1
|
Koukalova L, Chmelova M, Amlerova Z, Vargova L. Out of the core: the impact of focal ischemia in regions beyond the penumbra. Front Cell Neurosci 2024; 18:1336886. [PMID: 38504666 PMCID: PMC10948541 DOI: 10.3389/fncel.2024.1336886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
The changes in the necrotic core and the penumbra following induction of focal ischemia have been the focus of attention for some time. However, evidence shows, that ischemic injury is not confined to the primarily affected structures and may influence the remote areas as well. Yet many studies fail to probe into the structures beyond the penumbra, and possibly do not even find any significant results due to their short-term design, as secondary damage occurs later. This slower reaction can be perceived as a therapeutic opportunity, in contrast to the ischemic core defined as irreversibly damaged tissue, where the window for salvation is comparatively short. The pathologies in remote structures occur relatively frequently and are clearly linked to the post-stroke neurological outcome. In order to develop efficient therapies, a deeper understanding of what exactly happens in the exo-focal regions is necessary. The mechanisms of glia contribution to the ischemic damage in core/penumbra are relatively well described and include impaired ion homeostasis, excessive cell swelling, glutamate excitotoxic mechanism, release of pro-inflammatory cytokines and phagocytosis or damage propagation via astrocytic syncytia. However, little is known about glia involvement in post-ischemic processes in remote areas. In this literature review, we discuss the definitions of the terms "ischemic core", "penumbra" and "remote areas." Furthermore, we present evidence showing the array of structural and functional changes in the more remote regions from the primary site of focal ischemia, with a special focus on glia and the extracellular matrix. The collected information is compared with the processes commonly occurring in the ischemic core or in the penumbra. Moreover, the possible causes of this phenomenon and the approaches for investigation are described, and finally, we evaluate the efficacy of therapies, which have been studied for their anti-ischemic effect in remote areas in recent years.
Collapse
Affiliation(s)
- Ludmila Koukalova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Patkar S, Uwanogho D, Modo M, Tate RJ, Plevin R, Carswell HVO. Targeting 17β-estradiol biosynthesis in neural stem cells improves stroke outcome. Front Cell Neurosci 2022; 16:917181. [PMID: 35936502 PMCID: PMC9355602 DOI: 10.3389/fncel.2022.917181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Dax-1 (dosage-sensitive sex reversal adrenal hypoplasia congenital region on X-chromosome gene 1) blocks 17β-estradiol biosynthesis and its knockdown would be expected to increase 17β-estradiol production. We hypothesized that knockdown of Dax-1 in a conditionally immortalized neural stem cell (NSC) line, MHP36, is a useful approach to increase 17β-estradiol production. Short hairpin (sh) RNA targeted to Dax-1 in NSCs, namely MHP36-Dax1KD cells, resulted in the degradation of Dax-1 RNA and attenuation of Dax-1 protein expression. In vitro, MHP36-Dax1KD cells exhibited overexpression of aromatase and increased 17β-estradiol secretion compared to MHP36 cells. As 17β-estradiol has been shown to promote the efficacy of cell therapy, we interrogated the application of 17β-estradiol-enriched NSCs in a relevant in vivo disease model. We hypothesized that MHP36-Dax1KD cells will enhance functional recovery after transplantation in a stroke model. C57BL/6 male adult mice underwent ischemia/reperfusion by left middle cerebral artery occlusion for 45 min using an intraluminal thread. Two days later male mice randomly received vehicle, MHP36 cells, MHP36-Dax1KD cells, and MHP36 cells suspended in 17β-estradiol (100 nm) or 17β-estradiol alone (100 nm) with serial behavioral testing over 28 days followed by post-mortem histology and blinded analysis. Recovery of sensorimotor function was accelerated and enhanced, and lesion volume was reduced by MHP36-Dax1KD transplants. Regarding mechanisms, immunofluorescence indicated increased synaptic plasticity and neuronal differentiation after MHP36-Dax1KD transplants. In conclusion, knockdown of Dax-1 is a useful target to increase 17β-estradiol biosynthesis in NSCs and improves functional recovery after stroke in vivo, possibly mediated through neuroprotection and improved synaptic plasticity. Therefore, targeting 17β-estradiol biosynthesis in stem cells may be a promising therapeutic strategy for enhancing the efficacy of stem cell-based therapies for stroke.
Collapse
Affiliation(s)
- Shalmali Patkar
- Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Dafe Uwanogho
- Department of Neuroscience, James Black Centre, King’s College London, London, United Kingdom
| | - Michel Modo
- Department of Neuroscience, James Black Centre, King’s College London, London, United Kingdom
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rothwelle J. Tate
- Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Hilary V. O. Carswell
- Strathclyde Institute of Pharmacy and Biological Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
3
|
Guo H, Liu M, Zhang L, Wang L, Hou W, Ma Y, Ma Y. The Critical Period for Neuroprotection by Estrogen Replacement Therapy and the Potential Underlying Mechanisms. Curr Neuropharmacol 2020; 18:485-500. [PMID: 31976839 PMCID: PMC7457406 DOI: 10.2174/1570159x18666200123165652] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
17β-Estradiol (estradiol or E2) is a steroid hormone that has been broadly applied as a neuroprotective therapy for a variety of neurodegenerative and cerebrovascular disorders such as ischemic stroke, Alzheimer's disease, and Parkinson's disease. Several laboratory and clinical studies have reported that Estrogen Replacement Therapy (ERT) had no effect against these diseases in elderly postmenopausal women, and at worst, increased their risk of onset and mortality. This review focuses on the growing body of data from in vitro and animal models characterizing the potential underlying mechanisms and signaling pathways that govern successful neuroprotection by ERT, including the roles of E2 receptors in mediating neuroprotection, E2 genomic regulation of apoptosis- related pathways, membrane-bound receptor-mediated non-genomic signaling pathways, and the antioxidant mechanisms of E2. Also discussed is the current evidence for a critical period of effective treatment with estrogen following natural or surgical menopause and the outcomes of E2 administration within an advantageous time period. The known mechanisms governing the duration of the critical period include depletion of E2 receptors, the switch to a ketogenic metabolic profile by neuronal mitochondria, and a decrease in acetylcholine that accompanies E2 deficiency. Also the major clinical trials and observational studies concerning postmenopausal Hormone Therapy (HT) are summarized to compare their outcomes with respect to neurological disease and discuss their relevance to the critical period hypothesis. Finally, potential controversies and future directions for this field are discussed throughout the review.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaqun Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| | - Yulong Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| |
Collapse
|
4
|
Hajmohammadi M, Khaksari M, Soltani Z, Shahrokhi N, Najafipour H, Abbasi R. The Effect of Candesartan Alone and Its Combination With Estrogen on Post-traumatic Brain Injury Outcomes in Female Rats. Front Neurosci 2019; 13:1043. [PMID: 31849571 PMCID: PMC6901902 DOI: 10.3389/fnins.2019.01043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/13/2019] [Indexed: 01/31/2023] Open
Abstract
Aim: The aim of this study was to evaluate the effect of candesartan (angiotensin II type I receptor blocker) alone and its combination with estrogen on the changes in brain edema, intracranial pressure (ICP), and cerebral perfusion pressure (CPP) following diffuse traumatic brain injury (TBI) in female rats. Methods: TBI was induced in ovariectomized female rats using Marmarou's method. The treatment groups received low-dose (LC) and high-dose (HC) candesartan, estrogen (E2), a combination of estrogen vehicle and candesartan vehicle (oil + vehicle), or a combination of estrogen with low-dose (E2 + LC), or with high-dose (E2 + HC) candesartan. ICP and CPP were measured before and several times after TBI, and the brain water content (brain edema) was measured 24 h after TBI. Results: After the TBI, brain edema and ICP in the estrogen group were lower than in the vehicle and TBI groups. Brain edema and ICP in the HC group were lower than in the vehicle group after TBI. Although there was no significant difference in brain edema and ICP between the LC and vehicle groups, significant differences in these variables were observed when the E2 + LC and E2 + HC groups were compared with the oil + vehicle group after TBI. A significant increase in CPP was observed in the estrogen group 4 and 24 h post-TBI, while this increase was found in the HC and E2 + LC groups 24 h post-TBI. Conclusions: A low dose of candesartan did not exert a protective effect on TBI outcomes, but such an effect did appear after combination with estrogen. This finding suggests that interaction between low-dose candesartan and estrogen improves TBI-induced consequences.
