1
|
Alic L, Dendinovic K, Papac-Milicevic N. The complement system in lipid-mediated pathologies. Front Immunol 2024; 15:1511886. [PMID: 39635529 PMCID: PMC11614835 DOI: 10.3389/fimmu.2024.1511886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
The complement system, a coordinator and facilitator of the innate immune response, plays an essential role in maintaining host homeostasis. It promotes clearance of pathogen- and danger-associated molecular patterns, regulates adaptive immunity, and can modify various metabolic processes such as energy expenditure, lipid metabolism, and glucose homeostasis. In this review, we will focus on the intricate interplay between complement components and lipid metabolism. More precisely, we will display how alterations in the activation and regulation of the complement system affect pathological outcome in lipid-associated diseases, such as atherosclerosis, obesity, metabolic syndrome, age-related macular degeneration, and metabolic dysfunction-associated steatotic liver disease. In addition to that, we will present and evaluate underlying complement-mediated physiological mechanisms, observed both in vitro and in vivo. Our manuscript will demonstrate the clinical significance of the complement system as a bridging figure between innate immunity and lipid homeostasis.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Medical Biochemistry, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Kristina Dendinovic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nikolina Papac-Milicevic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Gao M, Li J, Zhang R, Li N, Li W, Zhang S, Wang P, Wang H, Fang Z, Yu Z, Hu G, Leng J, Yang X. Serum mannan-binding lectin-associated serine proteases in early pregnancy for gestational diabetes in Chinese pregnant women. Front Endocrinol (Lausanne) 2023; 14:1230244. [PMID: 37941903 PMCID: PMC10628726 DOI: 10.3389/fendo.2023.1230244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
Aims This study aimed to explore associations of mannan-binding lectin-associated serine protease (MASP) levels in early pregnancy with gestational diabetes mellitus (GDM). We also examined interactions of MASPs and deoxycholic acid (DCA)/glycoursodeoxycholic acid (GUDCA) for the GDM risk and whether the interactive effects if any on the GDM risk were mediated via lysophosphatidylcholine (LPC) 18:0. Materials and methods A 1:1 case-control study (n = 414) nested in a prospective cohort of pregnant women was conducted in Tianjin, China. Binary conditional logistic regressions were performed to examine associations of MASPs with the GDM risk. Additive interaction measures were used to examine interactions between MASPs and DCA/GUDCA for the GDM risk. Mediation analyses and Sobel tests were used to examine mediation effects of LPC18:0 between the copresence of MASPs and DCA/GUDCA on the GDM risk. Results High MASP-2 was independently associated with GDM [odds ratio (OR): 2.62, 95% confidence interval (CI): 1.44-4.77], while the effect of high MASP-1 on GDM was attributable to high MASP-2 (P for Sobel test: 0.003). Low DCA markedly increased the OR of high MASP-2 alone from 2.53 (1.10-5.85) up to 10.6 (4.22-26.4), with a significant additive interaction. In addition, high LPC18:0 played a significant mediating role in the links from low DCA to GDM and from the copresence of high MASP-2 and low DCA to GDM (P for Sobel test <0.001) but not in the link from high MASP-2 to GDM. Conclusions High MASP-1 and MASP-2 in early pregnancy were associated with GDM in Chinese pregnant women. MASP-2 amplifies the risk of low DCA for GDM, which is mediated via LPC18:0.
Collapse
Affiliation(s)
- Ming Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
| | - Rui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ninghua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Shuang Zhang
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Peng Wang
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Junhong Leng
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
| |
Collapse
|
3
|
Gutaj P, Matysiak J, Matuszewska E, Jaskiewicz K, Kamińska D, Światły-Błaszkiewicz A, Szczapa T, Kalantarova A, Gajecka M, Wender-Ozegowska E. Maternal serum proteomic profiles of pregnant women with type 1 diabetes. Sci Rep 2022; 12:8696. [PMID: 35610262 PMCID: PMC9130255 DOI: 10.1038/s41598-022-12221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Despite improvement in the care of diabetes over the years, pregnancy complicated by type 1 diabetes (T1DM) is still associated with adverse maternal and neonatal outcomes. To date, proteomics studies have been conducted to identify T1DM biomarkers in non-pregnant women, however, no studies included T1DM pregnant women. In this study serum proteomic profiling was conducted in pregnant women with T1DM in the late third trimester. Serum samples were collected from 40 women with T1DM and 38 healthy controls within 3 days before delivery at term pregnancy. Significant differences between serum proteomic patterns were revealed, showing discriminative peaks for complement C3 and C4-A, kininogen-1, and fibrinogen alpha chain. Quantification of selected discriminative proteins by ELISA kits was also performed. The serum concentration of kininogen-1 was significantly lower in women with T1DM than in controls. There were no significant differences in serum concentrations of complement C3 and complement C4-A between study groups. These data indicate that pregnant women with T1DM have a distinct proteomic profile involving proteins in the coagulation and inflammatory pathways. However, their utility as biomarkers of pregnancy complications in women with T1DM warrants further investigation.
Collapse
Affiliation(s)
- Paweł Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, 61-701, Poznan, Poland.
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | - Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | - Katarzyna Jaskiewicz
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 61-701, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Dorota Kamińska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | - Agata Światły-Błaszkiewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, 85-089, Bydgoszcz, Poland
| | - Tomasz Szczapa
- Department of Neonatology, Neonatal Biophysical Monitoring and Cardiopulmonary Therapies Research Unit, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| | | | - Marzena Gajecka
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 61-701, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 61-701, Poznan, Poland
| |
Collapse
|
4
|
Su JB, Wu YY, Xu F, Wang X, Cai HL, Zhao LH, Zhang XL, Chen T, Huang HY, Wang XQ. Serum complement C3 and islet β-cell function in patients with type 2 diabetes: A 4.6-year prospective follow-up study. Endocrine 2020; 67:321-330. [PMID: 31786774 DOI: 10.1007/s12020-019-02144-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Serum complement C3 has been shown to contribute to the incidence of type 2 diabetes (T2D), but how serum complement C3 affects islet β-cell function throughout the course of T2D is unclear. This study explored whether serum complement C3 is independently associated with changes in islet β-cell function over time in patients with T2D. METHODS Serum complement C3 was measured, and endogenous β-cell function was evaluated by area under the C-peptide curve (AUCcp) during an oral glucose tolerance test (OGTT) in 411 patients with T2D at baseline from 2011 to 2015. Next, 347 of those patients with available data were pooled for a final follow-up analysis from 2014 to 2018. Changes in islet β-cell function at follow-up were evaluated by AUCcp percentage changes (ΔAUCcp%). In addition, other possible clinical risks for diabetes were also examined. RESULTS The 347 patients included in the analysis had a diabetes duration of 4.84 ± 3.63 years at baseline. Baseline serum complement C3 (baseline C3) levels were positively correlated with baseline natural logarithm of AUCcp (lnAUCcp) (n = 347, r = 0.288, p < 0.001), and baseline C3 was independently associated with baseline lnAUCcp (β = 0.17, t = 3.52, p < 0.001) after adjustment for baseline glycemic status and other clinical confounders by multivariate liner regression analysis. Compared with the baseline values, complement C3 changes (ΔC3) and ΔAUCcp% was -0.15 ± 0.28 mg/ml and -17.2 ± 18.4%, respectively, at a follow-up visit 4.57 ± 0.78 years later. Moreover, ΔC3 was positively correlated with ΔAUCcp% (n = 347, r = 0.302, p < 0.001). Furthermore, each 0.1 mg/ml increase in ΔC3 was associated with a higher ΔAUCcp% (1.41% [95% CI, 0.82-2.00%]) after adjusting for changes in glycemic status and other clinical confounders at follow-up. CONCLUSIONS In addition to serum complement C3 being independently associated with islet β-cell function at baseline, its changes were also independently associated with changes in islet β-cell function over time in patients with T2D.
Collapse
Affiliation(s)
- Jian-Bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China.
| | - Yun-Yu Wu
- Medical School of Nantong University, No. 19, Qixiu Road, Nantong, 226001, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Xing Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Hong-Li Cai
- Department of Geriatrics, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6 North Haierxiang Road, Nantong, 226001, China
| | - Li-Hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Xiu-Lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Tong Chen
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Hai-Yan Huang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Xue-Qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China.
| |
Collapse
|
5
|
Mishra S, Gupta V, Mishra S, kulshrestha H, Sachan R, Mahdi AA, Gupta V. Association of A:O ratio with metabolic risk markers in North Indian women. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2019. [DOI: 10.1016/j.cegh.2018.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
7
|
King BC, Kulak K, Krus U, Rosberg R, Golec E, Wozniak K, Gomez MF, Zhang E, O'Connell DJ, Renström E, Blom AM. Complement Component C3 Is Highly Expressed in Human Pancreatic Islets and Prevents β Cell Death via ATG16L1 Interaction and Autophagy Regulation. Cell Metab 2019; 29:202-210.e6. [PMID: 30293775 DOI: 10.1016/j.cmet.2018.09.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/23/2018] [Accepted: 09/07/2018] [Indexed: 01/25/2023]
Abstract
We show here that human pancreatic islets highly express C3, which is both secreted and present in the cytosol. Within isolated human islets, C3 expression correlates with type 2 diabetes (T2D) donor status, HbA1c, and inflammation. Islet C3 expression is also upregulated in several rodent diabetes models. C3 interacts with ATG16L1, which is essential for autophagy. Autophagy relieves cellular stresses faced by β cells during T2D and maintains cellular homeostasis. C3 knockout in clonal β cells impaired autophagy and led to increased apoptosis after exposure of cells to palmitic acid and IAPP. In the absence of C3, autophagosomes do not undergo fusion with lysosomes. Thus, C3 may be upregulated in islets during T2D as a cytoprotective factor against β cell dysfunction caused by impaired autophagy. Therefore, we revealed a previously undescribed intracellular function for C3, connecting the complement system directly to autophagy, with a broad potential importance in other diseases and cell types.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Klaudia Kulak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Ulrika Krus
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - Rebecca Rosberg
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Ewelina Golec
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Katarzyna Wozniak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden
| | - Maria F Gomez
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - Enming Zhang
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - David J O'Connell
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Erik Renström
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 214-28 Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214-28 Malmö, Sweden.
