1
|
Park JS, Kim KS, Choi HJ. Glucagon-Like Peptide-1 and Hypothalamic Regulation of Satiation: Cognitive and Neural Insights from Human and Animal Studies. Diabetes Metab J 2025; 49:333-347. [PMID: 40367985 PMCID: PMC12086555 DOI: 10.4093/dmj.2025.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as blockbuster drugs for treating metabolic diseases. Glucagon-like peptide-1 (GLP-1) plays a pivotal role in glucose homeostasis by enhancing insulin secretion, suppressing glucagon release, delaying gastric emptying, and acting on the central nervous system to regulate satiation and satiety. This review summarizes the discovery of GLP-1 and the development of GLP-1RAs, with a particular focus on their central mechanisms of action. Human neuroimaging studies demonstrate that GLP-1RAs influence brain activity during food cognition, supporting a role in pre-ingestive satiation. Animal studies on hypothalamic feed-forward regulation of hunger suggest that cognitive hypothalamic mechanisms may also contribute to satiation control. We highlight the brain mechanisms of GLP-1RA-induced satiation and satiety, including cognitive impacts, with an emphasis on animal studies of hypothalamic glucagon-like peptide-1 receptor (GLP-1R) and GLP-1R-expressing neurons. Actions in non-hypothalamic regions are also discussed. Additionally, we review emerging combination drugs and oral GLP-1RA formulations aimed at improving efficacy and patient adherence. In conclusion, the dorsomedial hypothalamus (DMH)-a key GLP-1RA target-mediates pre-ingestive cognitive satiation, while other hypothalamic GLP-1R neurons regulate diverse aspects of feeding behavior, offering potential therapeutic targets for obesity treatment.
Collapse
Affiliation(s)
- Joon Seok Park
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Jin Choi
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Litus EA, Shevelyova MP, Vologzhannikova AA, Deryusheva EI, Chaplygina AV, Rastrygina VA, Machulin AV, Alikova VD, Nazipova AA, Permyakova ME, Dotsenko VV, Permyakov SE, Nemashkalova EL. Interaction Between Glucagon-like Peptide 1 and Its Analogs with Amyloid-β Peptide Affects Its Fibrillation and Cytotoxicity. Int J Mol Sci 2025; 26:4095. [PMID: 40362335 PMCID: PMC12071944 DOI: 10.3390/ijms26094095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Clinical data as well as animal and cell studies indicate that certain antidiabetic drugs, including glucagon-like peptide 1 receptor agonists (GLP-1RAs), exert therapeutic effects in Alzheimer's disease (AD) by modulating amyloid-β peptide (Aβ) metabolism. Meanwhile, the direct interactions between GLP-1RAs and Aβ and their functional consequences remain unexplored. In this study, the interactions between monomeric Aβ40/Aβ42 of GLP-1(7-37) and its several analogs (semaglutide (Sema), liraglutide (Lira), exenatide (Exen)) were studied using biolayer interferometry and surface plasmon resonance spectroscopy. The quaternary structure of GLP-1RAs was investigated using dynamic light scattering. The effects of GLP-1RAs on Aβ fibrillation were assessed using the thioflavin T assay and electron microscopy. The impact of GLP-1RAs on Aβ cytotoxicity was evaluated via the MTT assay. Monomeric Aβ40 and Aβ42 directly bind to GLP-1(7-37), Sema, Lira, and Exen, with the highest affinity for Lira (the lowest estimates of equilibrium dissociation constants were 42-60 nM). GLP-1RAs are prone to oligomerization, which may affect their binding to Aβ. GLP-1(7-37) and Exen inhibit Aβ40 fibrillation, whereas Sema promotes it. GLP-1 analogs decrease Aβ cytotoxicity toward SH-SY5Y cells, while GLP-1(7-37) enhances Aβ40 cytotoxicity without affecting the cytotoxic effect of Aβ42. Overall, GLP-1RAs interact with Aβ and differentially modulate its fibrillation and cytotoxicity, suggesting the need for further studies of our observed effects in vivo.
Collapse
Affiliation(s)
- Ekaterina A. Litus
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Marina P. Shevelyova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Alisa A. Vologzhannikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Alina V. Chaplygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Valeria D. Alikova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Aliya A. Nazipova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Victor V. Dotsenko
- Department of Organic Chemistry and Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia;
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.P.S.); (A.A.V.); (E.I.D.); (A.V.C.); (V.A.R.); (V.D.A.); (A.A.N.); (M.E.P.); (S.E.P.); (E.L.N.)
| |
Collapse
|
3
|
Tanguturi Yella SS, Kota Sesha Brahma Sree KS, Mahato SK. The Role of Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Alcohol Use Disorder: Current Evidence and Future Directions. J Clin Psychopharmacol 2025:00004714-990000000-00367. [PMID: 40184516 DOI: 10.1097/jcp.0000000000002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
ABSTRACT Alcohol use disorder (AUD) poses a substantial challenge to public health, marked by persistent alcohol consumption patterns that result in significant morbidity and mortality. The limited efficacy of current pharmacological treatments for AUD underscores the necessity for novel therapeutic approaches. Glucagon-like peptide-1 (GLP-1) receptor agonists, originally developed to treat type 2 diabetes and obesity, have shown promise as potential AUD treatments due to their influence on brain reward pathways. This narrative review synthesizes existing preclinical and clinical evidence on the effects of GLP-1 receptor agonists on alcohol-related behaviors and consumption. Animal studies demonstrate that activating GLP-1 receptors can substantially reduce alcohol intake and inhibit relapse. Initial clinical trials indicate that these agents may decrease heavy drinking days in certain groups, particularly those with concurrent obesity. However, significant gaps remain in the research, including the need for extended studies, more diverse human trials, and investigations into genetic influences on treatment outcomes. This review emphasizes the potential of GLP-1 receptor agonists in AUD treatment and advocates for additional research to confirm their effectiveness and safety in clinical contexts, potentially leading to innovative strategies for managing AUD.
Collapse
Affiliation(s)
| | | | - Sumit Kumar Mahato
- From the Department of Pharmacology, All India Institute of Medical Sciences, Deoghar, India
| |
Collapse
|
4
|
Lu W, Wang S, Tang H, Yuan T, Zuo W, Liu Y. Neuropsychiatric adverse events associated with Glucagon-like peptide-1 receptor agonists: a pharmacovigilance analysis of the FDA Adverse Event Reporting System database. Eur Psychiatry 2025; 68:e20. [PMID: 39901452 PMCID: PMC11823005 DOI: 10.1192/j.eurpsy.2024.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are widely used due to their profound efficacy in glycemic control and weight management. Real-world observations have revealed potential neuropsychiatric adverse events (AEs) associated with GLP-1RAs. This study aimed to comprehensively investigate and characterize these neuropsychiatric AEs with GLP-1RAs. METHODS We analyzed GLP-1RA adverse reaction reports using the FDA Adverse Event Reporting System database. Disproportionality analysis using reporting odds ratio (ROR) identified eight categories of neuropsychiatric AEs associated with GLP-1RAs. We conducted descriptive and time-to-onset (TTO) analyses and explored neuropsychiatric AE signals among individual GLP-1RAs for weight loss and diabetes mellitus (DM) indications. RESULTS We identified 25,110 cases of GLP-1RA-related neuropsychiatric AEs. GLP-1RAs showed an association with headache (ROR 1.74, 95% confidence interval [CI] 1.65-1.84), migraine (ROR 1.28, 95%CI 1.06-1.55), and olfactory and sensory nerve abnormalities (ROR 2.44, 95%CI 1.83-3.25; ROR 1.69, 95%CI 1.54-1.85). Semaglutide showed a moderate suicide-related AEs signal in the weight loss population (ROR 2.55, 95%CI 1.97-3.31). The median TTO was 16 days (interquartile range: 3-66 days). CONCLUSIONS In this study, we identified eight potential neuropsychiatric adverse events (AEs) associated with GLP-1RAs and, for the first time, detected positive signals for migraine, olfactory abnormalities, and sensory abnormalities. We also observed positive suicide-related signals of semaglutide, in weight loss population. This study provides a reliable basis for further investigation of GLP-1RA-related neuropsychiatric AEs. However, as an exploratory study, our findings require confirmation through large-scale prospective studies.
Collapse
Affiliation(s)
- Wenchao Lu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shihan Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huilin Tang
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zuo
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuling Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Yang K, Wu YT, He Y, Dai JX, Luo YL, Xie JH, Ding WJ. GLP-1 and IL-6 regulates obesity in the gut and brain. Life Sci 2025; 362:123339. [PMID: 39730038 DOI: 10.1016/j.lfs.2024.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Obesity is a chronic metabolic disease characterized by excessive nutrient intake leading to increased subcutaneous or visceral fat, resulting in pathological and physiological changes. The incidence rate of obesity, an important form of metabolic syndrome, is increasing worldwide. Excess appetite is a key pathogenesis of obesity, and the inflammatory response induced by obesity has received increasing attention. This review focuses on the role of appetite-regulating factor (Glucogan-like peptide 1) and inflammatory factor (Interleukin-6) in the gut and brain in individuals with obesity and draws insights from the current literature.
Collapse
Affiliation(s)
- Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ting Wu
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Xiu Dai
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yu-Lu Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Hui Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei-Jun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Börchers S, Skibicka KP. GLP-1 and Its Analogs: Does Sex Matter? Endocrinology 2025; 166:bqae165. [PMID: 39715341 PMCID: PMC11733500 DOI: 10.1210/endocr/bqae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/22/2024] [Indexed: 12/25/2024]
Abstract
While obesity and diabetes are prevalent in both men and women, some aspects of these diseases differ by sex. A new blockbuster class of therapeutics, glucagon-like peptide 1 (GLP-1) analogs (eg, semaglutide), shows promise at curbing both diseases. This review addresses the topic of sex differences in the endogenous and therapeutic actions of GLP-1 and its analogs. Work on sex differences in human studies and animal research is reviewed. Preclinical data on the mechanisms of potential sex differences in the endogenous GLP-1 system as well as the therapeutic effect of GLP-1 analogs, focusing on the effects of the drugs on the brain and behavior relating to appetite and metabolism, are highlighted. Moreover, recent clinical evidence of sex differences in the therapeutic effects of GLP-1 analogs in obesity, diabetes, and cardiovascular disease are discussed. Lastly, we review evidence for the role of GLP-1 analogs in mood and reproductive function, with particular attention to sex differences. Overall, while we did not find evidence for many qualitative sex differences in the therapeutic effect of clinically approved GLP-1 analogs, a growing body of literature highlights quantitative sex differences in the response to GLP-1 and its analogs as well as an interaction of these therapeutics with estrogens. What also clearly emerges is the paucity of data in female animal models or women in very basic aspects of the science of GLP-1-gaps that should be urgently mended, given the growing popularity of these medications, especially in women.
