1
|
Crombie TA, McKeown R, Moya ND, Evans K, Widmayer S, LaGrassa V, Roman N, Tursunova O, Zhang G, Gibson S, Buchanan C, Roberto N, Vieira R, Tanny R, Andersen E. CaeNDR, the Caenorhabditis Natural Diversity Resource. Nucleic Acids Res 2024; 52:D850-D858. [PMID: 37855690 PMCID: PMC10767927 DOI: 10.1093/nar/gkad887] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.
Collapse
Affiliation(s)
- Timothy A Crombie
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Cell, Molecular, Developmental biology, and Biophysics Graduate Program, ohns Hopkins University, Baltimore, MD, USA
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Vincent LaGrassa
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Natalie Roman
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Orzu Tursunova
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sophia B Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Claire M Buchanan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Nicole M Roberto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Rodolfo Vieira
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Robyn E Tanny
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Velazco-Cruz L, Ross JA. Genetic architecture and temporal analysis of Caenorhabditis briggsae hybrid developmental delay. PLoS One 2022; 17:e0272843. [PMID: 35951524 PMCID: PMC9371335 DOI: 10.1371/journal.pone.0272843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
Identifying the alleles that reduce hybrid fitness is a major goal in the study of speciation genetics. It is rare to identify systems in which hybrid incompatibilities with minor phenotypic effects are segregating in genetically diverse populations of the same biological species. Such traits do not themselves cause reproductive isolation but might initiate the process. In the nematode Caenorhabditis briggsae, a small percent of F2 generation hybrids between two natural populations suffer from developmental delay, in which adulthood is reached after approximately 33% more time than their wild-type siblings. Prior efforts to identify the genetic basis for this hybrid incompatibility assessed linkage using one or two genetic markers on chromosome III and suggested that delay is caused by a toxin-antidote element. Here, we have genotyped F2 hybrids using multiple chromosome III markers to refine the developmental delay locus. Also, to better define the developmental delay phenotype, we measured the development rate of 66 F2 hybrids and found that delay is not restricted to a particular larval developmental stage. Deviation of the developmental delay frequency from hypothetical expectations for a toxin-antidote element adds support to the assertion that the epistatic interaction is not fully penetrant. Our mapping and refinement of the delay phenotype motivates future efforts to study the genetic architecture of hybrid dysfunction between genetically distinct populations of one species by identifying the underlying loci.
Collapse
Affiliation(s)
- Leonardo Velazco-Cruz
- Department of Biology, California State University, Fresno, California, United States of America
| | - Joseph A. Ross
- Department of Biology, California State University, Fresno, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Abstract
Wild populations of the model organism C. elegans represent a valuable resource, allowing for genetic characterization underlying natural phenotypic variation. Here we provide a simple protocol on how to sample and rapidly identify C. elegans wild isolates. We outline how to find suitable habitats and organic substrates, followed by describing isolation and identification of C. elegans live cultures based on easily recognizable morphological characteristics, molecular barcodes, and mating tests. This protocol uses standard laboratory equipment and requires little prior knowledge of C. elegans biology.
Collapse
Affiliation(s)
| | - Nausicaa Poullet
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
- URZ, INRAE, Petit-Bourg (Guadeloupe), France
| | | |
Collapse
|
4
|
Abd El Azim AM, Khashaba EHK. Genetic variability among three Egyptian isolates of Heterorhabditis indica using a new marker technique (SCoT). EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL 2021; 31:71. [DOI: 10.1186/s41938-021-00419-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/13/2021] [Indexed: 09/02/2023]
Abstract
Abstract
Background
Entomopathogenic nematodes (EPNs) are a group of nematode families, have the ability to search for their hosts, and are considered as promising biological control candidates for insect pests, providing protection to non-target organisms and the environment.
Results
This study was conducted to isolate indigenous EPN isolates from Egyptian agricultural soils for further use in biological control programs and study their genetic polymorphism among the previously isolated isolates under accession no. MH553167 and MK300683 and the new isolate (MH496627), using the start codon targeted (SCoT) marker. One out of 15 soil samples obtained from a banana cultivated field was positive for the presence of EPNs, using the Galleria baiting method. Morphological analysis and sequencing of the internal transcribed spacer (ITS) region suggested that the isolate obtained belongs to Heterorhabditis indica. The sequence of the ITS was submitted to the National Center for Biotechnology Information (NCBI) and registered under accession no. MH496627. Ten SCoT primers were used in the study; the polymorphic bands were 68 out of 76 with 89% as polymorphism percentage. The highest numbers of bands were 10 bands generated by SCoT 1 and SCoT 18 while SCoT 48 and SCoT 60 recorded the lowest band number (5 bands).
Conclusions
The present study is considered as a preliminary study to demonstrate the effectiveness of the SCoT marker for the first time in assessing genetic relationships in EPNs.
Collapse
|
5
|
Sepulveda NB, Petrella LN. Temperature stressed Caenorhabditis elegans males fail to mate successfully and successful males produce very few viable cross progeny. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000475. [PMID: 34693216 PMCID: PMC8527335 DOI: 10.17912/micropub.biology.000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 11/06/2022]
Abstract
Exposure to moderate temperature stress can have profoundly negative effects on an organism's reproductive capacity at temperatures where there are minimal or indiscernible effects on the organism as a whole. These negative effects are often more pronounced in males of the species that produce sperm. Previously we showed that few males of Caenorhabditis elegans wild type strains are able to successfully produce any cross progeny after experiencing temperature stress. However, these experiments did not assess the number of progeny from temperature stressed males. To understand if temperature stress can reduce the number of progeny a male sires, we crossed temperature stressed males of three wild type strains of C. elegans: JU1171, LKC34, and N2, to strain matched hermaphrodites of their own genetic background or to uncoordinated hermaphrodites in the N2 background. We found that significantly fewer males exposed to moderate temperature stress can successfully mate and that the small number of males in the population that do successfully mate produce significantly fewer viable cross progeny than unstressed controls. Our results suggest that exposure to moderate temperature stress significantly reduces male C. elegans chances at reproducing similar to what is seen in other organisms.
Collapse
|
6
|
Le TS, Nguyen TTH, Thi Mai Huong B, Nguyen HG, Ha BH, Nguyen VS, Nguyen MH, Nguyen HH, Wang J. Cultivation of Caenorhabditis elegans on new cheap monoxenic media without peptone. J Nematol 2021; 53:e2021-36. [PMID: 33860269 PMCID: PMC8040142 DOI: 10.21307/jofnem-2021-036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 01/30/2023] Open
Abstract
The study of species biodiversity within the Caenorhabditis genus of nematodes would be facilitated by the isolation of as many species as possible. So far, over 50 species have been found, usually associated with decaying vegetation or soil samples, with many from Africa, South America and Southeast Asia. Scientists based in these regions can contribute to Caenorhabditis sampling and their proximity would allow intensive sampling, which would be useful for understanding the natural history of these species. However, severely limited research budgets are often a constraint for these local scientists. In this study, we aimed to find a more economical, alternative growth media to rear Caenorhabditis and related species. We tested 25 media permutations using cheaper substitutes for the reagents found in the standard nematode growth media (NGM) and found three media combinations that performed comparably to NGM with respect to the reproduction and longevity of C. elegans. These new media should facilitate the isolation and characterization of Caenorhabditis and other free-living nematodes for the researchers in the poorer regions such as Africa, South America, and Southeast Asia where nematode diversity appears high.