| |
Collapse
|
8
|
Reichhardt MP, Meri S. Intracellular complement activation-An alarm raising mechanism? Semin Immunol 2018; 38:54-62. [PMID: 29631809 DOI: 10.1016/j.smim.2018.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
It has become increasingly apparent that the complement system, being an ancient defense mechanism, is not operative only in the extracellular milieu but also intracellularly. In addition to the known synthetic machinery in the liver and by macrophages, many other cell types, including lymphocytes, adipocytes and epithelial cells produce selected complement components. Activation of e.g. C3 and C5 inside cells may have multiple effects ranging from direct antimicrobial defense to cell differentiation and possible influence on metabolism. Intracellular activation of C3 and C5 in T cells is involved in the maintenance of immunological tolerance and promotes differentiation of T helper cells into Th1-type cells that activate cell-mediated immune responses. Adipocytes are unique in producing many complement sensor proteins (like C1q) and Factor D (adipsin), the key enzyme in promoting alternative pathway amplification. The effects of complement activation products are mediated by intracellular and cell membrane receptors, like C3aR, C5aR1, C5aR2 and the complement regulator MCP/CD46, often jointly with other receptors like the T cell receptor, Toll-like receptors and those of the inflammasomes. These recent observations link complement activation to cellular metabolic processes, intracellular defense reactions and to diverse adaptive immune responses. The complement components may thus be viewed as intracellular alarm molecules involved in the cellular danger response.
Collapse
Affiliation(s)
- M P Reichhardt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| | - S Meri
- Department of Bacteriology and Immunology, Haartman Institute, Immunobiology Research Program, University of Helsinki, Helsinki, Finland; Helsinki University Central Hospital Laboratory (HUSLAB), Helsinki, Finland.
| |
Collapse
|
9
|
Atanes P, Ruz-Maldonado I, Pingitore A, Hawkes R, Liu B, Zhao M, Huang GC, Persaud SJ, Amisten S. C3aR and C5aR1 act as key regulators of human and mouse β-cell function. Cell Mol Life Sci 2018; 75:715-726. [PMID: 28921001 PMCID: PMC5769825 DOI: 10.1007/s00018-017-2655-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
AIMS Complement components 3 and 5 (C3 and C5) play essential roles in the complement system, generating C3a and C5a peptides that are best known as chemotactic and inflammatory factors. In this study we characterised islet expression of C3 and C5 complement components, and the impact of C3aR and C5aR1 activation on islet function and viability. MATERIALS AND METHODS Human and mouse islet mRNAs encoding key elements of the complement system were quantified by qPCR and distribution of C3 and C5 proteins was determined by immunohistochemistry. Activation of C3aR and C5aR1 was determined using DiscoverX beta-arrestin assays. Insulin secretion from human and mouse islets was measured by radioimmunoassay, and intracellular calcium ([Ca2+]i), ATP generation and apoptosis were assessed by standard techniques. RESULTS C3 and C5 proteins and C3aR and C5aR1 were expressed by human and mouse islets, and C3 and C5 were mainly localised to β- and α-cells. Conditioned media from islets exposed for 1 h to 5.5 and 20 mM glucose stimulated C3aR and C5aR1-driven beta-arrestin recruitment. Activation of C3aR and C5aR1 potentiated glucose-induced insulin secretion from human and mouse islets, increased [Ca2+]i and ATP generation, and protected islets against apoptosis induced by a pro-apoptotic cytokine cocktail or palmitate. CONCLUSIONS Our observations demonstrate a functional link between activation of components of the innate immune system and improved β-cell function, suggesting that low-level chronic inflammation may improve glucose homeostasis through direct effects on β-cells.
Collapse
Affiliation(s)
- Patricio Atanes
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Inmaculada Ruz-Maldonado
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Attilio Pingitore
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Ross Hawkes
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Bo Liu
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Min Zhao
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Guo Cai Huang
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Shanta J Persaud
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Stefan Amisten
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
10
|
Karkhaneh M, Qorbani M, Mohajeri-Tehrani MR, Hoseini S. Association of serum complement C3 with metabolic syndrome components in normal weight obese women. J Diabetes Metab Disord 2017; 16:49. [PMID: 29299442 PMCID: PMC5745599 DOI: 10.1186/s40200-017-0330-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/28/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Increased serum complement C3 has been related to body fat mass, metabolic syndrome and chronic diseases. The purpose of this study was to evaluate the levels of C3 in the subjects of normal weight obese (hereafter NWO) as well as their possible relationships with metabolic syndrome and inflammation. METHODS In this case-control study, 40 obese women with normal weight (body mass index (BMI) = 18.5-24.9 kg/m2) and body fat percentage above 30% (fat mass (FM) > 30%) and 30 non-obese women (BMI = 18.5-24.9 kg/m2) and fat percentage less than 25% (FM < 25%) were selected as the study sample. Body composition was analyzed using Bio Impedance analyzer. Blood samples were then collected and analyzed for fasting serum concentration of lipid components of metabolic syndrome, insulin, serum complement C3 and High sensitivity C reactive protein (hsCRP). RESULTS Mean waist and hip circumferences in NWO was higher than non-NWO (74.78 ± 4.81 versus 70.76 ± 2.91 and 99.12 ± 4.32 versus 93.16 ± 2/91, respectively, P-value < 0.001). However, the mean waist-to-hip ratio did not differ significantly (p = 0.448). The mean fasting serum concentration of complement C3, hsCRP and insulin was higher in NWO compared to that in non-NWO (P-value < 0.05). Moreover, insulin sensitivity in NWO was lower than that in non-NWO (0.357 versus 0.374, p-value = 0.043). Moreover, a significant correlation was found between body fat percentage and fasting serum complement C3 and insulin concentration (r = 0.417 and r = 0.254, p-value < 0.005, respectively). CONCLUSION Obese women with normal body mass index but high body fat percentage have higher serum C3 and are at a higher risk for metabolic dysregulation and metabolic syndrome than the healthy non-obese subjects.
Collapse
Affiliation(s)
- Maryam Karkhaneh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hoseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Hojatdost street, Naderi street, Keshavarz Blv., Tehran, Iran
| |
Collapse
|
11
|
Vlaicu SI, Tatomir A, Boodhoo D, Vesa S, Mircea PA, Rus H. The role of complement system in adipose tissue-related inflammation. Immunol Res 2017; 64:653-64. [PMID: 26754764 DOI: 10.1007/s12026-015-8783-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the common factor linking adipose tissue to the metabolic context of obesity, insulin resistance and atherosclerosis are associated with a low-grade chronic inflammatory status, to which the complement system is an important contributor. Adipose tissue synthesizes complement proteins and is a target of complement activation. C3a-desArg/acylation-stimulating protein stimulates lipogenesis and affects lipid metabolism. The C3a receptor and C5aR are involved in the development of adipocytes' insulin resistance through macrophage infiltration and the activation of adipose tissue. The terminal complement pathway has been found to be instrumental in promoting hyperglycemia-associated tissue damage, which is characteristic of the major vascular complications of diabetes mellitus and diabetic ketoacidosis. As a mediator of the effects of the terminal complement complex C5b-9, RGC-32 has an impact on energy expenditure as well as lipid and glucose metabolic homeostasis. All of this evidence, taken together, indicates an important role for complement activation in metabolic diseases.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.,Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.,Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Stefan Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Petru A Mircea
- Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA. .,Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA. .,Veterans Administration Multiple Sclerosis Center of Excellence, Baltimore, MD, USA.
| |
Collapse
|
12
|
Moreno-Navarrete JM, Fernández-Real JM. The complement system is dysfunctional in metabolic disease: Evidences in plasma and adipose tissue from obese and insulin resistant subjects. Semin Cell Dev Biol 2017; 85:164-172. [PMID: 29107169 DOI: 10.1016/j.semcdb.2017.10.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 02/03/2023]
Abstract
The relationship among chronic low-grade inflammation, insulin resistance and other obesity-associated metabolic disturbances is increasingly recognized. The possible mechanisms that trigger these immunologic alterations remain to be fully understood. The complement system is a crucial element of immune defense system, being important in the activation of innate and adaptative immune response, promoting the clearance of apoptotic and damaged endogenous cells and participating in processes of tissue development, degeneration, and regeneration. Circulating components of the complement system appear to be dysregulated in obesity-associated metabolic disturbances. The activation of the complement system is also evident in adipose tissue from obese subjects, in association with subclinical inflammation and alterations in glucose metabolism. The possible contribution of some components of the complement system in the development of insulin resistance and obesity-associated metabolic disturbances, and the possible role of complement system in adipose tissue physiology is reviewed here. The modulation of the complement system could constitute a potential target in the pathophysiology and therapy of obesity and associated metabolic disease.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.
| |
Collapse
|
13
|
Dos Santos RS, Marroqui L, Grieco FA, Marselli L, Suleiman M, Henz SR, Marchetti P, Wernersson R, Eizirik DL. Protective Role of Complement C3 Against Cytokine-Mediated β-Cell Apoptosis. Endocrinology 2017; 158:2503-2521. [PMID: 28582497 PMCID: PMC5551554 DOI: 10.1210/en.2017-00104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes is a chronic autoimmune disease characterized by pancreatic islet inflammation and β-cell destruction by proinflammatory cytokines and other mediators. Based on RNA sequencing and protein-protein interaction analyses of human islets exposed to proinflammatory cytokines, we identified complement C3 as a hub for some of the effects of cytokines. The proinflammatory cytokines interleukin-1β plus interferon-γ increase C3 expression in rodent and human pancreatic β-cells, and C3 is detected by histology in and around the islets of diabetic patients. Surprisingly, C3 silencing exacerbates apoptosis under both basal condition and following exposure to cytokines, and it increases chemokine expression upon cytokine treatment. C3 exerts its prosurvival effects via AKT activation and c-Jun N-terminal kinase inhibition. Exogenously added C3 also protects against cytokine-induced β-cell death and partially rescues the deleterious effects of inhibition of endogenous C3. These data suggest that locally produced C3 is an important prosurvival mechanism in pancreatic β-cells under a proinflammatory assault.