Collapse
Affiliation(s)
- Stina Börchers
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Gothenburg, Sweden
- Nutritional Sciences Department, The Pennsylvania State University, University Park, PA 16803, USA
- Huck Institutes of Life Science, The Pennsylvania State University, University Park, PA 16803, USA
| |
Collapse
|
7
|
Lv D, Feng P, Guan X, Liu Z, Li D, Xue C, Bai B, Hölscher C. Neuroprotective effects of GLP-1 class drugs in Parkinson's disease. Front Neurol 2024; 15:1462240. [PMID: 39719978 PMCID: PMC11667896 DOI: 10.3389/fneur.2024.1462240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, progressive neurological disorder primarily affecting motor control, clinically characterized by resting tremor, bradykinesia, rigidity, and other symptoms that significantly diminish the quality of life. Currently, available treatments only alleviate symptoms without halting or delaying disease progression. There is a significant association between PD and type 2 diabetes mellitus (T2DM), possibly due to shared pathological mechanisms such as insulin resistance, chronic inflammation, and mitochondrial dysfunction. PD is caused by a deficiency of dopamine, a neurotransmitter in the brain that plays a critical role in the control of movement. Glucose metabolism and energy metabolism disorders also play an important role in the pathogenesis of PD. This review investigates the neuroprotective mechanisms of glucagon-like peptide-1 (GLP-1) and its receptor agonists, offering novel insights into potential therapeutic strategies for PD. GLP-1 class drugs, primarily used in diabetes management, show promise in addressing PD's underlying pathophysiological mechanisms, including energy metabolism and neuroprotection. These drugs can cross the blood-brain barrier, improve insulin resistance, stabilize mitochondrial function, and enhance neuronal survival and function. Additionally, they exhibit significant anti-inflammatory and antioxidative stress effects, which are crucial in neurodegenerative diseases like PD. Research indicates that GLP-1 receptor agonists could improve both motor and cognitive symptoms in PD patients, marking a potential breakthrough in PD treatment and prevention. Further exploration of GLP-1's molecular mechanisms in PD could provide new preventive and therapeutic approaches, especially for PD patients with concurrent T2DM. By targeting both metabolic and neurodegenerative pathways, GLP-1 receptor agonists represent a multifaceted approach to PD treatment, offering hope for better disease management and improved patient outcomes.
Collapse
Affiliation(s)
- Dongliang Lv
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Peng Feng
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Xueying Guan
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhaona Liu
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongfang Li
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Cunshui Xue
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Bo Bai
- Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Henan Academy of Innovations in Medical Science, Brain Institute, Zhengzhou, China
| |
Collapse
|
8
|
Cao Y, Tong Q. Hunting for heroes: Brain neurons mediating GLP-1R agonists in obesity treatment. OBESITY MEDICINE 2024; 52:100569. [PMID: 39831282 PMCID: PMC11741184 DOI: 10.1016/j.obmed.2024.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) have proven to be highly effective in reducing obesity across species and ages, gaining unmet popularity in clinical treatments against obesity. Although extensive research efforts have been made to explore how the brain regulates body weight homeostasis including the effect brought up by GLP-1 and its synthetic analogs GLP-1RAs, the identity of neurons and neural pathways that are responsible for the observed anti-obesity effect of GLP-1RAs remain largely elusive. Excitingly, three recent high-profile studies presented compelling evidence that each argues for the importance of GLP-1Rs in the dorsomedial hypothalamus, hindbrain, or lateral septum, respectively, in mediating the anti-obesity effect of GLP-1RAs. While these studies clearly illustrated the contributions of each of these distinct brain regions involved in GLP-1RAs in body weight regulation, the presented results also suggest the complexity of the involved brain neural network. This commentary briefly introduces these studies and highlights key knowledge gaps that require further investigation.
Collapse
Affiliation(s)
- Yuhan Cao
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Texas, 77030, USA
| | - Qingchun Tong
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Texas, 77030, USA
| |
Collapse
|
9
|
Tanvir A, Jo J, Park SM. Targeting Glucose Metabolism: A Novel Therapeutic Approach for Parkinson's Disease. Cells 2024; 13:1876. [PMID: 39594624 PMCID: PMC11592965 DOI: 10.3390/cells13221876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Glucose metabolism is essential for the maintenance and function of the central nervous system. Although the brain constitutes only 2% of the body weight, it consumes approximately 20% of the body's total energy, predominantly derived from glucose. This high energy demand of the brain underscores its reliance on glucose to fuel various functions, including neuronal activity, synaptic transmission, and the maintenance of ion gradients necessary for nerve impulse transmission. Increasing evidence shows that many neurodegenerative diseases, including Parkinson's disease (PD), are associated with abnormalities in glucose metabolism. PD is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, accompanied by the accumulation of α-synuclein protein aggregates. These pathological features are exacerbated by mitochondrial dysfunction, oxidative stress, and neuroinflammation, all of which are influenced by glucose metabolism disruptions. Emerging evidence suggests that targeting glucose metabolism could offer therapeutic benefits for PD. Several antidiabetic drugs have shown promise in animal models and clinical trials for mitigating the symptoms and progression of PD. This review explores the current understanding of the association between PD and glucose metabolism, emphasizing the potential of antidiabetic medications as a novel therapeutic approach. By improving glucose uptake and utilization, enhancing mitochondrial function, and reducing neuroinflammation, these drugs could address key pathophysiological mechanisms in PD, offering hope for more effective management of this debilitating disease.
Collapse
Affiliation(s)
- Ahmed Tanvir
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Junghyun Jo
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
10
|
Siddique AHH, Kale PP. Importance of glucose and its metabolism in neurodegenerative disorder, as well as the combination of multiple therapeutic strategies targeting α-synuclein and neuroprotection in the treatment of Parkinson's disease. Rev Neurol (Paris) 2024; 180:736-753. [PMID: 38040547 DOI: 10.1016/j.neurol.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/04/2023] [Accepted: 08/18/2023] [Indexed: 12/03/2023]
Abstract
According to recent findings, Phosphoglycerate Kinase 1 (pgk-1) enzyme is linked to Parkinson's disease (PD). Mutations in the PGK-1 gene lead to decreases in the pgk-1 enzyme which causes an imbalance in the levels of energy demand and supply. An increase in glycolytic adenosine triphosphate (ATP) production would help alleviate energy deficiency and sustain the acute energetic need of neurons. Neurodegeneration is caused by an imbalance or reduction in ATP levels. Recent data suggest that medications that increase glycolysis and neuroprotection can be used to treat PD. The current study focuses on treatment options for disorders associated with the pgk-1 enzyme, GLP-1, and A2A receptor which can be utilized to treat PD. A combination of metformin and terazosin, exenatide and meclizine, istradefylline and salbutamol treatments may benefit parkinsonism. The review also looked at potential target-specific new techniques that might assist in satisfying unfulfilled requirements in the treatment of PD.
Collapse
Affiliation(s)
- A H H Siddique
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V. L. Mehta Road, Vile Parle west, 400056 Mumbai, India.
| | - P P Kale
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V. L. Mehta Road, Vile Parle west, 400056 Mumbai, India.
| |
Collapse
|
11
|
Li Y, Vaughan KL, Wang Y, Yu SJ, Bae EK, Tamargo IA, Kopp KO, Tweedie D, Chiang CC, Schmidt KT, Lahiri DK, Tones MA, Zaleska MM, Hoffer BJ, Mattison JA, Greig NH. Sitagliptin elevates plasma and CSF incretin levels following oral administration to nonhuman primates: relevance for neurodegenerative disorders. GeroScience 2024; 46:4397-4414. [PMID: 38532069 PMCID: PMC11335710 DOI: 10.1007/s11357-024-01120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
The endogenous incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) possess neurotrophic, neuroprotective, and anti-neuroinflammatory actions. The dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin reduces degradation of endogenous GLP-1 and GIP, and, thereby, extends the circulation of these protective peptides. The current nonhuman primate (NHP) study evaluates whether human translational sitagliptin doses can elevate systemic and central nervous system (CNS) levels of GLP-1/GIP in naive, non-lesioned NHPs, in line with our prior rodent studies that demonstrated sitagliptin efficacy in preclinical models of Parkinson's disease (PD). PD is an age-associated neurodegenerative disorder whose current treatment is inadequate. Repositioning of the well-tolerated and efficacious diabetes drug sitagliptin provides a rapid approach to add to the therapeutic armamentarium for PD. The pharmacokinetics and pharmacodynamics of 3 oral sitagliptin doses (5, 20, and 100 mg/kg), equivalent to the routine clinical dose, a tolerated higher clinical dose and a maximal dose in monkey, were evaluated. Peak plasma sitagliptin levels were aligned both with prior reports in humans administered equivalent doses and with those in rodents demonstrating reduction of PD associated neurodegeneration. Although CNS uptake of sitagliptin was low (cerebrospinal fluid (CSF)/plasma ratio 0.01), both plasma and CSF concentrations of GLP-1/GIP were elevated in line with efficacy in prior rodent PD studies. Additional cellular studies evaluating human SH-SY5Y and primary rat ventral mesencephalic cultures challenged with 6-hydroxydopamine, established cellular models of PD, demonstrated that joint treatment with GLP-1 + GIP mitigated cell death, particularly when combined with DPP-4 inhibition to maintain incretin levels. In conclusion, this study provides a supportive translational step towards the clinical evaluation of sitagliptin in PD and other neurodegenerative disorders for which aging, similarly, is the greatest risk factor.