Collapse
Affiliation(s)
- Tho Son Le
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - T. T. Hang Nguyen
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Bui Thi Mai Huong
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - H. Gam Nguyen
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - B. Hong Ha
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Van Sang Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Minh Hung Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Huy-Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Noble LM, Yuen J, Stevens L, Moya N, Persaud R, Moscatelli M, Jackson JL, Zhang G, Chitrakar R, Baugh LR, Braendle C, Andersen EC, Seidel HS, Rockman MV. Selfing is the safest sex for Caenorhabditis tropicalis. eLife 2021; 10:e62587. [PMID: 33427200 PMCID: PMC7853720 DOI: 10.7554/elife.62587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Mating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three Caenorhabditis species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, Caenorhabditis tropicalis is the least genetically diverse and most afflicted by outbreeding depression. We generated a chromosomal-scale genome for C. tropicalis and surveyed global diversity. Population structure is very strong, and islands of extreme divergence punctuate a genomic background that is highly homogeneous around the globe. Outbreeding depression in the laboratory is caused largely by multiple Medea-like elements, genetically consistent with maternal toxin/zygotic antidote systems. Loci with Medea activity harbor novel and duplicated genes, and their activity is modified by mito-nuclear background. Segregating Medea elements dramatically reduce fitness, and simulations show that selfing limits their spread. Frequent selfing in C. tropicalis may therefore be a strategy to avoid Medea-mediated outbreeding depression.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | - John Yuen
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Nicolas Moya
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Riaad Persaud
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Marc Moscatelli
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Jacqueline L Jackson
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | | | - L Ryan Baugh
- Department of Biology, Duke UniversityDurhamUnited States
| | - Christian Braendle
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, InsermNiceFrance
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan UniversityYpsilantiUnited States
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
8
|
Khashaba EHK, Moghaieb REA, Abd El Azim AM, Ibrahim SAM. Isolation, identification of entomopathogenic nematodes, and preliminary study of their virulence against the great wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae). EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL 2020; 30:55. [DOI: 10.1186/s41938-020-00257-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/28/2020] [Indexed: 09/02/2023]
Abstract
AbstractEntomopathogenic nematodes (EPNs) are a group of biological control agents that are characterized by their ability to search for hosts, safety to non-target insects and environment, and their ability to be used combined with agricultural chemicals. The objectives of this study were to isolate EPNs from agricultural soil in Egypt and study their virulence against the great wax moth,Galleria mellonellaL. (Lepidoptera: Pyralidae), for further use in biological control program. Two out of 20 soil samples collected from orchards cultivated with olives and mango were positive for the presence of EPNs, using theGalleriabaiting technique. The positive soil samples were sandy clay loam. Sequencing of the internal transcribed spacer (ITS) region indicated that the isolates obtained belong toHeterorhabditis indica. The ITS sequences were submitted to the National Center for Biotechnology Information (NCBI) and registered under the accession nos. MH553167 andMK300683. The efficacy of the isolates was tested onG. mellonella, using different nematodes’ concentrations. Using 50 IJs/larvae fromH. indicaAborawash and ERSAG2 showed 100 and 86% mortality rate after 48 h, respectively. The penetration rate reported in deadG. mellonellawas 40% atH. indicaAborawash, while it was 35% in case of ERSAG2.
Collapse
|
9
|
Na H, Zdraljevic S, Tanny RE, Walhout AJM, Andersen EC. Natural variation in a glucuronosyltransferase modulates propionate sensitivity in a C. elegans propionic acidemia model. PLoS Genet 2020; 16:e1008984. [PMID: 32857789 PMCID: PMC7482840 DOI: 10.1371/journal.pgen.1008984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/10/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022] Open
Abstract
Mutations in human metabolic genes can lead to rare diseases known as inborn errors of human metabolism. For instance, patients with loss-of-function mutations in either subunit of propionyl-CoA carboxylase suffer from propionic acidemia because they cannot catabolize propionate, leading to its harmful accumulation. Both the penetrance and expressivity of metabolic disorders can be modulated by genetic background. However, modifiers of these diseases are difficult to identify because of the lack of statistical power for rare diseases in human genetics. Here, we use a model of propionic acidemia in the nematode Caenorhabditis elegans to identify genetic modifiers of propionate sensitivity. Using genome-wide association (GWA) mapping across wild strains, we identify several genomic regions correlated with reduced propionate sensitivity. We find that natural variation in the putative glucuronosyltransferase GLCT-3, a homolog of human B3GAT, partly explains differences in propionate sensitivity in one of these genomic intervals. We demonstrate that loss-of-function alleles in glct-3 render the animals less sensitive to propionate. Additionally, we find that C. elegans has an expansion of the glct gene family, suggesting that the number of members of this family could influence sensitivity to excess propionate. Our findings demonstrate that natural variation in genes that are not directly associated with propionate breakdown can modulate propionate sensitivity. Our study provides a framework for using C. elegans to characterize the contributions of genetic background in models of human inborn errors in metabolism.
Collapse
Affiliation(s)
- Huimin Na
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Robyn E. Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Albertha J. M. Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
- * E-mail: (AJMW); (ECA)
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- * E-mail: (AJMW); (ECA)
| |
Collapse
|
10
|
Crombie TA, Zdraljevic S, Cook DE, Tanny RE, Brady SC, Wang Y, Evans KS, Hahnel S, Lee D, Rodriguez BC, Zhang G, van der Zwagg J, Kiontke K, Andersen EC. Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. eLife 2019; 8:50465. [PMID: 31793880 PMCID: PMC6927746 DOI: 10.7554/elife.50465] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
Hawaiian isolates of the nematode species Caenorhabditis elegans have long been known to harbor genetic diversity greater than the rest of the worldwide population, but this observation was supported by only a small number of wild strains. To better characterize the niche and genetic diversity of Hawaiian C. elegans and other Caenorhabditis species, we sampled different substrates and niches across the Hawaiian islands. We identified hundreds of new Caenorhabditis strains from known species and a new species, Caenorhabditis oiwi. Hawaiian C. elegans are found in cooler climates at high elevations but are not associated with any specific substrate, as compared to other Caenorhabditis species. Surprisingly, admixture analysis revealed evidence of shared ancestry between some Hawaiian and non-Hawaiian C. elegans strains. We suggest that the deep diversity we observed in Hawaii might represent patterns of ancestral genetic diversity in the C. elegans species before human influence.
Collapse
Affiliation(s)
- Tim A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Shannon C Brady
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States
| | - Steffen Hahnel
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Briana C Rodriguez
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Joost van der Zwagg
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Karin Kiontke
- Department of Biology, New York University, New York, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
11
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
12
|
Woodruff GC, Johnson E, Phillips PC. A large close relative of C. elegans is slow-developing but not long-lived. BMC Evol Biol 2019; 19:74. [PMID: 30866802 PMCID: PMC6416856 DOI: 10.1186/s12862-019-1388-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Variation in body size is thought to be a major driver of a wide variety of ecological and evolutionary patterns, including changes in development, reproduction, and longevity. Additionally, drastic changes in natural context often have profound effects on multiple fitness-related traits. Caenorhabditis inopinata is a recently-discovered fig-associated nematode that is unusually large relative to other members of the genus, including the closely related model system C. elegans. Here we test whether the dramatic increase in body size and shift in ecological context has led to correlated changes in key life history and developmental parameters within this species. RESULTS Using four developmental milestones, C. inopinata was found to have a slower rate of development than C. elegans across a range of temperatures. Despite this, C. inopinata did not reveal any differences in adult lifespan from C. elegans after accounting for differences in developmental timing and reproductive mode. C. inopinata fecundity was generally lower than that of C. elegans, but fitness improved under continuous-mating, consistent with sperm-limitation under gonochoristic (male/female) reproduction. C. inopinata also revealed greater fecundity and viability at higher temperatures. CONCLUSION Consistent with observations in other ectotherms, slower growth in C. inopinata indicates a potential trade-off between body size and developmental timing, whereas its unchanged lifespan suggests that longevity is largely uncoupled from its increase in body size. Additionally, temperature-dependent patterns of fitness in C. inopinata are consistent with its geographic origins in subtropical Okinawa. Overall, these results underscore the extent to which changes in ecological context and body size can shape life history traits.