Collapse
Affiliation(s)
- Reinaldo S. Dos Santos
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laura Marroqui
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Fabio A. Grieco
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Rasmus Wernersson
- Intomics A/S, 2800 Lyngby, Denmark
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Decio L. Eizirik
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Welbio, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
14
|
King BC, Blom AM. Non-traditional roles of complement in type 2 diabetes: Metabolism, insulin secretion and homeostasis. Mol Immunol 2016; 84:34-42. [PMID: 28012560 DOI: 10.1016/j.molimm.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022]
Abstract
Type 2 Diabetes (T2D) is a disease of increasing importance and represents a growing burden on global healthcare and human health. In T2D, loss of effectiveness of insulin signaling in peripheral tissues cannot be compensated for by adequate insulin secretion, leading to hyperglycemia and resultant complications. In recent years, inflammation has been identified as a central component of T2D, both in inducing peripheral insulin resistance as well as in the pancreatic islet, where it contributes to loss of insulin secretion and death of insulin-secreting beta cells. In this review we will focus on non-traditional roles of complement proteins which have been identified in T2D-associated inflammation, beta cell secretory function, and in maintaining homeostasis of the pancreatic islet. Improved understanding of both traditional and novel roles of complement proteins in T2D may lead to new therapeutic approaches for this global disease.
Collapse
Affiliation(s)
- Ben C King
- Lund University, Department of Translation Medicine, Division of Medical Protein Chemistry, Skåne University Hospital, Malmö, Sweden.
| | - Anna M Blom
- Lund University, Department of Translation Medicine, Division of Medical Protein Chemistry, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
15
|
Xu M, Liu B, Wu MF, Chen HT, Cianflone K, Wang ZL. Relationships among acylation-stimulating protein, insulin resistance, lipometabolism, and fetal growth in gestational diabetes mellitus women. J OBSTET GYNAECOL 2016; 35:341-5. [PMID: 26018222 DOI: 10.3109/01443615.2014.960376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to investigate the potential relationship between acylation-stimulating protein (ASP), insulin resistance, lipometabolism, the intrauterine metabolic environment and fetal growth in well-controlled gestational diabetes mellitus (GDM) women. A total of 55 well-controlled GDM women, 66 pregnant women with normal glucose tolerance (NGT) and their newborns, were included in this study. Fasting maternal and cord blood ASP, serum lipid profiles, glucose level, insulin level, HOMA-IR, in addition to neonatal anthropometry data, were measured. Maternal blood ASP in GDM is higher than that in NGT. In the GDM group, maternal blood ASP has a positive correlation with TG, FFA and HOMA-IR. Maternal and cord blood ASP levels of LGA fetuses correlate with elevated birth weight and SF4. Similarly, cord blood ASP levels of LGA fetuses also correlate with birth weight and SF4 in the NGT group. The maternal blood ASP level of GDM mothers is associated with lipometabolism, insulin resistance and LGA fetal growth. Nevertheless, the cord blood ASP level correlates with FFA of GDM mothers, LGA fetal growth of GDM and NGT mothers. ASP may be a biomarker for evaluating insulin resistance of GDM and LGA fetal growth.
Collapse
Affiliation(s)
- M Xu
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Sun Yat-sen University , Guangdong , China
| | | | | | | | | | | |
Collapse
|
16
|
Serum Adipsin Levels throughout Normal Pregnancy and Preeclampsia. Sci Rep 2016; 6:20073. [PMID: 26832661 PMCID: PMC4735521 DOI: 10.1038/srep20073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Adipsin is a protease produced at high levels by adipose tissue. It is involved in complement activation and metabolic control. The objective of this study was to determine the changes in adipsin levels during different stages of normal pregnancy, and its association with obstetric outcomes, such as preeclampsia. This nested case-control study in a longitudinal cohort included normal pregnant (n = 54) and preeclamptic (n = 18) women, both followed throughout pregnancy. Additionally, some of the normal pregnant women were followed up three months postpartum (n = 18). Healthy non-pregnant women were also studied during their menstrual cycle (n = 20). The results of this study show that in healthy non-pregnant women, adipsin levels did not change significantly during the menstrual cycle. In normal pregnant women, adipsin levels were lower (p < 0.01) when compared with non-pregnant healthy women, but these serum levels increased again during postpartum (p < 0.001). Adipsin levels were significantly elevated in preeclamptic women in late pregnancy (P < 0.01). A significant correlation was not found between leptin and adipsin during the three periods of gestation studied in healthy pregnant and preeclamptic women. Our results suggest that adipsin may be involved in pregnancy-associated metabolic changes. Moreover, the increase of adipsin levels towards late gestation in preeclamptic women could be related to the pathophysiology of this disease.
Collapse
|
17
|
Elevated serum complement factors 3 and 4 are strong inflammatory markers of the metabolic syndrome development: a longitudinal cohort study. Sci Rep 2016; 6:18713. [PMID: 26726922 PMCID: PMC4698666 DOI: 10.1038/srep18713] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022] Open
Abstract
An epidemiological design, consisting of cross-sectional (n = 2376) and cohort (n = 976) studies, was adopted to investigate the association between complement factors 3 (C3) and 4, and the metabolic syndrome (MetS) development. In the cross-sectional study, the C3 and C4 concentrations in the MetS group were higher than those in the non-MetS group (all P < 0.001), and the levels of immune globulin M (IgM), IgA, IgE, and IgG exhibited no significant differences between MetS and non-MetS (all P > 0.050). After multi-factor adjustment, the odds ratios (ORs) in the highest quartile of C3 and C4 concentrations were 7.047 (4.664, 10.648) and 1.961 (1.349, 2.849), respectively, both Ptrend < 0.050. After a 4 years follow-up, total 166 subjects were diagnosed with MetS, and the complement baseline levels from 2009 were used to predict the MetS risk in 2013. In the adjusted model, the relative risks (RRs) in the highest quartile of C3 and C4 levels were 4.779 (2.854, 8.003) and 2.590 (1.567, 4.280), respectively, both Ptrend < 0.001. Activation of complement factors may be an important part of inflammatory processes, and our results indicated that the elevated C3 and C4 levels were independent risk factors for MetS development.
Collapse
|
18
|
Fiorentino TV, Hribal ML, Andreozzi F, Perticone M, Sciacqua A, Perticone F, Sesti G. Plasma complement C3 levels are associated with insulin secretion independently of adiposity measures in non-diabetic individuals. Nutr Metab Cardiovasc Dis 2015; 25:510-517. [PMID: 25813686 DOI: 10.1016/j.numecd.2015.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/28/2015] [Accepted: 02/13/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS To evaluate if complement C3 is associated with insulin secretion, as suggested by recent in vitro studies, independently of confounders including adiposity measures. METHODS AND RESULTS 1010 nondiabetic subjects were stratified into quartiles according to complement C3 values. Insulin secretion was assessed using indexes derived from oral glucose tolerance test (OGTT) in the whole study group and from intravenous glucose tolerance test (IVGTT) in a subgroup (n = 110). Significant differences between quartiles of C3 were observed in body mass index (BMI), waist, fat mass, blood pressure, total cholesterol, high density lipoprotein (HDL), triglycerides, fasting and 2-h post-load glucose, fasting insulin, C reactive protein (hsCRP), fibrinogen, aspartate aminotransferase (AST), alanine aminotransferase (ALT), complement C4, and insulin sensitivity with C3 quartiles exhibiting graded increases in cardio-metabolic risk factors. Differences in insulin secretion indexes between C3 quartiles remained significant after adjustment for age, gender, BMI, insulin sensitivity, blood pressure, total cholesterol, HDL, triglycerides, hsCRP, fibrinogen, and complement C4 levels (P < 0.0001). A multivariable regression analysis revealed that complement C3 is a contributor of insulin secretion, explaining 2.4% and 1.9% of variation of the Stumvoll index for first-phase and second-phase insulin secretion, respectively, and 2.1% of variation of the InsAUC30/GluAUC30 index, independently of gender, age, BMI, waist, fat mass, blood pressure, total cholesterol, HDL, triglycerides, hsCRP, fibrinogen, AST, ALT. CONCLUSIONS Complement C3 concentrations are associated with insulin secretion independently of important determinants of glucose homeostasis such as gender, age, adiposity, subclinical inflammation, and insulin sensitivity.