Collapse
Affiliation(s)
- Mojdeh Hajmohammadi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Abbasi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Sohrabji F, Okoreeh A, Panta A. Sex hormones and stroke: Beyond estrogens. Horm Behav 2019; 111:87-95. [PMID: 30713101 PMCID: PMC6527470 DOI: 10.1016/j.yhbeh.2018.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Stroke risk and poor stroke outcomes in postmenopausal women have usually beeen attributed to decreased levels of estrogen. However, two lines of evidence suggest that this hormone may not be solely responsible for elevated stroke risk in this population. First, the increased risk for CVD and stroke occurs much earlier than menopause at a time when estrogen levels are not yet reduced. Second, estrogen therapy has not successfully reduced stroke risk in all studies. Other sex hormones may therefore also contribute to stroke risk. Prior to menopause, levels of the gonadotrophin Follicle Stimulating Hormone (FSH) are elevated while levels of the gonadal peptide inhibin are lowered, indicating an overall decrease in ovarian reserve. Similarly, reduced estrogen levels at menopause significantly increase the ratio of androgens to estrogens. In view of the evidence that androgens may be unfavorable for CVD and stroke, this elevated ratio of testosterone to estrogen may also contribute to the postmenopause-associated stroke risk. This review synthesizes evidence from different clinical populations including natural menopause, surgical menopause, women on chemotherapy, and preclinical stroke models to dissect the role of ovarian hormones and stroke risk and outcomes.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States of America.
| | - Andre Okoreeh
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States of America
| | - Aditya Panta
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States of America
| |
Collapse
|
6
|
Abstract
Microglia are the principle immune cells of the brain. Once activated, microglial cells may exhibit a wide repertoire of the context-dependent profiles ranging from highly neurotoxic to more protective and pro-regenerative cellular phenotypes. While to date the mechanisms involved in the molecular regulation of the microglia polarization phenotypes remain elusive, growing evidence suggests that gender may markedly affect the inflammatory and/or glial responses following brain injuries. In the recent years, special attention has been given to the role of microglia in sexual dimorphism, both in healthy brain and diseased brain. Here, we review recent advances revealing microglia as an important determinant of gender differences under physiological conditions and in injured brain. We also discuss how microglia-driven innate immunity and signaling pathways might be involved in the sex-dependent responses following brain ischemic injury. Finally we describe how advanced methods such as live imaging techniques may help elucidate the role of microglia in the modulation of immune responses and gender difference after stroke.
Collapse
Affiliation(s)
- Reza Rahimian
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec G1J 2G3, Canada
| | - Pierre Cordeau
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec G1J 2G3, Canada
| | - Jasna Kriz
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec G1J 2G3, Canada.
| |
Collapse
|
7
|
Khaksari M, Hajmohammadi M, Sepehri G. The effect of angiotensin receptor type 2 inhibition and estrogen on experimental traumatic brain injury. ARCHIVES OF TRAUMA RESEARCH 2018. [DOI: 10.4103/atr.atr_51_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW. Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 2017; 157:188-211. [PMID: 26891883 PMCID: PMC4985492 DOI: 10.1016/j.pneurobio.2015.12.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/06/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022]
Abstract
There is ample empirical evidence to support the notion that the biological impacts of estrogen extend beyond the gonads to other bodily systems, including the brain and behavior. Converging preclinical findings have indicated a neuroprotective role for estrogen in a variety of experimental models of cognitive function and brain insult. However, the surprising null or even detrimental findings of several large clinical trials evaluating the ability of estrogen-containing hormone treatments to protect against age-related brain changes and insults, including cognitive aging and brain injury, led to hesitation by both clinicians and patients in the use of exogenous estrogenic treatments for nervous system outcomes. That estrogen-containing therapies are used by tens of millions of women for a variety of health-related applications across the lifespan has made identifying conditions under which benefits with estrogen treatment will be realized an important public health issue. Here we provide a summary of the biological actions of estrogen and estrogen-containing formulations in the context of aging, cognition, stroke, and traumatic brain injury. We have devoted special attention to highlighting the notion that estrogen appears to be a conditional neuroprotectant whose efficacy is modulated by several interacting factors. By developing criteria standards for desired beneficial peripheral and neuroprotective outcomes among unique patient populations, we can optimize estrogen treatments for attenuating the consequences of, and perhaps even preventing, cognitive aging and brain injury.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| | - C M Brown
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506, United States.
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Pediatrics, West Virginia University, Morgantown, WV 26506, United States.
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
9
|
Tan W, Zhu Z, Ye L, Leung LK. Methylation dictates PI.f-specific CYP19 transcription in human glial cells. Mol Cell Endocrinol 2017; 452:131-137. [PMID: 28559115 DOI: 10.1016/j.mce.2017.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/31/2023]
Abstract
CYP19 is the single copy gene encoding for the estrogen synthetic enzyme aromatase. Alternate splicing of the promoter is the regulatory mechanism of this gene. In the brain, estrogen is synthesized in neuronal and glial cells and the gene is mainly regulated by the alternate promoter PI.f. The hormone produced in this vicinity has been associated with maintaining normal brain functions. Previously, epigenetic regulation has been shown in the promoters PII and I.3 of CYP19 in adipocytes. In the present study, the methylation of PI.f in CYP19 was examined in glial cells. Treatment of the hypomethylating agent 5-aza-2'deoxycytidine increased CYP19 mRNA species in U87 MG cells while little changes were observed in the other glia cell lines. As PI.f is also chiefly used in T98G cells with high expression of CYP19, the methylation statuses of the promoter in these two cell models were compared. Our results showed that treating U87 MG cells with 10 μM 5-aza-2'deoxycytidine significantly induced a ∼10-fold increase in CYP19 transcription and ∼80% increase in aromatase activity. In contrast, the same treatment did not change either endpoint in T98G cells. Further investigation illustrated the CpGs in PI.f were differentially methylated in the two cell lines; 63% and 37% of the 14 CpG sites were methylated in U87 MG and T98G cells respectively. In conclusion, this study illustrated that the brain-specific PI.f derived CYP19 expression can be regulated by DNA methylation.
