaped human pigmentation. Nat Genet 2024; 56:1583-1591. [PMID: 39048794 PMCID: PMC11319198 DOI: 10.1038/s41588-024-01841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Retrotransposons comprise about 45% of the human genome1, but their contributions to human trait variation and evolution are only beginning to be explored2,3. Here, we find that a sequence of SVA retrotransposon insertions in an early intron of the ASIP (agouti signaling protein) gene has probably shaped human pigmentation several times. In the UK Biobank (n = 169,641), a recent 3.3-kb SVA insertion polymorphism associated strongly with lighter skin pigmentation (0.22 [0.21-0.23] s.d.; P = 2.8 × 10-351) and increased skin cancer risk (odds ratio = 1.23 [1.18-1.27]; P = 1.3 × 10-28), appearing to underlie one of the strongest common genetic influences on these phenotypes within European populations4-6. ASIP expression in skin displayed the same association pattern, with the SVA insertion allele exhibiting 2.2-fold (1.9-2.6) increased expression. This effect had an unusual apparent mechanism: an earlier, nonpolymorphic, human-specific SVA retrotransposon 3.9 kb upstream appeared to have caused ASIP hypofunction by nonproductive splicing, which the new (polymorphic) SVA insertion largely eliminated. Extended haplotype homozygosity indicated that the insertion allele has risen to allele frequencies up to 11% in European populations over the past several thousand years. These results indicate that a sequence of retrotransposon insertions contributed to a species-wide increase, then a local decrease, of human pigmentation.
Collapse
Affiliation(s)
- Nolan Kamitaki
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward Gebara
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Kidd JM. Mobile element insertions affect human pigmentation and skin cancer risk. Nat Genet 2024; 56:1546-1547. [PMID: 39048793 DOI: 10.1038/s41588-024-01849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Affiliation(s)
- Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Brandon AA, Michael C, Carmona Baez A, Moore EC, Ciccotto PJ, Roberts NB, Roberts RB, Powder KE. Distinct genetic origins of eumelanin levels and barring patterns in cichlid fishes. PLoS One 2024; 19:e0306614. [PMID: 38976656 PMCID: PMC11230561 DOI: 10.1371/journal.pone.0306614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Pigment patterns are incredibly diverse across vertebrates and are shaped by multiple selective pressures from predator avoidance to mate choice. A common pattern across fishes, but for which we know little about the underlying mechanisms, is repeated melanic vertical bars. To understand the genetic factors that modify the level or pattern of vertical barring, we generated a genetic cross of 322 F2 hybrids between two cichlid species with distinct barring patterns, Aulonocara koningsi and Metriaclima mbenjii. We identify 48 significant quantitative trait loci that underlie a series of seven phenotypes related to the relative pigmentation intensity, and four traits related to patterning of the vertical bars. We find that genomic regions that generate variation in the level of eumelanin produced are largely independent of those that control the spacing of vertical bars. Candidate genes within these intervals include novel genes and those newly-associated with vertical bars, which could affect melanophore survival, fate decisions, pigment biosynthesis, and pigment distribution. Together, this work provides insights into the regulation of pigment diversity, with direct implications for an animal's fitness and the speciation process.
Collapse
Affiliation(s)
- A. Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Cassia Michael
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Aldo Carmona Baez
- Department of Biological Sciences, Genetics and Genomics Academy, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Emily C. Moore
- Department of Biological Sciences, Genetics and Genomics Academy, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Patrick J. Ciccotto
- Department of Biology, Warren Wilson College, Swannanoa, North Carolina, United States of America
| | - Natalie B. Roberts
- Department of Biological Sciences, Genetics and Genomics Academy, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Reade B. Roberts
- Department of Biological Sciences, Genetics and Genomics Academy, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kara E. Powder
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
11
|
Wang P, Driscoll WW, Travisano M. Genomic sequencing reveals convergent adaptation during experimental evolution in two budding yeast species. Commun Biol 2024; 7:825. [PMID: 38971878 PMCID: PMC11227552 DOI: 10.1038/s42003-024-06485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
Convergent evolution is central in the origins of multicellularity. Identifying the basis for convergent multicellular evolution is challenging because of the diverse evolutionary origins and environments involved. Haploid Kluyveromyces lactis populations evolve multicellularity during selection for increased settling in liquid media. Strong genomic and phenotypic convergence is observed between K. lactis and previously selected S. cerevisiae populations under similar selection, despite their >100-million-year divergence. We find K. lactis multicellularity is conferred by mutations in genes ACE2 or AIM44, with ACE2 being predominant. They are a subset of the six genes involved in the S. cerevisiae multicellularity. Both ACE2 and AIM44 regulate cell division, indicating that the genetic convergence is likely due to conserved cellular replication mechanisms. Complex population dynamics involving multiple ACE2/AIM44 genotypes are found in most K. lactis lineages. The results show common ancestry and natural selection shape convergence while chance and contingency determine the degree of divergence.
Collapse
Affiliation(s)
- Pu Wang
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA.
| | - William W Driscoll
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
- Biology Department, Penn State Harrisburg, Harrisburg, PA, 17057, USA
| | - Michael Travisano
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, 55108, USA
| |
Collapse
|
12
|
Monteiro JPC, Pröhl H, Lyra ML, Brunetti AE, de Nardin EC, Condez TH, Haddad CFB, Rodríguez A. Expression patterns of melanin-related genes are linked to crypsis and conspicuousness in a pumpkin toadlet. Mol Ecol 2024:e17458. [PMID: 38970414 DOI: 10.1111/mec.17458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Colour signals play pivotal roles in different communication systems, and the evolution of these characters has been associated with behavioural ecology, integumentary production processes and perceptual mechanisms of the species involved. Here, we present the first insight into the molecular and histological basis of skin colour polymorphism within a miniaturized species of pumpkin toadlet, potentially representing the lowest size threshold for colour polytypism in tetrapods. Brachycephalus actaeus exhibits a coloration ranging from cryptic green to conspicuous orange skin, and our findings suggest that colour morphs differ in their capability to be detected by potential predators. We also found that the distribution and abundance of chromatophores are variable in the different colour morphs. The expression pattern of coloration related genes was predominantly associated with melanin synthesis (including dct, edn1, mlana, oca2, pmel, slc24a5, tyrp1 and wnt9a). Up-regulation of melanin genes in grey, green and brown skin was associated with higher melanophore abundance than in orange skin, where xanthophores predominate. Our findings provide a significant foundation for comparing and understanding the diverse pathways that contribute to the evolution of pigment production in the skin of amphibians.
Collapse
Affiliation(s)
- Juliane P C Monteiro
- Post-Graduate Program in Biodiversity, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Department of Biodiversity and Aquaculture Center (CAUNESP), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Center for Research on Biodiversity Dynamics and Climate Change, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Institute of Zoology, University of Veterinary Medicine of Hannover, Hannover, Lower Saxony, Germany
| | - Heike Pröhl
- Institute of Zoology, University of Veterinary Medicine of Hannover, Hannover, Lower Saxony, Germany
| | - Mariana L Lyra
- Center for Research on Biodiversity Dynamics and Climate Change, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Andrés E Brunetti
- Center for Research on Biodiversity Dynamics and Climate Change, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Institute of Subtropical Biology (IBS, UNaM-CONICET), Posadas, Misiones, Argentina
- Department of Insect Symbiosis, Max Planck Institute of Chemical Ecology, Jena, Thuringia, Germany
| | - Eli C de Nardin
- Department of Biodiversity and Aquaculture Center (CAUNESP), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Thais H Condez
- Center for Research on Biodiversity Dynamics and Climate Change, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Célio F B Haddad
- Department of Biodiversity and Aquaculture Center (CAUNESP), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
- Center for Research on Biodiversity Dynamics and Climate Change, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Ariel Rodríguez
- Institute of Zoology, University of Veterinary Medicine of Hannover, Hannover, Lower Saxony, Germany
| |
Collapse
|
13
|
Stuckert AMM, Chouteau M, McClure M, LaPolice TM, Linderoth T, Nielsen R, Summers K, MacManes MD. The genomics of mimicry: Gene expression throughout development provides insights into convergent and divergent phenotypes in a Müllerian mimicry system. Mol Ecol 2024; 33:e17438. [PMID: 38923007 DOI: 10.1111/mec.17438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which species share a conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which mimicry is produced in poison frogs. We assembled a 6.02-Gbp genome with a contig N50 of 310 Kbp, a scaffold N50 of 390 Kbp and 85% of expected tetrapod genes. We leveraged this genome to conduct gene expression analyses throughout development of four colour morphs of Ranitomeya imitator and two colour morphs from both R. fantastica and R. variabilis which R. imitator mimics. We identified a large number of pigmentation and patterning genes differentially expressed throughout development, many of them related to melanophores/melanin, iridophore development and guanine synthesis. We also identify the pteridine synthesis pathway (including genes such as qdpr and xdh) as a key driver of the variation in colour between morphs of these species, and identify several plausible candidates for colouration in vertebrates (e.g. cd36, ep-cadherin and perlwapin). Finally, we hypothesise that keratin genes (e.g. krt8) are important for producing different structural colours within these frogs.