Collapse
Affiliation(s)
- Yazhou Li
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Eun-Kyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Ian A Tamargo
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Katherine O Kopp
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - David Tweedie
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Cheng-Chuan Chiang
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Keith T Schmidt
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | | | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
12
|
Lu Y, Wang L, Luo F, Savani R, Rossi MA, Pang ZP. Dorsolateral septum GLP-1R neurons regulate feeding via lateral hypothalamic projections. Mol Metab 2024; 85:101960. [PMID: 38763494 PMCID: PMC11153235 DOI: 10.1016/j.molmet.2024.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVE Although glucagon-like peptide 1 (GLP-1) is known to regulate feeding, the central mechanisms contributing to this function remain enigmatic. Here, we aim to test the role of neurons expressing GLP-1 receptors (GLP-1R) in the dorsolateral septum (dLS; dLSGLP-1R) that project to the lateral hypothalamic area (LHA) on food intake and determine the relationship with feeding regulation. METHODS Using chemogenetic manipulations, we assessed how activation or inhibition of dLSGLP-1R neurons affected food intake in Glp1r-ires-Cre mice. Then, we used channelrhodopsin-assisted circuit mapping, chemogenetics, and electrophysiological recordings to identify and assess the role of the pathway from dLSGLP-1R →LHA projections in regulating food intake. RESULTS Chemogenetic inhibition of dLSGLP-1R neurons increases food intake. LHA is a major downstream target of dLSGLP-1R neurons. The dLSGLP-1R→LHA projections are GABAergic, and chemogenetic inhibition of this pathway also promotes food intake. While chemogenetic activation of dLSGLP-1R→LHA projections modestly decreases food intake, optogenetic stimulation of the dLSGLP-1R→LHA projection terminals in the LHA rapidly suppresses feeding behavior. Finally, we demonstrate that the GLP-1R agonist, Exendin 4 enhances dLSGLP-1R →LHA GABA release. CONCLUSIONS Together, these results demonstrate that dLS-GLP-1R neurons and the inhibitory pathway to LHA can regulate feeding behavior, which might serve as a potential therapeutic target for the treatment of eating disorders or obesity.
Collapse
Affiliation(s)
- Yi Lu
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Le Wang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Fang Luo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Rohan Savani
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Mark A Rossi
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
13
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
14
|
Boshchenko AA, Maslov LN, Mukhomedzyanov AV, Zhuravleva OA, Slidnevskaya AS, Naryzhnaya NV, Zinovieva AS, Ilinykh PA. Peptides Are Cardioprotective Drugs of the Future: The Receptor and Signaling Mechanisms of the Cardioprotective Effect of Glucagon-like Peptide-1 Receptor Agonists. Int J Mol Sci 2024; 25:4900. [PMID: 38732142 PMCID: PMC11084666 DOI: 10.3390/ijms25094900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1β, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3β, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.
Collapse
Affiliation(s)
- Alla A. Boshchenko
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Olga A. Zhuravleva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alisa S. Slidnevskaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Arina S. Zinovieva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
15
|
Buller S, Blouet C. Brain access of incretins and incretin receptor agonists to their central targets relevant for appetite suppression and weight loss. Am J Physiol Endocrinol Metab 2024; 326:E472-E480. [PMID: 38381398 PMCID: PMC11193531 DOI: 10.1152/ajpendo.00250.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/05/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
New incretin-based pharmacotherapies provide efficient and safe therapeutic options to curb appetite and produce weight loss in patients with obesity. Delivered systemically, these molecules produce pleiotropic metabolic benefits, but the target sites mediating their weight-suppressive action are located within the brain. Recent research has increased our understanding of the neural circuits and behavioral mechanisms involved in the anorectic and metabolic consequences of glucagon-like peptide 1 (GLP-1)-based weight loss strategies, yet little is known about how these drugs access their functional targets in the brain to produce sustained weight loss. The majority of brain cells expressing incretin receptors are located behind the blood-brain barrier, shielded from the circulation and fluctuations in the availability of peripheral signals, which is a major challenge for the development of CNS-targeted therapeutic peptides. GLP-1 receptor (GLP-1R) agonists with increased half-life and enhanced therapeutic benefit do not cross the blood-brain barrier, yet they manage to access discrete brain sites relevant to the regulation of energy homeostasis. In this review, we give a brief overview of the different routes for peptide hormones to access the brain. We then examine the evidence informing the routes employed by incretins and incretin receptor agonists to access brain targets relevant for their appetite and weight-suppressive actions. We highlight existing controversies and suggest future directions to further establish the functionally relevant access routes for GLP-1-based weight loss compounds, which might guide the development and selection of the future generation of incretin receptor polypharmacologies.
Collapse
Affiliation(s)
- Sophie Buller
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Clemence Blouet
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Ahamad S, Bano N, Khan S, Hussain MK, Bhat SA. Unraveling the Puzzle of Therapeutic Peptides: A Promising Frontier in Huntington's Disease Treatment. J Med Chem 2024; 67:783-815. [PMID: 38207096 DOI: 10.1021/acs.jmedchem.3c01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder characterized by a mutation in the huntingtin (HTT) gene, resulting in the production of a mutant huntingtin protein (mHTT). The accumulation of mHTT leads to the development of toxic aggregates in neurons, causing cell dysfunction and, eventually, cell death. Peptide therapeutics target various aspects of HD pathology, including mHTT reduction and aggregation inhibition, extended CAG mRNA degradation, and modulation of dysregulated signaling pathways, such as BDNF/TrkB signaling. In addition, these peptide therapeutics also target the detrimental interactions of mHTT with InsP3R1, CaM, or Caspase-6 proteins to mitigate HD. This Perspective provides a detailed perspective on anti-HD therapeutic peptides, highlighting their design, structural characteristics, neuroprotective effects, and specific mechanisms of action. Peptide therapeutics for HD exhibit promise in preclinical models, but further investigation is required to confirm their effectiveness as viable therapeutic strategies, recognizing that no approved peptide therapy for HD currently exists.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
17
|
Verma A, Chaudhary S, Solanki K, Goyal A, Yadav HN. Exendin-4: A potential therapeutic strategy for Alzheimer's disease and Parkinson's disease. Chem Biol Drug Des 2024; 103:e14426. [PMID: 38230775 DOI: 10.1111/cbdd.14426] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Neurodegenerative disorders, which affect millions worldwide, are marked by a steady decline of neurons that are selectively susceptible. Due to the complex pathological processes underlying neurodegeneration, at present, there is no viable therapy available for neurodegenerative disorders. Consequently, the establishment of a novel therapeutic approach for such conditions is a clinical void that remains. The potential significance of various peptides as neuroprotective interventions for neurodegenerative disorders is gaining increasing attention. In the past few years, there has been growing scientific interest in glucagon-like peptide-1 receptor agonists due to their claimed neuroprotective effects. Exendin-4 is a glucagon-like peptide-1 receptor agonist that is known to possess anti-diabetic effects and does not degrade for hours, making it a superior candidate for such disorders. Moreover, exendin-4's neuroprotective effects have been reported in several preclinical studies. Exendin-4's diverse therapeutic targets suggest its potential therapeutic uses in neurodegenerative ailments like Alzheimer's disease and Parkinson's disease and have garnered an increasing amount of attention. Given the substantial body of evidence supporting the neuroprotective potential of exendin-4 in various research models, this article is dedicated to exploring the promising role of exendin-4 as a therapeutic agent for the treatment and management of Alzheimer's disease and Parkinson's disease. This review draws insights from the findings of numerous preclinical and clinical studies to highlight the collective neuroprotective advantages of exendin-4 and the potential mechanisms that underlie its neuroprotective effects.
Collapse
Affiliation(s)
- Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shobhit Chaudhary
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kunal Solanki
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | |
Collapse
|
18
|
Pal B, Chattopadhyay M. Recent clinical and pharmacological advancements of incretin-based therapy and the effects of incretin on physiology. JOURNAL OF DIABETOLOGY 2024; 15:24-37. [DOI: 10.4103/jod.jod_117_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 12/11/2024] Open
Abstract
Abstract
A novel therapeutic target for diabetes mellitus is incretin-based therapies, glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptides are released from the gastrointestinal (GI) tract and act on beta cells of pancreatic islets by increasing the secretion of insulin. The management and prevention of diabetes require habitual and pharmacological therapies along with quality and healthy lifestyle. This includes maintaining the body weight, blood glucose level, cardiovascular risk, complexity, and co-morbidities. The utilization of glucagon-like peptide-1 (GLP-1) agonists is an object of research with favorable hemoglobin A1C levels and weight loss in type 1 diabetic patients. However, cost-effectiveness and tolerability, remain significant barriers for patients to using these medications. The risk of suicidal tendencies and thoughts of self-harm have been increased in patients receiving GLP-1 receptor agonists. Tirzepatide treatment showed a potent glucose-lowering effect and promoted weight loss with minimum GI adverse effects in animal studies as well as phase I and II human trials, in comparison with established GLP-1 receptor agonists. The glucose-dependent insulinotropic polypeptide receptor (GIPR) peptide-antagonist effectively blocks the action of gastric-inhibitory-polypeptide (GIP) in vitro and ex vivo in human pancreas and in vivo in rodent models. However, incretin-based therapies have received enormous attention in the last few decades for the treatment of diabetes, obesity, and other repurposing including central nervous system disorders. Therefore, in this article, we demonstrate the overview, physiological, and pharmacological advances of incretin-based pharmacotherapies and their physiological roles. Furthermore, the recent updates of glucagon-like peptide-1 receptor agonist, Glucagon-like peptide-2 receptor agonist, GLP-1/GIP co-agonists, GIP/GLP-1/glucagon triple agonist and GIP-antagonist are also discussed.
Collapse
Affiliation(s)
- Bhaskar Pal
- Department of Pharmacology, Charaktala College of Pharmacy, Charaktala, Debipur, West Bengal, India
| | - Moitreyee Chattopadhyay
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| |
Collapse
|
19
|
Pradhan SP, Sahu PK, Behera A. New insights toward molecular and nanotechnological approaches to antidiabetic agents for Alzheimer's disease. Mol Cell Biochem 2023; 478:2739-2762. [PMID: 36949264 DOI: 10.1007/s11010-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder affecting a major class of silver citizens. The disorder shares a mutual relationship on account of its cellular and molecular pathophysiology with type-II diabetes mellitus (DM). Chronic DM increases the risk for AD. Emerging evidence recommended that resistance in insulin production develops cognitive dysfunction, which generally leads to AD. Repurposing of antidiabetic drugs can be effective in preventing and treatment of the neurodegenerative disorder. Limitations of antidiabetic drugs restrict the repurposing of the drugs for other disorders. Therefore, nanotechnological intervention plays a significant role in the treatment of neurological disorders. In this review, we discuss the common cellular and molecular pathophysiologies between AD and type-II DM, the relevance of in vivo models of type II DM in the study of AD, and the repurposing of antidiabetic drugs and the nanodelivery systems of antidiabetic drugs against AD.