Collapse
Affiliation(s)
- Wenjuan Tan
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Zhiping Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Lai K Leung
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
10
|
Stanojlović M, Guševac I, Grković I, Mitrović N, Zlatković J, Horvat A, Drakulić D. Repeated Estradiol Treatment Attenuates Chronic Cerebral Hypoperfusion-Induced Neurodegeneration in Rat Hippocampus. Cell Mol Neurobiol 2016; 36:989-999. [PMID: 26689702 PMCID: PMC11482356 DOI: 10.1007/s10571-015-0289-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022]
Abstract
Although a substantial number of pre-clinical and experimental studies have investigated effects of 17β-estradiol, its precise molecular mechanism of action in the early state of chronic cerebral hypoperfusion remains controversial. The present study attempted to verify whether post-ischemic estradiol treatment (33.3 μg/kg for seven consecutive days) affects previously reported number of hippocampal apoptotic cells and amount of DNA fragmentation characteristic for apoptosis as well as the expression of key elements within synaptosomal Akt and Erk signal transduction pathways (NF-κB, Bax, Bcl-2, cytochrome C, caspase 3, and PARP). Additionally, alterations of aforementioned molecules linked to protection in various neurodegenerative disorders were monitored in the cytosolic, mitochondrial, and nuclear fractions associating investigated kinases and NF-κB with gene expression of their downstream effectors-Bcl-2, Bax, and caspase 3. The results revealed that an initial increase in the number of apoptotic cells and amount of DNA fragmentation induced by chronic cerebral hypoperfusion was significantly reduced by 17β-estradiol. In synaptic regions, an altered profile with respect to the protein expression of Bcl-2 and phosphorylated Akt was detected, although the level of other examined proteins was not modified. In other investigated sub-cellular fractions, 17β-estradiol elicited phosphorylation and translocation of Akt and Erk along with modulation of the expression of their subsequent effectors. Our findings support the concept that repeated post-ischemic 17β-estradiol treatment attenuates neurodegeneration induced by chronic cerebral hypoperfusion in hippocampus through the activation of investigated kinases and regulation of their downstream molecules in sub-cellular manner indicating a time window and regime of its administration as a valid therapeutic intervention.
Collapse
Affiliation(s)
- Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Guševac
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Jelena Zlatković
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Anica Horvat
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia.
| |
Collapse
|
11
|
Galea LAM, Frick KM, Hampson E, Sohrabji F, Choleris E. Why estrogens matter for behavior and brain health. Neurosci Biobehav Rev 2016; 76:363-379. [PMID: 27039345 PMCID: PMC5045786 DOI: 10.1016/j.neubiorev.2016.03.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
The National Institutes of Health (NIH) has required the inclusion of women in clinical studies since 1993, which has enhanced our understanding of how biological sex affects certain medical conditions and allowed the development of sex-specific treatment protocols. However, NIH's policy did not previously apply to basic research, and the NIH recently introduced a new policy requiring all new grant applications to explicitly address sex as a biological variable. The policy itself is grounded in the results of numerous investigations in animals and humans illustrating the existence of sex differences in the brain and behavior, and the importance of sex hormones, particularly estrogens, in regulating physiology and behavior. Here, we review findings from our laboratories, and others, demonstrating how estrogens influence brain and behavior in adult females. Research from subjects throughout the adult lifespan on topics ranging from social behavior, learning and memory, to disease risk will be discussed to frame an understanding of why estrogens matter to behavioral neuroscience.
Collapse
Affiliation(s)
- Liisa A M Galea
- Department of Psychology, Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON N6A 5C2, Canada
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
12
|
Ingberg E, Theodorsson E, Theodorsson A, Ström JO. Effects of high and low 17β-estradiol doses on focal cerebral ischemia in rats. Sci Rep 2016; 6:20228. [PMID: 26839007 PMCID: PMC4738304 DOI: 10.1038/srep20228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022] Open
Abstract
The majority of the numerous animal studies of the effects of estrogens on cerebral ischemia have reported neuroprotective results, but a few have shown increased damage. Differences in hormone administration methods, resulting in highly different 17β-estradiol levels, may explain the discrepancies in previously reported effects. The objective of the present study was to test the hypothesis that it is the delivered dose per se, and not the route and method of administration, that determines the effect, and that high doses are damaging while lower doses are protective. One hundred and twenty ovariectomized female Wistar rats (n = 40 per group) were randomized into three groups, subcutaneously administered different doses of 17β-estradiol and subjected to transient middle cerebral artery occlusion. The modified sticky tape test was performed after 24 h and the rats were subsequently sacrificed for infarct size measurements. In contrast to our hypothesis, a significant negative correlation between 17β-estradiol dose and infarct size was found (p = 0.018). Thus, no support was found for the hypothesis that 17β-estradiol can be both neuroprotective and neurotoxic merely depending on dose. In fact, on the contrary, the findings indicate that the higher the dose of 17β-estradiol, the smaller the infarct.
Collapse
Affiliation(s)
- Edvin Ingberg
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Annette Theodorsson
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Division of Neuroscience, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Jakob O Ström
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, Region Örebro Län, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
13
|
Böhm MRR, Prokosch V, Brückner M, Pfrommer S, Melkonyan H, Thanos S. βB2-Crystallin Promotes Axonal Regeneration in the Injured Optic Nerve in Adult Rats. Cell Transplant 2014; 24:1829-44. [PMID: 25299378 DOI: 10.3727/096368914x684583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The purpose of the study was to further scrutinize the potential of βB2-crystallin in supporting regeneration of injured retinal ganglion cell axons both in vitro and in vivo. Retinal explants obtained from animals after treatment either with lens injury (LI) alone or with combined LI 5 days or 3 days before or simultaneously with an optic nerve crush (ONC) were cultured for 96 h under regenerative conditions, and the regenerating axons were quantified and compared with untreated controls. These measurements were then repeated with LI replaced by intravitreal injections of γ-crystallin and β-crystallin at 5 days before ONC. Finally, βB2-crystallin-overexpressing transfected neural progenitor cells (βB2-crystallin-NPCs) in the eye were studied after crushing the optic nerve in vivo. Regeneration was monitored with the aid of immunoblotting of the retina and optic nerve both distal and proximal to the lesion site, and this was compared with controls that received injections of phosphate buffer only. LI performed 5 days or 3 days before ONC significantly promoted axonal outgrowth in vitro (p < 0.001), while LI performed alone before explantation did not. Intravitreal injections of β-crystallin and γ-crystallin mimicked the effects of LI and significantly increased axonal regeneration in culture at the same time intervals (p < 0.001). Western blot analysis revealed that crystallins were present in the proximal optic nerve stump at the lesion site in ONC, but were neither expressed in the undamaged distal optic nerve nor in uninjured tissue. βB2-crystallin-NPCs supported the regeneration of cut optic nerve axons within the distal optic nerve stump in vivo. The reported data suggest that βB2-crystallin-producing "cell factories" could be used to provide novel therapeutic drugs for central nervous system injuries.
Collapse
Affiliation(s)
- Michael R R Böhm
- Institute for Experimental Ophthalmology, School of Medicine, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Mouihate A. TLR4-mediated brain inflammation halts neurogenesis: impact of hormonal replacement therapy. Front Cell Neurosci 2014; 8:146. [PMID: 24904290 PMCID: PMC4034512 DOI: 10.3389/fncel.2014.00146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/07/2014] [Indexed: 12/27/2022] Open
Abstract
Experimental and epidemiological data show that the severity and the duration of brain inflammation are attenuated in females compared to males. This attenuated brain inflammation is ascribed to 17β-estradiol. However, several studies suggest that 17β-estradiol is also endowed with proinflammatory properties. The aim of the present study is to assess the effect of hormonal replacement therapies on lipopolysaccharide (LPS)-induced brain inflammation and its consequent effect on newly born neurons. Bilaterally ovariectomized rats received intrastriatal injection of LPS (250 ng/μl) and were subsequently given daily subcutaneous injections of either vehicle, 17β-estradiol (25 μg/kg) or 17β-estradiol and progesterone (5 mg/kg). Microglial activation and newly born neurons in the rostral migratory stream were monitored using double immunofluorescence. Nuclear factor κB (NFκB) signaling pathway and its target inflammatory proteins were assessed by either western blot [cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6)] or enzyme-linked immunosorbent assay [tumor necrosis factor-α (TNF-α)]. LPS-induced activation of microglia, promoted NFκB signaling pathway and enhanced the production of proinflammatory proteins (TNF-α and COX-2). These proinflammatory responses were not attenuated by 17β-estradiol injection. Supplementation of 17β-estradiol with progesterone significantly dampened these proinflammatory processes. Interestingly, LPS-induced brain inflammation dampened the number of newly born neurons in the rostral migratory stream. Administration of combined 17β-estradiol and progesterone resulted in a significantly higher number of newly born neurons when compared to those seen in rats given either vehicle or 17β-estradiol alone. These data strongly suggest that combined 17β-estradiol and progesterone, and not 17β-estradiol alone, rescues neurogenesis from the deleterious effect of brain inflammation likely via the inhibition of the signaling pathways leading to the activation of proinflammatory genes.