Collapse
Affiliation(s)
- T V Fiorentino
- Department of Medical and Surgical Sciences, Viale Europa, University Magna-Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - M L Hribal
- Department of Medical and Surgical Sciences, Viale Europa, University Magna-Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - F Andreozzi
- Department of Medical and Surgical Sciences, Viale Europa, University Magna-Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - M Perticone
- Department of Medical and Surgical Sciences, Viale Europa, University Magna-Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - A Sciacqua
- Department of Medical and Surgical Sciences, Viale Europa, University Magna-Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - F Perticone
- Department of Medical and Surgical Sciences, Viale Europa, University Magna-Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - G Sesti
- Department of Medical and Surgical Sciences, Viale Europa, University Magna-Græcia of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
19
|
Barbu A, Hamad OA, Lind L, Ekdahl KN, Nilsson B. The role of complement factor C3 in lipid metabolism. Mol Immunol 2015; 67:101-7. [PMID: 25746915 DOI: 10.1016/j.molimm.2015.02.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/21/2015] [Indexed: 12/25/2022]
Abstract
Abundant reports have shown that there is a strong relationship between C3 and C3a-desArg levels, adipose tissue, and risk factors for cardiovascular disease, metabolic syndrome and diabetes. The data indicate that complement components, particularly C3, are involved in lipid metabolism. The C3 fragment, C3a-desArg, functions as a hormone that has insulin-like effects and facilitates triglyceride metabolism. Adipose tissue produces and regulates the levels of complement components, which promotes generation of inflammatory initiators such as the anaphylatoxins C3a and C5a. The anaphylatoxins trigger a cyto/chemokine response in proportion to the amount of adipose tissue present, and induce inflammation and mediate metabolic effects such as insulin resistance. These observations support the concept that complement is an important participant in lipid metabolism and in obesity, contributing to the metabolic syndrome and to the low-grade inflammation associated with obesity.
Collapse
Affiliation(s)
- Andreea Barbu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Osama A Hamad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Liu Y, Gupta P, Lapointe M, Yotsapon T, Sarat S, Cianflone K. Acylation stimulating protein, complement C3 and lipid metabolism in ketosis-prone diabetic subjects. PLoS One 2014; 9:e109237. [PMID: 25275325 PMCID: PMC4183552 DOI: 10.1371/journal.pone.0109237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/03/2014] [Indexed: 01/29/2023] Open
Abstract
Background Ketosis-prone diabetes (KPDM) is new-onset diabetic ketoacidosis without precipitating factors in non-type 1 diabetic patients; after management, some are withdrawn from exogenous insulin, although determining factors remain unclear. Methods Twenty KPDM patients and twelve type 1 diabetic patients (T1DM), evaluated at baseline, 12 and 24 months with/without insulin maintenance underwent a standardized mixed-meal tolerance test (MMTT) for 2 h. Results At baseline, triglyceride and C3 were higher during MMTT in KPDM vs. T1DM (p<0.0001) with no differences in non-esterified fatty acids (NEFA) while Acylation Stimulating Protein (ASP) tended to be higher. Within 12 months, 11 KPDM were withdrawn from insulin treatment (KPDM-ins), while 9 were maintained (KPDM+ins). NEFA was lower in KPDM-ins vs. KPDM+ins at baseline (p = 0.0006), 12 months (p<0.0001) and 24 months (p<0.0001) during MMTT. NEFA in KPDM-ins decreased over 30–120 minutes (p<0.05), but not in KPDM+ins. Overall, C3 was higher in KPDM-ins vs KPDM+ins at 12 months (p = 0.0081) and 24 months (p = 0.0019), while ASP was lower at baseline (p = 0.0024) and 12 months (p = 0.0281), with a decrease in ASP/C3 ratio. Conclusions Notwithstanding greater adiposity in KPDM-ins, greater NEFA decreases and lower ASP levels during MMTT suggest better insulin and ASP sensitivity in these patients.
Collapse
Affiliation(s)
- Yan Liu
- Centre de Recherche de l’Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
- Department of Pediatrics, Tongji Hospital, HuaZhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Priyanka Gupta
- Centre de Recherche de l’Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marc Lapointe
- Centre de Recherche de l’Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Thewjitcharoen Yotsapon
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunthornyothin Sarat
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Katherine Cianflone
- Centre de Recherche de l’Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Lo JC, Ljubicic S, Leibiger B, Kern M, Leibiger IB, Moede T, Kelly ME, Chatterjee Bhowmick D, Murano I, Cohen P, Banks AS, Khandekar MJ, Dietrich A, Flier JS, Cinti S, Blüher M, Danial NN, Berggren PO, Spiegelman BM. Adipsin is an adipokine that improves β cell function in diabetes. Cell 2014; 158:41-53. [PMID: 24995977 PMCID: PMC4128197 DOI: 10.1016/j.cell.2014.06.005] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/19/2014] [Accepted: 04/10/2014] [Indexed: 02/07/2023]
Abstract
A hallmark of type 2 diabetes mellitus (T2DM) is the development of pancreatic β cell failure, which results in insulinopenia and hyperglycemia. We show that the adipokine adipsin has a beneficial role in maintaining β cell function. Animals genetically lacking adipsin have glucose intolerance due to insulinopenia; isolated islets from these mice have reduced glucose-stimulated insulin secretion. Replenishment of adipsin to diabetic mice treated hyperglycemia by boosting insulin secretion. We identify C3a, a peptide generated by adipsin, as a potent insulin secretagogue and show that the C3a receptor is required for these beneficial effects of adipsin. C3a acts on islets by augmenting ATP levels, respiration, and cytosolic free Ca(2+). Finally, we demonstrate that T2DM patients with β cell failure are deficient in adipsin. These findings indicate that the adipsin/C3a pathway connects adipocyte function to β cell physiology, and manipulation of this molecular switch may serve as a therapy in T2DM.
Collapse
Affiliation(s)
- James C Lo
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sanda Ljubicic
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Matthias Kern
- Department of Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Tilo Moede
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Molly E Kelly
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Diti Chatterjee Bhowmick
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Incoronata Murano
- Department of Experimental and Clinical Medicine, University of Ancona, 60020 Ancona, Italy
| | - Paul Cohen
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexander S Banks
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melin J Khandekar
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Arne Dietrich
- Department of Surgery, University of Leipzig, Leipzig 04103, Germany
| | | | - Saverio Cinti
- Department of Experimental and Clinical Medicine, University of Ancona, 60020 Ancona, Italy
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Nika N Danial
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Bays H, Blonde L, Rosenson R. Adiposopathy: how do diet, exercise and weight loss drug therapies improve metabolic disease in overweight patients? Expert Rev Cardiovasc Ther 2014; 4:871-95. [PMID: 17173503 DOI: 10.1586/14779072.4.6.871] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An increase in bodyweight is generally associated with an increased risk of excessive fat-related metabolic diseases (EFRMD), including Type 2 diabetes mellitus, hypertension and dyslipidemia. However, not all patients who are overweight have EFRMD, and not all patients with EFRMD are significantly overweight. The adipocentric paradigm provides the basis for a unifying, pathophysiological process whereby fat gain in susceptible patients leads to fat dysfunction ('sick fat'), and wherein pathological abnormalities in fat function (adiposopathy) are more directly related to the onset of EFRMD than increases in fat mass (adiposity) alone. But just as worsening fat function worsens EFRMD, improved fat function improves EFRMD. Peroxisome proliferator-activated receptor-gamma agonists increase the recruitment, proliferation and differentiation of preadipocytes ('healthy fat') and cause apoptosis of hypertrophic and dysfunctional (including visceral) adipocytes resulting in improved fat function and improved metabolic parameters associated with EFRMD. Weight loss interventions, such as a hypocaloric diet and physical exercise, in addition to agents such as orlistat, sibutramine and cannabinoid receptor antagonists, may have favorable effects upon fat storage (lipogenesis and fat distribution), nutrient metabolism (such as free fatty acids), favorable effects upon adipose tissue factors involved in metabolic processes and inflammation, and enhanced 'cross-talk' with other major organ systems. In some cases, weight loss therapeutic agents may even affect metabolic parameters and adipocyte function independently of weight loss alone, suggesting that the benefit of these agents in improving EFRMD may go beyond their efficacy in weight reduction. This review describes how adiposopathy interventions may affect fat function, and thus improve EFRMD.
Collapse
Affiliation(s)
- Harold Bays
- L-MARC Research Center, Medical Director/President, 3288 Illinois Avenue, Louisville, KY 40213, USA.
| | | | | |
Collapse
|
23
|
The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol 2013; 25:47-53. [PMID: 23684628 DOI: 10.1016/j.smim.2013.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/13/2013] [Indexed: 12/20/2022]
Abstract
Emerging evidence points to a close crosstalk between metabolic organs and innate immunity in the course of metabolic disorders. In particular, cellular and humoral factors of innate immunity are thought to contribute to metabolic dysregulation of the adipose tissue or the liver, as well as to dysfunction of the pancreas; all these conditions are linked to the development of insulin resistance and diabetes mellitus. A central component of innate immunity is the complement system. Interestingly, the classical view of complement as a major system of host defense that copes with infections is changing to that of a multi-functional player in tissue homeostasis, degeneration, and regeneration. In the present review, we will discuss the link between complement and metabolic organs, focusing on the pancreas, adipose tissue, and liver and the diverse effects of complement system on metabolic disorders.
Collapse
|
24
|
Relationship of C5L2 receptor to skeletal muscle substrate utilization. PLoS One 2013; 8:e57494. [PMID: 23460866 PMCID: PMC3583831 DOI: 10.1371/journal.pone.0057494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/22/2013] [Indexed: 11/30/2022] Open
Abstract
Objective To investigate the role of Acylation Stimulating Protein (ASP) receptor C5L2 in skeletal muscle fatty acid accumulation and metabolism as well as insulin sensitivity in both mice and human models of diet-induced insulin resistance. Design and Methods Male wildtype (WT) and C5L2 knockout (KO) mice were fed a low (LFD) or a high (HFD) fat diet for 10 weeks. Intramyocellular lipid (IMCL) accumulation (by oil red O staining) and beta-oxidation HADH enzyme activity were determined in skeletal muscle. Mitochondria were isolated from hindleg muscles for high-resolution respirometry. Muscle C5L2 protein content was also determined in obese type 2 diabetics and age- and BMI matched men. Results IMCL levels were increased by six-fold in C5L2KO-HFD compared to WT-HFD mice (p<0.05) and plasma insulin levels were markedly increased in C5L2KO-HFD mice (twofold, p<0.05). Muscle HADH activity was elevated in C5L2KO-LFD mice (+75%, p<0.001 vs. WT-LFD) and C5L2KO-HFD displayed increased mitochondrial fatty acid oxidative capacity compared to WT-HFD mice (+23%, p<0.05). In human subjects, C5L2 protein content was reduced (−48%, p<0.01) in type 2 diabetic patients when compared to obese controls. Further, exercise training increased C5L2 (+45%, p = 0.0019) and ASP (+80%, p<0.001) in obese insulin-resistant men. Conclusion The results suggest that insulin sensitivity may be permissive for coupling of C5L2 levels to lipid storage and utilization.