Collapse
Affiliation(s)
- Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India.
| |
Collapse
|
20
|
Złotek M, Kurowska A, Herbet M, Piątkowska-Chmiel I. GLP-1 Analogs, SGLT-2, and DPP-4 Inhibitors: A Triad of Hope for Alzheimer's Disease Therapy. Biomedicines 2023; 11:3035. [PMID: 38002034 PMCID: PMC10669527 DOI: 10.3390/biomedicines11113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's is a prevalent, progressive neurodegenerative disease marked by cognitive decline and memory loss. The disease's development involves various pathomechanisms, including amyloid-beta accumulation, neurofibrillary tangles, oxidative stress, inflammation, and mitochondrial dysfunction. Recent research suggests that antidiabetic drugs may enhance neuronal survival and cognitive function in diabetes. Given the well-documented correlation between diabetes and Alzheimer's disease and the potential shared mechanisms, this review aimed to comprehensively assess the potential of new-generation anti-diabetic drugs, such as GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, as promising therapeutic approaches for Alzheimer's disease. This review aims to comprehensively assess the potential therapeutic applications of novel-generation antidiabetic drugs, including GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, in the context of Alzheimer's disease. In our considered opinion, antidiabetic drugs offer a promising avenue for groundbreaking developments and have the potential to revolutionize the landscape of Alzheimer's disease treatment.
Collapse
Affiliation(s)
| | | | | | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.Z.); (A.K.); (M.H.)
| |
Collapse
|
21
|
Wang YC, Wang L, Shao YQ, Weng SJ, Yang XL, Zhong YM. Exendin-4 promotes retinal ganglion cell survival and function by inhibiting calcium channels in experimental diabetes. iScience 2023; 26:107680. [PMID: 37680468 PMCID: PMC10481356 DOI: 10.1016/j.isci.2023.107680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Progressive damage of retinal ganglion cells (RGCs) is observed in early diabetic retinopathy. Intracellular Ca2+ overload mediated by Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is involved in neurodegeneration, whereas glucagon-like peptide-1 (GLP-1) provides neuroprotection. However, whether GLP-1 plays a neuroprotective role in diabetic retinas by modulating VGCCs remains unknown. We found that eye drops of exendin-4, a long-acting GLP-1 receptor (GLP-1R) agonist, prevented the increase of L-type Ca2+ current (ILCa) densities of RGCs induced by 4-week hyperglycemia and promoted RGC survival by suppressing L-type VGCC (L-VGCC) activity in streptozotocin-induced diabetic rats. Moreover, exendin-4-induced suppression of ILCa in RGCs may be mediated by a GLP-1R/Gs/cAMP-PKA/ryanodine/Ca2+/calmodulin/calcineurin/PP1 signaling pathway. Furthermore, exendin-4 functionally improved the light-evoked spiking ability of diabetic RGCs. These results suggest that GLP-1R activation enhances cAMP to PP1 signaling and that PP1 inactivates L-VGCCs by dephosphorylating them, thereby reducing Ca2+ influx, which could protect RGCs against excitotoxic Ca2+ overload.
Collapse
Affiliation(s)
- Yong-Chen Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Lu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yu-Qi Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
22
|
Kang X, Wang D, Zhang L, Huang T, Liu S, Feng X, Guo Y, Zhang Z, Wang Z, Ren H, Yuan G. Exendin-4 ameliorates tau hyperphosphorylation and cognitive impairment in type 2 diabetes through acting on Wnt/β-catenin/NeuroD1 pathway. Mol Med 2023; 29:118. [PMID: 37667187 PMCID: PMC10478475 DOI: 10.1186/s10020-023-00718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is an independent risk factor for Alzheimer's disease (AD). Exendin-4 (Ex-4), a widely used glucagon-like peptide-1 receptor agonist drug in the treatment of T2D, has been demonstrated the therapeutic effects on diabetic encephalopathy (DE). Especially, the Ex-4 ameliorates the tau hyperphosphorylation and cognitive impairment in DE. And these crucial alterations are also important bridge between T2D and AD. However, its unique mechanism is unclear. METHODS The db/db mice, high-fat-diet (HFD) / streptozotocin (STZ)-induced diabetic (HF-diabetic) mice, and high-glucose-damaged (HGD) HT-22 hippocampal cells were enrolled to examine the effects of Ex-4 on AD-like changes in T2D. The Novel object recognition test (NORT) and Morris water maze test (MWMT) were conducted to evaluate the cognitive impairment. The Dickkopf-1 (DKK1) was employed to weaken the activation of the Wnt/β-catenin pathway to explore the mechanism of Ex-4 in protecting the brain functions. The JASPAR was based to predict the interaction between NeuroD1 and the promoter region of Ins2. Moreover, the chromatin immunoprecipitation coupled with quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter assays were performed. RESULTS Ex-4 alleviated the tau hyperphosphorylation, increased the brain-derived insulin, and improved the PI3K/AKT/GSK3-β signalling in db/db mice, HF-diabetic mice, and HGD HT-22 hippocampal neuronal cells. The NORT and MWMT indicated that Ex-4 alleviated the learning and memory deficits in HF-diabetic mice. The inhibitor Dickkopf-1 (DKK1) of the Wnt/β-catenin pathway significantly blocked the protective effects of Ex-4. Regarding further molecular mechanisms, NeuroD1 was affected by Ex-4 in vivo and in vitro, and the knockdown or overexpression of NeuroD1 suggested its crucial role in promoting the brain insulin by Ex-4. Meanwhile, the ChIP‒qPCR and luciferase reporter assays confirmed the combination between NeuroD1 and the promoter region of the insulin-encoding gene Ins2. And this interaction could be promoted by Ex-4. CONCLUSIONS Our study proposes that Ex-4 alleviates tau hyperphosphorylation and cognitive dysfunction by increasing Ins2-derived brain insulin through the Wnt/β-catenin/NeuroD1 signaling in T2D. And its also show new lights on part of the progress and mechanism on treatment targets for the DE in T2D.
Collapse
Affiliation(s)
- Xiaonan Kang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lu Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Teng Huang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Siyue Liu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaohui Feng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaoyao Guo
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziyin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhongjing Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Huihui Ren
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Disease, Hubei, People's Republic of China.
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Disease, Hubei, People's Republic of China.
| |
Collapse
|
23
|
Guo X, Lei M, Zhao J, Wu M, Ren Z, Yang X, Ouyang C, Liu X, Liu C, Chen Q. Tirzepatide ameliorates spatial learning and memory impairment through modulation of aberrant insulin resistance and inflammation response in diabetic rats. Front Pharmacol 2023; 14:1146960. [PMID: 37701028 PMCID: PMC10493299 DOI: 10.3389/fphar.2023.1146960] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background: One of the typical symptoms of diabetes mellitus patients was memory impairment, which was followed by gradual cognitive deterioration and for which there is no efficient treatment. The anti-diabetic incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) were demonstrated to have highly neuroprotective benefits in animal models of AD. We wanted to find out how the GLP-1/GIP dual agonist tirzepatide affected diabetes's impairment of spatial learning memory. Methods: High fat diet and streptozotocin injection-induced diabetic rats were injected intraperitoneally with Tirzepatide (1.35 mg/kg) once a week. The protective effects were assessed using the Morris water maze test, immunofluorescence, and Western blot analysis. Golgi staining was adopted for quantified dendritic spines. Results: Tirzepatide significantly improved impaired glucose tolerance, fasting blood glucose level, and insulin level in diabetic rats. Then, tirzepatide dramatically alleviated spatial learning and memory impairment, inhibited Aβ accumulation, prevented structural damage, boosted the synthesis of synaptic proteins and increased dendritic spines formation in diabetic hippocampus. Furthermore, some aberrant changes in signal molecules concerning inflammation signaling pathways were normalized after tirzepatide treatment in diabetic rats. Finally, PI3K/Akt/GSK3β signaling pathway was restored by tirzepatide. Conclusion: Tirzepatide obviously exerts a protective effect against spatial learning and memory impairment, potentially through regulating abnormal insulin resistance and inflammatory responses.
Collapse
Affiliation(s)
- Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Jiangyan Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Min Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Changhan Ouyang
- Pharmacy College, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
24
|
Ruiz-Pozo VA, Tamayo-Trujillo R, Cadena-Ullauri S, Frias-Toral E, Guevara-Ramírez P, Paz-Cruz E, Chapela S, Montalván M, Morales-López T, Simancas-Racines D, Zambrano AK. The Molecular Mechanisms of the Relationship between Insulin Resistance and Parkinson's Disease Pathogenesis. Nutrients 2023; 15:3585. [PMID: 37630775 PMCID: PMC10458139 DOI: 10.3390/nu15163585] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative condition resulting from the loss of dopaminergic neurons. This neuronal loss leads to motor and non-motor neurological symptoms. Most PD cases are idiopathic, and no cure is available. Recently, it has been proposed that insulin resistance (IR) could be a central factor in PD development. IR has been associated with PD neuropathological features like α-synuclein aggregation, dopaminergic neuronal loss, neuroinflammation, mitochondrial dysfunction, and autophagy. These features are related to impaired neurological metabolism, neuronal death, and the aggravation of PD symptoms. Moreover, pharmacological options that involve insulin signaling improvement and dopaminergic and non-dopaminergic strategies have been under development. These drugs could prevent the metabolic pathways involved in neuronal damage. All these approaches could improve PD outcomes. Also, new biomarker identification may allow for an earlier PD diagnosis in high-risk individuals. This review describes the main pathways implicated in PD development involving IR. Also, it presents several therapeutic options that are directed at insulin signaling improvement and could be used in PD treatment. The understanding of IR molecular mechanisms involved in neurodegenerative development could enhance PD therapeutic options and diagnosis.