Collapse
Affiliation(s)
- Adam M M Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Mathieu Chouteau
- Laboratoire Écologie, Évolution, Interactions Des Systèmes Amazoniens (LEEISA), CNRS, IFREMER, Université de Guyane, Cayenne, France
| | - Melanie McClure
- Laboratoire Écologie, Évolution, Interactions Des Systèmes Amazoniens (LEEISA), CNRS, IFREMER, Université de Guyane, Cayenne, France
| | - Troy M LaPolice
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tyler Linderoth
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
14
|
Hempel E, Faith JT, Preick M, de Jager D, Barish S, Hartmann S, Grau JH, Moodley Y, Gedman G, Pirovich KM, Bibi F, Kalthoff DC, Bocklandt S, Lamm B, Dalén L, Westbury MV, Hofreiter M. Colonial-driven extinction of the blue antelope despite genomic adaptation to low population size. Curr Biol 2024; 34:2020-2029.e6. [PMID: 38614080 DOI: 10.1016/j.cub.2024.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Low genomic diversity is generally indicative of small population size and is considered detrimental by decreasing long-term adaptability.1,2,3,4,5,6 Moreover, small population size may promote gene flow with congeners and outbreeding depression.7,8,9,10,11,12,13 Here, we examine the connection between habitat availability, effective population size (Ne), and extinction by generating a 40× nuclear genome from the extinct blue antelope (Hippotragus leucophaeus). Historically endemic to the relatively small Cape Floristic Region in southernmost Africa,14,15 populations were thought to have expanded and contracted across glacial-interglacial cycles, tracking suitable habitat.16,17,18 However, we found long-term low Ne, unaffected by glacial cycles, suggesting persistence with low genomic diversity for many millennia prior to extinction in ∼AD 1800. A lack of inbreeding, alongside high levels of genetic purging, suggests adaptation to this long-term low Ne and that human impacts during the colonial era (e.g., hunting and landscape transformation), rather than longer-term ecological processes, were central to its extinction. Phylogenomic analyses uncovered gene flow between roan (H. equinus) and blue antelope, as well as between roan and sable antelope (H. niger), approximately at the time of divergence of blue and sable antelope (∼1.9 Ma). Finally, we identified the LYST and ASIP genes as candidates for the eponymous bluish pelt color of the blue antelope. Our results revise numerous aspects of our understanding of the interplay between genomic diversity and evolutionary history and provide the resources for uncovering the genetic basis of this extinct species' unique traits.
Collapse
Affiliation(s)
- Elisabeth Hempel
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany.
| | - J Tyler Faith
- Natural History Museum of Utah, University of Utah, 301 Wakara Way, Salt Lake City, UT 84108, USA; Department of Anthropology, University of Utah, 260 South Central Campus Drive, Salt Lake City, UT 84112, USA; Origins Centre, University of the Witwatersrand, 2000 Johannesburg, Republic of South Africa
| | - Michaela Preick
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Deon de Jager
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | | | - Stefanie Hartmann
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - José H Grau
- Center for Species Survival, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA; Amedes Genetics, Amedes Medizinische Dienstleistungen GmbH, 10117 Berlin, Germany
| | - Yoshan Moodley
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa
| | | | | | - Faysal Bibi
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | - Daniela C Kalthoff
- Swedish Museum of Natural History, Department of Zoology, Box 50007, 10405 Stockholm, Sweden
| | | | - Ben Lamm
- Colossal Biosciences, Dallas, TX 75247, USA
| | - Love Dalén
- Swedish Museum of Natural History, Department of Bioinformatics and Genetics, Box 50007, 10405 Stockholm, Sweden; Centre for Palaeogenetics, Svante Arrhenius väg 20c, 10691 Stockholm, Sweden; Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| | - Michael V Westbury
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Faculty of Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
15
|
Merondun J, Marques CI, Andrade P, Meshcheryagina S, Galván I, Afonso S, Alves JM, Araújo PM, Bachurin G, Balacco J, Bán M, Fedrigo O, Formenti G, Fossøy F, Fülöp A, Golovatin M, Granja S, Hewson C, Honza M, Howe K, Larson G, Marton A, Moskát C, Mountcastle J, Procházka P, Red’kin Y, Sims Y, Šulc M, Tracey A, Wood JMD, Jarvis ED, Hauber ME, Carneiro M, Wolf JBW. Evolution and genetic architecture of sex-limited polymorphism in cuckoos. SCIENCE ADVANCES 2024; 10:eadl5255. [PMID: 38657058 PMCID: PMC11042743 DOI: 10.1126/sciadv.adl5255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Sex-limited polymorphism has evolved in many species including our own. Yet, we lack a detailed understanding of the underlying genetic variation and evolutionary processes at work. The brood parasitic common cuckoo (Cuculus canorus) is a prime example of female-limited color polymorphism, where adult males are monochromatic gray and females exhibit either gray or rufous plumage. This polymorphism has been hypothesized to be governed by negative frequency-dependent selection whereby the rarer female morph is protected against harassment by males or from mobbing by parasitized host species. Here, we show that female plumage dichromatism maps to the female-restricted genome. We further demonstrate that, consistent with balancing selection, ancestry of the rufous phenotype is shared with the likewise female dichromatic sister species, the oriental cuckoo (Cuculus optatus). This study shows that sex-specific polymorphism in trait variation can be resolved by genetic variation residing on a sex-limited chromosome and be maintained across species boundaries.
Collapse
Affiliation(s)
- Justin Merondun
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Cristiana I. Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Swetlana Meshcheryagina
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ismael Galván
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Joel M. Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | - Pedro M. Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Life Sciences, MARE–Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
| | | | - Jennifer Balacco
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Miklós Bán
- HUN-REN-UD Behavioral Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Olivier Fedrigo
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Giulio Formenti
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Frode Fossøy
- Centre for Biodiversity Genetics, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Attila Fülöp
- HUN-REN-UD Behavioral Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- STAR-UBB Institute of Advanced Studies in Science and Technology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Mikhail Golovatin
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Sofia Granja
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | | | - Marcel Honza
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | - Attila Marton
- Evolutionary Ecology Group, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Csaba Moskát
- Hungarian Natural History Museum, Budapest, Hungary
| | | | - Petr Procházka
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | | | - Ying Sims
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Michal Šulc
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Erich D. Jarvis
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Mark E. Hauber
- Advanced Science Research Center and Program in Psychology, Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jochen B. W. Wolf
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
16
|
Lee SH, Wang CY, Li IJ, Abe G, Ota KG. Exploring the origin of a unique mutant allele in twin-tail goldfish using CRISPR/Cas9 mutants. Sci Rep 2024; 14:8716. [PMID: 38622170 PMCID: PMC11018756 DOI: 10.1038/s41598-024-58448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Artificial selection has been widely applied to genetically fix rare phenotypic features in ornamental domesticated animals. For many of these animals, the mutated loci and alleles underlying rare phenotypes are known. However, few studies have explored whether these rare genetic mutations might have been fixed due to competition among related mutated alleles or if the fixation occurred due to contingent stochastic events. Here, we performed genetic crossing with twin-tail ornamental goldfish and CRISPR/Cas9-mutated goldfish to investigate why only a single mutated allele-chdS with a E127X stop codon (also called chdAE127X)-gives rise to the twin-tail phenotype in the modern domesticated goldfish population. Two closely related chdS mutants were generated with CRISPR/Cas9 and compared with the E127X allele in F2 and F3 generations. Both of the CRISPR/Cas9-generated alleles were equivalent to the E127X allele in terms of penetrance/expressivity of the twin-tail phenotype and viability of carriers. These findings indicate that multiple truncating mutations could have produced viable twin-tail goldfish. Therefore, the absence of polymorphic alleles for the twin-tail phenotype in modern goldfish likely stems from stochastic elimination or a lack of competing alleles in the common ancestor. Our study is the first experimental comparison of a singular domestication-derived allele with CRISPR/Cas9-generated alleles to understand how genetic fixation of a unique genotype and phenotype may have occurred. Thus, our work may provide a conceptual framework for future investigations of rare evolutionary events in domesticated animals.