Collapse
Affiliation(s)
- Gavin C. Woodruff
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, USA
| | - Erik Johnson
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, USA
| | - Patrick C. Phillips
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, USA
| |
Collapse
|
13
|
Memar N, Schiemann S, Hennig C, Findeis D, Conradt B, Schnabel R. Twenty million years of evolution: The embryogenesis of four Caenorhabditis species are indistinguishable despite extensive genome divergence. Dev Biol 2019; 447:182-199. [DOI: 10.1016/j.ydbio.2018.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
|
14
|
Haddad R, Meter B, Ross JA. The Genetic Architecture of Intra-Species Hybrid Mito-Nuclear Epistasis. Front Genet 2018; 9:481. [PMID: 30505316 PMCID: PMC6250786 DOI: 10.3389/fgene.2018.00481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
Genetic variants that are neutral within, but deleterious between, populations (Dobzhansky-Muller Incompatibilities) are thought to initiate hybrid dysfunction and then to accumulate and complete the speciation process. To identify the types of genetic differences that might initiate speciation, it is useful to study inter-population (intra-species) hybrids that exhibit reduced fitness. In Caenorhabditis briggsae, a close relative of the nematode C. elegans, such minor genetic incompatibilities have been identified. One incompatibility between the mitochondrial and nuclear genomes reduces the fitness of some hybrids. To understand the nuclear genetic architecture of this epistatic interaction, we constructed two sets of recombinant inbred lines by hybridizing two genetically diverse wild populations. In such lines, selection is able to eliminate deleterious combinations of alleles derived from the two parental populations. The genotypes of surviving hybrid lines thus reveal favorable allele combinations at loci experiencing selection. Our genotype data from the resulting lines are consistent with the interpretation that the X alleles participate in epistatic interactions with autosomes and the mitochondrial genome. We evaluate this possibility given predictions that mitochondria-X epistasis should be more prevalent than between mitochondria and autosomes. Our empirical identification of inter-genomic linkage disequilibrium supports the body of literature indicating that the accumulation of mito-nuclear genetic incompatibilities might initiate the speciation process through the generation of less-fit inter-population hybrids.
Collapse
Affiliation(s)
- Rania Haddad
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Brandon Meter
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Joseph A Ross
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| |
Collapse
|
15
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
16
|
Cutter AD. X exceptionalism in Caenorhabditis speciation. Mol Ecol 2017; 27:3925-3934. [PMID: 29134711 DOI: 10.1111/mec.14423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Dong C, Dolke F, von Reuss SH. Selective MS screening reveals a sex pheromone in Caenorhabditis briggsae and species-specificity in indole ascaroside signalling. Org Biomol Chem 2016; 14:7217-25. [PMID: 27381649 DOI: 10.1039/c6ob01230b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The indole ascarosides (icas) represent a highly potent class of nematode-derived modular signalling components that integrate structural inputs from amino acid, carbohydrate, and fatty acid metabolism. Comparative analysis of the crude exo-metabolome of hermaphroditic Caenorhabditis briggsae using a highly sensitive mass spectrometric screen reveals an indole ascaroside blend dominated by two new components. The structures of isolated icas#2 and icas#6.2 were determined by NMR spectroscopy and confirmed by total synthesis and chemical correlation. Low atto- to femtomolar amounts of icas#2 and icas#6.2 act in synergism to attract males indicating a function as sex pheromone. Comparative analysis of 14 Caenorhabditis species further demonstrates that species-specific indole ascaroside biosynthesis is highly conserved in the Elegans group. Functional characterization of the dominating indole ascarosides icas#2, icas#3, and icas#9 reveals a high degree of species-specificity and considerable variability with respect to gender-specificity, thus, confirming that indole ascarosides modulate different biological functions within the Elegans group. Although the nematode response was usually most pronounced towards conspecific signals, Caenorhabditis brenneri, the only species of the Elegans group that does not produce any indole ascarosides, exhibits a robust response to icas#2 suggesting the potential for interspecies interactions.
Collapse
Affiliation(s)
- Chuanfu Dong
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany.
| | | | | |
Collapse
|
18
|
Abstract
Wild populations of the model organism C. elegans allow characterization of natural genetic variation underlying diverse phenotypic traits. Here we provide a simple protocol on how to sample and rapidly identify C. elegans wild isolates. We outline how to find suitable habitats and organic substrates, followed by describing isolation and identification of C. elegans live cultures based on easily recognizable morphological characteristics, molecular barcodes and/or mating tests. This protocol uses standard laboratory equipment and requires no prior knowledge of C. elegans biology.
Collapse
Affiliation(s)
- Nausicaa Poullet
- Institut de Biologie Valrose, CNRS UMR7277, Parc Valrose, Nice, Cedex 02, 06108, France.,INSERM U1091, Nice, Cedex 02, 06108, France.,Université Nice Sophia Antipolis, UFR Sciences, Nice, Cedex 02, 06108, France
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS UMR7277, Parc Valrose, Nice, Cedex 02, 06108, France. .,INSERM U1091, Nice, Cedex 02, 06108, France. .,Université Nice Sophia Antipolis, UFR Sciences, Nice, Cedex 02, 06108, France.
| |
Collapse
|
19
|
Gouvêa DY, Aprison EZ, Ruvinsky I. Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes. PLoS One 2015; 10:e0145925. [PMID: 26713620 PMCID: PMC4699941 DOI: 10.1371/journal.pone.0145925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022] Open
Abstract
Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments.
Collapse
Affiliation(s)
- Devin Y. Gouvêa
- Committee on Conceptual and Historical Studies of Science, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Erin Z. Aprison
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
20
|
Chang CC, Rodriguez J, Ross J. Mitochondrial-Nuclear Epistasis Impacts Fitness and Mitochondrial Physiology of Interpopulation Caenorhabditis briggsae Hybrids. G3 (BETHESDA, MD.) 2015; 6:209-19. [PMID: 26585825 PMCID: PMC4704720 DOI: 10.1534/g3.115.022970] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
Abstract
In order to identify the earliest genetic changes that precipitate species formation, it is useful to study genetic incompatibilities that cause only mild dysfunction when incompatible alleles are combined in an interpopulation hybrid. Such hybridization within the nematode species Caenorhabditis briggsae has been suggested to result in selection against certain combinations of nuclear and mitochondrial alleles, raising the possibility that mitochondrial-nuclear (mitonuclear) epistasis reduces hybrid fitness. To test this hypothesis, cytoplasmic-nuclear hybrids (cybrids) were created to purposefully disrupt any epistatic interactions. Experimental analysis of the cybrids suggests that mitonuclear discord can result in decreased fecundity, increased lipid content, and increased mitochondrial reactive oxygen species levels. Many of these effects were asymmetric with respect to cross direction, as expected if cytoplasmic-nuclear Dobzhansky-Muller incompatibilities exist. One such effect is consistent with the interpretation that disrupting coevolved mitochondrial and nuclear loci impacts mitochondrial function and organismal fitness. These findings enhance efforts to study the genesis, identity, and maintenance of genetic incompatibilities that precipitate the speciation process.
Collapse
Affiliation(s)
- Chih-Chiun Chang
- Department of Biology, California State University, Fresno, California, 93740
| | - Joel Rodriguez
- Department of Biology, California State University, Fresno, California, 93740
| | - Joseph Ross
- Department of Biology, California State University, Fresno, California, 93740
| |
Collapse
|
21
|
Poullet N, Vielle A, Gimond C, Ferrari C, Braendle C. Evolutionarily divergent thermal sensitivity of germline development and fertility in hermaphroditicCaenorhabditisnematodes. Evol Dev 2015; 17:380-97. [DOI: 10.1111/ede.12170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nausicaa Poullet
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Anne Vielle
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Clotilde Gimond
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Céline Ferrari
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS UMR7277; Parc Valrose; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| |
Collapse
|
22
|
Abstract
The roundworm Caenorhabditis elegans has risen to the status of a top model organism for biological research in the last fifty years. Among laboratory animals, this tiny nematode is one of the simplest and easiest organisms to handle. And its life outside the laboratory is beginning to be unveiled. Like other model organisms, C. elegans has a boom-and-bust lifestyle. It feasts on ephemeral bacterial blooms in decomposing fruits and stems. After resource depletion, its young larvae enter a migratory diapause stage, called the dauer. Organisms known to be associated with C. elegans include migration vectors (such as snails, slugs and isopods) and pathogens (such as microsporidia, fungi, bacteria and viruses). By deepening our understanding of the natural history of C. elegans, we establish a broader context and improved tools for studying its biology.