Collapse
Affiliation(s)
- Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Sebastián Chapela
- Departamento de Bioquímica, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121ABE, Argentina
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires C1280AEB, Argentina
| | - Martha Montalván
- School of Medicine, Universidad Espíritu Santo, Samborondón 091952, Ecuador
| | - Tania Morales-López
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
25
|
Cerroni C, Steiner A, Seanez L, Kwon S, Lewis AS. Effects of repeated developmental GLP-1R agonist exposure on young adult behavior and hippocampal structure in mice. Neurosci Lett 2023; 808:137299. [PMID: 37196974 PMCID: PMC10330515 DOI: 10.1016/j.neulet.2023.137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are common type 2 diabetes medications that have been repurposed for adult chronic weight management. Clinical trials suggest this class may also be beneficial for obesity in pediatric populations. Since several GLP-1R agonists cross the blood-brain barrier, it is important to understand how postnatal developmental exposure to GLP-1R agonists might affect brain structure and function later in life. Toward that end, we systemically treated male and female C57BL/6 mice with the GLP-1R agonist exendin-4 (0.5 mg/kg, twice daily) or saline from postnatal day 14 to 21, then allowed uninterrupted development to young adulthood. Beginning at 7 weeks of age, we performed open field and marble burying tests to assess motor behavior and the spontaneous location recognition (SLR) task to assess hippocampal-dependent pattern separation and memory. Mice were sacrificed, and we counted ventral hippocampal mossy cells, as we have recently shown that most murine hippocampal neuronal GLP-1R is expressed in this cell population. We found that GLP-1R agonist treatment did not alter P14-P21 weight gain, but modestly reduced young adult open field distance traveled and marble burying. Despite these motor changes, there was no effect on SLR memory performance or time spent investigating objects. Finally, we did not detect any changes in ventral mossy cell number using two different markers. These data suggest developmental exposure to GLP-1R agonists might have specific rather than global effects on behavior later in life and that extensive additional study is necessary to clarify how drug timing and dose affect distinct constellations of behavior in young adulthood.
Collapse
Affiliation(s)
- Catherine Cerroni
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alex Steiner
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leann Seanez
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sam Kwon
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan S Lewis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
26
|
Mattar P, Jaque C, Teske JA, Morselli E, Kerr B, Cortés V, Baudrand R, Perez-Leighton CE. Impact of short and long exposure to cafeteria diet on food intake and white adipose tissue lipolysis mediated by glucagon-like peptide 1 receptor. Front Endocrinol (Lausanne) 2023; 14:1164047. [PMID: 37293487 PMCID: PMC10244886 DOI: 10.3389/fendo.2023.1164047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction The modern food environment facilitates excessive calorie intake, a major driver of obesity. Glucagon-like peptide 1 (GLP1) is a neuroendocrine peptide that has been the basis for developing new pharmacotherapies against obesity. The GLP1 receptor (GLP1R) is expressed in central and peripheral tissues, and activation of GLP1R reduces food intake, increases the expression of thermogenic proteins in brown adipose tissue (BAT), and enhances lipolysis in white adipose tissue (WAT). Obesity decreases the efficiency of GLP1R agonists in reducing food intake and body weight. Still, whether palatable food intake before or during the early development of obesity reduces the effects of GLP1R agonists on food intake and adipose tissue metabolism remains undetermined. Further, whether GLP1R expressed in WAT contributes to these effects is unclear. Methods Food intake, expression of thermogenic BAT proteins, and WAT lipolysis were measured after central or peripheral administration of Exendin-4 (EX4), a GLP1R agonist, to mice under intermittent-short exposure to CAF diet (3 h/d for 8 days) or a longer-continuous exposure to CAF diet (24 h/d for 15 days). Ex-vivo lipolysis was measured after EX4 exposure to WAT samples from mice fed CAF or control diet for 12 weeks. . Results During intermittent-short exposure to CAF diet (3 h/d for 8 days), third ventricle injection (ICV) and intra-peritoneal administration of EX4 reduced palatable food intake. Yet, during a longer-continuous exposure to CAF diet (24 h/d for 15 days), only ICV EX4 administration reduced food intake and body weight. However, this exposure to CAF diet blocked the increase in uncoupling protein 1 (UCP1) caused by ICV EX4 administration in mice fed control diet. Finally, GLP1R expression in WAT was minimal, and EX4 failed to increase lipolysis ex-vivo in WAT tissue samples from mice fed CAF or control diet for 12 weeks. . Discussion Exposure to a CAF diet during the early stages of obesity reduces the effects of peripheral and central GLP1R agonists, and WAT does not express a functional GLP1 receptor. These data support that exposure to the obesogenic food environment, without the development or manifestation of obesity, can alter the response to GLP1R agonists. .
Collapse
Affiliation(s)
- Pamela Mattar
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Jaque
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jennifer A. Teske
- Department of Physiology, School of Nutritional Sciences and Wellness, Graduate Interdisciplinary Programs in Physiological Sciences and Neuroscience, University of Arizona, Tucson, AZ, United States
- Department of Food Science and Nutrition at the University of Minnesota, Saint Paul, MN, United States
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Víctor Cortés
- Department of Nutrition, Diabetes, and Metabolism, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rene Baudrand
- Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Centro Traslacional de Endocrinologia UC CETREN, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | |
Collapse
|
27
|
Berman C, Vidmar AP, Chao LC. Glucagon-like Peptide-1 Receptor Agonists for the Treatment of Type 2 Diabetes in Youth. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:38-45. [PMID: 37313232 PMCID: PMC10258616 DOI: 10.17925/ee.2023.19.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/20/2023] [Indexed: 06/15/2023]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have gained traction for the management of type 2 diabetes and obesity. Unlike several classes of antidiabetic medications that contribute to weight gain, GLP-1RAs not only reduce haemoglobin A1c, but also promote weight loss. While there is a large body of evidence supporting its safety and efficacy in adults, paediatric clinical trial data have only emerged in recent years. This review will discuss the limited treatment options for paediatric type 2 diabetes and the mechanism of action of GLP-1RAs as it pertains to physiological pathways relevant for type 2 diabetes, obesity and their related comorbidities. The outcomes of paediatric trials evaluating liraglutide, exenatide, semaglutide and dulaglutide in paediatric type 2 diabetes and obesity will be closely examined, including differences compared with adult studies. Finally, potential barriers and strategies to expanding GLP-1RA access in adolescents will be discussed. Future studies are needed to determine if the cardio-and renal-protective benefits of GLP-1RAs apply to youth-onset type 2 diabetes.
Collapse
Affiliation(s)
- Casey Berman
- Division of Endocrinology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Alaina P Vidmar
- Division of Endocrinology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Lily C Chao
- Division of Endocrinology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Cerroni C, Steiner A, Seanez L, Kwon S, Lewis AS. Effects of repeated developmental GLP-1R agonist exposure on adult behavior and hippocampal structure in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537724. [PMID: 37131808 PMCID: PMC10153236 DOI: 10.1101/2023.04.21.537724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are common type 2 diabetes medications that have been repurposed for adult chronic weight management. Clinical trials suggest this class may also be beneficial for obesity in pediatric populations. Since several GLP-1R agonists cross the blood-brain barrier, it is important to understand how postnatal developmental exposure to GLP-1R agonists might affect brain structure and function in adulthood. Toward that end, we systemically treated male and female C57BL/6 mice with the GLP-1R agonist exendin-4 (0.5 mg/kg, twice daily) or saline from postnatal day 14 to 21, then allowed uninterrupted development to adulthood. Beginning at 7 weeks of age, we performed open field and marble burying tests to assess motor behavior and the spontaneous location recognition (SLR) task to assess hippocampal-dependent pattern separation and memory. Mice were sacrificed, and we counted ventral hippocampal mossy cells, as we have recently shown that most murine hippocampal neuronal GLP-1R is expressed in this cell population. We found that GLP-1R agonist treatment did not alter P14-P21 weight gain, but modestly reduced adult open field distance traveled and marble burying. Despite these motor changes, there was no effect on SLR memory performance or time spent investigating objects. Finally, we did not detect any changes in ventral mossy cell number using two different markers. These data suggest developmental exposure to GLP-1R agonists might have specific rather than global effects on behavior later in life and that extensive additional study is necessary to clarify how drug timing and dose affect distinct constellations of behavior in adulthood.
Collapse
|
29
|
Lin MH, Cheng PC, Hsiao PJ, Chen SC, Hung CH, Kuo CH, Huang SK, Clair Chiou HY. The GLP-1 receptor agonist exenatide ameliorates neuroinflammation, locomotor activity, and anxiety-like behavior in mice with diet-induced obesity through the modulation of microglial M2 polarization and downregulation of SR-A4. Int Immunopharmacol 2023; 115:109653. [PMID: 36587502 DOI: 10.1016/j.intimp.2022.109653] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Obesity is associated with multiple comorbidities, such as metabolic abnormalities and cognitive dysfunction. Moreover, accumulating evidence indicates that neurodegenerative disorders are associated with chronic neuroinflammation. GLP-1 receptor agonists (RAs) have been extensively studied as a treatment for type 2 diabetes. Emerging evidence has demonstrated a protective effect of GLP-1 RAs on neurodegenerative disease, which is independent of its glucose-lowering effects. In this study, we aimed to examine the effects of a long-acting GLP-1 RA, exenatide, on high-fat diet (HFD)-induced neuroinflammation and related brain function impairment. First, mice treated with exenatide exhibited significantly reduced HFD-increased body weight and blood glucose. In an open field test, exenatide treatment ameliorated the reduction in local motor activity and anxiety in HFD-fed mice. Moreover, HFD induced astrogliosis, microgliosis, and upregulation of IL-1β, IL-6 and TNF-α in hippocampus and cortex. Exenatide treatment reduced HFD-induced astrogliosis and IL-1β and TNF-α expressions. Moreover, exenatide increased phosphor-ERK and M2-type microglia marker arginase-1 expression in the hippocampus and cortex. In addition, we found that scavenger receptor-A4 protein expression was induced by HFD and was subsequently inhibited by exenatide. SR-A4 knockout reversed the locomotor activity impairment but not the anxiety behavior caused by HFD consumption. SR-A4 knockout also reduced HFD-induced neuroinflammation, as shown by the reduced expression of GFAP and IBA-1 compared with that in wild-type control mice. These results demonstrate that exenatide decreases HFD-increased neuroinflammation and promotes anti-inflammatory M2 differentiation. The inhibition of SR-A4 by exenatide exerts anti-inflammatory activity.