Collapse
Affiliation(s)
- Shu-Hua Lee
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Chen-Yi Wang
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Ing-Jia Li
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
- Division of Developmental Biology, Department of Functional Morphology, Faculty of Medicine, School of Life Science, Tottori University, Nishi-cho 86, Yonago, 683-8503, Japan
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan.
| |
Collapse
|
17
|
Maier PA, Vandergast AG, Bohonak AJ. Yosemite toad (Anaxyrus canorus) transcriptome reveals interplay between speciation genes and adaptive introgression. Mol Ecol 2024; 33:e17317. [PMID: 38488670 DOI: 10.1111/mec.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
Genomes are heterogeneous during the early stages of speciation, with small 'islands' of DNA appearing to reflect strong adaptive differences, surrounded by vast seas of relative homogeneity. As species diverge, secondary contact zones between them can act as an interface and selectively filter through advantageous alleles of hybrid origin. Such introgression is another important adaptive process, one that allows beneficial mosaics of recombinant DNA ('rivers') to flow from one species into another. Although genomic islands of divergence appear to be associated with reproductive isolation, and genomic rivers form by adaptive introgression, it is unknown whether islands and rivers tend to be the same or different loci. We examined three replicate secondary contact zones for the Yosemite toad (Anaxyrus canorus) using two genomic data sets and a morphometric data set to answer the questions: (1) How predictably different are islands and rivers, both in terms of genomic location and gene function? (2) Are the adaptive genetic trait loci underlying tadpole growth and development reliably islands, rivers or neither? We found that island and river loci have significant overlap within a contact zone, suggesting that some loci are first islands, and later are predictably converted into rivers. However, gene ontology enrichment analysis showed strong overlap in gene function unique to all island loci, suggesting predictability in overall gene pathways for islands. Genome-wide association study outliers for tadpole development included LPIN3, a lipid metabolism gene potentially involved in climate change adaptation, that is island-like for all three contact zones, but also appears to be introgressing (as a river) across one zone. Taken together, our results suggest that adaptive divergence and introgression may be more complementary forces than currently appreciated.
Collapse
Affiliation(s)
- Paul A Maier
- Department of Biology, San Diego State University, San Diego, California, USA
- Family TreeDNA, Gene by Gene, Houston, Texas, USA
| | - Amy G Vandergast
- Western Ecological Research Center, San Diego Field Station, U.S. Geological Survey, San Diego, California, USA
| | - Andrew J Bohonak
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
18
|
Ozerov MY, Noreikiene K, Kahar S, Flajšhans M, Gross R, Vasemägi A. Differential expression and alternative splicing analyses of multiple tissues reveal albinism-associated genes in the Wels catfish (Silurus glanis). Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110941. [PMID: 38218377 DOI: 10.1016/j.cbpb.2024.110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Albinism is a widespread departure from a typical body colouration due to altered melanin production. The Wels catfish (Silurus glanis) is among the largest freshwater fish species in the world, and albino individuals occur both in the wild and in aquaculture. Here, we performed transcriptome-wide analysis of albino and normally pigmented S. glanis using four tissues (skin, dorsal fin, whole eye and liver) to identify genes associated with albinism by exploring patterns of differential expression (DE) and differential alternative splicing (DAS). Multi-tissue analyses revealed a large number of genes in skin (n = 1355) and fin (n = 614) tissue associated with the albino phenotype in S. glanis, while the number of DE genes in eye and liver tissues was lower (n = 188, n = 189, respectively). Several DE genes across multiple tissues were detected as the most promising candidates (e.g., hsp4, hsp90b1, raph1, uqcrfs1, adcy-family and wnt-family) potentially causally linked to the albino phenotype in Wels catfish. Moreover, our findings supported earlier observations of physiological differences between albino and normally pigmented individuals, particularly in energy metabolism and immune response. In contrast, there were only a few pigmentation-related genes observed among DAS genes (4 in skin, 2 in fin), the overlap between DAS and DE genes was low (n = 25) and did not include known pigmentation-related genes. This suggests that DAS and DE in Wels catfish are, to a large extent, independent processes, and the observed alternative splicing cases are probably not causally linked with albinism in S. glanis. This work provides the first transcriptome-wide multi-tissue insights into the albinism of Wels catfish and serves as a valuable resource for further understanding the genetic mechanisms of pigmentation in fish.
Collapse
Affiliation(s)
- M Y Ozerov
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893 Drottningholm, Sweden; Biodiversity Unit, University of Turku, 20014 Turku, Finland; Department of Biology, University of Turku, 20014 Turku, Finland
| | - K Noreikiene
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia; Department of Botany and Genetics, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania. https://twitter.com/snaudale
| | - S Kahar
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia
| | - M Flajšhans
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, 38925 Vodňany, Czech Republic
| | - R Gross
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia
| | - A Vasemägi
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893 Drottningholm, Sweden; Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia.
| |
Collapse
|
19
|
Zheng X, Chen J, Nie R, Miao H, Chen Z, He J, Xie Y, Zhang H. Differential expression of ASIP transcripts reveals genetic mechanism underpinning black-tail independence from body plumage in yellow-bodied chickens. Anim Genet 2024; 55:249-256. [PMID: 38194424 DOI: 10.1111/age.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
The genetic foundation of chicken body plumage color has been extensively studied. However, little attention has been paid to the inheritance patterns and molecular mechanisms underlying the formation of distal feather colors (tail and wingtip). Differences in these colors are common; for example, the Chinese Huiyang Beard chicken has black tail feathers, but yellow body plumage. Here, the hybrid offspring of Huiyang Beard and White Leghorn chickens were used to study the inheritance patterns of tail-feather color. The expression levels of pigment genes in differently colored feather follicles were analyzed using quantitative real-time PCR. The results showed that genetic regulation of tail-feather color was independent of body-plumage color. The Dominant White locus inhibited eumelanin synthesis in tail feathers without affecting the formation of yellow body plumage, whereas the Silver locus had the opposite effect. The expression of agouti signaling protein (ASIP) gene class 1 transcripts was significantly lower in black tail-feather follicles than in yellow body follicles, whereas tyrosinase-related protein 1 (TYRP1) gene expression was significantly higher in black tail feathers. These differentially expressed genes were confirmed to exert an effect on eumelanin and pheomelanin formation in feathers, thus influencing the regulation of chicken tail-feather color. In conclusion, this study lays the foundation for further research on the genetic mechanisms of regional differences in feather color, contributing to a better understanding of plumage pigmentation in chickens.
Collapse
Affiliation(s)
- Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ruixue Nie
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huanhuan Miao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ziwei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jiaheng He
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yinku Xie
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Hao Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Guan D, Sun S, Song L, Zhao P, Nie Y, Huang X, Zhou W, Yan L, Lei Y, Hu Y, Wei F. Taking a color photo: A homozygous 25-bp deletion in Bace2 may cause brown-and-white coat color in giant pandas. Proc Natl Acad Sci U S A 2024; 121:e2317430121. [PMID: 38437540 PMCID: PMC10945837 DOI: 10.1073/pnas.2317430121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 03/06/2024] Open
Abstract
Brown-and-white giant pandas (hereafter brown pandas) are distinct coat color mutants found exclusively in the Qinling Mountains, Shaanxi, China. However, its genetic mechanism has remained unclear since their discovery in 1985. Here, we identified the genetic basis for this coat color variation using a combination of field ecological data, population genomic data, and a CRISPR-Cas9 knockout mouse model. We de novo assembled a long-read-based giant panda genome and resequenced the genomes of 35 giant pandas, including two brown pandas and two family trios associated with a brown panda. We identified a homozygous 25-bp deletion in the first exon of Bace2, a gene encoding amyloid precursor protein cleaving enzyme, as the most likely genetic basis for brown-and-white coat color. This deletion was further validated using PCR and Sanger sequencing of another 192 black giant pandas and CRISPR-Cas9 edited knockout mice. Our investigation revealed that this mutation reduced the number and size of melanosomes of the hairs in knockout mice and possibly in the brown panda, further leading to the hypopigmentation. These findings provide unique insights into the genetic basis of coat color variation in wild animals.