Collapse
Affiliation(s)
- Lise Frézal
- Institute of Biology of Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Anne Félix
- Institute of Biology of Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
23
|
Thomas CG, Wang W, Jovelin R, Ghosh R, Lomasko T, Trinh Q, Kruglyak L, Stein LD, Cutter AD. Full-genome evolutionary histories of selfing, splitting, and selection in Caenorhabditis. Genome Res 2015; 25:667-78. [PMID: 25783854 PMCID: PMC4417115 DOI: 10.1101/gr.187237.114] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/12/2015] [Indexed: 12/19/2022]
Abstract
The nematode Caenorhabditis briggsae is a model for comparative developmental evolution with C. elegans. Worldwide collections of C. briggsae have implicated an intriguing history of divergence among genetic groups separated by latitude, or by restricted geography, that is being exploited to dissect the genetic basis to adaptive evolution and reproductive incompatibility; yet, the genomic scope and timing of population divergence is unclear. We performed high-coverage whole-genome sequencing of 37 wild isolates of the nematode C. briggsae and applied a pairwise sequentially Markovian coalescent (PSMC) model to 703 combinations of genomic haplotypes to draw inferences about population history, the genomic scope of natural selection, and to compare with 40 wild isolates of C. elegans. We estimate that a diaspora of at least six distinct C. briggsae lineages separated from one another approximately 200,000 generations ago, including the “Temperate” and “Tropical” phylogeographic groups that dominate most samples worldwide. Moreover, an ancient population split in its history approximately 2 million generations ago, coupled with only rare gene flow among lineage groups, validates this system as a model for incipient speciation. Low versus high recombination regions of the genome give distinct signatures of population size change through time, indicative of widespread effects of selection on highly linked portions of the genome owing to extreme inbreeding by self-fertilization. Analysis of functional mutations indicates that genomic context, owing to selection that acts on long linkage blocks, is a more important driver of population variation than are the functional attributes of the individually encoded genes.
Collapse
Affiliation(s)
- Cristel G Thomas
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Wei Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Rajarshi Ghosh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA; Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tatiana Lomasko
- Informatics and Bio-Computing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada, M5G 0A3
| | - Quang Trinh
- Informatics and Bio-Computing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada, M5G 0A3
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA; Departments of Human Genetics and Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA; Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095, USA
| | - Lincoln D Stein
- Informatics and Bio-Computing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada, M5G 0A3; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 3B2; Bioinformatics and Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2; Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| |
Collapse
|
24
|
Petrella LN. Natural variants of C. elegans demonstrate defects in both sperm function and oogenesis at elevated temperatures. PLoS One 2014; 9:e112377. [PMID: 25380048 PMCID: PMC4224435 DOI: 10.1371/journal.pone.0112377] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/14/2014] [Indexed: 01/07/2023] Open
Abstract
The temperature sensitivity of the germ line is conserved from nematodes to mammals. Previous studies in C. briggsae and Drosophila showed that isolates originating from temperate latitudes lose fertility at a lower temperature than strains originating from tropical latitudes. In order to investigate these relationships in C. elegans, analysis of the fertility of 22 different wild-type isolates of C. elegans isolated from equatorial, tropical and temperate regions was undertaken. It was found that there are significant temperature, genotype and temperature × genotype effects on fertility but region of isolation showed no significant effect on differences in fertility. For most isolates 100% of the population maintained fertility from 20°C to 26°C, but there was a precipitous drop in the percentage of fertile hermaphrodites at 27°C. In contrast, all isolates show a progressive decrease in brood size as temperature increases from 20°C to 26°C, followed by a brood size near zero at 27°C. Temperature shift experiments were performed to better understand the causes of high temperature loss of fertility. Males up-shifted to high temperature maintained fertility, while males raised at high temperature lost fertility. Down-shifting males raised at high temperature generally did not restore fertility. This result differs from that observed in Drosophila and suggested that in C. elegans spermatogenesis or sperm function is irreversibly impaired in males that develop at high temperature. Mating and down-shifting experiments with hermaphrodites were performed to investigate the relative contributions of spermatogenic and oogenic defects to high temperature loss of fertility. It was found that the hermaphrodites of all isolates demonstrated loss in both spermatogenic and oogenic germ lines that differed in their relative contribution by isolate. These studies uncovered unexpectedly high variation in both the loss of fertility and problems with oocyte function in natural variants of C. elegans at high temperature.
Collapse
Affiliation(s)
- Lisa N. Petrella
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
25
|
Huang RE, Ren X, Qiu Y, Zhao Z. Description of Caenorhabditis sinica sp. n. (Nematoda: Rhabditidae), a nematode species used in comparative biology for C. elegans. PLoS One 2014; 9:e110957. [PMID: 25375770 PMCID: PMC4222906 DOI: 10.1371/journal.pone.0110957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/20/2014] [Indexed: 02/06/2023] Open
Abstract
We re-isolated in China a relative of the nematode model Caenorhabditis elegans that was previously referred to informally as C. sp. 5. In spite of its importance for comparative biology, C. sp. 5 has remained morphologically uncharacterized. Therefore, we now provide detailed description of morphology and anatomy, assigning the name of Caenorhabditis sinica sp. n. to this nematode that is found frequently in China. C. sinica sp. n. belongs to the Elegans group in the genus Caenorhabditis, being phylogenetically close to C. briggsae although differing in reproductive mode. The gonochoristic C. sinica sp. n. displays two significantly larger distal parts of uteri filled with sperms in the female/hermaphroditic gonad than does the androdioecious C. briggsae. The new species can be differentiated morphologically from all known Caenorhabditis species within the Elegans group by presenting a uniquely shaped, three-pointed hook structure on the male precloacal lip. The lateral field of C. sinica sp. n. is marked by three ridges that are flanked by two additional incisures, sometimes appearing as five ridges in total. This study ends the prolonged period of the 'undescribed' anonymity for C. sinica sp. n. since its discovery and use in comparative biological research. Significant and crossing-direction dependent hybrid incompatibilities in F1 and F2 crossing progeny make C. sinica sp. n. an excellent model for studies of population and speciation genetics. The abundance of nematode species lacking detailed taxonomic characterization deserves renewed attention to address the species description gap for this important yet morphologically 'difficult' group of animals.
Collapse
Affiliation(s)
- Ren-E Huang
- School of Life Sciences, Tsinghua University, Beijing, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Yifei Qiu
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
26
|
Aprison EZ, Ruvinsky I. Balanced trade-offs between alternative strategies shape the response of C. elegans reproduction to chronic heat stress. PLoS One 2014; 9:e105513. [PMID: 25165831 PMCID: PMC4148340 DOI: 10.1371/journal.pone.0105513] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022] Open
Abstract
To ensure long-term reproductive success organisms have to cope with harsh environmental extremes. A reproductive strategy that simply maximizes offspring production is likely to be disadvantageous because it could lead to a catastrophic loss of fecundity under unfavorable conditions. To understand how an appropriate balance is achieved, we investigated reproductive performance of C. elegans under conditions of chronic heat stress. We found that following even prolonged exposure to temperatures at which none of the offspring survive, worms could recover and resume reproduction. The likelihood of producing viable offspring falls precipitously after exposure to temperatures greater than 28°C primarily due to sperm damage. Surprisingly, we found that worms that experienced higher temperatures can recover considerably better, provided they did not initiate ovulation. Therefore mechanisms controlling this process must play a crucial role in determining the probability of recovery. We show, however, that suppressing ovulation is only beneficial under relatively long stresses, whereas it is a disadvantageous strategy under shorter stresses of the same intensity. This is because the benefit of shutting down egg laying, and thus protecting the reproductive system, is negated by the cost associated with implementing this strategy--it takes considerable time to recover and produce offspring. We interpret these balanced trade-offs as a dynamic response of the C. elegans reproductive system to stress and an adaptation to life in variable and unpredictable conditions.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
27
|
Callander DC, Alcorn MR, Birsoy B, Rothman JH. Natural reversal of left-right gut/gonad asymmetry in C. elegans males is independent of embryonic chirality. Genesis 2014; 52:581-7. [PMID: 24585712 DOI: 10.1002/dvg.22762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/25/2023]
Abstract
Anatomical left-right (L/R) asymmetry in C. elegans is established in the four-cell embryo as a result of anteroposterior skewing of transverse mitotic spindles with a defined handedness. This event creates a chiral embryo and ultimately an adult body plan with fixed L/R positioning of internal organs and components of the nervous system. While this "dextral" configuration is invariant in hermaphrodites, it can be reversed by physical manipulation of the early embryo or by mutations that interfere with mitotic spindle orientation, which leads to viable, mirror-reversed (sinistral) animals. During normal development of the C. elegans male, the gonad develops on the right of the midline, with the gut bilaterally apposed on the left. However, we found that in males of the laboratory N2 strain and Hawaiian ("Hw") wild isolate, the gut/gonad asymmetry is frequently reversed in a temperature-dependent manner, independent of normal embryonic chirality. We also observed sporadic errors in gonad migration occurring naturally during early larval stages of these and other wild strains; however, the incidence of such errors does not correlate with the frequency of L/R gut/gonad reversals in these strains. Analysis of N2/Hw hybrids and recombinant inbred advanced intercross lines (RIAILs) indicate that the L/R organ reversals are likely to result from recessively acting variations in multiple genes. Thus, unlike the highly reproducible L/R asymmetries of most structures in hermaphrodites, the L/R asymmetry of the male C. elegans body plan is less rigidly determined and subject to natural variation that is influenced by a multiplicity of genes.