Collapse
|
25
|
Pacini G, Omar B, Ahrén B. Methods and models for metabolic assessment in mice. J Diabetes Res 2013; 2013:986906. [PMID: 23762879 PMCID: PMC3673320 DOI: 10.1155/2013/986906] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/23/2013] [Indexed: 12/02/2022] Open
Abstract
The development of new therapies for the treatment of type 2 diabetes requires robust, reproducible and well validated in vivo experimental systems. Mice provide the most ideal animal model for studies of potential therapies. Unlike larger animals, mice have a short gestational period, are genetically similar, often give birth to many offspring at once and can be housed as multiple groups in a single cage. The mouse model has been extensively metabolically characterized using different tests. This report summarizes how these tests can be executed and how arising data are analyzed to confidently determine changes in insulin resistance and insulin secretion with high reproducibility. The main tests for metabolic assessment in the mouse reviewed here are the glucose clamp, the intravenous and the oral glucose tolerance tests. For all these experiments, including some commonly adopted variants, we describe: (i) their performance; (ii) their advantages and limitations; (iii) the empirical formulas and mathematical models implemented for the analysis of the data arising from the experimental procedures to obtain reliable measurements of peripheral insulin sensitivity and beta cell function. Finally, a list of previous applications of these methods and analytical techniques is provided to better comprehend their use and the evidences that these studies yielded.
Collapse
Affiliation(s)
- G Pacini
- Metabolic Unit, ISIB CNR, Padua, Italy.
| | | | | |
Collapse
|
26
|
Acylation stimulating protein reduction precedes insulin sensitization after BPD-DS bariatric surgery in severely obese women. Nutr Diabetes 2012; 2:e41. [PMID: 23448805 PMCID: PMC3432183 DOI: 10.1038/nutd.2012.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The mechanisms involved in early resolution of insulin resistance and type 2 diabetes mellitus after biliopancreatic diversion with duodenal switch (BPD-DS) surgery are still unknown. We evaluated early effects of BPD-DS on plasma acylation stimulating protein (ASP), an adipokine involved in lipid and glucose metabolism. SUBJECTS 32 non-diabetic and 22 diabetic severely obese women (BMI40 kg m(-2)) were evaluated for body composition and plasma parameters before, 24 h, 5 days, 6 and 12 months after surgery. RESULTS Within the early postoperative period (24 h), ASP decreased 25 and 30% in non-diabetic and diabetic women, respectively (P<0.001). Twenty-four hours after surgery, triglyceride, cholesterol, HDL-Chol, LDL-Chol and C3 also decreased, while glucose, insulin and high-sensitivity C-reactive protein (hsCRP) increased (all P<0.001). By 5 days, without significant weight loss, the decreases in ASP, cholesterol, HDL-Chol and LDL-Chol levels were all maintained. At this time, glucose, insulin and HOMA-IR also decreased 11 to 52% (all P<0.001). At 6 and 12 months, with pronounced weight loss and decreased per cent fat mass, there were further decreases in ASP (maximal -56% non-diabetic, -61% diabetic, P<0.001), as well as in glucose, insulin, HOMA-IR, triglyceride, cholesterol, LDL-Chol, HDL-Chol and hsCRP levels. Improved insulin resistance/diabetes at 5 days was predicted by 24 h changes as follows: per cent change ASP, HDL-Chol, hsCRP and total cholesterol predicted HOMA-IR (5 days) (r(2)=0.454, P<0.001), and per cent change ASP, HDL-Chol and hsCRP predicted change (5 days vs baseline) in HOMA-IR (r(2)=0.351, P<0.001). CONCLUSION Acute postoperative decreases in ASP are associated with early improvement of insulin resistance/diabetes after BPD-DS surgery.
Collapse
|
27
|
Fisette A, Munkonda MN, Oikonomopoulou K, Paglialunga S, Lambris JD, Cianflone K. C5L2 receptor disruption enhances the development of diet-induced insulin resistance in mice. Immunobiology 2012; 218:127-33. [PMID: 22622332 DOI: 10.1016/j.imbio.2012.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/17/2012] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Acylation stimulating protein (ASP) is a hormone secreted by the adipose tissue that has been shown to increase triglyceride storage and glucose transport in adipocytes. These effects are mediated by C5L2 receptor, which has also been associated with inflammatory effects. C5L2 deficient mice on a low-fat diet are hyperphagic yet lean due to increased energy expenditure. The present study assessed insulin sensitivity and metabolic and inflammatory changes in C5L2KO mice vs WT in diet-induced obesity. METHODS We placed C5L2KO and WT mice on a diabetogenic diet for 12 weeks and examined in vivo and ex vivo metabolism. RESULTS C5L2KO mice on a diabetogenic diet exhibit decreased insulin sensitivity. Whole body substrate partitioning is evidenced through increased glucose uptake by the liver and decreased uptake by adipose tissue and skeletal muscle. Lipid content of both liver and skeletal muscle was higher in C5L2KO mice vs WT. Furthermore, elevated levels of macrophage markers were found in adipose tissue, liver and skeletal muscle of C5L2KO mice vs WT. Several inflammatory cytokines such as IL-6, MIP-1α and KC were also elevated in plasma of C5L2KO mice vs WT. CONCLUSIONS Overall, we demonstrated that C5L2KO mice fed a diabetogenic diet develop more severe insulin resistance than WT mice through altered substrate partitioning, ectopic fat deposition and a pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Alexandre Fisette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Zheng YY, Xie X, Ma YT, Yang YN, Fu ZY, Li XM, Ma X, Chen BD, Liu F. Relationship between type 2 diabetes mellitus and a novel polymorphism C698T in C5L2 in the Chinese Han population. Endocrine 2012; 41:296-301. [PMID: 22180093 DOI: 10.1007/s12020-011-9574-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/27/2011] [Indexed: 12/27/2022]
Abstract
In a previous study, we reported a novel single nucleotide polymorphism (SNP) 698C>T (P233L) in the gene, C5L2. This gene has been demonstrated to encode a functional receptor of acylation-stimulating protein (ASP), a G-protein-coupled receptor (GPCR), that has been shown to influence insulin secretion in cultured pancreatic islet cells in vitro and is a stimulator of triglyceride synthesis and glucose transport in vivo. In this study, we evaluated the relationship between this novel C5L2 SNP and development of type 2 diabetes mellitus (T2DM) in the Chinese Han population. A case-control study examining Chinese Han T2DM patients (n = 554) and healthy controls (n = 648) was performed to investigate the role of the 698C>T (P233L) C5L2 polymorphism. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis was used to determine expression of this SNP. Heterozygote carriers of the 698CT C5L2 genotype were more frequent among T2DM patients (13.5%) than controls (3.2%; P < 0.001). The frequency of 698CT heterozygote carriers was significantly higher in women (12.8%) than in male subjects (5.7%, P < 0.001). The odds ratio (OR) of T2DM for 698CT carriers was 4.675 [95% confidence interval (CI) 2.840-7.694]. After adjustment of confounding factors such as age, sex, smoking, drinking, hypertension, and triglyceride (TG), total cholesterol, high-density lipoprotein, and low-density lipoprotein levels, the difference remained significant (P < 0.001, OR 5.556, 95% CI 2.444-12.630). Furthermore, the diabetic 698CT carriers displayed an increase in their serum TG level. However, there were no significant differences observed in any of the parameters measured in the control group. We conclude that the 698CT genotype of C5L2 may be an influencing genetic factor for T2DM in the Chinese Han population. These findings also indicate that heterozygous expression of 698CT C5L2 may contribute to metabolic abnormalities.
Collapse
Affiliation(s)
- Ying-Ying Zheng
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gao Y, Gauvreau D, Cui W, Lapointe M, Paglialunga S, Cianflone K. Evaluation of chylomicron effect on ASP production in 3T3-L1 adipocytes. Acta Biochim Biophys Sin (Shanghai) 2011; 43:154-9. [PMID: 21266544 DOI: 10.1093/abbs/gmq124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the past few years, there has been increasing interest in the production and physiological role of acylation-stimulating protein (ASP), identical to C3adesArg, a product of the alternative complement pathway generated through C3 cleavage. Recent studies in C3 (-/-) mice that are ASP deficient have demonstrated a role for ASP in postprandial triglyceride clearance and fat storage. The aim of the present study was to establish a cell model and sensitive ELISA assay for the evaluation of ASP production using 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated into adipocytes, then cultured in different media such as serum-free (SF), Dulbecco's modified Eagle's medium (DMEM)/F12 + 10% fetal calf serum (FBS), and at varying concentrations of chylomicrons and insulin + chylomicrons up to 48 h. ASP production in SF and DMEM/F12 + 10% FBS was compared. Chylomicrons stimulated ASP production in a concentration- and time-dependent manner. By contrast, chylomicron treatment had no effect on the production of C3, the precursor protein of ASP, which was constant over 48 h. Addition of insulin (100 nM) to a low-dose of chylomicrons (100 µg TG/ml) significantly increased ASP production compared with chylomicrons alone at 48 h (P < 0.001). Furthermore, addition of insulin significantly increased C3 secretion at both 18 and 48 h of incubation (P < 0.05, P < 0.001, respectively). Overall, the proportion of ASP to C3 remained constant, indicating no change in the ratio of C3 cleaved to generate ASP. This study demonstrated that 3T3-L1 adipocyte is a useful model for the evaluation of C3 secretion and ASP production by using a sensitive mouse-specific ELISA assay. The stimulation of ASP production with chylomicrons demonstrates a physiologically relevant response, and provides a strategy for further studies on ASP production and function.