Collapse
Affiliation(s)
- Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Center for International Tropical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Pi-Jung Hsiao
- Division of Endocrinology and Metabolism, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan; Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hsin-Ying Clair Chiou
- Center of Teaching and Research, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| |
Collapse
|
30
|
Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer's and Parkinson's disease. Mol Psychiatry 2023; 28:217-229. [PMID: 36258018 PMCID: PMC9812772 DOI: 10.1038/s41380-022-01792-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 01/20/2023]
Abstract
Despite an ever-growing prevalence and increasing economic burden of Alzheimer's disease (AD) and Parkinson's disease (PD), recent advances in drug development have only resulted in minimally effective treatment. In AD, along with amyloid and tau phosphorylation, there is an associated increase in inflammation/glial activation, a decrease in synaptic function, an increase in astrocyte activation, and a state of insulin resistance. In PD, along with α-synuclein accumulation, there is associated inflammation, synaptic dysfunction, dopaminergic neuronal loss, and some data to suggest insulin resistance. Therapeutic strategies for neurodegenerative disorders have commonly targeted individual pathological processes. An effective treatment might require either utilization of multiple drugs which target the individual pathological processes which underlie the neurodegenerative disease or the use of a single agent which could influence multiple pathological processes. Insulin and incretins are compounds with multiple effects on neurodegenerative processes. Preclinical studies have demonstrated that GLP-1 receptor agonists reduce neuroinflammation, reduce tau phosphorylation, reduce amyloid deposition, increase synaptic function, and improve memory formation. Incretin mimetics may act through the restoration of insulin signaling pathways, inducing further neuroprotective effects. Currently, phase 2 and phase 3 trials are underway in AD and PD populations. Here, we provide a comprehensive review of the therapeutic potential of incretin mimetics and insulin in AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- grid.7445.20000 0001 2113 8111Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- grid.7445.20000 0001 2113 8111Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK. .,School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
31
|
Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res 2022; 186:106550. [PMID: 36372278 PMCID: PMC9712272 DOI: 10.1016/j.phrs.2022.106550] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, neuroinflammatory pathways have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased inflammation and neurodegenerative disease risk have been associated with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM pathology may be successful in treating neuroinflammatory and neurodegenerative pathology as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food and Drug Administration (FDA) and related global regulatory authorities for the treatment of T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We additionally overview current FDA-approved incretin receptor stimulating drugs and agents in development, including unimolecular single, dual, and triple receptor agonists, and highlight those in clinical trials for neurodegenerative disease treatment. We propose that repurposing already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling neuroinflammation.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|
32
|
Steiner A, Owen BM, Bauer JP, Seanez L, Kwon S, Biddinger JE, Huffman R, Ayala JE, Nobis WP, Lewis AS. Glucagon-like peptide-1 receptor differentially controls mossy cell activity across the dentate gyrus longitudinal axis. Hippocampus 2022; 32:797-807. [PMID: 36063105 PMCID: PMC9675713 DOI: 10.1002/hipo.23469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 01/07/2023]
Abstract
Understanding the role of dentate gyrus (DG) mossy cells (MCs) in learning and memory has rapidly evolved due to increasingly precise methods for targeting MCs and for in vivo recording and activity manipulation in rodents. These studies have shown MCs are highly active in vivo, strongly remap to contextual manipulation, and that their inhibition or hyperactivation impairs pattern separation and location or context discrimination. Less well understood is how MC activity is modulated by neurohormonal mechanisms, which might differentially control the participation of MCs in cognitive functions during discrete states, such as hunger or satiety. In this study, we demonstrate that glucagon-like peptide-1 (GLP-1), a neuropeptide produced in the gut and the brain that regulates food consumption and hippocampal-dependent mnemonic function, might regulate MC function through expression of its receptor, GLP-1R. RNA-seq demonstrated that most, though not all, Glp1r in hippocampal principal neurons is expressed in MCs, and in situ hybridization revealed strong expression of Glp1r in hilar neurons. Glp1r-ires-Cre mice crossed with Ai14D reporter mice followed by co-labeling for the MC marker GluR2/3 revealed that almost all MCs in the ventral DG expressed Glp1r and that almost all Glp1r-expressing hilar neurons were MCs. However, only ~60% of dorsal DG MCs expressed Glp1r, and Glp1r was also expressed in small hilar neurons that were not MCs. Consistent with this expression pattern, peripheral administration of the GLP-1R agonist exendin-4 (5 μg/kg) increased cFos expression in ventral but not dorsal DG hilar neurons. Finally, whole-cell patch-clamp recordings from ventral MCs showed that bath application of exendin-4 (200 nM) depolarized MCs and increased action potential firing. Taken together, this study adds to known MC activity modulators a neurohormonal mechanism that may preferentially affect ventral DG physiology and may potentially be targetable by several GLP-1R pharmacotherapies already in clinical use.
Collapse
Affiliation(s)
- Alex Steiner
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin M. Owen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James P. Bauer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leann Seanez
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sam Kwon
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jessica E. Biddinger
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ragan Huffman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - William P. Nobis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan S. Lewis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
33
|
Ferrari F, Moretti A, Villa RF. Incretin-based drugs as potential therapy for neurodegenerative diseases: current status and perspectives. Pharmacol Ther 2022; 239:108277. [DOI: 10.1016/j.pharmthera.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
34
|
Yu L, Li Y. Involvement of Intestinal Enteroendocrine Cells in Neurological and Psychiatric Disorders. Biomedicines 2022; 10:biomedicines10102577. [PMID: 36289839 PMCID: PMC9599815 DOI: 10.3390/biomedicines10102577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Neurological and psychiatric patients have increased dramatically in number in the past few decades. However, effective treatments for these diseases and disorders are limited due to heterogeneous and unclear pathogenic mechanisms. Therefore, further exploration of the biological aspects of the disease, and the identification of novel targets to develop alternative treatment strategies, is urgently required. Systems-level investigations have indicated the potential involvement of the brain–gut axis and intestinal microbiota in the pathogenesis and regulation of neurological and psychiatric disorders. While intestinal microbiota is crucial for maintaining host physiology, some important sensory and regulatory cells in the host should not be overlooked. Intestinal epithelial enteroendocrine cells (EECs) residing in the epithelium throughout intestine are the key regulators orchestrating the communication along the brain-gut-microbiota axis. On one hand, EECs sense changes in luminal microorganisms via microbial metabolites; on the other hand, they communicate with host body systems via neuroendocrine molecules. Therefore, EECs are believed to play important roles in neurological and psychiatric disorders. This review highlights the involvement of EECs and subtype cells, via secretion of endocrine molecules, in the development and regulation of neurological and psychiatric disorders, including Parkinson’s disease (PD), schizophrenia, visceral pain, neuropathic pain, and depression. Moreover, the current paper summarizes the potential mechanism of EECs in contributing to disease pathogenesis. Examination of these mechanisms may inspire and lead to the development of new aspects of treatment strategies for neurological and psychiatric disorders in the future.
Collapse
Affiliation(s)
- Liangen Yu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence:
| |
Collapse
|
35
|
Activation of glucagon-like peptide-1 receptors reduces the acquisition of aggression-like behaviors in male mice. Transl Psychiatry 2022; 12:445. [PMID: 36229445 PMCID: PMC9561171 DOI: 10.1038/s41398-022-02209-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Aggression is a complex social behavior, which is provoked in the defense of limited resources including food and mates. Recent advances show that the gut-brain hormone ghrelin modulates aggressive behaviors. As the gut-brain hormone glucagon-like peptide-1 (GLP-1) reduces food intake and sexual behaviors its potential role in aggressive behaviors is likely. Therefore, we investigated a tentative link between GLP-1 and aggressive behaviors by combining preclinical and human genetic-association studies. The influence of acute or repeated injections of a GLP-1 receptor (GLP-1R) agonist, exendin-4 (Ex4), on aggressive behaviors was assessed in male mice exposed to the resident-intruder paradigm. Besides, possible mechanisms participating in the ability of Ex4 to reduce aggressive behaviors were evaluated. Associations of polymorphisms in GLP-1R genes and overt aggression in males of the CATSS cohort were assessed. In male mice, repeated, but not acute, Ex4 treatment dose-dependently reduced aggressive behaviors. Neurochemical and western blot studies further revealed that putative serotonergic and noradrenergic signaling in nucleus accumbens, specifically the shell compartment, may participate in the interaction between Ex4 and aggression. As high-fat diet (HFD) impairs the responsiveness to GLP-1 on various behaviors the possibility that HFD blunts the ability of Ex4 to reduce aggressive behaviors was explored. Indeed, the levels of aggression was similar in vehicle and Ex4 treated mice consuming HFD. In humans, there were no associations between polymorphisms of the GLP-1R genes and overt aggression. Overall, GLP-1 signaling suppresses acquisition of aggressive behaviors via central neurotransmission and additional studies exploring this link are warranted.
Collapse
|
36
|
Beneficial Influence of Exendin-4 on Specific Organs and Mechanisms Favourable for the Elderly with Concomitant Obstructive Lung Diseases. Brain Sci 2022; 12:brainsci12081090. [PMID: 36009152 PMCID: PMC9405576 DOI: 10.3390/brainsci12081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Exendin-4 (Ex-4), better known in its synthetic form and used clinically as exenatide, currently applied in the treatment of diabetes, induces a beneficial impact on nerve cells, and shows promising effects in obstructive lung diseases. At an advanced age, the development of the neurodegenerative process of brain tissue is masked by numerous concomitant diseases. The initial latent phase of neurodegenerative disease results in occurrence of manifestations at an advanced stage. To protect the brain and to simultaneously ensure proper treatment of common coexisting conditions in late life, such as diabetes, chronic obstructive pulmonary disease, or asthma, a pleiotropic medication should be chosen. Molecular mechanisms of Ex-4 exert neuroprotective effects or lead to secondary neurogenesis. Additionally, Ex-4 plays an important role in anti-inflammatory actions which are necessary both in the case of asthma and Parkinson’s disease. Specific receptors in the lungs also reduce the secretion of surfactants, which decreases the risk of exacerbation in chronic obstructive lung disease. In a great number of patients suffering from diabetes, asthma, or chronic lung disease, there is a great potential for both treatment of the main condition and protection against brain neurodegeneration.