Collapse
Affiliation(s)
- Davon C Callander
- Department of Molecular, Cellular and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California; Department of Computer Science, University of California Santa Barbara, Santa Barbara, California
| | | | | | | |
Collapse
|
28
|
Baird SE, Stonesifer R. Reproductive isolation in Caenorhabditis briggsae: Dysgenic interactions between maternal- and zygotic-effect loci result in a delayed development phenotype. WORM 2013; 1:189-95. [PMID: 24058847 PMCID: PMC3670217 DOI: 10.4161/worm.23535] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 12/18/2022]
Abstract
In sexual species, speciation occurs through the accumulation of genetic barriers to gene flow. In Caenorhabditis briggsae, one such barrier impedes gene flow between temperate strains and the tropical AF16 strain. Up to 20% of F2 progeny derived from crosses of AF16 to strains from the temperate clade exhibit a delayed development phenotype. This phenotype, which results from dysgenic interactions between maternal- and zygyotic-effect loci, causes a ~21% decrease in the intrinsic growth rate. The maternal-effect requires contributions from both parental genotypes. The dysgenic maternal-effect allele appears to be fixed in the temperate clade of C. briggsae and appears to have arisen between 700 and 15,000 y ago. The dysgenic zygotic allele appears to be present only in AF16 and also may be of recent origin.
Collapse
Affiliation(s)
- Scott Everet Baird
- Department of Biological Sciences; Wright State University; Dayton, OH USA
| | | |
Collapse
|
29
|
Gimond C, Jovelin R, Han S, Ferrari C, Cutter AD, Braendle C. OUTBREEDING DEPRESSION WITH LOW GENETIC VARIATION IN SELFINGCAENORHABDITISNEMATODES. Evolution 2013; 67:3087-101. [DOI: 10.1111/evo.12203] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Clotilde Gimond
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Shery Han
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Céline Ferrari
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Christian Braendle
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| |
Collapse
|
30
|
Riche S, Zouak M, Argoul F, Arneodo A, Pecreaux J, Delattre M. Evolutionary comparisons reveal a positional switch for spindle pole oscillations in Caenorhabditis embryos. ACTA ACUST UNITED AC 2013; 201:653-62. [PMID: 23690175 PMCID: PMC3664713 DOI: 10.1083/jcb.201210110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In one-cell stage embryos of different worm species, a conserved positional switch controls the onset of mitotic spindle oscillations, whereas the maximum amplitude of oscillations is determined by the time spent in the oscillating phase. During the first embryonic division in Caenorhabditis elegans, the mitotic spindle is pulled toward the posterior pole of the cell and undergoes vigorous transverse oscillations. We identified variations in spindle trajectories by analyzing the outwardly similar one-cell stage embryo of its close relative Caenorhabditis briggsae. Compared with C. elegans, C. briggsae embryos exhibit an anterior shifting of nuclei in prophase and reduced anaphase spindle oscillations. By combining physical perturbations and mutant analysis in both species, we show that differences can be explained by interspecies changes in the regulation of the cortical Gα–GPR–LIN-5 complex. However, we found that in both species (1) a conserved positional switch controls the onset of spindle oscillations, (2) GPR posterior localization may set this positional switch, and (3) the maximum amplitude of spindle oscillations is determined by the time spent in the oscillating phase. By investigating microevolution of a subcellular process, we identify new mechanisms that are instrumental to decipher spindle positioning.
Collapse
Affiliation(s)
- Soizic Riche
- Laboratory of Molecular Biology of the Cell, UMR5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | | | | | | | | | | |
Collapse
|
31
|
Félix MA, Jovelin R, Ferrari C, Han S, Cho YR, Andersen EC, Cutter AD, Braendle C. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest. BMC Evol Biol 2013; 13:10. [PMID: 23311925 PMCID: PMC3556333 DOI: 10.1186/1471-2148-13-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/07/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. METHODS Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. RESULTS Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. CONCLUSIONS The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted groups. Local samples for the cosmopolitan C. briggsae mirror its pan-tropical patterns of intraspecific polymorphism. It remains an important challenge to decipher what drives Caenorhabditis distributions and diversity within and between species.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS - ENS - INSERM, 46 rue d’Ulm, Paris cedex 05, 75230, France
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Céline Ferrari
- Institut de Biologie Valrose, CNRS, UMR7277, Parc Valrose, Nice cedex 02, 06108, France
- INSERM, U1091, Nice cedex 02, 06108, France
- University of Nice Sophia Antipolis, UFR Sciences, Nice cedex 02, 06108, France
| | - Shery Han
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Young Ran Cho
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Erik C Andersen
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS, UMR7277, Parc Valrose, Nice cedex 02, 06108, France
- INSERM, U1091, Nice cedex 02, 06108, France
- University of Nice Sophia Antipolis, UFR Sciences, Nice cedex 02, 06108, France
| |
Collapse
|
32
|
Using Caenorhabditis to Explore the Evolution of the Germ Line. GERM CELL DEVELOPMENT IN C. ELEGANS 2013; 757:405-25. [DOI: 10.1007/978-1-4614-4015-4_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Hicks KA, Denver DR, Estes S. Natural variation in Caenorhabditis briggsae mitochondrial form and function suggests a novel model of organelle dynamics. Mitochondrion 2012; 13:44-51. [PMID: 23269324 DOI: 10.1016/j.mito.2012.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/07/2012] [Accepted: 12/18/2012] [Indexed: 01/28/2023]
Abstract
Mitochondrial functioning and morphology are known to be connected through cycles of organelle fusion and fission that depend upon the mitochondrial membrane potential (ΔΨM); however, we lack an understanding of the features and dynamics of natural mitochondrial populations. Using data from our recent study of univariate mitochondrial phenotypic variation in Caenorhabditis briggsae nematodes, we analyzed patterns of phenotypic correlation for 24 mitochondrial traits. Our findings support a role for ΔΨM in shaping mitochondrial dynamics, but no role for mitochondrial ROS. Further, our study suggests a novel model of mitochondrial population dynamics dependent upon cellular environmental context and with implications for mitochondrial genome integrity.
Collapse
Affiliation(s)
- Kiley A Hicks
- Biology Department, Portland State University, 1719 SW 10th Ave., Portland, OR 97201, USA.
| | | | | |
Collapse
|
34
|
Mos1-mediated transgenesis to probe consequences of single gene mutations in variation-rich isolates of Caenorhabditis elegans. PLoS One 2012; 7:e48762. [PMID: 23155404 PMCID: PMC3498238 DOI: 10.1371/journal.pone.0048762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/03/2012] [Indexed: 11/22/2022] Open
Abstract
Caenorhabditis elegans, especially the N2 isolate, is an invaluable biological model system. Numerous additional natural C. elegans isolates have been shown to have unexpected genotypic and phenotypic variations which has encouraged researchers to use next generation sequencing methodology to develop a more complete picture of genotypic variations among the isolates. To understand the phenotypic effects of a genomic variation (GV) on a single gene, in a variation-rich genetic background, one should analyze that particular GV in a well understood genetic background. In C. elegans, the analysis is usually done in N2, which requires extensive crossing to bring in the GV. This can be a very time consuming procedure thus it is important to establish a fast and efficient approach to test the effect of GVs from different isolates in N2. Here we use a Mos1-mediated single-copy insertion (MosSCI) method for phenotypic assessments of GVs from the variation-rich Hawaiian strain CB4856 in N2. Specifically, we investigate effects of variations identified in the CB4856 strain on tac-1 which is an essential gene that is necessary for mitotic spindle elongation and pronuclear migration. We show the usefulness of the MosSCI method by using EU1004 tac-1(or402) as a control. or402 is a temperature sensitive lethal allele within a well-conserved TACC domain (transforming acidic coiled-coil) that results in a leucine to phenylalanine change at amino acid 229. CB4856 contains a variation that affects the second exon of tac-1 causing a cysteine to tryptophan change at amino acid 94 also within the TACC domain. Using the MosSCI method, we analyze tac-1 from CB4856 in the N2 background and demonstrate that the C94W change, albeit significant, does not cause any obvious decrease in viability. This MosSCI method has proven to be a rapid and efficient way to analyze GVs.