Collapse
Affiliation(s)
- Ying Gao
- CRIUCPQ Research Centre, Laval University, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
30
|
Horakova D, Stejskal D, Pastucha D, Muchova L, Janout V. POTENTIAL MARKERS OF INSULIN RESISTANCE IN HEALTHY VS OBESE AND OVERWEIGHT SUBJECTS. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010; 154:245-9. [DOI: 10.5507/bp.2010.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Pacini G, Ahrén M, Ahrén B. Reappraisal of the intravenous glucose tolerance index for a simple assessment of insulin sensitivity in mice. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1316-24. [PMID: 19211728 DOI: 10.1152/ajpregu.90575.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice are increasingly used in studies where measuring insulin sensitivity (IS) is a common procedure. The glucose clamp is labor intensive, cannot be used in large numbers of animals, cannot be repeated in the same mouse, and has been questioned as a valid tool for IS in mice; thus, the minimal model with 50-min intravenous glucose tolerance test (IVGTT) data was adapted for studies in mice. However, specific software and particular ability was needed. The aim of this study was to establish a simple procedure for evaluating IS during IVGTT in mice (CS(I)). IVGTTs (n = 520) were performed in NMRI and C57BL/6J mice (20-25g). After glucose injection (1 g/kg), seven samples were collected for 50 min for glucose and insulin measurements, analyzed with a minimal model that provided the validated reference IS (S(I)). By using the regression CS(I) = alpha(1) + alpha(2) x K(G)/AUC(D), where K(G) is intravenous glucose tolerance index and AUC(d) is the dynamic area under the curve, IS was calculated in 134 control animals randomly selected (regression CS(I) vs. S(I): r = 0.66, P < 0.0001) and yielded alpha(1) = 1.93 and alpha(2) = 0.24. K(G) is the slope of log (glucose(5-20)) and AUC(D) is the mean dynamic area under insulin curve in the IVGTT. By keeping fixed alpha(1) and alpha(2), CS(I) was validated in 143 control mice (4.7 +/- 0.2 min*microU(-1)*ml(-1), virtually identical to S(I): 4.7 +/- 0.3, r = 0.89, P < 0.0001); and in 123 mice in different conditions: transgenic, addition of neuropeptides, incretins, and insulin (CS(I): 6.0 +/- 0.4 vs. S(I): 6.1 +/- 0.4, r = 0.94, P < 0.0001). In the other 120 animals, CS(I) revealed its ability to segregate different categories, as does S(I). This easily usable formula for calculating CS(I) overcomes many experimental obstacles and may be a simple alternative to more complex procedures when large numbers of mice or repeated experiments in the same animals are required.
Collapse
Affiliation(s)
- Giovanni Pacini
- Metabolic Unit, Institute of Biomedical Engineering, National Research Council, Padova, Italy.
| | | | | |
Collapse
|
32
|
Li W, Hui R. Cigarette smoking induces insulin resistance: Partly via ASP–C5L2 pathway? ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.bihy.2009.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Oktenli C, Ozgurtas T, Dede M, Sanisoglu YS, Yenen MC, Yesilova Z, Kenar L, Kurt YG, Baser I, Smith J, Cianflone K. Metformin decreases circulating acylation-stimulating protein levels in polycystic ovary syndrome. Gynecol Endocrinol 2007; 23:710-5. [PMID: 18075846 DOI: 10.1080/09513590701666571] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AIM There are no studies that examine the circulating acylation-stimulating protein (ASP) levels in patients with polycystic ovary syndrome (PCOS). The present study was designed to determine the ASP levels in PCOS and to evaluate the effect of metformin on plasma fasting ASP concentrations. METHODS Twenty women with PCOS and 20 healthy controls matched for age and body mass index (BMI) were included in the study. We determined ASP and other biochemical parameters before and after treatment. RESULTS Baseline levels of plasma ASP, complement 3 (C3), waist-to-hip ratio (WHR), homeostasis model assessment-insulin resistance index (HOMA-IR), fasting insulin, triglycerides (TG) and very-low-density lipoprotein cholesterol (VLDL-C) were significantly higher in patients than in controls. After 3 months of metformin treatment, BMI, WHR, ASP, C3, fasting glucose, fasting insulin, HOMA-IR, total cholesterol, TG, VLDL-C and free testosterone decreased significantly, whereas apolipoprotein A-I and high-density lipoprotein cholesterol increased significantly. CONCLUSIONS The major novel information of the present study is that ASP and C3 values are markedly increased in non-obese patients with PCOS, with a decrease evidenced with metformin treatment.
Collapse
Affiliation(s)
- Cagatay Oktenli
- Division of Internal Medicine, Gata Haydarpasa Training Hospital, Kadikoy Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tahiri Y, Karpe F, Tan GD, Cianflone K. Rosiglitazone decreases postprandial production of acylation stimulating protein in type 2 diabetics. Nutr Metab (Lond) 2007; 4:11. [PMID: 17490487 PMCID: PMC1876462 DOI: 10.1186/1743-7075-4-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 05/09/2007] [Indexed: 11/15/2022] Open
Abstract
Background We evaluated plasma ASP and its precursor C3 in type 2 diabetic men with/without rosiglitazone (ROSI) treatment compared to healthy non-obese men. We tested (1) whether plasma ASP or C3 are altered postprandially in subcutaneous adipose tissue or forearm muscle effluent assessed by arteriovenous (A-V) differences in healthy lean men and older obese diabetic men and (2) whether treatment with ROSI changes the arteriovenous gradient of ASP and/or C3. Methods In this ongoing placebo-controlled, crossover, double-blinded study, AV differences following a mixed meal were measured in diabetic men (n = 6) as compared to healthy men (n = 9). Results Postprandial arterial and adipose venous TG and venous NEFA were increased in diabetics vs. controls (p < 0.05–0.0001). ROSI treatment decreased postprandial arterial TG (p < 0.001), adipose venous NEFA (p < 0.005), reduced postprandial glucose (p < 0.0001) and insulin concentrations (p < 0.006). In healthy men, there was no change in postprandial C3, but an increase in adipose venous ASP vs. arterial ASP (p < 0.02), suggesting ASP production, with no change in forearm muscle. In older, obese diabetic subjects, arterial C3 was greater than in controls (p < 0.001). Arterial C3 was greater than venous C3 (p < 0.05), an effect that was lost with ROSI treatment. In diabetics, postprandial venous ASP was greater than arterial (p < 0.05), indicating ASP production, an effect that was lost with ROSI treatment (p < 0.01). Conclusion Increased postprandial venous production of ASP is specific for adipose tissue (absent in forearm muscle). Increased postprandial C3 and ASP in diabetic subjects is consistent with an ASP resistant state, this state is partially normalized by treatment with ROSI.
Collapse
Affiliation(s)
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital Oxford, OX3 7LJ, UK
| | - Garry D Tan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital Oxford, OX3 7LJ, UK
| | - Katherine Cianflone
- Medicine, McGill University, Montreal, H3A 1A1, Canada
- Centre de Recherche Hôpital Laval, Université Laval, Québec, G1V 4G5, Canada
| |
Collapse
|
35
|
Saleh J, Cianflone K, Chaudhary T, Al-Riyami H, Al-Abri AR, Bayoumi R. Increased plasma acylation-stimulating protein correlates with hyperlipidemia at late gestation. Obesity (Silver Spring) 2007; 15:646-52. [PMID: 17372315 DOI: 10.1038/oby.2007.575] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Obesity is often associated with negative consequences, including hyperlipidemia and insulin resistance. Weight gain during pregnancy is also associated with major lipid alterations. Fat storage is enhanced in early pregnancy. At late gestation, hyperlipidemia becomes a major manifestation. The acylation-stimulating protein (ASP) is a potent lipogenic adipocytokine that correlates with postprandial triglyceride (TG) clearance in vivo and has been linked to hyperlipidemic disorders. The role of ASP during a normal pregnancy is unknown. The objective of this study was to investigate plasma ASP levels in correlation with the lipid profile during late gestation. RESEARCH METHODS AND PROCEDURES Seventy healthy women at late gestation and 60 non-pregnant controls of similar age and prepregnancy BMI were included in a cross-sectional study. Fasting plasma ASP levels and the lipid profile of all of the women were measured. RESULTS ASP levels were markedly elevated in the pregnant women (66%, p < 0.001). ASP levels correlated strongly with the elevated levels of TGs (r = 0.608, p < 0.000), apolipoprotein B (0.519, p < 0.000), and low-density lipoprotein-cholesterol (r = 0.405, p < 0.000). Multivariate analysis adjusting for BMI and age showed that changes in ASP levels at late gestation were best predicted by TG and apoB levels, accounting for 53.8% of plasma ASP variation. For the controls, ASP strongly correlated with BMI, which was the only significant predictor of ASP levels. DISCUSSION Gestational hormone alterations during pregnancy may affect ASP function as a lipogenic factor. Increased plasma ASP levels at late gestation and their strong correlation with parameters reflecting very low-density lipoprotein accumulation are suggestive of ASP resistance, which may further contribute to the hyperlipidemic state, shifting energy in the form of TGs to the rapidly growing fetus.