Collapse
Affiliation(s)
- Dengfeng Guan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang330045, China
| | - Shuyan Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Lingyun Song
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Pengpeng Zhao
- Shaanxi (Louguantai) Rescue and Breeding Center for Rare Wildlife, Xi’an710402, China
| | - Yonggang Nie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xin Huang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Li Yan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Yinghu Lei
- Shaanxi (Louguantai) Rescue and Breeding Center for Rare Wildlife, Xi’an710402, China
| | - Yibo Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Fuwen Wei
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang330045, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| |
Collapse
|
21
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Single-cell profiling of MC1R-inhibited melanocytes. Pigment Cell Melanoma Res 2024; 37:291-308. [PMID: 37972124 DOI: 10.1111/pcmr.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
The human red hair color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to define a MC1R-inhibited Gene Signature (MiGS) comprising a large set of previously unidentified genes which may be implicated in melanogenesis and oncogenic transformation. We show that one of the candidate MiGS genes, TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into further mechanisms by which melanocytes with reduced MC1R signaling may regulate pigmentation and offer new candidates of study toward understanding how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, PT, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, PT, Portugal
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Recknagel H, Leitão HG, Elmer KR. Genetic basis and expression of ventral colour in polymorphic common lizards. Mol Ecol 2024; 33:e17278. [PMID: 38268086 DOI: 10.1111/mec.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
Colour is an important visual cue that can correlate with sex, behaviour, life history or ecological strategies, and has evolved divergently and convergently across animal lineages. Its genetic basis in non-model organisms is rarely known, but such information is vital for determining the drivers and mechanisms of colour evolution. Leveraging genetic admixture in a rare contact zone between oviparous and viviparous common lizards (Zootoca vivipara), we show that females (N = 558) of the two otherwise morphologically indistinguishable reproductive modes differ in their ventral colouration (from pale to vibrant yellow) and intensity of melanic patterning. We find no association between female colouration and reproductive investment, and no evidence for selection on colour. Using a combination of genetic mapping and transcriptomic evidence, we identified two candidate genes associated with ventral colour differentiation, DGAT2 and PMEL. These are genes known to be involved in carotenoid metabolism and melanin synthesis respectively. Ventral melanic spots were associated with two genomic regions, including a SNP close to protein tyrosine phosphatase (PTP) genes. Using genome re-sequencing data, our results show that fixed coding mutations in the candidate genes cannot account for differences in colouration. Taken together, our findings show that the evolution of ventral colouration and its associations across common lizard lineages is variable. A potential genetic mechanism explaining the flexibility of ventral colouration may be that colouration in common lizards, but also across squamates, is predominantly driven by regulatory genetic variation.
Collapse
Affiliation(s)
- Hans Recknagel
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Henrique G Leitão
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Barrett LH, Fraga D, Lehtinen RM. The Genetic Basis of Melanism in Abert's Squirrel ( Sciurus aberti). Animals (Basel) 2024; 14:648. [PMID: 38396615 PMCID: PMC10885973 DOI: 10.3390/ani14040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Melanism is widespread in different taxa and has been hypothesized to provide adaptive benefits in certain environments. Melanism is typically caused by mutations in one of two regulatory genes: the Melanocortin 1 Receptor (MC1R) or the Agouti Signaling Protein (ASIP). Melanism has repeatedly evolved among tree squirrels and their relatives (tribe Sciurini) in at least 12 different species based on our review of the literature. The causal mutations for melanism have been characterized in two species so far. This study examines Abert's Squirrel (Sciurus aberti), which has a melanistic morph whose genetic basis has not yet been established. We sequenced the MC1R and ASIP genes for five wild-type and seven melanistic S. aberti individuals to search for melanism-associated mutations. A novel single base pair mutation in the ASIP gene, unique to S. aberti, was found to be associated with melanism in the species, indicating that melanism in S. aberti evolved independently from other tree squirrels and thus represents an example of convergent evolution. The independent evolution of melanism in this species suggests that there is an adaptive advantage to the melanistic phenotype. The geographic range and habitat of S. aberti suggest possible benefits associated with thermoregulation, post-forest-fire camouflage, or other untested hypotheses.
Collapse
Affiliation(s)
| | | | - Richard M. Lehtinen
- Biology Department, 931 College Mall, The College of Wooster, Wooster, OH 44691, USA; (L.H.B.); (D.F.)
| |
Collapse
|
24
|
Ottocento C, Rojas B, Burdfield-Steel E, Furlanetto M, Nokelainen O, Winters S, Mappes J. Diet influences resource allocation in chemical defence but not melanin synthesis in an aposematic moth. J Exp Biol 2024; 227:jeb245946. [PMID: 38179687 DOI: 10.1242/jeb.245946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
For animals that synthesise their chemical compounds de novo, resources, particularly proteins, can influence investment in chemical defences and nitrogen-based wing colouration such as melanin. Competing for the same resources often leads to trade-offs in resource allocation. We manipulated protein availability in the larval diet of the wood tiger moth, Arctia plantaginis, to test how early life resource availability influences relevant life history traits, melanin production and chemical defences. We expected higher dietary protein to result in more effective chemical defences in adult moths and a higher amount of melanin in the wings. According to the resource allocation hypothesis, we also expected individuals with less melanin to have more resources to allocate to chemical defences. We found that protein-deprived moths had a slower larval development, and their chemical defences were less unpalatable for bird predators, but the expression of melanin in their wings did not differ from that of moths raised on a high-protein diet. The amount of melanin in the wings, however, unexpectedly correlated positively with chemical defences. Our findings demonstrate that the resources available in early life have an important role in the efficacy of chemical defences, but melanin-based warning colours are less sensitive to resource variability than other fitness-related traits.
Collapse
Affiliation(s)
- Cristina Ottocento
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| | - Bibiana Rojas
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstraße 1, 1160 Vienna, Austria
| | - Emily Burdfield-Steel
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Miriam Furlanetto
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| | - Ossi Nokelainen
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
- Open Science Centre, PO Box 35, 40014University of Jyväskylä, Finland
| | - Sandra Winters
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikinkaari 1, PO Box 65, 00014 University of Helsinki, Finland
- University of Jyväskylä, Department of Biology and Environmental Science, PO Box 35, 40014 Jyväskylä, Finland
| |
Collapse
|
25
|
Keren-Rotem T, Main DC, Barocas A, Donaire-Barroso D, Haddas-Sasson M, Vila C, Shaharabany T, Wolf L, Tolley KA, Geffen E. Genetic and behavioural factors affecting interpopulation colour pattern variation in two congeneric chameleon species. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231554. [PMID: 38234439 PMCID: PMC10792394 DOI: 10.1098/rsos.231554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
We conducted a study on interpopulation variation of colour patterns in two congeneric chameleon species, which have an analogous life history. Both species are able to rapidly change colour pattern, and their context-dependent colour patterns often vary across a wide geographical range. Specifically, we tested four hypotheses that can explain the observed interpopulation variation of colour patterns by a series of behavioural field trials where the colour patterns of individuals were recorded and later analysed by a deep neural network algorithm. We used redundancy analysis to relate genetic, spectral and behavioural predictors to interpopulation colour pattern distance. Our results showed that both isolation by distance (IBD) and alternative mating tactics were significant predictors for interpopulation colour pattern variation in Chamaeleo chamaeleon males. By contrast, in Chamaeleo dilepis, the interpopulation colour pattern variation was largely explained by IBD, and evidence for alternative mating tactics was absent. In both chameleon species, the environmental colours showed no evidence of influencing chameleon interpopulation colour pattern variation, regardless of sex or behavioural context. This contrasting finding suggests that interpopulation context-dependent colour pattern variations in each species are maintained under a different set of selective pressures or circumstances.