Collapse
|
35
|
Stegeman GW, de Mesquita MB, Ryu WS, Cutter AD. Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae. ACTA ACUST UNITED AC 2012; 216:850-8. [PMID: 23155083 DOI: 10.1242/jeb.075408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of phenotypic evolution, particularly contrasts of the classic model C. elegans with C. briggsae. And yet few studies have investigated natural genetic variation in behaviour in any nematode. Here we measure thermotaxis and isothermal tracking behaviour in genetically distinct strains of C. briggsae, further motivated by the latitudinal differentiation in C. briggsae that is associated with temperature-dependent fitness differences in this species. We demonstrate that C. briggsae performs thermotaxis and isothermal tracking largely similar to that of C. elegans, with a tendency to prefer its rearing temperature. Comparisons of these behaviours among strains reveal substantial heritable natural variation within each species that corresponds to three general patterns of behavioural response. However, intraspecific genetic differences in thermal behaviour often exceed interspecific differences. These patterns of temperature-dependent behaviour motivate further development of C. briggsae as a model system for dissecting the genetic underpinnings of complex behavioural traits.
Collapse
Affiliation(s)
- Gregory W Stegeman
- University of Toronto, Department of Ecology and Evolutionary Biology, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | | | | | | |
Collapse
|
36
|
Andersen EC, Gerke JP, Shapiro JA, Crissman JR, Ghosh R, Bloom JS, Félix MA, Kruglyak L. Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet 2012; 44:285-90. [PMID: 22286215 PMCID: PMC3365839 DOI: 10.1038/ng.1050] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/01/2011] [Indexed: 01/09/2023]
Abstract
The nematode Caenorhabditis elegans is central to research in molecular, cell and developmental biology, but nearly all of this research has been conducted on a single strain of C. elegans. Little is known about the population genomic and evolutionary history of this species. We characterized C. elegans genetic variation using high-throughput selective sequencing of a worldwide collection of 200 wild strains and identified 41,188 SNPs. Notably, C. elegans genome variation is dominated by a set of commonly shared haplotypes on four of its six chromosomes, each spanning many megabases. Population genetic modeling showed that this pattern was generated by chromosome-scale selective sweeps that have reduced variation worldwide; at least one of these sweeps probably occurred in the last few hundred years. These sweeps, which we hypothesize to be a result of human activity, have drastically reshaped the global C. elegans population in the recent past.
Collapse
Affiliation(s)
- Erik C. Andersen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ U.S.A
| | - Justin P. Gerke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ U.S.A
| | - Joshua A. Shapiro
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ U.S.A
| | - Jonathan R. Crissman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ U.S.A
| | - Rajarshi Ghosh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ U.S.A
| | - Joshua S. Bloom
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Molecular Biology, Princeton University, Princeton, NJ U.S.A
| | - Marie-Anne Félix
- Institut Jacques Monod, CNRS–Universities of Paris 6 and 7, 75251 Paris Cedex 05, France
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ U.S.A
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ U.S.A
| |
Collapse
|
37
|
McMullen PD, Aprison EZ, Winter PB, Amaral LAN, Morimoto RI, Ruvinsky I. Macro-level modeling of the response of C. elegans reproduction to chronic heat stress. PLoS Comput Biol 2012; 8:e1002338. [PMID: 22291584 PMCID: PMC3266876 DOI: 10.1371/journal.pcbi.1002338] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/17/2011] [Indexed: 11/19/2022] Open
Abstract
A major goal of systems biology is to understand how organism-level behavior arises from a myriad of molecular interactions. Often this involves complex sets of rules describing interactions among a large number of components. As an alternative, we have developed a simple, macro-level model to describe how chronic temperature stress affects reproduction in C. elegans. Our approach uses fundamental engineering principles, together with a limited set of experimentally derived facts, and provides quantitatively accurate predictions of performance under a range of physiologically relevant conditions. We generated detailed time-resolved experimental data to evaluate the ability of our model to describe the dynamics of C. elegans reproduction. We find considerable heterogeneity in responses of individual animals to heat stress, which can be understood as modulation of a few processes and may represent a strategy for coping with the ever-changing environment. Our experimental results and model provide quantitative insight into the breakdown of a robust biological system under stress and suggest, surprisingly, that the behavior of complex biological systems may be determined by a small number of key components.
Collapse
Affiliation(s)
- Patrick D. McMullen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Erin Z. Aprison
- Department of Ecology and Evolution, Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Peter B. Winter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Luis A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Sciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| | - Ilya Ruvinsky
- Department of Ecology and Evolution, Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| |
Collapse
|
38
|
Kozlowska JL, Ahmad AR, Jahesh E, Cutter AD. Genetic variation for postzygotic reproductive isolation between Caenorhabditis briggsae and Caenorhabditis sp. 9. Evolution 2011; 66:1180-95. [PMID: 22486697 DOI: 10.1111/j.1558-5646.2011.01514.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The process of speciation is key to the origins of biodiversity, and yet the Caenorhabditis nematode model system has contributed little to this topic. Genetic studies of speciation in the genus are now feasible, owing to crosses between the recently discovered Caenorhabditis sp. 9 and the well-known C. briggsae producing fertile F(1) hybrid females. We dissected patterns of postzygotic reproductive isolation between these species by crossing eight isogenic strains of C. briggsae reciprocally with six strains of C. sp. 9. We determined that overall patterns of reproductive isolation are robust across these genetic backgrounds. However, we also quantified significant heritable variation within each species for interspecific hybrid incompatibilities for total adult progeny, egg-to-adult viability, and the percentage of male progeny. This demonstrates that intraspecific variation for interspecific hybrid incompatibility occurs despite extensive, albeit incomplete, reproductive isolation. Therefore, this emerging general phenomenon of variable reproductive isolation is not restricted to highly interfertile, early-stage incipient species, but also applies to species in the latest stages of the speciation process. Furthermore, we confirm Haldane's rule and demonstrate strongly asymmetric parent-of-origin effects (Darwin's corollary) that consistently manifest more extremely when hermaphroditic C. briggsae serves as maternal parent. These findings highlight Caenorhabditis as an emerging system for understanding the genetics of general patterns of reproductive isolation.
Collapse
Affiliation(s)
- Joanna L Kozlowska
- Department of Ecology & Evolutionary Biology, University of Toronto,Toronto, ON, Canada
| | | | | | | |
Collapse
|
39
|
Kiontke KC, Félix MA, Ailion M, Rockman MV, Braendle C, Pénigault JB, Fitch DHA. A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 2011; 11:339. [PMID: 22103856 PMCID: PMC3277298 DOI: 10.1186/1471-2148-11-339] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 11/21/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The nematode Caenorhabditis elegans is a major laboratory model in biology. Only ten Caenorhabditis species were available in culture at the onset of this study. Many of them, like C. elegans, were mostly isolated from artificial compost heaps, and their more natural habitat was unknown. RESULTS Caenorhabditis nematodes were found to be proliferating in rotten fruits, flowers and stems. By collecting a large worldwide set of such samples, 16 new Caenorhabditis species were discovered. We performed mating tests to establish biological species status and found some instances of semi-fertile or sterile hybrid progeny. We established barcodes for all species using ITS2 rDNA sequences. By obtaining sequence data for two rRNA and nine protein-coding genes, we determined the likely phylogenetic relationships among the 26 species in culture. The new species are part of two well-resolved sister clades that we call the Elegans super-group and the Drosophilae super-group. We further scored phenotypic characters such as reproductive mode, mating behavior and male tail morphology, and discuss their congruence with the phylogeny. A small space between rays 2 and 3 evolved once in the stem species of the Elegans super-group; a narrow fan and spiral copulation evolved once in the stem species of C. angaria, C. sp. 8 and C. sp. 12. Several other character changes occurred convergently. For example, hermaphroditism evolved three times independently in C. elegans, C. briggsae and C. sp. 11. Several species can co-occur in the same location or even the same fruit. At the global level, some species have a cosmopolitan distribution: C. briggsae is particularly widespread, while C. elegans and C. remanei are found mostly or exclusively in temperate regions, and C. brenneri and C. sp. 11 exclusively in tropical zones. Other species have limited distributions, for example C. sp. 5 appears to be restricted to China, C. sp. 7 to West Africa and C. sp. 8 to the Eastern United States. CONCLUSIONS Caenorhabditis are "fruit worms", not soil nematodes. The 16 new species provide a resource and their phylogeny offers a framework for further studies into the evolution of genomic and phenotypic characters.