Collapse
|
37
|
Hölscher C. Glucagon-like peptide 1 and glucose-dependent insulinotropic peptide hormones and novel receptor agonists protect synapses in Alzheimer’s and Parkinson’s diseases. Front Synaptic Neurosci 2022; 14:955258. [PMID: 35965783 PMCID: PMC9363704 DOI: 10.3389/fnsyn.2022.955258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are peptide hormones and growth factors. A major pathological feature of both Alzheimer’s dis-ease (AD) and Parkinson’s disease (PD) is the loss of synaptic transmission in the cortex in AD and the loss of dopaminergic synapses in the nigra-striatal dopaminergic projection. Several studies demonstrate that GLP-1 and GIP receptor agonists protect synapses and synaptic transmission from the toxic events that underlie AD and PD. In a range of AD animal models, treatment with GLP-1, GIP, or dual-GLP-1/GIP receptor agonists effectively protected cognition, synaptic trans-mission, long-term potentiation (LTP), and prevented the loss of synapses and neurons. In PD models, dopaminergic production resumed and synapses became functional again. Importantly, the GLP-1 receptor agonists exendin-4 and liraglutide have shown good protective effects in clinical trials in AD and PD patients. Studies show that growth factors and peptide drugs that can cross the blood–brain barrier (BBB) better are more potent than those that do not cross the BBB. We therefore developed dual-GLP-1/GIP receptor agonists that can cross the BBB at an enhanced rate and showed superior protective properties on synapses in animal models of AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
38
|
Tanycytes control hypothalamic liraglutide uptake and its anti-obesity actions. Cell Metab 2022; 34:1054-1063.e7. [PMID: 35716660 PMCID: PMC7613793 DOI: 10.1016/j.cmet.2022.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 08/08/2021] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
Liraglutide, an anti-diabetic drug and agonist of the glucagon-like peptide one receptor (GLP1R), has recently been approved to treat obesity in individuals with or without type 2 diabetes. Despite its extensive metabolic benefits, the mechanism and site of action of liraglutide remain unclear. Here, we demonstrate that liraglutide is shuttled to target cells in the mouse hypothalamus by specialized ependymoglial cells called tanycytes, bypassing the blood-brain barrier. Selectively silencing GLP1R in tanycytes or inhibiting tanycytic transcytosis by botulinum neurotoxin expression not only hampers liraglutide transport into the brain and its activation of target hypothalamic neurons, but also blocks its anti-obesity effects on food intake, body weight and fat mass, and fatty acid oxidation. Collectively, these striking data indicate that the liraglutide-induced activation of hypothalamic neurons and its downstream metabolic effects are mediated by its tanycytic transport into the mediobasal hypothalamus, strengthening the notion of tanycytes as key regulators of metabolic homeostasis.
Collapse
|
39
|
Ogura J, Yamaguchi H. The Effectiveness of Antidiabetic Drugs in Treating Dementia: A Peek into Pharmacological and Pharmacokinetic Properties. Int J Mol Sci 2022; 23:6542. [PMID: 35742986 PMCID: PMC9223777 DOI: 10.3390/ijms23126542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Dementia dramatically affects the activities of daily living and quality of life; thus, many therapeutic approaches for overcoming dementia have been developed. However, an effective treatment regimen is yet to be developed. As diabetes is a well-known risk factor for dementia, drug repositioning and repurposing of antidiabetic drugs are expected to be effective dementia treatments. Several observational studies have been useful for understanding the effectiveness of antidiabetic drugs in treating dementia, but it is difficult to conclusively analyze the association between antidiabetic drug treatment and the risk of developing dementia after correcting for potential confounding factors. Mechanism-based approaches may provide a better understanding of the effectiveness of antidiabetic drugs for treating dementia. Since the peripheral circulation and the central nerve system are separated by the blood-brain barrier, it is important to understand the regulation of the central glucose metabolism. In this review, we discuss the pharmacological and pharmacokinetic properties of antidiabetic drugs in relation to treating dementia.
Collapse
Affiliation(s)
- Jiro Ogura
- Department of Pharmacy, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan;
| | | |
Collapse
|
40
|
Yang X, Feng P, Ji R, Ren Y, Wei W, Hölscher C. Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson's disease. Expert Opin Ther Targets 2022; 26:445-460. [PMID: 35584372 DOI: 10.1080/14728222.2022.2079492] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes is a risk factor for Parkinson's disease (PD) and shares similar dysregulated insulin pathways. Glucagon-like peptide-1 (GLP-1) analogs originally designed to treat diabetes have shown potent neuroprotective activity in preclinical studies of PD. They are neuroprotective by inhibiting inflammation, improving neuronal survival, maintenance of synapses, and dopaminergic transmission in the brain. Building on this, three clinical studies have reported impressive effects in patients with PD, testing exendin-4 (Exenatide, Bydureon) or liraglutide (Victoza, Saxenda). Glucose-dependent insulinotropic peptide (GIP) is another peptide hormone that has shown good effects in animal models of PD. Novel dual GLP-1/GIP agonists have been developed that can penetrate the blood-brain barrier (BBB) and show superior effects in animal models compared to GLP-1 drugs. AREAS COVERED The review summarizes preclinical and clinical studies testing GLP-1R agonists and dual GLP-1/GIPR agonists in PD and discusses possible mechanisms of action. EXPERT OPINION Current strategies to treat PD by lowering the levels of alpha-synuclein have not shown effects in clinical trials. It is time to move on from the 'misfolding protein' hypothesis. Growth factors such as GLP-1 that can cross the BBB have already shown impressive effects in patients and are the future of drug discovery in PD.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China
| | - Rong Ji
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Yiqing Ren
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China.,Academy of Chinese Medical Science, Henan University of Traditional Chinese Medicine, No. 233 Zhongyuan Road, Zhengzhou, China
| |
Collapse
|
41
|
van Ruiten CC, Veltman DJ, Schrantee A, van Bloemendaal L, Barkhof F, Kramer MHH, Nieuwdorp M, IJzerman RG. Effects of Dapagliflozin and Combination Therapy With Exenatide on Food-Cue Induced Brain Activation in Patients With Type 2 Diabetes. J Clin Endocrinol Metab 2022; 107:e2590-e2599. [PMID: 35134184 PMCID: PMC9113812 DOI: 10.1210/clinem/dgac043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/13/2022]
Abstract
CONTEXT Sodium-glucose cotransporter-2 inhibitors (SGLT2i) cause less weight loss than expected based on urinary calorie excretion. This may be explained by SGLT2i-induced alterations in central reward and satiety circuits, leading to increased appetite and food intake. Glucagon-like peptide-1 receptor agonists are associated with reduced appetite and body weight, mediated by direct and indirect central nervous system (CNS) effects. OBJECTIVE We investigated the separate and combined effects of dapagliflozin and exenatide on the CNS in participants with obesity and type 2 diabetes. METHODS This was a 16-week, double-blind, randomized, placebo-controlled trial. Obese participants with type 2 diabetes (n = 64, age 63.5 ± 0.9 years, BMI 31.7 ± 0.6 kg/m2) were randomized (1:1:1:1) to dapagliflozin 10 mg with exenatide-matched placebo, exenatide twice daily 10 µg with dapagliflozin-matched placebo, dapagliflozin and exenatide, or double placebo. Using functional MRI, the effects of treatments on CNS responses to viewing food pictures were assessed after 10 days and 16 weeks of treatment. RESULTS After 10 days, dapagliflozin increased, whereas exenatide decreased CNS activation in the left putamen. Combination therapy had no effect on responses to food pictures. After 16 weeks, no changes in CNS activation were observed with dapagliflozin, but CNS activation was reduced with dapagliflozin-exenatide in right amygdala. CONCLUSION The early increase in CNS activation with dapagliflozin may contribute to the discrepancy between observed and expected weight loss. In combination therapy, exenatide blunted the increased CNS activation observed with dapagliflozin. These findings provide further insights into the weight-lowering mechanisms of SGLT2i and GLP-1 receptor agonists.
Collapse
Affiliation(s)
- Charlotte C van Ruiten
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Center, location VU University Medical Center, 1081 HJ Amsterdam, The Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Liselotte van Bloemendaal
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VU University Medical Center, 1081 BT Amsterdam, The Netherlands
| | - Mark H H Kramer
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VU University Medical Center, 1081 HV Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Richard G IJzerman
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
42
|
Padhi D, Govindaraju T. Mechanistic Insights for Drug Repurposing and the Design of Hybrid Drugs for Alzheimer's Disease. J Med Chem 2022; 65:7088-7105. [PMID: 35559617 DOI: 10.1021/acs.jmedchem.2c00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The heterogeneity and complex nature of Alzheimer's disease (AD) is attributed to several genetic risk factors and molecular culprits. The slow pace and increasing failure rate of conventional drug discovery has led to the exploration of complementary strategies based on repurposing approved drugs to treat AD. Drug repurposing (DR) is a cost-effective, low-risk, and efficient approach for identifying novel therapeutic candidates for AD treatment. Similarly, hybrid drug design through the integration of distinct pharmacophores from known or failed drugs and natural products is an interesting strategy to target the multifactorial nature of AD. In this Perspective, we discuss the potential of DR and highlight promising drug candidates that can be advanced for clinical trials, backed by a detailed discussion on their plausible mechanisms of action. Our article fosters research on the hidden potential of DR and hybrid drug design with the goal of unravelling new drugs and targets to tackle AD.
Collapse
Affiliation(s)
- Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
43
|
Patel H. The role of the lateral septum in neuropsychiatric disease. J Neurosci Res 2022; 100:1422-1437. [PMID: 35443088 DOI: 10.1002/jnr.25052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
The lateral septum (LS) is a structure in the midline of the brain that is interconnected with areas associated with stress and feeding. This review highlights the role of the LS in anxiety, depression, and eating disorders and their comorbidity. There is a prevailing view that the LS is anxiolytic. This review finds that the LS is both anxiolytic and anxiogenic. Furthermore, the LS can promote and inhibit feeding. Given these shared roles, the LS represents a common site for the comorbidity of neuropsychiatric disorders, and therefore a potential pharmacological target. This is crucial since currently available treatments are not always effective. Corticotrophin-releasing factor 2 antagonists are potential drugs for the treatment of anxiety and anorexia and require further research. Furthermore, other drugs currently in trials for binge eating, such as alpha-adrenergic agonists, may in fact promote food intake. It is hoped that the advancements in chemo- and optogenetic techniques will allow future studies to profile the specific neural connections of the LS and their function. This information could facilitate our understanding of the underlying mechanisms, and therefore pharmacological targets, of these psychiatric conditions.
Collapse
|
44
|
Cheng D, Yang S, Zhao X, Wang G. The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases. Drug Des Devel Ther 2022; 16:665-684. [PMID: 35340338 PMCID: PMC8943601 DOI: 10.2147/dddt.s348055] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes, however, there is still a lack of understanding about the drug therapy. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are widely used in the treatment of type 2 diabetes and potential applications may include the treatment of obesity as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin. Growing evidence suggests that GLP-1 RA has the potential to treat neurodegenerative diseases, particularly in diabetes-related Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here, we review the molecular mechanisms of the neuroprotective effects of GLP-1 RA in diabetes-related degenerative diseases, including AD and PD, and their potential effects.