Collapse
Affiliation(s)
- Tammy Keren-Rotem
- Ecology Department, Israel Nature and Parks Authority, Jerusalem, Israel
| | - Devon C. Main
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa
| | - Adi Barocas
- San Diego Zoo Wildlife Alliance, Escondido, CA, USA
- Wildlife Conservation Research Unit, University of Oxford, Oxford, UK
| | | | | | - Carles Vila
- Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Tal Shaharabany
- The Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Lior Wolf
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Krystal A. Tolley
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, South Africa
| | - Eli Geffen
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Wu S, Huang J, Li Y, Zhao L. Involvement of miR-495 in the skin pigmentation of rainbow trout (Oncorhynchus mykiss) through the regulation of mc1r. Int J Biol Macromol 2024; 254:127638. [PMID: 37879576 DOI: 10.1016/j.ijbiomac.2023.127638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
MicroRNAs (miRNAs) play crucial roles in skin pigmentation in animals. Rainbow trout (Oncorhynchus mykiss) is a key economic fish species worldwide, and skin color directly affects its economic value. However, the functions of miRNAs in rainbow trout skin pigmentation remain largely unknown. Herein, we overexpressed and silenced miR-495 in vitro and in vivo to investigate its functions. The analysis of spatial and temporal expression patterns suggested that miR-495 is a potential regulator during the process of skin pigmentation. In vitro, mc1r was validated as a direct target for miR-495 by dual-luciferase reporter assay, and overexpression of miR-495 significantly inhibited mc1r expression; in contrast, mc1r and its downstream gene mitf levels were markedly upregulated by decreased miR-495. In vivo, overexpressed miR-495 by injecting agomiR-495 led to a substantial decrease in the expression of mc1r and mitf in dorsal skin and liver, while the opposite results were obtained after miR-495 silencing by antagomiR-495. These findings suggested that miR-495 can target mc1r to regulate rainbow trout skin pigmentation, which provide a potential basis for using miRNAs as target drugs to treat pigmentation disorders and melanoma.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
27
|
Anderson CM, Fink T, McKinnon JS. Ultrastructural analysis of throat dermal tissue and chromatophore components in the threespine stickleback ( Gasterosteus aculeatus). PeerJ 2023; 11:e16248. [PMID: 38077425 PMCID: PMC10704984 DOI: 10.7717/peerj.16248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/15/2023] [Indexed: 12/18/2023] Open
Abstract
The threespine stickleback (Gasterosteus aculeatus) is an important model for studying the evolution of nuptial coloration, but histological analyses of color are largely lacking. Previous analyses of one nuptial coloration trait, orange-red coloration along the body, have indicated carotenoids are the main pigment producing this color. In addition, recent gene expression studies found variation in the correlates of throat coloration between the sexes and between populations, raising the possibility of variation in the mechanisms underlying superficially similar coloration. We used transmission electron microscopy (TEM) to investigate the histological correlates of color in the throat dermal tissue of threespine stickleback from Western North America, within and between sexes, populations, and ecotypes. Ultrastructural analysis revealed carotenoid-containing erythrophores to be the main chromatophore component associated with orange-red coloration in both males and females across populations. In individuals where some darkening of the throat tissue was present, with no obvious orange-red coloration, erythrophores were not detected. Melanophore presence was more population-specific in expression, including being the only chromatophore component detected in a population of darker fish. We found no dermal chromatophore units within colorless throat tissue. This work confirms the importance of carotenoids and the erythrophore in producing orange-red coloration across sexes, as well as melanin within the melanophore in producing darkened coloration, but does not reveal broad histological differences among populations with similar coloration.
Collapse
Affiliation(s)
| | - Thomas Fink
- Department of Biology, East Carolina University, Greenville, NC, United States of America
| | - Jeffrey S. McKinnon
- Department of Biology, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|
28
|
Chong Y, Tu X, Lu Y, Gao Z, He X, Hong J, Wu J, Wu D, Xi D, Deng W. Two High-Quality Cygnus Genome Assemblies Reveal Genomic Variations Associated with Plumage Color. Int J Mol Sci 2023; 24:16953. [PMID: 38069278 PMCID: PMC10707585 DOI: 10.3390/ijms242316953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
As an exemplary model for examining molecular mechanisms responsible for extreme phenotypic variations, plumage color has garnered significant interest. The Cygnus genus features two species, Cygnus olor and Cygnus atratus, that exhibit striking disparities in plumage color. However, the molecular foundation for this differentiation has remained elusive. Herein, we present two high-quality genomes for C. olor and C. atratus, procured using the Illumina and Nanopore technologies. The assembled genome of C. olor was 1.12 Gb in size with a contig N50 of 26.82 Mb, while its counterpart was 1.13 Gb in size with a contig N50 of 21.91 Mb. A comparative analysis unveiled three genes (TYR, SLC45A2, and SLC7A11) with structural variants in the melanogenic pathway. Notably, we also identified a novel gene, PWWP domain containing 2A (PWWP2A), that is related to plumage color, for the first time. Using targeted gene modification analysis, we demonstrated the potential genetic effect of the PWWP2A variant on pigment gene expression and melanin production. Finally, our findings offer insight into the intricate pattern of pigmentation and the role of polygenes in birds. Furthermore, these two high-quality genome references provide a comprehensive resource and perspective for comparative functional and genetic studies of evolution within the Cygnus genus.
Collapse
Affiliation(s)
- Yuqing Chong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Xiaolong Tu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Ying Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Zhendong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Xiaoming He
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Jieyun Hong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Jiao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Dongmei Xi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.C.); (Y.L.); (Z.G.); (X.H.); (J.H.); (J.W.); (D.X.)
| |
Collapse
|
29
|
Brien MN, Orteu A, Yen EC, Galarza JA, Kirvesoja J, Pakkanen H, Wakamatsu K, Jiggins CD, Mappes J. Colour polymorphism associated with a gene duplication in male wood tiger moths. eLife 2023; 12:e80116. [PMID: 37902626 PMCID: PMC10635649 DOI: 10.7554/elife.80116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/05/2023] [Indexed: 10/31/2023] Open
Abstract
Colour is often used as an aposematic warning signal, with predator learning expected to lead to a single colour pattern within a population. However, there are many puzzling cases where aposematic signals are also polymorphic. The wood tiger moth, Arctia plantaginis, displays bright hindwing colours associated with unpalatability, and males have discrete colour morphs which vary in frequency between localities. In Finland, both white and yellow morphs can be found, and these colour morphs also differ in behavioural and life-history traits. Here, we show that male colour is linked to an extra copy of a yellow family gene that is only present in the white morphs. This white-specific duplication, which we name valkea, is highly upregulated during wing development. CRISPR targeting valkea resulted in editing of both valkea and its paralog, yellow-e, and led to the production of yellow wings. We also characterise the pigments responsible for yellow, white, and black colouration, showing that yellow is partly produced by pheomelanins, while black is dopamine-derived eumelanin. Our results add to a growing number of studies on the genetic architecture of complex and seemingly paradoxical polymorphisms, and the role of gene duplications and structural variation in adaptive evolution.
Collapse
Affiliation(s)
- Melanie N Brien
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
| | - Anna Orteu
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Eugenie C Yen
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Juan A Galarza
- Ecology and Genetics Research Unit, University of OuluOuluFinland
| | - Jimi Kirvesoja
- Department of Biological and Environmental Science, University of JyväskyläJyväskyläFinland
| | - Hannu Pakkanen
- Department of Chemistry, University of JyväskyläJyväskyläFinland
| | | | - Chris D Jiggins
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
- Department of Biological and Environmental Science, University of JyväskyläJyväskyläFinland
| |
Collapse
|
30
|
Liao Y, Shi H, Han T, Jiang D, Lu B, Shi G, Zhu C, Li G. Pigment Identification and Gene Expression Analysis during Erythrophore Development in Spotted Scat ( Scatophagus argus) Larvae. Int J Mol Sci 2023; 24:15356. [PMID: 37895036 PMCID: PMC10607709 DOI: 10.3390/ijms242015356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Red coloration is considered an economically important trait in some fish species, including spotted scat, a marine aquaculture fish. Erythrophores are gradually covered by melanophores from the embryonic stage. Despite studies of black spot formation and melanophore coloration in the species, little is known about erythrophore development, which is responsible for red coloration. 1-phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to inhibit melanogenesis and contribute to the visualization of embryonic development. In this study, spotted scat embryos were treated with 0.003% PTU from 0 to 72 h post fertilization (hpf) to inhibit melanin. Erythrophores were clearly observed during the embryonic stage from 14 to 72 hpf, showing an initial increase (14 to 36 hpf), followed by a gradual decrease (36 to 72 hpf). The number and size of erythrophores at 36 hpf were larger than those at 24 and 72 hpf. At 36 hpf, LC-MS and absorbance spectrophotometry revealed that the carotenoid content was eight times higher than the pteridine content, and β-carotene and lutein were the main pigments related to red coloration in spotted scat larvae. Compared with their expression in the normal hatching group, rlbp1b, rbp1.1, and rpe65a related to retinol metabolism and soat2 and apoa1 related to steroid hormone biosynthesis and steroid biosynthesis were significantly up-regulated in the PTU group, and rh2 associated with phototransduction was significantly down-regulated. By qRT-PCR, the expression levels of genes involved in carotenoid metabolism (scarb1, plin6, plin2, apoda, bco1, and rep65a), pteridine synthesis (gch2), and chromatophore differentiation (slc2a15b and csf1ra) were significantly higher at 36 hpf than at 24 hpf and 72 hpf, except for bco1. These gene expression profiles were consistent with the developmental changes of erythrophores. These findings provide insights into pigment cell differentiation and gene function in the regulation of red coloration and contribute to selective breeding programs for ornamental aquatic animals.