Collapse
Affiliation(s)
- Karin C Kiontke
- Department of Biology, New York University, 100 Washington Square East New York, New York 10003, USA
| | - Marie-Anne Félix
- CNRS-Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | - Michael Ailion
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Matthew V Rockman
- Department of Biology, New York University, 100 Washington Square East New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, USA
| | - Christian Braendle
- Institute of Developmental Biology and Cancer, CNRS-University of Nice, Sophia-Antipolis, Parc Valrose, 06108 NICE cedex 2, France
| | | | - David HA Fitch
- Department of Biology, New York University, 100 Washington Square East New York, New York 10003, USA
| |
Collapse
|
40
|
MicroRNA sequence variation potentially contributes to within-species functional divergence in the nematode Caenorhabditis briggsae. Genetics 2011; 189:967-76. [PMID: 21890738 DOI: 10.1534/genetics.111.132795] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mounting evidence points to differences in gene regulation as a major source of phenotypic variation. MicroRNA-mediated post-transcriptional regulation has emerged recently as a key factor controlling gene activity during development. MicroRNA genes are abundant in genomes, acting as managers of gene expression by directing translational repression. Thus, understanding the role of microRNA sequence variation within populations is essential for fully dissecting the origin and maintenance of phenotypic diversity in nature. In this study, we investigate allelic variation at microRNA loci in the nematode Caenorhabditis briggsae, a close relative of C. elegans. Phylogeographic structure in C. briggsae partitions most strains from around the globe into a "temperate" or a "tropical" clade, with a few strains having divergent, geographically restricted genotypes. Remarkably, strains that follow this latitudinal dichotomy also differ in temperature-associated fitness. With this phylogeographic pattern in mind, we examined polymorphisms in 18 miRNAs in a global sample of C. briggsae isolates and tested whether newly isolated strains conform to this phylogeography. Surprisingly, nucleotide diversity is relatively high in this class of gene that generally experiences strong purifying selection. In particular, we find that miRNAs in C. briggsae are substantially more polymorphic than in Arabidopsis thaliana, despite similar background levels of neutral site diversity between the two species. We find that some mutations suggest functional divergence on the basis of requirements for target site recognition and computational prediction of the effects of the polymorphisms on RNA folding. These findings demonstrate the potential for miRNA polymorphisms to contribute to phenotypic variation within a species. Sequences were deposited in GenBank under accession nos. JN251323-JN251744.
Collapse
|
41
|
Caenorhabditis elegans as a platform for molecular quantitative genetics and the systems biology of natural variation. Genet Res (Camb) 2011; 92:331-48. [PMID: 21429266 DOI: 10.1017/s0016672310000601] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Over the past 30 years, the characteristics that have made the nematode Caenorhabditis elegans one of the premier animal model systems have also allowed it to emerge as a powerful model system for determining the genetic basis of quantitative traits, particularly for the identification of naturally segregating and/or lab-adapted alleles with large phenotypic effects. To better understand the genetic underpinnings of natural variation in other complex phenotypes, C. elegans is uniquely poised in the emerging field of quantitative systems biology because of the extensive knowledge of cellular and neural bases to such traits. However, perturbations in standing genetic variation and patterns of linkage disequilibrium among loci are likely to limit our ability to tie understanding of molecular function to a broader evolutionary context. Coupling the experimental strengths of the C. elegans system with the ecological advantages of closely related nematodes should provide a powerful means of understanding both the molecular and evolutionary genetics of quantitative traits.
Collapse
|
42
|
Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination. PLoS Genet 2011; 7:e1002174. [PMID: 21779179 PMCID: PMC3136444 DOI: 10.1371/journal.pgen.1002174] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 05/23/2011] [Indexed: 12/16/2022] Open
Abstract
The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.
Collapse
|
43
|
Pénigault JB, Félix MA. Evolution of a system sensitive to stochastic noise: P3.p cell fate in Caenorhabditis. Dev Biol 2011; 357:419-27. [PMID: 21693113 DOI: 10.1016/j.ydbio.2011.05.675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/06/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
Abstract
The C. elegans cell lineage is overall invariant. One rare instance of variability concerns P3.p, the most anterior vulva precursor cell, which may either fuse with the epidermis without dividing, or remain competent to form vulval tissue and divide. Here we examine the evolutionary properties of this stochastic variation in P3.p fate. In the Caenorhabditis genus, high P3.p competence is ancestral and reduction in P3.p competence and division frequency occurred in C. sp. 14 and in a clade of nine species. Within this clade, the frequency of P3.p division further varies within and among species, being intermediate in C. elegans and low in C. briggsae. P3.p fate frequency is sensitive to random mutation accumulation, suggesting that this trait may evolve rapidly because of its sensitivity to mutational impact. P3.p fate depends on LIN-39/Hox5 expression and we find that the peak of LIN-39/Hox5 protein level is displaced posteriorly in C. briggsae compared to C. elegans. However, P3.p fate specification is most sensitive to the dose of EGL-20 and CWN-1, two Wnts that are secreted in a long-range gradient from the posterior end of C. elegans larvae (accompanying article). A half-dose of either of these Wnts is sufficient to affect division frequency in C. elegans N2 to levels similar to those in C. briggsae. Symmetrically, we show that an increase in Wnt dose rescues anterior competence in C. briggsae. We propose that evolutionary variation in the concentration or interpretation of the long-range Wnt gradient may be involved in the rapid evolution of P3.p fate in Caenorhabditis.
Collapse
Affiliation(s)
- Jean-Baptiste Pénigault
- Institut Jacques Monod, CNRS-University Paris-Diderot, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | | |
Collapse
|
44
|
Affiliation(s)
- Mark Blaxter
- Institute of Evolutionary Biology, The University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom.
| |
Collapse
|
45
|
Estes S, Coleman-Hulbert AL, Hicks KA, de Haan G, Martha SR, Knapp JB, Smith SW, Stein KC, Denver DR. Natural variation in life history and aging phenotypes is associated with mitochondrial DNA deletion frequency in Caenorhabditis briggsae. BMC Evol Biol 2011; 11:11. [PMID: 21226948 PMCID: PMC3032685 DOI: 10.1186/1471-2148-11-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 01/12/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mutations that impair mitochondrial functioning are associated with a variety of metabolic and age-related disorders. A barrier to rigorous tests of the role of mitochondrial dysfunction in aging processes has been the lack of model systems with relevant, naturally occurring mitochondrial genetic variation. Toward the goal of developing such a model system, we studied natural variation in life history, metabolic, and aging phenotypes as it relates to levels of a naturally-occurring heteroplasmic mitochondrial ND5 deletion recently discovered to segregate among wild populations of the soil nematode, Caenorhabditis briggsae. The normal product of ND5 is a central component of the mitochondrial electron transport chain and integral to cellular energy metabolism. RESULTS We quantified significant variation among C. briggsae isolates for all phenotypes measured, only some of which was statistically associated with isolate-specific ND5 deletion frequency. We found that fecundity-related traits and pharyngeal pumping rate were strongly inversely related to ND5 deletion level and that C. briggsae isolates with high ND5 deletion levels experienced a tradeoff between early fecundity and lifespan. Conversely, oxidative stress resistance was only weakly associated with ND5 deletion level while ATP content was unrelated to deletion level. Finally, mean levels of reactive oxygen species measured in vivo showed a significant non-linear relationship with ND5 deletion level, a pattern that may be driven by among-isolate variation in antioxidant or other compensatory mechanisms. CONCLUSIONS Our findings suggest that the ND5 deletion may adversely affect fitness and mitochondrial functioning while promoting aging in natural populations, and help to further establish this species as a useful model for explicit tests of hypotheses in aging biology and mitochondrial genetics.