Collapse
Affiliation(s)
- Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University Safat, Kuwait
| |
Collapse
|
15
|
Ström JO, Ingberg E. Impact of methodology on estrogens' effects on cerebral ischemia in rats: an updated meta-analysis. BMC Neurosci 2014; 15:22. [PMID: 24495535 PMCID: PMC3975994 DOI: 10.1186/1471-2202-15-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/29/2014] [Indexed: 12/15/2022] Open
Abstract
Background Although most animal stroke studies have demonstrated potent neuroprotective effects of estrogens, there are a number of articles reporting the opposite. In 2009, we made the case that this dichotomy was related to administered estrogen dose. Several other suggestions for the discordant results have also been propagated, including the age of the experimental animals and the length of hypoestrogenicity prior to estrogen administration. These two suggestions have gained much popularity, probably because of their kinship with the window of opportunity hypothesis, which is commonly used to explain the analogous dichotomy among human studies. We were therefore encouraged to perform an updated meta-analysis, and to improve it by including all relevant variables in a large multiple regression model, where the impact of confounders could be controlled for. Results The multiple regression model revealed an indisputable impact of estrogen administration mode on the effects of estrogens in ischemic stroke. Subcutaneous slow-release pellets differed from the injection and silastic capsule treatments in terms of impact of estrogens on ischemic stroke, showing that the first mentioned were more prone to render estrogens damaging. Neither the use of elderly animals nor the adoption of longer wash-out periods influenced estrogens’ effects on experimental ischemic stroke in rats. Conclusions We conclude that the discordant results regarding estrogens’ effects in rat models of ischemic stroke are a consequence of differences in estrogen administration modes. These results are not only of importance for the ongoing debate regarding menopausal hormone therapy, but also have an important bearing on experimental stroke methodology and the apparent translational roadblock for suggested stroke interventions.
Collapse
Affiliation(s)
- Jakob O Ström
- Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro SE-703 62, Sweden.
| | | |
Collapse
|
16
|
Tan W, Wong TY, Wang Y, Huang J, Leung LK. CYP19 expression is induced by 2,3,7,8-tetrachloro-dibenzo-para-dioxin in human glioma cells. Mol Cell Endocrinol 2013; 375:106-12. [PMID: 23727336 DOI: 10.1016/j.mce.2013.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/24/2013] [Accepted: 05/21/2013] [Indexed: 11/24/2022]
Abstract
Dioxins are the most concerned environmental pollutants. Recent studies have shown that these compounds could disrupt the proper functioning of our endocrine system. Estrogen is synthesized in glial cells of the brain. The hormone has been linked to the maintenance of normal brain operation, ranging from neurotransmission to synapse formation. Aromatase or CYP19 is the enzyme responsible for estrogen synthesis. In the present study, we demonstrated that 2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD) stimulated the enzyme activity in human brain cells as low as 1pM. Increased brain-specific CYP19 mRNA species was also observed in these cells. Since the brain-specific promoter I.f of CYP19 contains two binding motifs for CCAAT/enhancer binding protein, electrophoretic mobility shift assay was performed to validate the activation. We further traced the triggering signal and found that the mitogen-activated protein kinases ERK-1/2 were activated. In summary, TCDD could induce CYP19 transcription in brain cells. Exposure to the pollutant might perturb the hormonal balance in the brain.
Collapse
Affiliation(s)
- Wenjuan Tan
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
17
|
Schreihofer DA, Ma Y. Estrogen receptors and ischemic neuroprotection: Who, what, where, and when? Brain Res 2013; 1514:107-22. [DOI: 10.1016/j.brainres.2013.02.051] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 02/08/2023]
|
18
|
Simpkins JW, Richardson TE, Yi KD, Perez E, Covey DF. Neuroprotection with non-feminizing estrogen analogues: an overlooked possible therapeutic strategy. Horm Behav 2013; 63:278-83. [PMID: 22498694 PMCID: PMC4446729 DOI: 10.1016/j.yhbeh.2012.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 11/26/2022]
Abstract
Although many of the effects of estrogens on the brain are mediated through estrogen receptors (ERs), there is evidence that neuroprotective activity of estrogens can be mediated by non-ER mechanisms. Herein, we review the substantial evidence that estrogens neuroprotection is in large part non-ER mediated and describe in vitro and in vivo studies that support this conclusion. Also, we described our drug discovery strategy for capitalizing on enhancement in neuroprotection while at the same time, reducing ER binding of a group of synthetic non-feminizing estrogens. Finally, we offer evidence that part of the neuroprotection of these non-feminizing estrogens is due to enhancement in redox potential of the synthesized compounds.
Collapse
Affiliation(s)
- James W Simpkins
- Institute for Aging and Alzheimer's Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | | | |
Collapse
|
19
|
Sohrabji F, Selvamani A, Balden R. Revisiting the timing hypothesis: biomarkers that define the therapeutic window of estrogen for stroke. Horm Behav 2013; 63:222-30. [PMID: 22728278 PMCID: PMC3483414 DOI: 10.1016/j.yhbeh.2012.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/06/2023]
Abstract
Significantly extended life expectancy coupled with contemporary sedentary lifestyles and poor nutrition has created a global epidemic of cardiovascular disease and stroke. For women, this issue is complicated by the discrepant outcomes of hormone therapy (HT) for stroke incidence and severity as well as the therapeutic complications for stroke associated with advancing age. Here we propose that the impact of estrogen therapy cannot be considered in isolation, but should include age-related changes in endocrine, immune, and nucleic acid mediators that collaborate with estrogen to produce neuroprotective effects commonly seen in younger, healthier demographics. Due to their role as modulators of ischemic cell death, the post-stroke inflammatory response, and neuronal survival and regeneration, this review proposes that Insulin-like Growth Factor (IGF)-1, Vitamin D, and discrete members of the family of non-coding RNA peptides called microRNAs (miRNAs) may be crucial biochemical markers that help determine the neuroprotective "window" of HT. Specifically, IGF-1 confers neuroprotection in concert with, and independently of, estrogen and failure of the insulin/IGF-1 axis is associated with metabolic disturbances that increase the risk for stroke. Vitamin D and miRNAs regulate and complement IGF-1 mediated function and neuroprotective efficacy via modulation of IGF-1 availability and neural stem cell and immune cell proliferation, differentiation and secretions. Together, age-related decline of these factors differentially affects stroke risk, severity, and outcome, and may provide a novel therapeutic adjunct to traditional HT practices.