Collapse
Affiliation(s)
- Yongguan Liao
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Tong Han
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Baoyue Lu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China;
| | - Gang Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| |
Collapse
|
31
|
James ME, Allsopp RN, Groh JS, Kaur A, Wilkinson MJ, Ortiz-Barrientos D. Uncovering the genetic architecture of parallel evolution. Mol Ecol 2023; 32:5575-5589. [PMID: 37740681 DOI: 10.1111/mec.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/25/2023]
Abstract
Identifying the genetic architecture underlying adaptive traits is exceptionally challenging in natural populations. This is because associations between traits not only mask the targets of selection but also create correlated patterns of genomic divergence that hinder our ability to isolate causal genetic effects. Here, we examine the repeated evolution of components of the auxin pathway that have contributed to the replicated loss of gravitropism (i.e. the ability of a plant to bend in response to gravity) in multiple populations of the Senecio lautus species complex in Australia. We use a powerful approach which combines parallel population genomics with association mapping in a Multiparent Advanced Generation Inter-Cross (MAGIC) population to break down genetic and trait correlations to reveal how adaptive traits evolve during replicated evolution. We sequenced auxin and shoot gravitropism-related gene regions in 80 individuals from six natural populations (three parallel divergence events) and 133 individuals from a MAGIC population derived from two of the recently diverged natural populations. We show that artificial tail selection on gravitropism in the MAGIC population recreates patterns of parallel divergence in the auxin pathway in the natural populations. We reveal a set of 55 auxin gene regions that have evolved repeatedly during the evolution of the species, of which 50 are directly associated with gravitropism divergence in the MAGIC population. Our work creates a strong link between patterns of genomic divergence and trait variation contributing to replicated evolution by natural selection, paving the way to understand the origin and maintenance of adaptations in natural populations.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Robin N Allsopp
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jeffrey S Groh
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Avneet Kaur
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Melanie J Wilkinson
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
32
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. PLoS Genet 2023; 19:e1010880. [PMID: 37862332 PMCID: PMC10588866 DOI: 10.1371/journal.pgen.1010880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
33
|
Peterson SM, Watowich MM, Renner LM, Martin S, Offenberg E, Lea A, Montague MJ, Higham JP, Snyder-Mackler N, Neuringer M, Ferguson B. Genetic variants in melanogenesis proteins TYRP1 and TYR are associated with the golden rhesus macaque phenotype. G3 (BETHESDA, MD.) 2023; 13:jkad168. [PMID: 37522525 PMCID: PMC10542561 DOI: 10.1093/g3journal/jkad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/09/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Nonhuman primates (NHPs) are vital translational research models due to their high genetic, physiological, and anatomical homology with humans. The "golden" rhesus macaque (Macaca mulatta) phenotype is a naturally occurring, inherited trait with a visually distinct pigmentation pattern resulting in light blonde colored fur. Retinal imaging also reveals consistent hypopigmentation and occasional foveal hypoplasia. Here, we describe the use of genome-wide association in 2 distinct NHP populations to identify candidate variants in genes linked to the golden phenotype. Two missense variants were identified in the Tyrosinase-related protein 1 gene (Asp343Gly and Leu415Pro) that segregate with the phenotype. An additional and distinct association was also found with a Tyrosinase variant (His256Gln), indicating the light-colored fur phenotype can result from multiple genetic mechanisms. The implicated genes are related through their contribution to the melanogenesis pathway. Variants in these 2 genes are known to cause pigmentation phenotypes in other species and to be associated with oculocutaneous albinism in humans. The novel associations presented in this study will permit further investigations into the role these proteins and variants play in the melanogenesis pathway and model the effects of genetic hypopigmentation and altered melanogenesis in a naturally occurring nonhuman primate model.
Collapse
Affiliation(s)
- Samuel M Peterson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Marina M Watowich
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren M Renner
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Samantha Martin
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Emma Offenberg
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Amanda Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School for Human Evolution & Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
34
|
Zakoh K, Fujiwara K, Takada T, Osada N, Suzuki H. Genealogical characterization of regional populations and dorsal coat color variation in the house mouse Mus musculus from Asia based on haplotype structure analysis of a gene-rich region harboring Mc1r. Genes Genet Syst 2023; 98:73-87. [PMID: 37558462 DOI: 10.1266/ggs.22-00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
We analyzed 196 haplotype sequences from a gene-rich region (250 kb) that includes Mc1r, a gene involved in coat color regulation, to gain insight into the evolution of coat color variation in subspecies of the house mouse Mus musculus. Phylogenetic networks revealed haplotype groups from the major subspecies of M. m. castaneus (CAS), M. m. domesticus (DOM), and M. m. musculus (MUS). Using haplotype sequences assigned to each of CAS and MUS through phylogenetic analysis, we proposed migration routes associated with prehistoric humans from west to east across Eurasia. Comparing nucleotide diversity among subspecies-specific haplotypes in different geographic areas showed a marked reduction during migration, particularly in MUS-derived haplotypes from Korea and Japan, suggesting intensive population bottlenecks during migration. We found that a C>T polymorphism at site 302 (c.302C>T) in the Mc1r coding region correlated with a darkening of dorsal fur color in both CAS and MUS. However, C/C homozygous mice in MUS showed marked variation in lightness, indicating the possibility of another genetic determinant that affects the lightness of dorsal fur color. Detailed sequence comparisons of haplotypes revealed that short fragments assigned to DOM were embedded in CAS-assigned fragments, indicating ancient introgression between subspecies. The estimated age of c.302C>T also supports the hypothesis that genetic interaction between subspecies occurred in ancient times. This suggests that the genome of M. musculus evolved through gene flow between subspecies over an extended period before the movement of the species in conjunction with prehistoric humans.
Collapse
Affiliation(s)
- Kazuhiro Zakoh
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University
| | - Kazumichi Fujiwara
- Graduate School of Information Science and Technology, Hokkaido University
| | - Toyoyuki Takada
- Integrated Bioresource Information Division, RIKEN BioResource Research Center
| | - Naoki Osada
- Graduate School of Information Science and Technology, Hokkaido University
| | - Hitoshi Suzuki
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University
| |
Collapse
|
35
|
Foster BJ, McCulloch GA, Foster Y, Kroos GC, King TM, Waters JM. ebony underpins Batesian mimicry in melanic stoneflies. Mol Ecol 2023; 32:4986-4998. [PMID: 37503654 DOI: 10.1111/mec.17085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
The evolution of Batesian mimicry - whereby harmless species avoid predation through their resemblance to harmful species - has long intrigued biologists. In rare cases, Batesian mimicry is linked to intraspecific colour variation, in which only some individuals within a population resemble a noxious 'model'. Here, we assess intraspecific colour variation within a widespread New Zealand stonefly, wherein highly melanized individuals of Zelandoperla closely resemble a chemically defended aposematic stonefly, Austroperla cyrene. We assess convergence in the colour pattern of these two species, compare their relative palatability to predators, and use genome-wide association mapping to assess the genetic basis of this resemblance. Our analysis reveals that melanized Zelandoperla overlap significantly with Austroperla in colour space but are significantly more palatable to predators, implying that they are indeed Batesian mimics. Analysis of 194,773 genome-wide SNPs reveals an outlier locus (ebony) strongly differentiating melanic versus non-melanic Zelandoperla. Genotyping of 338 specimens from a single Zelandoperla population indicates that ebony explains nearly 70% of the observed variance in melanism. As ebony has a well-documented role in insect melanin biosynthesis, our findings indicate this locus has a conserved function across deeply divergent hexapod lineages. Distributional records suggest a link between the occurrence of melanic Zelandoperla and the forested ecosystems where the model Austroperla is abundant, suggesting the potential for adaptive shifts in this system underpinned by environmental change.