Collapse
Affiliation(s)
- Jumana Saleh
- Biochemistry Department, Faculty of Medicine, Sultan Qaboos University, P.O. Box 35, Postal Code 123, Muscat, Oman.
| | | | | | | | | | | |
Collapse
|
36
|
MacLaren R, Kalant D, Cianflone K. The ASP receptor C5L2 is regulated by metabolic hormones associated with insulin resistance. Biochem Cell Biol 2007; 85:11-21. [PMID: 17464341 DOI: 10.1139/o06-207] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acylation-stimulating protein (ASP) and interaction with its receptor C5L2 influences adipocyte metabolism. We examined insulin resistance and differentiation-mediated regulation of C5L2 and the mechanistic impact on both C5L2 cell-surface protein and ligand binding to the receptor. C5L2 mRNA increased 8.7-fold with differentiation in 3T3-L1 cells (p < 0.0001) by day 9. In preadipocytes, insulin and dexamethasone increased C5L2 mRNA (1 μmol/L insulin resulted in a 2.6-fold increase, p < 0.01; 10 nmol/L dexamethasone resulted in a 17.9-fold increase, p < 0.01) and C5L2 cell-surface protein (100 nmol insulin resulted in a 2.7-fold increase, p < 0.001; 10 nmol/L dexamethasone resulted in a 2.8-fold increase, p < 0.001). In adipocytes, 100 nmol/L insulin increased C5L2 mRNA and ASP binding (respectively, 1.3-fold, p < 0.01; and 2.4-fold, p < 0.05). Dexamethasone decreased ligand binding (–60%, p < 0.02) without changing mRNA. Tumor necrosis factor alpha decreased C5L2 mRNA (–88% in preadipocytes and –38% in adipocytes, p < 0.001), C5L2 cell-surface protein (–53% in preadipocytes, p < 0.0001), and ASP binding (–60% and –49% in, respectively, preadipocytes and adipoctyes, p < 0.05). Conversely, 1 μmol/L and 10 nmol/L rosiglitazone increased, respectively, C5L2 mRNA (9.3-fold, p < 0.0001) and ASP binding (2.4-fold, p < 0.05). Thus, C5L2 mRNA increases with differentiation, insulin, and thiazolidinedione treatment, and decreases with tumor necrosis factor alpha, all of which results in functional changes in ASP–C5L2 response and may have implications for human metabolism.
Collapse
Affiliation(s)
- R MacLaren
- Medicine, McGill University Health Center, Montreal, Canada
| | | | | |
Collapse
|
37
|
Bays H, Ballantyne C. Adiposopathy: why do adiposity and obesity cause metabolic disease? ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.4.389] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Engström G, Hedblad B, Janzon L, Lindgärde F. Weight gain in relation to plasma levels of complement factor 3: results from a population-based cohort study. Diabetologia 2005; 48:2525-31. [PMID: 16283247 DOI: 10.1007/s00125-005-0021-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 07/28/2005] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Mice that are deficient for complement factor 3 (C3) have shown resistance to weight gain, despite increased food intake. Cross-sectional studies of humans have reported correlations between C3 and obesity. This longitudinal study explored whether C3 predicts a large weight gain in middle-aged men. METHODS Plasma concentrations of C3 and complement factor 4 (C4) were measured in 2,706 non-diabetic healthy men aged between 38 and 50 years, who were re-examined after a mean period of 6.1 years. RESULTS After adjustments for initial weight, age, height and follow-up time, the odds of incurring large weight gain (75th percentile, > or =3.8 kg) were 1.00 (reference), 0.96 (95% CI:0.7-1.2), 1.1 (CI:0.9-1.5) and 1.4 (CI:1.1-1.8), respectively, among men with C3 levels in the first, second, third and fourth quartiles (p for trend=0.01) respectively. This relationship remained significant after further adjustments for lifestyle factors (physical inactivity, alcohol, smoking), metabolic factors (glucose or homeostasis model assessment values, cholesterol, triglycerides), inflammatory markers (fibrinogen, haptoglobin, ceruloplasmin, orosomucoid, alpha1-antitrypsin) and for C4. C4 was associated with weight gain after adjustments for initial weight, height, follow-up time and lifestyle factors, but not after adjustments for C3. CONCLUSIONS/INTERPRETATION C3 is a risk factor for incurring large weight gain in middle-aged men.
Collapse
Affiliation(s)
- G Engström
- Department of Clinical Sciences MFC Ing 59 Lund University, Malmö University Hospital, S-20502, Malmö, Sweden.
| | | | | | | |
Collapse
|
39
|
Yang Y, Lu HL, Zhang J, Yu HY, Wang HW, Zhang MX, Cianflone K. Relationships among acylation stimulating protein, adiponectin and complement C3 in lean vs obese type 2 diabetes. Int J Obes (Lond) 2005; 30:439-46. [PMID: 16302015 DOI: 10.1038/sj.ijo.0803173] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the relationships between adipocyte hormones acylation stimulating protein (ASP), adiponectin, complement C3 (C3) (ASP precursor) and insulin, C-reactive protein (CRP), lipid profiles and insulin resistance in lean vs obese type 2 diabetes subjects. SUBJECTS Lean type 2 diabetes subjects (DL n = 27) vs obese type 2 diabetes subjects (DO n = 55) were compared to age-matched nondiabetic groups (Obese, OB n = 55 and control, CTL n = 50). RESULTS The DO group demonstrated significant increases in plasma ASP and C3 with decreases in plasma adiponectin as compared to CTL. Interestingly, these increases in ASP and C3 were as high, or greater, in the DL group in spite of normal weight. By contrast adiponectin in the DL group was comparable to CTL, in spite of marked insulin resistance. C3 correlated with insulin, glucose and homeostasis model assessment of insulin resistance (HOMA-IR); ASP correlated with body mass index (BMI), glucose, insulin and plasma lipid parameters (non-esterified fatty acids (NEFA), triglyceride, cholesterol and apolipoprotein B). Adiponectin correlated with BMI, glucose, NEFA, triglyceride, high-density lipoprotein cholesterol and apolipoprotein A1 but not HOMA-IR, ASP or C3. CRP correlated only with HOMA-IR. CONCLUSION Increased ASP and C3 are both associated with diabetes and related lipid factors but are not regulated coordinately. Adiponectin appears to be more closely related to body size (decreased in obese subjects) than insulin resistance in these subjects.
Collapse
Affiliation(s)
- Y Yang
- Department of Endocrinology, Tongji Hospital, Wuhan, Hubei, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Kalant D, MacLaren R, Cui W, Samanta R, Monk PN, Laporte SA, Cianflone K. C5L2 is a functional receptor for acylation-stimulating protein. J Biol Chem 2005; 280:23936-44. [PMID: 15833747 DOI: 10.1074/jbc.m406921200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C5L2 binds acylation-stimulating protein (ASP) with high affinity and is expressed in ASP-responsive cells. Functionality of C5L2 has not yet been demonstrated. Here we show that C5L2 is expressed in human subcutaneous and omental adipose tissue in both preadipocytes and adipocytes. In mice, C5L2 is expressed in all adipose tissues, at levels comparable with other tissues. Stable transfection of human C5L2 cDNA into HEK293 cells results in ASP stimulation of triglyceride synthesis (TGS) (193 +/- 33%, 5 microM ASP, p < 0.001, where basal = 100%) and glucose transport (168 +/- 21%, 10 microM ASP, p < 0.001). C3a similarly stimulates TGS (163 +/- 12%, p < 0.001), but C5a and C5a des-Arg have no effect. The ASP mechanism is to increase Vmax of glucose transport (149%) and triglyceride (TG) synthesis activity (165%) through increased diacylglycerolacyltransferase activity (200%). Antisense oligonucleotide down-regulation of C5L2 in human skin fibroblasts decreases cell surface C5L2 (down to 54 +/- 4% of control, p < 0.001, comparable with nonimmune background). ASP response is coordinately lost (basal TGS = 14.6 +/- 1.6, with ASP = 21.0 +/- 1.4 (144%), with ASP + oligonucleotides = 11.0 +/- 0.8 pmol of TG/mg of cell protein, p < 0.001). In mouse 3T3-L1 preadipocytes, antisense oligonucleotides decrease C5L2 expression to 69.5 +/- 0.5% of control, p < 0.001 (comparable with nonimmune) with a loss of ASP stimulation (basal TGS = 22.4 +/- 2.9, with ASP = 39.6 +/- 8.8 (177%), with ASP + oligonucleotides = 25.3 +/- 3.0 pmol of TG/mg of cell protein, p < 0.001). C5L2 down-regulation and decreased ASP response correlate (r = 0.761, p < 0.0001 for HSF and r = 0.451, p < 0.05 for 3T3-L1). In HEK-hC5L2 expressing fluorescently tagged beta-arrestin, ASP induced beta-arrestin translocation to the plasma membrane and formation of endocytic complexes concurrently with increased phosphorylation of C5L2. This is the first demonstration that C5L2 is a functional receptor, mediating ASP triglyceride stimulation.