Collapse
Affiliation(s)
- Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | | | |
Collapse
|
20
|
Tao T, Xu G, Si Chen C, Feng J, Kong Y, Qin X. Minocycline promotes axonal regeneration through suppression of RGMa in rat MCAO/reperfusion model. Synapse 2012. [PMID: 23184880 DOI: 10.1002/syn.21629] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Minocycline has been recently implicated in protection against focal cerebral ischemia reperfusion (I/R), but the protective effects on neurobehavioral abnormalities remains contradictory. In the present study, we investigate whether minocycline improves axonal regeneration and neurological function recovery by inhibiting the expression of the repulsive guidance molecular A (RGMa) after focal cerebral ischemia reperfusion. Male Sprague-Dawley (SD) rats were subjected to occlusion of the right middle cerebral artery (MCAO) for 2 h and 3 mg kg⁻¹ minocycline was injected intravenously immediately after reperfusion twice a day for 14 days. The staircase test and modified neurological severity score (mNSS) were performed to evaluate functional outcome and blood-brain barrier (BBB) permeability was assessed by Evan's blue dye extravasation (EB) at the expected time point. The expression of RGMa in ischemic cortex was measured by immunohistochemical staining and Western blot 2 weeks after MCAO. Neurofilament protein 200 (NF-200) immunohistochemical staining was used to assess axonal damage. Treatment with minocycline at a dose of 3 mg kg⁻¹ via the caudal vein significantly reduced the extravasation of EB, elevated mNSS and improved forelimb motor function as assessed by the staircase test when compared to the I/R group (P < 0.05). Moreover, axonal regrowth was enhanced in the minocycline treatment group when compared to the I/R group (P < 0.05). In addition, minocycline significantly reduced the expression of RGMa protein 2 weeks after MCAO as assessed by both immunostaining and Western blot. Our studies suggest that early minocycline treatment promotes neurological functional recovery and axonal regeneration in rats after MCAO, which might be mediated by down-regulating RGMa expression.
Collapse
Affiliation(s)
- Tao Tao
- Department of Neurology and Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | |
Collapse
|
21
|
Estradiol inhibits the activity of proton-coupled amino acid transporter PAT1 expressed in Xenopus oocytes. Eur J Pharmacol 2012; 695:34-9. [DOI: 10.1016/j.ejphar.2012.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/09/2012] [Accepted: 08/18/2012] [Indexed: 11/18/2022]
|
22
|
Pérez-Álvarez MJ, Maza MDC, Anton M, Ordoñez L, Wandosell F. Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia. J Neuroinflammation 2012; 9:157. [PMID: 22747981 PMCID: PMC3414748 DOI: 10.1186/1742-2094-9-157] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/29/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Estradiol has been shown to exert neuroprotective effects in several neurodegenerative conditions, including cerebral ischemia. The presence of this hormone prior to ischemia attenuates the damage associated with such events in a rodent model (middle cerebral artery occlusion (MCAO)), although its therapeutic value when administered post-ischemia has not been assessed. Hence, we evaluated the effects of estradiol treatment after permanent MCAO (pMCAO) was induced in rats, studying the PI3K/AKT/GSK3/β-catenin survival pathway and the activation of SAPK-JNK in two brain areas differently affected by pMCAO: the cortex and hippocampus. In addition, we analyzed the effect of estradiol on the glial response to injury. METHODS Male rats were subjected to pMCAO and estradiol (0.04 mg/kg) was administered 6, 24, and 48 h after surgery. The animals were sacrificed 6 h after the last treatment, and brain damage was evaluated by immunohistochemical quantification of 'reactive gliosis' using antibodies against GFAP and Iba1. In addition, Akt, phospho-Akt(Ser473), phospho-Akt(Thr308), GSK3, phospho-GSK3(Ser21/9), β-catenin, SAPK-JNK, and pSAPK-JNK(Thr183/Tyr185) levels were determined in western blots of the ipsilateral cerebral cortex and hippocampus, and regional differences in neuronal phospho-Akt expression were determined by immunohistochemistry. RESULTS The increases in the percentage of GFAP- (5.25-fold) and Iba1- (1.8-fold) labeled cells in the cortex and hippocampus indicate that pMCAO induced 'reactive gliosis'. This effect was prevented by post-ischemic estradiol treatment; diminished the number of these cells to those comparable with control animals. pMCAO down-regulated the PI3K/AkT/GSK3/β-catenin survival pathway to different extents in the cortex and hippocampus, the activity of which was restored by estradiol treatment more efficiently in the cerebral cortex (the most affected region) than in the hippocampus. No changes in the phosphorylation of SAPK-JNK were observed 54 h after inducing pMCAO, whereas pMCAO did significantly decrease the phospho-Akt(Ser473) in neurons, an effect that was reversed by estradiol. CONCLUSION The present study demonstrates that post-pMCAO estradiol treatment attenuates ischemic injury in both neurons and glia, events in which the PI3K/AKT/GSK3/β-catenin pathway is at least partly involved. These findings indicate that estradiol is a potentially useful treatment to enhance recovery after human ischemic stroke.
Collapse
Affiliation(s)
- Maria Jose Pérez-Álvarez
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Maria del Carmen Maza
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Anton
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lara Ordoñez
- Departamento de Biología (Unidad docente Fisiología Animal), Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Univ. Autónoma de Madrid, Madrid, 28049, Spain
- Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa", CIBERNED-CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, C/Nicolás Cabrera n° 1, Madrid, 28049, Spain
| |
Collapse
|
23
|
Ström JO, Theodorsson A, Ingberg E, Isaksson IM, Theodorsson E. Ovariectomy and 17β-estradiol replacement in rats and mice: a visual demonstration. J Vis Exp 2012:e4013. [PMID: 22710371 DOI: 10.3791/4013] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Estrogens are a family of female sexual hormones with an exceptionally wide spectrum of effects. When rats and mice are used in estrogen research they are commonly ovariectomized in order to ablate the rapidly cycling hormone production, replacing the 17β-estradiol exogenously. There is, however, lack of consensus regarding how the hormone should be administered to obtain physiological serum concentrations. This is crucial since the 17β-estradiol level/administration method profoundly influences the experimental results. We have in a series of studies characterized the different modes of 17β-estradiol administration, finding that subcutaneous silastic capsules and per-oral nut-cream Nutella are superior to commercially available slow-release pellets (produced by the company Innovative Research of America) and daily injections in terms of producing physiological serum concentrations of 17β-estradiol. Amongst the advantages of the nut-cream method, that previously has been used for buprenorphine administration, is that when used for estrogen administration it resembles peroral hormone replacement therapy and is non-invasive. The subcutaneous silastic capsules are convenient and produce the most stable serum concentrations. This video article contains step-by-step demonstrations of ovariectomy and 17β-estradiol hormone replacement by silastic capsules and peroral Nutella in rats and mice, followed by a discussion of important aspects of the administration procedures.
Collapse
Affiliation(s)
- Jakob O Ström
- Clinical Chemistry and Neurosurgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University.
| | | | | | | | | |
Collapse
|
24
|
Bingham D, Martin SJ, Macrae IM, Carswell HVO. Watermaze performance after middle cerebral artery occlusion in the rat: the role of sensorimotor versus memory impairments. J Cereb Blood Flow Metab 2012; 32:989-99. [PMID: 22373646 PMCID: PMC3367220 DOI: 10.1038/jcbfm.2012.16] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In rodent stroke models, investigation of deficits in spatial memory using the Morris watermaze may be confounded by coexisting sensory or motor impairments. To target memory specifically, we devised a watermaze protocol to minimize the impact of sensory and motor impairments in female Lister-hooded rats exposed to proximal electrocoagulation of the middle cerebral artery (MCAO). Rats were trained in a reference-memory task comprising 4 trials/day; trial 1 being a probe trial (platform absent for the first 60 seconds). Training ended once animals reached a strict criterion based on the probe-trial performance. Memory retention was tested 1, 7, and 28 days later. The MCAO did not affect the number of days to reach criterion during acquisition or the time spent in target quadrant during retention testing, compared with sham or unoperated rats. However, MCAO rats showed slightly poorer accuracy in crossing the platform location and increased thigmotactic swimming compared with controls. Our results show that spatial memory deficits are minimal in this rodent stroke model, and suggest that previously published watermaze impairments are attributable to sensory and motor deficits but not memory deficits. We recommend using probe trials and training to a predetermined performance criterion in future studies assessing watermaze memory deficits in rodent stroke models.