Collapse
Affiliation(s)
- Brodie J Foster
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Yasmin Foster
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Gracie C Kroos
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Tania M King
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
36
|
Li Z, Xu C, Yu H, Kong L, Liu S, Li Q. Effects of Dietary Cystine and Tyrosine Supplementation on Melanin Synthesis in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:537-547. [PMID: 37369882 DOI: 10.1007/s10126-023-10223-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Melanogenesis is a multistep process to produce melanin for dark pigmentation in skin coloration. Previous studies in vertebrates demonstrated that cystine and tyrosine amino acids are involved in the melanin synthesis. However, very little is known about the melanogenesis in bivalve. In this study, cystine supplementation for 30 days significantly upregulated the expression of CgB-aat1, CgCbs and CgTyr and pheomelanin content in the Pacific oyster Crassostrea gigas. Transmission electron microscope (TEM) results revealed more melanosomes in the connective tissue and melanin granules were secreted in epithelium of mantle. In contrast, tyrosine supplementation had no clear effect on melanogenesis except the gene expression changes of CgB-aat1 and CgCbs. In addition, prolonged supplementation of cystine or tyrosine for 60 days had a negative impact on melanogenesis. Indeed, after 60 days, expression of most of the melanin synthesis-related genes under study was decreased, and melanin content was significantly reduced, indicating that cystine and tyrosine might inhibit production of eumelanin and pheomelanin, respectively. In addition, in vitro analysis using primary cell culture from mantle tissue indicated that incubation with cystine, tyrosine, or B-AAT1 polypeptide, CBS/TYR recombinant proteins induced the increase of CgB-aat1 and CgCbs expression in a dose-dependent manner, suggesting the presence of a regulatory network in response to cystine and tyrosine amino acids intakes in pheomelanin synthesis-related gene expression. Taken together, these data indicate that cystine-CgB-aat1-CgCbs-CgTyr axis is a potential regulator of the pheomelanin biosynthesis pathway, and thus plays an important role in the mantle pigmentation in C. gigas. This work provides a new clue for selective cultivation of oyster strains with specific shell colors in bivalve breeding.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
37
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
38
|
Xing L, Wang L, Liu S, Sun L, Wessel GM, Yang H. Single-Cell Transcriptome and Pigment Biochemistry Analysis Reveals the Potential for the High Nutritional and Medicinal Value of Purple Sea Cucumbers. Int J Mol Sci 2023; 24:12213. [PMID: 37569587 PMCID: PMC10419132 DOI: 10.3390/ijms241512213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The sea cucumber Apostichopus japonicus has important nutritional and medicinal value. Unfortunately, we know little of the source of active chemicals in this animal, but the plentiful pigments of these animals are thought to function in intriguing ways for translation into clinical and food chemistry usage. Here, we found key cell groups with the gene activity predicted for the color morphology of sea cucumber body using single-cell RNA-seq. We refer to these cell populations as melanocytes and quinocytes, which are responsible for the synthesis of melanin and quinone pigments, respectively. We integrated analysis of pigment biochemistry with the transcript profiles to illuminate the molecular mechanisms regulating distinct pigment formation in echinoderms. In concert with the correlated pigment analysis from each color morph, this study expands our understanding of medically important pigment production, as well as the genetic mechanisms for color morphs, and provides deep datasets for exploring advancements in the fields of bioactives and nutraceuticals.
Collapse
Affiliation(s)
- Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (L.X.); (S.L.); (H.Y.)
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Wang
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (L.X.); (S.L.); (H.Y.)
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (L.X.); (S.L.); (H.Y.)
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (L.X.); (S.L.); (H.Y.)
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550625. [PMID: 37546953 PMCID: PMC10402103 DOI: 10.1101/2023.07.26.550625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
40
|
Sooriyabandara MGC, Bandaranayake AU, Hathurusinghe HABM, Jayasundara SM, Marasinghe MSRRP, Prasad GAT, Abeywardana VPMK, Pinidiya MA, Nilanthi RMR, Bandaranayake PCG. A unique single nucleotide polymorphism in Agouti Signalling Protein (ASIP) gene changes coat colour of Sri Lankan leopard (Panthera pardus kotiya) to dark black. PLoS One 2023; 18:e0269967. [PMID: 37440497 PMCID: PMC10343082 DOI: 10.1371/journal.pone.0269967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The Sri Lankan leopard (Panthera pardus kotiya) is an endangered subspecies restricted to isolated and fragmented populations in Sri Lanka. Among them, melanistic leopards have been recorded on a few occasions. Literature suggests the evolution of melanism several times in the Felidae family, with three species having distinct mutations. Nevertheless, the mutations or other variations in the remaining species, including Sri Lankan melanistic leopard, are unknown. We used reference-based assembled nuclear genomes of Sri Lankan wild type and melanistic leopards and de novo assembled mitogenomes of the same to investigate the genetic basis, adaptive significance, and evolutionary history of the Sri Lankan melanistic leopard. Interestingly, we identified a single nucleotide polymorphism in exon-4 Sri Lankan melanistic leopard, which may completely ablate Agouti Signalling Protein (ASIP) function. The wild type leopards in Sri Lanka did not carry this mutation, suggesting the cause for the occurrence of melanistic leopords in the population. Comparative analysis of existing genomic data in the literature suggests it as a P. p. kotiya specific mutation and a novel mutation in the ASIP-gene of the Felidae family, contributing to naturally occurring colour polymorphism. Our data suggested the coalescence time of Sri Lankan leopards at ~0.5 million years, sisters to the Panthera pardus lineage. The genetic diversity was low in Sri Lankan leopards. Further, the P. p. kotiya melanistic leopard is a different morphotype of the P. p. kotiya wildtype leopard resulting from the mutation in the ASIP-gene. The ability of black leopards to camouflage, along with the likelihood of recurrence and transfer to future generations, suggests that this rare mutation could be environment-adaptable.
Collapse
Affiliation(s)
| | - A. U. Bandaranayake
- Department of Computer Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - H. A. B. M. Hathurusinghe
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. M. Jayasundara
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - G. A. T. Prasad
- Department of Wildlife Conservation, Battaramulla, Sri Lanka
| | | | - M. A. Pinidiya
- Department of Wildlife Conservation, Battaramulla, Sri Lanka
| | | | - P. C. G. Bandaranayake
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
41
|
Brandon AA, Michael C, Carmona Baez A, Moore EC, Ciccotto PJ, Roberts NB, Roberts RB, Powder KE. Distinct genetic origins of eumelanin intensity and barring patterns in cichlid fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547430. [PMID: 37461734 PMCID: PMC10349982 DOI: 10.1101/2023.07.02.547430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Pigment patterns are incredibly diverse across vertebrates and are shaped by multiple selective pressures from predator avoidance to mate choice. A common pattern across fishes, but for which we know little about the underlying mechanisms, is repeated melanic vertical bars. In order to understand genetic factors that modify the level or pattern of vertical barring, we generated a genetic cross of 322 F2 hybrids between two cichlid species with distinct barring patterns, Aulonocara koningsi and Metriaclima mbenjii. We identify 48 significant quantitative trait loci that underlie a series of seven phenotypes related to the relative pigmentation intensity, and four traits related to patterning of the vertical bars. We find that genomic regions that generate variation in the level of eumelanin produced are largely independent of those that control the spacing of vertical bars. Candidate genes within these intervals include novel genes and those newly-associated with vertical bars, which could affect melanophore survival, fate decisions, pigment biosynthesis, and pigment distribution. Together, this work provides insights into the regulation of pigment diversity, with direct implications for an animal's fitness and the speciation process.
Collapse
Affiliation(s)
- A. Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Cassia Michael
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Aldo Carmona Baez
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Emily C. Moore
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | - Natalie B. Roberts
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Reade B. Roberts
- Department of Biological Sciences, and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Kara E. Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
42
|
MacDonald BT, Elowe NH, Garvie CW, Kaushik VK, Ellinor PT. Identification of a new Corin atrial natriuretic peptide-converting enzyme substrate: Agouti-signaling protein (ASIP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538495. [PMID: 37162877 PMCID: PMC10168342 DOI: 10.1101/2023.04.26.538495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Corin is a transmembrane tethered enzyme best known for processing the hormone atrial natriuretic peptide (ANP) in cardiomyocytes to control electrolyte balance and blood pressure. Loss of function mutations in Corin prevent ANP processing and lead to hypertension. Curiously, Corin loss of function variants also result in lighter coat color pigmentation in multiple species. Corin pigmentation effects are dependent on a functional Agouti locus encoding the agouti-signaling protein (ASIP) based on a genetic interaction. However, the nature of this conserved role of Corin has not been defined. Here we report that ASIP is a direct proteolytic substrate of the Corin enzyme.