Collapse
Affiliation(s)
- Dihe Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
45
|
Yang X, Qiang Q, Li N, Feng P, Wei W, Hölscher C. Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research. Front Neurol 2022; 13:844697. [PMID: 35370875 PMCID: PMC8964641 DOI: 10.3389/fneur.2022.844697] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
The public and social health burdens of ischemic stroke have been increasing worldwide. Hyperglycemia leads to a greater risk of stroke. This increased risk is commonly seen among patients with diabetes and is in connection with worsened clinical conditions and higher mortality in patients with acute ischemic stroke (AIS). Therapy for stroke focuses mainly on restoring cerebral blood flow (CBF) and ameliorating neurological impairment caused by stroke. Although choices of stroke treatment remain limited, much advance have been achieved in assisting patients in recovering from ischemic stroke, along with progress of recanalization therapy through pharmacological and mechanical thrombolysis. However, it is still necessary to develop neuroprotective therapies for AIS to protect the brain against injury before and during reperfusion, prolong the time window for intervention, and consequently improve neurological prognosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are broadly regarded as effective drugs in the treatment of type 2 diabetes mellitus (T2DM). Preclinical data on GLP-1 and GLP-1 RAs have displayed an impressive neuroprotective efficacy in stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), and other neurodegenerative diseases. Based on the preclinical studies in the past decade, we review recent progress in the biological roles of GLP-1 and GLP-1 RAs in ischemic stroke. Emphasis will be placed on their neuroprotective effects in experimental models of cerebral ischemia stroke at cellular and molecular levels.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiang Qiang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Nan Li
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China.,Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
46
|
Rufini A, Malisan F, Condò I, Testi R. Drug Repositioning in Friedreich Ataxia. Front Neurosci 2022; 16:814445. [PMID: 35221903 PMCID: PMC8863941 DOI: 10.3389/fnins.2022.814445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia is a rare neurodegenerative disorder caused by insufficient levels of the essential mitochondrial protein frataxin. It is a severely debilitating disease that significantly impacts the quality of life of affected patients and reduces their life expectancy, however, an adequate cure is not yet available for patients. Frataxin function, although not thoroughly elucidated, is associated with assembly of iron-sulfur cluster and iron metabolism, therefore insufficient frataxin levels lead to reduced activity of many mitochondrial enzymes involved in the electron transport chain, impaired mitochondrial metabolism, reduced ATP production and inefficient anti-oxidant response. As a consequence, neurons progressively die and patients progressively lose their ability to coordinate movement and perform daily activities. Therapeutic strategies aim at restoring sufficient frataxin levels or at correcting some of the downstream consequences of frataxin deficiency. However, the classical pathways of drug discovery are challenging, require a significant amount of resources and time to reach the final approval, and present a high failure rate. Drug repositioning represents a viable alternative to boost the identification of a therapy, particularly for rare diseases where resources are often limited. In this review we will describe recent efforts aimed at the identification of a therapy for Friedreich ataxia through drug repositioning, and discuss the limitation of such strategies.
Collapse
Affiliation(s)
- Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
- *Correspondence: Alessandra Rufini,
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
| |
Collapse
|
47
|
Dong M, Wen S, Zhou L. The Relationship Between the Blood-Brain-Barrier and the Central Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter-2 Inhibitors. Diabetes Metab Syndr Obes 2022; 15:2583-2597. [PMID: 36035518 PMCID: PMC9417299 DOI: 10.2147/dmso.s375559] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes and obesity are growing problems worldwide and are associated with a range of acute and chronic complications, including acute myocardial infarction (AMI) and stroke. Novel anti-diabetic medications designed to treat T2DM, such as glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT-2is), exert beneficial effects on metabolism and the cardiovascular system. However, the underlying mechanisms are poorly understood. GLP-1RAs induce anorexic effects by inhibiting the central regulation of food intake to reduce body weight. Central/peripheral administration of GLP-1RAs inhibits food intake, accompanied by an increase in c-Fos expression in neurons within the paraventricular nucleus (PVN), amygdala, the nucleus of the solitary tract (NTS), area postrema (AP), lateral parabrachial nucleus (LPB) and arcuate nucleus (ARC), induced by the activation of GLP-1 receptors in the central nervous system (CNS). Therefore, GLP-1RAs need to pass through the blood-brain barrier to exert their pharmacological effects. In addition, studies revealed that SGLT-2is could reduce the risk of chronic heart failure in people with type 2 diabetes. SGLT-2 is extensively expressed throughout the CNS, and c-Fos expression was also observed within 2 hours of administration of SGLT-2is in mice. Recent clinical studies reported that SGLT-2is improved hypertension and atrial fibrillation by modulating the "overstimulated" renin-angiotensin-aldosterone system (RAAS) and suppressing the sympathetic nervous system (SNS) by directly/indirectly acting on the rostral ventrolateral medulla. Despite extensive research into the central mechanism of GLP-1RAs and SGLT-2is, the penetration of the blood-brain barrier (BBB) remains controversial. This review discusses the interaction between GLP-1RAs and SGLT-2is and the BBB to induce pharmacological effects via the CNS.
Collapse
Affiliation(s)
- Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, People’s Republic of China
- Correspondence: Ligang Zhou, Tel +8613611927616, Email
| |
Collapse
|
48
|
Deden LN, Booij J, Grandjean J, Homberg JR, Hazebroek EJ, Gotthardt M, Boss M. Brain Imaging of the GLP-1 Receptor in Obesity Using 68Ga-NODAGA-Exendin-4 PET. Brain Sci 2021; 11:brainsci11121647. [PMID: 34942949 PMCID: PMC8699257 DOI: 10.3390/brainsci11121647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Stimulation of glucagon-like peptide-1 (GLP-1) receptors increases the insulin release in the pancreas during high glucose levels, and also stimulates a feeling of satiety. Likewise, synthetic GLP-1 receptor agonists derived from exendin are used successfully in the treatment of type-2 diabetes mellitus and obesity. Interestingly, preclinical and clinical studies further suggest that GLP-1 receptor agonists may decrease motor, behavioral, and cognitive symptoms in (animal models) Parkinson’s disease and Alzheimer’s disease and may slow down neurodegeneration. These observations suggest stimulation of GLP-1 receptors in the brain. The GLP-1 positron emission tomography (PET) tracer 68Ga-NODAGA-exendin-4 has been developed and successfully used for imaging in humans. In an ongoing study on the effects of bariatric surgery on GLP-1 receptor expression, we performed 68Ga-NODAGA-exendin-4 PET in obese subjects. Here we evaluated whether GLP-1 receptor binding could be visualized in the central nervous system in 10 obese subjects (seven woman; body mass index: mean ± SD: 39 ± 4.4 kg/m2) before bariatric surgery. Although we observed clear uptake in the pituitary area (mean SUVmax 4.3 ± 2.3), we found no significant uptake in other parts of the brain. We conclude that 68Ga-NODAGA-exendin-4 PET cannot be used to analyze GLP-1 receptors in the brain of obese subjects.
Collapse
Affiliation(s)
- Laura N. Deden
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Department of Surgery, Vitalys Clinic, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
| | - Jan Booij
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Center for Medical Neuroscience, Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Center for Medical Neuroscience, Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN Nijmegen, The Netherlands;
| | - Eric J. Hazebroek
- Department of Surgery, Vitalys Clinic, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands;
- Division of Human Nutrition and Health, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
- Correspondence:
| | - Marti Boss
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (L.N.D.); (J.B.); (J.G.); (M.B.)
| |
Collapse
|
49
|
Głombik K, Detka J, Budziszewska B. Hormonal Regulation of Oxidative Phosphorylation in the Brain in Health and Disease. Cells 2021; 10:2937. [PMID: 34831160 PMCID: PMC8616269 DOI: 10.3390/cells10112937] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/18/2022] Open
Abstract
The developing and adult brain is a target organ for the vast majority of hormones produced by the body, which are able to cross the blood-brain barrier and bind to their specific receptors on neurons and glial cells. Hormones ensure proper communication between the brain and the body by activating adaptive mechanisms necessary to withstand and react to changes in internal and external conditions by regulating neuronal and synaptic plasticity, neurogenesis and metabolic activity of the brain. The influence of hormones on energy metabolism and mitochondrial function in the brain has gained much attention since mitochondrial dysfunctions are observed in many different pathological conditions of the central nervous system. Moreover, excess or deficiency of hormones is associated with cell damage and loss of function in mitochondria. This review aims to expound on the impact of hormones (GLP-1, insulin, thyroid hormones, glucocorticoids) on metabolic processes in the brain with special emphasis on oxidative phosphorylation dysregulation, which may contribute to the formation of pathological changes. Since the brain concentrations of sex hormones and neurosteroids decrease with age as well as in neurodegenerative diseases, in parallel with the occurrence of mitochondrial dysfunction and the weakening of cognitive functions, their beneficial effects on oxidative phosphorylation and expression of antioxidant enzymes are also discussed.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Jan Detka
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.D.); (B.B.)
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
50
|
Yassine HN, Solomon V, Thakral A, Sheikh-Bahaei N, Chui HC, Braskie MN, Schneider LS, Talbot K. Brain energy failure in dementia syndromes: Opportunities and challenges for glucagon-like peptide-1 receptor agonists. Alzheimers Dement 2021; 18:478-497. [PMID: 34647685 PMCID: PMC8940606 DOI: 10.1002/alz.12474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Medications for type 2 diabetes (T2DM) offer a promising path for discovery and development of effective interventions for dementia syndromes. A common feature of dementia syndromes is an energy failure due to reduced energy supply to neurons and is associated with synaptic loss and results in cognitive decline and behavioral changes. Among diabetes medications, glucagon‐like peptide‐1 (GLP‐1) receptor agonists (RAs) promote protective effects on vascular, microglial, and neuronal functions. In this review, we present evidence from animal models, imaging studies, and clinical trials that support developing GLP‐1 RAs for dementia syndromes. The review examines how changes in brain energy metabolism differ in conditions of insulin resistance and T2DM from dementia and underscores the challenges that arise from the heterogeneity of dementia syndromes. The development of GLP‐1 RAs as dementia therapies requires a deeper understanding of the regional changes in brain energy homeostasis guided by novel imaging biomarkers.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Victoria Solomon
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Angad Thakral
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine USC, Los Angeles, California, USA
| | - Helena C Chui
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Lon S Schneider
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine USC, Los Angeles, California, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|