Collapse
Affiliation(s)
- David Kalant
- Mike Rosenbloom Laboratory for Cardiovascular Research, Division of Cardiology, Department of Medicine, McGill University Health Centre, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Schrauwen P, Hesselink MKC, Jain M, Cianflone K. Acylation-stimulating protein: effect of acute exercise and endurance training. Int J Obes (Lond) 2005; 29:632-8. [PMID: 15809665 DOI: 10.1038/sj.ijo.0802949] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Acylation-stimulating protein (ASP) is an adipocyte-derived protein that contributes to fatty acid clearance. Regular exercise training improves fatty acid handling. OBJECTIVE To examine the effect of acute exercise and short-term endurance training on ASP levels. SUBJECTS Eight untrained men (age: 23.5+/-3.4 y; maximal power output (Wmax): 3.7+/-0.6 W/kg body weight). DESIGN Subjects were trained for 2 weeks. Before and after training, blood was sampled during a 3-h exercise test, and insulin sensitivity was assessed by an insulin tolerance test. RESULTS Before training, ASP levels decreased during exercise (from 17.9+/-2.9 to 15.5+/-3.7 nmol/l at t=0 vs 180, P<0.05). Endurance training decreased fasting ASP levels significantly (17.9+/-2.9 vs 13.4+/-2.3 nmol/l pre- and post-training, P<0.001). Interestingly, after 2 weeks of endurance training, ASP levels tended to increase during exercise (from 13.4+/-2.3 to 17.2+/-4.5 nmol/l at t=0 vs 180, P=0.09). Baseline ASP levels correlated negatively with insulin sensitivity both before (r=-0.86, P<0.01) and after training (r=-0.82, P<0.05). CONCLUSION Short-term endurance training reduces baseline ASP levels. These data fit with the hypothesis that reduced ASP levels indicate improved ASP sensitivity.
Collapse
Affiliation(s)
- P Schrauwen
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Yesilova Z, Ozata M, Oktenli C, Bagci S, Ozcan A, Sanisoglu SY, Uygun A, Yaman H, Karaeren N, Dagalp K. Increased acylation stimulating protein concentrations in nonalcoholic fatty liver disease are associated with insulin resistance. Am J Gastroenterol 2005; 100:842-9. [PMID: 15784030 DOI: 10.1111/j.1572-0241.2005.40838.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES As acylation stimulating protein (ASP) acts on adipocytes mainly as a paracrine factor to increase triglyceride synthesis and storage; hypothetically, it may play a similar role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). METHODS Forty-six male patients with NAFLD (group A), age-matched 30 male patients with chronic viral hepatitis (group B) and 30 age-matched and body mass index (BMI)-matched healthy male subjects were enrolled in the study. RESULTS Among the NAFLD patients, 10 patients (24.4%) had simple steatosis and 36 patients (69.6%) had nonalcoholic steatohepatitis (NASH). The mean levels of ASP, complement 3, insulin, C-peptide, HOMA-IR, triglyceride, and very low-density lipoprotein (VLDL) were significantly higher in group A patients than both controls and group B. ASP levels correlated significantly in a positive manner with BMI, insulin, and HOMA-IR. CONCLUSIONS Dysregulation of the ASP pathway may have important metabolic consequences in NASH and is associated with insulin resistance.
Collapse
Affiliation(s)
- Zeki Yesilova
- Department of Gastroenterology, Gülhane Military Medical Academy, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maslowska M, Wang HW, Cianflone K. Novel roles for acylation stimulating protein/C3adesArg: a review of recent in vitro and in vivo evidence. VITAMINS AND HORMONES 2005; 70:309-32. [PMID: 15727809 DOI: 10.1016/s0083-6729(05)70010-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent experimental evidence is shedding more light on the physiological actions of acylation-stimulating protein (ASP)/C3adesArg. The role of ASP in regulating lipid metabolism has primarily focused on its participation in the stimulation of triglyceride synthesis (TGS) and glucose transport. Although there is no doubt that ASP, an adipocyte-produced hormone, plays a key physiological role, accumulating evidence suggests that the effects of ASP go beyond its acute effects on lipid metabolism. In this review, we present novel findings of ASP/C3adesArg effects on preadipocyte differentiation. In 3T3-L1 and 3T3-F442A cells, ASP can substitute for insulin and enhance differentiation as measured by intracellular lipid droplet accumulation, clonal expansion, and increased expression of differentiation markers. Specifically, ASP increased basal TGS by 250% after 9 days differentiation, with similar effects induced by insulin. With ASP treatment, expression of C/EBPdelta was up-regulated early in differentiation (day 2) and decreased thereafter. Expression of PPARgamma and late markers of differentiation, such as adipsin and diacylglycerol acyltransferase-1, were also increased. Effects on clonal expansion were indicated by a twofold increase in [(3)H] thymidine incorporation in 3T3-L1 cells compared to treatment with IBMX + DX alone. Further, the effects of ASP extended beyond adipose tissue to endocrine effects on hormone secretion of insulin (pancreatic cells); cytokines TNFalpha, IL-1beta, and IL-6 (myeloid cells); prolactin, growth hormone, and adrenocorticotropin (pituitary cells). Finally, the potential implication of C5L2, the newly discovered ASP receptor, and its expression profile in various tissues are discussed relative to ASP function.
Collapse
Affiliation(s)
- Magdalena Maslowska
- Mike Rosenbloom Laboratory for Cardiovascular Research, McGill University Health Centre, Montreal, Quebec H3A 1A1, Canada
| | | | | |
Collapse
|
44
|
Abstract
That obesity is associated with insulin resistance and type II diabetes mellitus is well accepted. Overloading of white adipose tissue beyond its storage capacity leads to lipid disorders in non-adipose tissues, namely skeletal and cardiac muscles, pancreas, and liver, effects that are often mediated through increased non-esterified fatty acid fluxes. This in turn leads to a tissue-specific disordered insulin response and increased lipid deposition and lipotoxicity, coupled to abnormal plasma metabolic and (or) lipoprotein profiles. Thus, the importance of functional adipocytes is crucial, as highlighted by the disorders seen in both "too much" (obesity) and "too little" (lipodystrophy) white adipose tissue. However, beyond its capacity for fat storage, white adipose tissue is now well recognised as an endocrine tissue producing multiple hormones whose plasma levels are altered in obese, insulin-resistant, and diabetic subjects. The consequence of these hormonal alterations with respect to both glucose and lipid metabolism in insulin target tissues is just beginning to be understood. The present review will focus on a number of these hormones: acylation-stimulating protein, leptin, adiponectin, tumour necrosis factor alpha, interleukin-6, and resistin, defining their changes induced in obesity and diabetes mellitus and highlighting their functional properties that may protect or worsen lipid metabolism.
Collapse
Affiliation(s)
- May Faraj
- Mike Rosenbloom Laboratory for Cardiovascular Research, McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | | | | |
Collapse
|
45
|
Abstract
Communication between adipose and other tissues has been hypothesized since at least the 1940s to be bidirectional. Despite this expectation, early progress was largely limited to adipose tissue's role in metabolism and storage of fatty acids, its development, and its response to endocrine and neural cues. However, efforts of the last decade have identified several molecules that are secreted from adipocytes, apparently for the purpose of signaling to other tissues. Cloning of the mouse obesity gene in 1994 is perhaps the most famous impetus for recognition that adipocytes are active in the regulation of multiple body functions. The product of this gene, leptin, has since been found to inhibit feeding, enhance energy expenditure, and stimulate gonadotropes. Evidence for the roles of other adipocyte-derived signals is being generated. Resistin is a protein that can cause whole-body insulin resistance. Its expression is correlated with body fatness and is inhibited by thiazolidinediones, perhaps mediating the association of type 2 diabetes with obesity, and the effectiveness of these drugs. Resistin and a related molecule, RELM alpha, can also inhibit differentiation of preadipocytes. Adiponectin/Acrp30 secretion from adipocytes is diminished in obese states. This protein can enhance use of fatty acids in lean tissues, inhibit glucose production by liver, and consequently decrease both blood glucose and BW. Adiponectin may also be responsible for the effectiveness of thiazolidinediones, given that these drugs promote adiponectin secretion. Secretion of complement proteins has been observed in adipocytes, and these interact to generate a signal called acylation-stimulating protein, which can promote triacylglycerol synthesis. These signals seem to be largely unique to adipocytes. Other signals are derived from adipose tissue, and it is unlikely that all the adipocyte's endocrine signals have been identified. Certainly, there is much to learn about how these signals function; however, it is clear that these biomedical research discoveries comprise a useful model for our study of growth and development in livestock.
Collapse
Affiliation(s)
- J L Miner
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908, USA.
| |
Collapse
|
46
|
Abstract
Hormones produced by adipose tissue play a critical role in the regulation of energy intake, energy expenditure, and lipid and carbohydrate metabolism. This review will address the biology, actions, and regulation of three adipocyte hormones-leptin, acylation stimulating protein (ASP), and adiponectin-with an emphasis on the most recent literature. The main biological role of leptin appears to be adaptation to reduced energy availability rather than prevention of obesity. In addition to the well-known consequences of absolute leptin deficiency, subjects with heterozygous leptin gene mutations have low circulating leptin levels and increased body adiposity. Leptin treatment dramatically improves metabolic abnormalities (insulin resistance and hyperlipidemia) in patients with relative leptin deficiency due to lipoatrophy. Leptin production is primarily regulated by insulin-induced changes of adipocyte metabolism. Dietary fat and fructose, which do not increase insulin secretion, lead to reduced leptin production, suggesting a mechanism for high-fat/high-sugar diets to increase energy intake and weight gain. ASP increases the efficiency of triacylglycerol synthesis in adipocytes leading to enhanced postprandial lipid clearance. In mice, ASP deficiency results in reduced body fat, obesity resistance, and improved insulin sensitivity. Adiponectin production is stimulated by thiazolidinedione agonists of peroxisome proliferator-activated receptor-gamma and may contribute to increased insulin sensitivity. Adiponectin and leptin cotreatment normalizes insulin action in lipoatrophic insulin-resistant animals. These effects may be mediated by AMP kinase-induced fat oxidation, leading to reduced intramyocellular and liver triglyceride content. The production of all three hormones is influenced by nutritional status. These hormones, the pathways controlling their production, and their receptors are promising targets for managing obesity, hyperlipidemia, and insulin resistance.
Collapse
Affiliation(s)
- Peter J Havel
- Department of Nutrition, University of California, Davis, Davis, California 95616, USA.
| |
Collapse
|