Collapse
Affiliation(s)
- Bryan T. MacDonald
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Nadine H. Elowe
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Colin W. Garvie
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Virendar K. Kaushik
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
43
|
Caro T. Bear essentials. Trends Genet 2023; 39:233-234. [PMID: 36828727 DOI: 10.1016/j.tig.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Strangely, American black bears come in many colours. New work by Puckett et al. shows that a missense alteration in the gene encoding tyrosinase-related protein 1 (TYRP1) likely interferes with melanin synthesis and is responsible for the cinnamon colour variant in the southwest USA. However, the adaptive significance of colour polymorphisms in this large carnivore remains opaque.
Collapse
Affiliation(s)
- Tim Caro
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; Center for Population Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
44
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Loss of MC1R signaling implicates TBX3 in pheomelanogenesis and melanoma predisposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532018. [PMID: 37090624 PMCID: PMC10120706 DOI: 10.1101/2023.03.10.532018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The human Red Hair Color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA-sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to reveal a Pheomelanin Gene Signature (PGS) comprising genes implicated in melanogenesis and oncogenic transformation. We show that TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, is part of the PGS and binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into mechanisms by which MC1R signaling regulates pigmentation and how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H. Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Dawn E. Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Kevin M. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, PT
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, PT
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
45
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
46
|
Laslo M, Just J, Angelini DR. Theme and variation in the evolution of insect sex determination. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:162-181. [PMID: 35239250 PMCID: PMC10078687 DOI: 10.1002/jez.b.23125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
The development of dimorphic adult sexes is a critical process for most animals, one that is subject to intense selection. Work in vertebrate and insect model species has revealed that sex determination mechanisms vary widely among animal groups. However, this variation is not uniform, with a limited number of conserved factors. Therefore, sex determination offers an excellent context to consider themes and variations in gene network evolution. Here we review the literature describing sex determination in diverse insects. We have screened public genomic sequence databases for orthologs and duplicates of 25 genes involved in insect sex determination, identifying patterns of presence and absence. These genes and a 3.5 reference set of 43 others were used to infer phylogenies and compared to accepted organismal relationships to examine patterns of congruence and divergence. The function of candidate genes for roles in sex determination (virilizer, female-lethal-2-d, transformer-2) and sex chromosome dosage compensation (male specific lethal-1, msl-2, msl-3) were tested using RNA interference in the milkweed bug, Oncopeltus fasciatus. None of these candidate genes exhibited conserved roles in these processes. Amidst this variation we wish to highlight the following themes for the evolution of sex determination: (1) Unique features within taxa influence network evolution. (2) Their position in the network influences a component's evolution. Our analyses also suggest an inverse association of protein sequence conservation with functional conservation.
Collapse
Affiliation(s)
- Mara Laslo
- Department of Cell Biology, Curriculum Fellows ProgramHarvard Medical School25 Shattuck StBostonMassachusettsUSA
| | - Josefine Just
- Department of Organismic and Evolutionary BiologyHarvard University26 Oxford StCambridgeMassachusettsUSA
- Department of BiologyColby College5734 Mayflower Hill DrWatervilleMaineUSA
| | - David R. Angelini
- Department of BiologyColby College5734 Mayflower Hill DrWatervilleMaineUSA
| |
Collapse
|
47
|
Schirmer SC, Gawryszewski FM, Cardoso MZ, Pessoa DMA. Melanism and color saturation of butterfly assemblages: A comparison between a tropical rainforest and a xeric white forest. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.932755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The study of butterfly coloration has helped to identify the ecological pressures involved in the evolution of animal coloration. However, almost all studies that addressed this issue have focused on species that inhabit more temperate environments, leaving the species and ecological factors of tropical regions mostly understudied. Here, our purpose was to evaluate whether butterfly assemblages from two distinct Neotropical biomes (i.e., tropical rainforest and xeric white forest) differ regarding their melanism and/or color saturation. Our hypotheses were that (1) tropical rainforest butterflies should be more melanic and color saturated, and that (2) butterflies from more open/arid tropical environments should be more melanic on their dorsal wing surfaces than on their ventral wings. Therefore, we quantified melanism and color saturation from dorsal and ventral surfaces of 121 different butterfly species. Comparisons show that rainforest butterflies, when contrasted to white forest butterflies, have more melanic dorsal wing surfaces, which might be seen as a form of protection against parasites. Our data also show that rainforest butterflies, but not white forest species, have darker dorsal wing surfaces, when compared to their own ventral surfaces, a trend that was also found for species inhabiting both biomes, which might be associated to thermoregulatory advantages. At last, our results also point that butterflies' dorsal wing sides present a higher variance between species (regardless of Biome), when compared to their own ventral wing side, an indication that some ecological factor (e.g., predation avoidance) might be exerting a strong homogenizing force on ventral wing coloration.
Collapse
|
48
|
Bantlin DA, Evers EEM. First record of the servaline morph in a serval ( Leptailurus serval Schreber, 1776) in Akagera National Park, Rwanda. MAMMALIA 2023. [DOI: 10.1515/mammalia-2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The serval (Leptailurus serval) is a medium-sized felid that is widespread throughout Sub-Saharan Africa. We report on the first scientific record of the servaline morph in a serval in Akagera National Park, Rwanda. Though this morph has been documented in the forested ecosystems of West and Central Africa, the servaline morph has not been recorded in a predominantly savannah ecosystem. Further research into the prevalence of this morph outside of forest ecosystems and the adaptive advantage of the servaline coat pattern in servals is recommended. Our findings highlight the importance of conserving savannah ecosystems to preserve morphological diversity in a species.
Collapse
Affiliation(s)
- Drew Arthur Bantlin
- Conservation and Research Department , Akagera National Park , Kayonza , Eastern Province , Rwanda
| | - Emma Else Maria Evers
- Conservation and Research Department , Akagera National Park , Kayonza , Eastern Province , Rwanda
| |
Collapse
|
49
|
Li Z, Hu B, Du L, Hou C, Li Q. Involvement of B-aat1 and Cbs in regulating mantle pigmentation in the Pacific oyster (Crassostrea gigas). Mol Biol Rep 2023; 50:377-387. [PMID: 36335521 DOI: 10.1007/s11033-022-08037-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Shell color formation is an important physiological process in bivalves, the molecular genetic basis has potential application in bivalve aquaculture, but there is still remaining unclear about this issue. The cystine/glutamate transporter (Slc7a11) and cystathionine beta-synthase (Cbs) are integral genes in pheomelanin synthesis pathway, which is vital to skin pigmentation. METHODS AND RESULTS Here, the sequences of b (0, +) -type amino acid transporter 1 (B-aat1) and Cbs in Pacific oyster (Crassostrea gigas) (CgB-aat1, CgCbs) were characterized. Phylogenetically, the deduced amino acid sequences of CgB-aat1 and CgCbs both possessed conserved features. Genes were both ubiquitously expressed in six tested tissues with more abundant expression level in central mantle. Besides, the polyclonal antibodies of CgB-aat1, CgCbs, CgTyr, and CgTyrp2 were successfully prepared. Immunofluorescence analysis revealed that CgB-aat1 and CgCbs proteins were both expressed in gill rudiments of eyed-larvae and concentrated mainly in cytoplasm of epithelial cell and nerve axons in mantle. Additionally, after CgB-aat1 or CgCbs silencing, expressions at mRNA and protein levels of CgB-aat1 and CgCbs involved in pheomelanin synthesis were significantly suppressed, and CgTyr, CgTyrp1 and CgTyrp2 related to eumelanin synthesis were also down-regulated but no apparent differences, respectively. Moreover, micrographic examination found less brown-granules at mantle edge in CgB-aat1 interference group. CONCLUSION These results implied that pheomelanin synthesis was possible induced by CgB-aat1-CgTyr-CgCbs axis, and it played an essential role on mantle pigmentation in the oysters. These findings provide the useful genetic knowledge and enrich the physiological information for the shell color formation in bivalve aquaculture.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lijie Du
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chunhao Hou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
50
|
Shi A, Ma H, Shi X, Zhou W, Pan W, Song Y, Chen Q, Yu X, Niu C, Yang Y, Cheng Y, Yang X. Effects of microbe-derived antioxidants on growth, digestive and aminotransferase activities, and antioxidant capacities in the hepatopancreas of Eriocheir sinensis under ammonia nitrogen stress. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|