Collapse
Affiliation(s)
- Deborah Bingham
- Department of Neurosurgery, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | | | | | | |
Collapse
|
25
|
Scott E, Zhang QG, Wang R, Vadlamudi R, Brann D. Estrogen neuroprotection and the critical period hypothesis. Front Neuroendocrinol 2012; 33:85-104. [PMID: 22079780 PMCID: PMC3288697 DOI: 10.1016/j.yfrne.2011.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
17β-Estradiol (estradiol or E2) is implicated as a neuroprotective factor in a variety of neurodegenerative disorders. This review focuses on the mechanisms underlying E2 neuroprotection in cerebral ischemia, as well as emerging evidence from basic science and clinical studies, which suggests that there is a "critical period" for estradiol's beneficial effect in the brain. Potential mechanisms underlying the critical period are discussed, as are the neurological consequences of long-term E2 deprivation (LTED) in animals and in humans after natural menopause or surgical menopause. We also summarize the major clinical trials concerning postmenopausal hormone therapy (HT), comparing their outcomes with respect to cardiovascular and neurological disease and discussing their relevance to the critical period hypothesis. Finally, potential caveats, controversies and future directions for the field are highlighted and discussed throughout the review.
Collapse
Affiliation(s)
- Erin Scott
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Quan-guang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Ruimin Wang
- Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
| |
Collapse
|
26
|
Mechanisms of estrogens' dose-dependent neuroprotective and neurodamaging effects in experimental models of cerebral ischemia. Int J Mol Sci 2011; 12:1533-62. [PMID: 21673906 PMCID: PMC3111617 DOI: 10.3390/ijms12031533] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 02/10/2011] [Accepted: 02/22/2011] [Indexed: 02/08/2023] Open
Abstract
Ever since the hypothesis was put forward that estrogens could protect against cerebral ischemia, numerous studies have investigated the mechanisms of their effects. Despite initial studies showing ameliorating effects, later trials in both humans and animals have yielded contrasting results regarding the fundamental issue of whether estrogens are neuroprotective or neurodamaging. Therefore, investigations of the possible mechanisms of estrogen actions in brain ischemia have been difficult to assess. A recently published systematic review from our laboratory indicates that the dichotomy in experimental rat studies may be caused by the use of insufficiently validated estrogen administration methods resulting in serum hormone concentrations far from those intended, and that physiological estrogen concentrations are neuroprotective while supraphysiological concentrations augment the damage from cerebral ischemia. This evidence offers a new perspective on the mechanisms of estrogens’ actions in cerebral ischemia, and also has a direct bearing on the hormone replacement therapy debate. Estrogens affect their target organs by several different pathways and receptors, and the mechanisms proposed for their effects on stroke probably prevail in different concentration ranges. In the current article, previously suggested neuroprotective and neurodamaging mechanisms are reviewed in a hormone concentration perspective in an effort to provide a mechanistic framework for the dose-dependent paradoxical effects of estrogens in stroke. It is concluded that five protective mechanisms, namely decreased apoptosis, growth factor regulation, vascular modulation, indirect antioxidant properties and decreased inflammation, and the proposed damaging mechanism of increased inflammation, are currently supported by experiments performed in optimal biological settings.
Collapse
|
27
|
The assessment of non-feminizing estrogens for use in neuroprotection. Brain Res 2010; 1379:61-70. [PMID: 21111714 DOI: 10.1016/j.brainres.2010.11.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 11/03/2010] [Accepted: 11/18/2010] [Indexed: 11/22/2022]
Abstract
Menopause is associated with a precipitous decline in circulating estrogens and a resulting loss of the neuroprotective actions of this steroid hormone. In view of the results of the Women's Health Initiative and the preceding knowledge that orally administered estrogens has a variety of adverse side effects, likely through actions on peripheral estrogen receptor alpha (ERα), we initiated a program of research to synthesis and assess a group of non-feminizing estrogens that lack ability to interact with ERs but retain much of the neuroprotective action of feminizing estrogens. This program of research is aimed at the identification of compounds which do not stimulate ERs but are potentially neuroprotective in vitro and in animal models of neuronal cell death. We discovered that the most effective non-feminizing estrogens were those with large bulky groups in the 2 and/or 4 carbon of the phenolic A ring of the steroid. These compounds were 8- to 114-fold more potent than 17 β-estradiol (βE2), but lacked ER binding capacity in vitro and feminizing effects in vivo. The success of this program of research suggests that strategies to optimize non-feminizing estrogens for use in postmenopausal women can be successful.
Collapse
|
28
|
Strom JO, Theodorsson E, Holm L, Theodorsson A. Different methods for administering 17beta-estradiol to ovariectomized rats result in opposite effects on ischemic brain damage. BMC Neurosci 2010; 11:39. [PMID: 20236508 PMCID: PMC2848231 DOI: 10.1186/1471-2202-11-39] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 03/17/2010] [Indexed: 01/26/2023] Open
Abstract
Background Numerous stroke studies have controversially shown estrogens to be either neuroprotective or neurodamaging. The discordant results observed in rat brain ischemia models may be a consequence of discrepancies in estrogen administration modes resulting in plasma concentration profiles far from those intended. To test this hypothesis we reproduced in detail and extended an earlier study from our lab using a different mode of 17β-estradiol administration; home-made silastic capsules instead of commercial slow-release 17β-estradiol pellets. Four groups of female rats (n = 12) were ovariectomized and administered 17β-estradiol or placebo via silastic capsules. All animals underwent MCAo fourteen days after ovariectomy and were sacrificed three days later. Results In contrast to our earlier results using the commercial pellets, the group receiving 17β-estradiol during the entire experiment had significantly smaller lesions than the group receiving placebo (mean ± SEM: 3.85 ± 0.70% versus 7.15 ± 0.27% of total slice area, respectively; p = 0.015). No significant neuroprotection was found when the 17β-estradiol was administered only during the two weeks before or the three days immediately after MCAo. Conclusions The results indicate that different estrogen treatment regimens result in diametrically different effects on cerebral ischemia. Thus the effects of estrogens on ischemic damage seem to be concentration-related, with a biphasic, or even more complex, dose-response relation. These findings have implications for the design of animal experiments and also have a bearing on the estrogen doses used for peri-menopausal hormone replacement therapy.
Collapse
Affiliation(s)
- Jakob O Strom
- Institution of Clinical and Experimental Medicine/Department of Clinical Chemistry, Linkoping University, Linkoping, Sweden
| | | | | | | |
Collapse
|
29
|
Abstract
Evidence exists for the potential protective effects of circulating ovarian hormones in stroke, and oestrogen reduces brain damage in animal ischaemia models. However, a recent clinical trial indicated that HRT (hormone-replacement therapy) increased the incidence of stroke in post-menopausal women, and detrimental effects of oestrogen on stroke outcome have been identified in a meta-analysis of HRT trials and in pre-clinical research studies. Therefore oestrogen is not an agent that can be promoted as a potential stroke therapy. Many published reviews have reported the neuroprotective effects of oestrogen in stroke, but have failed to include information on the detrimental effects. This issue is addressed in the present review, along with potential mechanisms of action, and the translational capacity of pre-clinical research.