Collapse
Affiliation(s)
- Suzanne Estes
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | | | - Kiley A Hicks
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Gene de Haan
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Sarah R Martha
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Jeremiah B Knapp
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Samson W Smith
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Kevin C Stein
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Dee R Denver
- Department of Zoology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
46
|
Woodruff GC, Eke O, Baird SE, Félix MA, Haag ES. Insights into species divergence and the evolution of hermaphroditism from fertile interspecies hybrids of Caenorhabditis nematodes. Genetics 2010; 186:997-1012. [PMID: 20823339 PMCID: PMC2975280 DOI: 10.1534/genetics.110.120550] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/27/2010] [Indexed: 11/18/2022] Open
Abstract
The architecture of both phenotypic variation and reproductive isolation are important problems in evolutionary genetics. The nematode genus Caenorhabditis includes both gonochoristic (male/female) and androdioecious (male/hermaprodite) species. However, the natural genetic variants distinguishing reproductive mode remain unknown, and nothing is known about the genetic basis of postzygotic isolation in the genus. Here we describe the hybrid genetics of the first Caenorhabditis species pair capable of producing fertile hybrid progeny, the gonochoristic Caenorhabditis sp. 9 and the androdioecious C. briggsae. Though many interspecies F(1) arrest during embryogenesis, a viable subset develops into fertile females and sterile males. Reciprocal parental crosses reveal asymmetry in male-specific viability, female fertility, and backcross viability. Selfing and spermatogenesis are extremely rare in XX F(1), and almost all hybrid self-progeny are inviable. Consistent with this, F(1) females do not express male-specific molecular germline markers. We also investigated three approaches to producing hybrid hermaphrodites. A dominant mutagenesis screen for self-fertile F(1) hybrids was unsuccessful. Polyploid F(1) hybrids with increased C. briggsae genomic material did show elevated rates of selfing, but selfed progeny were mostly inviable. Finally, the use of backcrosses to render the hybrid genome partial homozygous for C. briggsae alleles did not increase the incidence of selfing or spermatogenesis relative to the F(1) generation. These hybrid animals were genotyped at 23 loci, and significant segregation distortion (biased against C. briggsae) was detected at 13 loci. This, combined with an absence of productive hybrid selfing, prevents formulation of simple hypotheses about the genetic architecture of hermaphroditism. In the near future, this hybrid system will likely be fruitful for understanding the genetics of reproductive isolation in Caenorhabditis.
Collapse
Affiliation(s)
- Gavin C. Woodruff
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Onyinyechi Eke
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Scott E. Baird
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Marie-Anne Félix
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742, Department of Biological Sciences, Wright State University, Dayton, Ohio 45435 and Institut Jacques Monod, 75205 Paris Cedex 13, France
| |
Collapse
|
47
|
Wang GX, Ren S, Ren Y, Ai H, Cutter AD. Extremely high molecular diversity within the East Asian nematode Caenorhabditis sp. 5. Mol Ecol 2010; 19:5022-9. [PMID: 20958820 DOI: 10.1111/j.1365-294x.2010.04862.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most relatives of the self-fertilizing hermaphroditic nematode model organism Caenorhabditis elegans reproduce via obligate outbreeding between males and females, which also represents the ancestral mode of reproduction within the genus. However, little is known about the scope of genetic diversity and differentiation within such gonochoristic species, especially those found outside of temperate Europe and North America. It is critical to understand the evolutionary processes operating in these species to provide a framework for deciphering the evolution of hermaphroditism and a baseline for the application of outcrossing Caenorhabditis to problems in evolutionary genetics. Here, we investigate for the first time molecular sequence variation for Caenorhabditis sp. 5, a species found commonly in eastern Asia. We identify enormous levels of standing genetic variation that approach the levels observed in the marine broadcast-spawning sea squirt, Ciona savignyi. Although we document significant isolation by distance, we demonstrate that the high polymorphism within C. sp. 5 is not because of strong differentiation among populations or to the presence of cryptic species. These findings illustrate that molecular population genetic approaches to studying obligately outbreeding species of Caenorhabditis will prove powerful in identifying and characterizing functionally and evolutionarily important features of the genome.
Collapse
Affiliation(s)
- Guo-Xiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, HuaZhong Normal University, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
48
|
Prasad A, Croydon-Sugarman MJF, Murray RL, Cutter AD. Temperature-dependent fecundity associates with latitude in Caenorhabditis briggsae. Evolution 2010; 65:52-63. [PMID: 20731713 DOI: 10.1111/j.1558-5646.2010.01110.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Populations of organisms separated by latitude provide striking examples of local adaptation, by virtue of ecological gradients that correlate with latitudinal position on the globe. Ambient temperature forms one key ecological variable that varies with latitude, and here we investigate its effects on the fecundity of self-fertilizing nematodes of the species Caenorhabditis briggsae that exhibits strong genetically based differentiation in association with latitude. We find that isogenic strains from a Tropical phylogeographic clade have greater lifetime fecundity when reared at extreme high temperatures and lower lifetime fecundity at extreme low temperatures than do strains from a Temperate phylogeographic clade, consistent with adaptation to local temperature regimes. Further, we determine experimentally that the mechanism underlying reduced fecundity at extreme temperatures differs for low versus high temperature extremes, but that the total number of sperm produced by the gonad is unaffected by rearing temperature. Low rearing temperatures result in facultatively reduced oocyte production by hermaphrodites, whereas extreme high temperatures experienced during development induce permanent defects in sperm fertility. Available and emerging genetic tools for this organism will permit the characterization of the evolutionary genetic basis to this putative example of adaptation in latitudinally separated populations.
Collapse
Affiliation(s)
- Anisha Prasad
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | | | | | |
Collapse
|
49
|
Cutter AD, Choi JY. Natural selection shapes nucleotide polymorphism across the genome of the nematode Caenorhabditis briggsae. Genome Res 2010; 20:1103-11. [PMID: 20508143 PMCID: PMC2909573 DOI: 10.1101/gr.104331.109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 05/14/2010] [Indexed: 01/01/2023]
Abstract
The combined actions of natural selection, mutation, and recombination forge the landscape of genetic variation across genomes. One frequently observed manifestation of these processes is a positive association between neutral genetic variation and local recombination rates. Two selective mechanisms and/or recombination-associated mutation (RAM) could generate this pattern, and the relative importance of these alternative possibilities remains unresolved generally. Here we quantify nucleotide differences within populations, between populations, and between species to test for genome-wide effects of selection and RAM in the partially selfing nematode Caenorhabditis briggsae. We find that nearly half of genome-wide variation in nucleotide polymorphism is explained by differences in local recombination rates. By quantifying divergence between several reproductively isolated lineages, we demonstrate that ancestral polymorphism generates a spurious signal of RAM for closely related lineages, with implications for analyses of humans and primates; RAM is, at most, a minor factor in C. briggsae. We conclude that the positive relation between nucleotide polymorphism and the rate of crossover represents the footprint of natural selection across the C. briggsae genome and demonstrate that background selection against deleterious mutations is sufficient to explain this pattern. Hill-Robertson interference also leaves a signature of more effective purifying selection in high-recombination regions of the genome. Finally, we identify an emerging contrast between widespread adaptive hitchhiking effects in species with large outcrossing populations (e.g., Drosophila) versus pervasive background selection effects on the genomes of organisms with self-fertilizing lifestyles and/or small population sizes (e.g., Caenorhabditis elegans, C. briggsae, Arabidopsis thaliana, Lycopersicon, human). These results illustrate how recombination, mutation, selection, and population history interact in important ways to shape molecular heterogeneity within and between genomes.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada.
| | | |
Collapse
|
50
|
Braendle C, Baer CF, Félix MA. Bias and evolution of the mutationally accessible phenotypic space in a developmental system. PLoS Genet 2010; 6:e1000877. [PMID: 20300655 PMCID: PMC2837400 DOI: 10.1371/journal.pgen.1000877] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 02/08/2010] [Indexed: 11/19/2022] Open
Abstract
Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that are most easily affected by mutation. This study provides an empirical assessment of developmental bias and the evolution of mutationally accessible phenotypes and supports the notion that such bias may influence the directions of evolutionary change.
Collapse
|