Collapse
|
30
|
Ookubo M, Yokoyama H, Kato H, Araki T. Gender differences on MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in C57BL/6 mice. Mol Cell Endocrinol 2009; 311:62-8. [PMID: 19631714 DOI: 10.1016/j.mce.2009.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the impact of gender difference in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated animal model of Parkinson's disease (PD). In the present study, we investigated the time-dependent alterations of dopamine and its metabolites, striatal tyrosine hydroxylase (TH) protein, dopamine transporter (DAT) protein, glial fibrillary acidic protein (GFAP) protein and midbrain TH protein and motor function in male and female mice 5h and 1, 3 and 7 days after four administrations of MPTP (20mg/kg) at 2-h intervals. The present study showed that the decrease of dopamine, DOPAC (3,4-dihydroxyphenylacetic acid) and HVA (homovanillic acid) content in female mice was more pronounced than that in male animals 1, 3 and 7 days after MPTP treatment. Our Western blot analysis study also demonstrated that the decrease of both striatal and midbrain TH protein levels in female mice was more pronounced than that in male animals from 1 to 7 days after MPTP treatment. As compared to male mice, in contrast, the increase of striatal GFAP protein levels in female mice was observed from 5h to 7 days after MPTP treatment. Furthermore, the present study showed that motor deficits were found in both male and female mice 1 and 7 days after MPTP treatment. In the present study, moreover, the decrease of striatal DAT protein levels in female mice was more pronounced than that in male animals 1, 3 and 7 days after MPTP treatment. These results demonstrate that our administrations of MPTP at 2-h intervals can cause more severe damage in female mice as compared with male animals. The gender difference may be due to the decrease of DAT expression caused by MPTP. Thus our findings provide further valuable information for the pathogenesis of PD.
Collapse
Affiliation(s)
- Masanori Ookubo
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78, Sho-machi, Tokushima 770-8505, Japan
| | | | | | | |
Collapse
|
31
|
Lorenz L, Dang J, Misiak M, Tameh Abolfazl A, Beyer C, Kipp M. Combined 17beta-oestradiol and progesterone treatment prevents neuronal cell injury in cortical but not midbrain neurones or neuroblastoma cells. J Neuroendocrinol 2009; 21:841-9. [PMID: 19686448 DOI: 10.1111/j.1365-2826.2009.01903.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oestrogens are powerful endogenous and exogenous neuroprotective hormones in animal models of brain injury, including focal cerebral ischaemia. This protective effect has been demonstrated under a variety of different treatments and injury paradigms, such as in vivo and in vitro stroke conditions. Neuroprotection in the central nervous system by progesterone is less defined. In the present study, cultured cortical and midbrain mouse neurones and human neuroblastoma cells (SH-SY5Y) were exposed to combined glucose-serum deprivation (CGSD), which is regarded as a reliable model mimicking the effects of ischaemia in vitro. Cell viability was assayed using lactate dehydrogenase release and metabolic activity. Conditions for CGSD treatment were chosen to yield half-maximal cell death rates. The validity of CGSD in vitro was compared with permanent middle cerebral artery occlusion (MCAO) in vivo. CGSD for 4 h induced half-maximal neuronal cell death. MCAO in vivo for the same period resulted in significant neuronal loss, also suggesting the validity of CGSD as a suitable stroke-like in vitro model. Combined steroid treatment (17beta-oestradiol and progesterone) but not the application of single steroids abolished CGSD-induced cell death of cortical neurones in vitro. By contrast, no cell protection was found in midbrain neurones or neuroblastoma cells. The co-application of oestrogen (ICI 182,780) or progesterone (RU-486) receptor antagonists did not obviously counteract the protective steroid effects. This suggests the operation of nonclassical steroid mechanisms and their implication in mediation of hormonal effects. The surplus of combined protective hormonal effects might be a result of the observed influence of progesterone application on neuronal oestradiol synthesis. The data obtained in the present study clearly highlight the potential of a combined steroid treatment under toxic degenerative brain pathologies.
Collapse
Affiliation(s)
- L Lorenz
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Strom JO, Theodorsson A, Theodorsson E. Dose-related neuroprotective versus neurodamaging effects of estrogens in rat cerebral ischemia: a systematic analysis. J Cereb Blood Flow Metab 2009; 29:1359-72. [PMID: 19458604 DOI: 10.1038/jcbfm.2009.66] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Numerous studies of the effects of estrogens for stroke prevention have yielded conflicting results in human and animal studies alike. We present a systematical analysis of study design and methodological differences between 66 studies where estrogens' impact on ischemic brain damage in rat models has been investigated, providing evidence that the differences in results may be explained by high estrogen doses produced by slow-release pellets. These pellets have been used in all studies showing increased neurologic damage because of estrogens. Our data indicate that the increased neurologic damage is related to the pellets' plasma concentration profile with an early, prolonged, supraphysiological peak. Neither the method of inducing the ischemic brain lesions, the choice of variables for measuring outcome, the measured plasma concentrations of estrogens at the time of ischemia nor rat population attributes (sex, strain, age, and diseases) are factors contributing to the discrepancies in results. This suggests that the effects of estrogens for stroke prevention are concentration related with a complex dose-response curve, and underscores the importance of carefully validating the experimental methods used. Future studies of hormone-replacement therapy in women may have to take dosage and administration regimens into account.
Collapse
Affiliation(s)
- Jakob O Strom
- Department of Clinical Chemistry, Institution of Clinical and Experimental Medicine, Linköping University Hospital, Linköping, Sweden
| | | | | |
Collapse
|
33
|
Abstract
Biologic sex and sex steroids are important factors in clinical and experimental stroke and traumatic brain injury (TBI). Laboratory data strongly show that progesterone treatment after TBI reduces edema, improves outcomes, and restores blood-brain barrier function. Clinical studies to date agree with these data, and there are ongoing human trials for progesterone treatment after TBI. Estrogen has accumulated an impressive reputation as a neuroprotectant when evaluated at physiologically relevant doses in laboratory studies of stroke, but translation to patients remains to be shown. The role of androgens in male stroke or TBI is understudied and important to pursue given the epidemiology of stroke and trauma in men. To date, male sex steroids remain largely evaluated at the bench rather than the bedside. This review evaluates key evidence and highlights the importance of the platform on which brain injury occurs (i.e., genetic sex and hormonal modulators).
Collapse
Affiliation(s)
- Paco S Herson
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
34
|
Gibson CL, Coomber B, Rathbone J. Is progesterone a candidate neuroprotective factor for treatment following ischemic stroke? Neuroscientist 2009; 15:324-32. [PMID: 19359672 DOI: 10.1177/1073858409333069] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gender differences in stroke outcome have implicated steroid hormones as potential neuroprotective candidates. However, no clinical trials examining hormone replacement therapy on outcome following ischemic stroke have investigated the effect of progesterone-only treatment. In this review the authors examine the experimental evidence for the neuroprotective potential of progesterone and give an insight into potential mechanisms of action following ischemic stroke. To date, 17 experimental studies have investigated the neuroprotective potential of progesterone for ischemic stroke in terms of ability to both reduce cell loss and increase functional outcome. Of these 17 published studies the majority reported a beneficial effect with three studies reporting a nil effect and only one study reporting a negative effect. However, there are important issues that the authors address in this review in terms of the methodological quality of studies in relation to the STAIR recommendations. In terms of the proposed mechanisms of progesterone neuroprotection we show that progesterone is versatile and acts at multiple targets to facilitate neuronal survival and minimize cell damage and loss. A large amount of experimental evidence indicates that progesterone is a neuroprotective candidate for ischemic stroke; however, to progress to clinical trial a number of key experimental studies remain outstanding.
Collapse
Affiliation(s)
- Claire L Gibson
- School of Psychology, University of Leicester, Leicester, United Kingdom.
| | | | | |
Collapse
|
35
|
Noppens RR, Kofler J, Grafe MR, Hurn PD, Traystman RJ. Estradiol after cardiac arrest and cardiopulmonary resuscitation is neuroprotective and mediated through estrogen receptor-beta. J Cereb Blood Flow Metab 2009; 29:277-86. [PMID: 18957991 PMCID: PMC2682442 DOI: 10.1038/jcbfm.2008.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated long-term administration of estrogen after cardiac arrest and cardiopulmonary resuscitation (CA/CPR) on neurohistopathological and behavioral outcome. We also examined the effect of estrogen receptor (ER) stimulation using ER-alpha agonist propyl pyrazole triol (PPT) and ER-beta agonist diarylpropionitrile (DPN) on neuronal survival after CA/CPR to determine whether possible neuroprotective effects of estrogen are ER-mediated. Male C57Bl/6 mice underwent 10 mins of CA/CPR and 3-day survival. In protocol 1, intravenous injection of vehicle (NaCl 0.9%) and 0.5 or 2.5 microg 17beta-estradiol (E2 loading dose) was performed followed by subcutaneous implants containing vehicle (oil) or E2 (12.6 microg), according to a treatment group. In experimental protocol 2, mice were injected (intravenously) with the ER-alpha agonist PPT or ER-beta agonist DPN followed by Alzet pump implants (subcutaneously) containing PPT (200 microg) or DPN (800 microg). Long-term E2 administration reduced neuronal injury in the striatum after administration of either loading dose (41%+/-19%, 35%+/-26% of injured neurons), as compared with vehicle (68%+/-7%, P<0.01), with no effect in the hippocampal CA1 field. In protocol 2, treatment with ER-beta agonist DPN reduced neuronal injury in the striatum (51%+/-13% injured neurons) as compared with ER-alpha agonist PPT (68%+/-10%) and vehicle (69%+/-11%; P<0.01). Estrogen receptor-beta agonist DPN reduced neuronal injury in the hippocampal CA1 field (29%+/-22% injured neurons) as compared with ER-alpha agonist PPT treatment (62%+/-33%; P<0.05). Injury was not different in hippocampal CA1 between vehicle and ER-alpha agonist-treated animals. We conclude that long-term E2 administration after CA/CPR is neuroprotective and that this effect is most likely mediated via ER-beta.
Collapse
Affiliation(s)
- Ruediger R Noppens
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | |
Collapse
|
36
|
Estradiol attenuates neuroprotective benefits of isoflurane preconditioning in ischemic mouse brain. J Cereb Blood Flow Metab 2008; 28:1824-34. [PMID: 18612317 PMCID: PMC2575135 DOI: 10.1038/jcbfm.2008.70] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Isoflurane preconditioning (IsoPC) neuroprotection in experimental stroke is male-specific. We determined whether estradiol alters ischemic outcomes in IsoPC brain and examined the role of estrogen receptors (ERs). Seven to 10 days before preconditioning, ovariectomized (OVX) mice were implanted with estradiol, vehicle, or ER subtype agonists. OVX+/-estradiol, OVX+/-vehicle, OVX+/-ER agonists, and ER subtype wild-type (WT) and knockout (KO) mice were preconditioned for 4 h with sham anesthetic preconditioning (sham PC) or 1% IsoPC and recovered for 24 h. Mice then underwent 2 h of middle cerebral artery occlusion followed by 22 h of reperfusion. Infarct volumes were determined by 2,3,5-triphenyltetrazolium chloride staining, with comparisons between IsoPC and corresponding sham PC for each treatment group. Decreased infarct injury was seen in IsoPC OVX+/-vehicle, whereas estradiol in IsoPC OVX mice enhanced ischemic damage. In ER studies, increased infarct volumes were seen in IsoPC ERWT mice regardless of ER subtype. IsoPC in ERalphaKO mice had no effect on infarction volume but reduced only cortical ischemic damage in ERbetaKO mice. In OVX+ERalpha agonist, IsoPC had no effect on infarction volume. In OVX+ERbeta agonist, IsoPC increased cortical infarct volume. Estradiol depresses the brain's protective response to IsoPC and may exacerbate cortical ischemic injury mainly through an ERbeta-dependent mechanism.
Collapse
|
37
|
Abstract
Anesthesiologists are frequently confronted with patients who are at risk for neurological complications due to perioperative stroke or prior traumatic brain injury. In this review, we address the growing and fascinating body of data that suggests gender and sex steroids influence the pathophysiology of injury and outcome for these patients. Cerebral ischemia, traumatic brain injury, and epilepsy are reviewed in the context of potential sex differences in mechanisms and outcomes of brain injury and the role of estrogen, progesterone, and androgens in shaping these processes. Lastly, implications for current and future perioperative and intensive care are identified.
Collapse
Affiliation(s)
- Kamila Vagnerova
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
38
|
Effects of estrogen and progestin on the CO2 sensitivity of hemispheric cerebral blood volume. Menopause 2008; 15:346-51. [PMID: 17975517 DOI: 10.1097/gme.0b013e31813c688d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE High CO2 sensitivity is one of the major characteristics of the cerebrovascular bed. It has been shown to be influenced by many differrent factors (eg, sex hormones). DESIGN The effect of ovariectomy and subsequent female sexual hormone treatment on the steady-state hemispheric cerebral blood volume and CO2 responsiveness of the hemispheric blood vessels was studied on anesthetized, ventilated, normotensive, normoxic rats. Cerebral blood volume was measured with Tomita's photoelectric method with Sandor's modification. RESULTS Steady-state cerebral blood volume values in ovariectomized rats did not differ from those found in control animals. The CO2 responsiveness of hemispheric blood vessels was higher in ovariectomized and progestin-treated, but not estrogen-treated, animals compared with controls. CONCLUSIONS Our results demonstrate that the CO2 sensitivity of the hemispheric vessels is sex hormone dependent. Estrogen and progestin treatment have opposite effects on this cerebral circulatory parameter.
Collapse
|
39
|
Farr TD, Carswell HVO, McCann DJ, Sato M, Bryant HU, Dodge JA, Macrae IM. The selective oestrogen receptor modulator, LY362321, is not neuroprotective in a rat model of transient focal ischaemia. J Neuroendocrinol 2008; 20:366-74. [PMID: 18208545 DOI: 10.1111/j.1365-2826.2008.01648.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Selective oestrogen receptor modulators (SERMs) may offer improved alternatives to oestrogen as neuroprotectants in experimental stroke. The present study investigated the role of a novel SERM, LY362321, in a rat model of transient middle cerebral artery occlusion (MCAO). Female Sprague-Dawley rats were ovariectomised and began receiving daily s.c. injections of either 1 mg/kg (n = 13), 10 mg/kg (n = 14) of LY362321, or vehicle (n = 13). The left MCA was temporarily occluded (90 min), with cortical blood flow monitoring, at 12 days post ovariectomy. Sensorimotor function was assessed using a neurological score prior to the MCAO and daily for 3 days following the MCAO. Tissue was processed for infarct volume assessment using 2,3,5-triphenyltetra-zolium chloride staining. The results indicated that there were no significant differences amongst groups in cortical blood flow during the MCAO. Furthermore, there was no significant difference in infarct size amongst vehicle, 1, and 10 mg/kg treated animals: 22.9 +/- 5.0, 16.7 +/- 4.2, and 21.1 +/- 4.1, respectively, one-way anova [F(2,32) = 0.542, P = 0.587]. The MCAO induced a significant decline in neurological score in the vehicle group (from 14 to 7 at 24 h post-MCAO) but this was not significantly affected by LY362321 at either dose. In conclusion, pretreatment with a low or high dose of the novel SERM LY362321 did not significantly influence cerebral blood flow, infarct volume, or sensorimotor function in rats exposed to transient MCAO.
Collapse
Affiliation(s)
- T D Farr
- Wellcome Surgical Institute and 7T MRI Facility, Division of Clinical Neuroscience, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Farr TD, Carswell HV, Gsell W, Macrae IM. Estrogen receptor beta agonist diarylpropiolnitrile (DPN) does not mediate neuroprotection in a rat model of permanent focal ischemia. Brain Res 2007; 1185:275-82. [DOI: 10.1016/j.brainres.2007.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
|
41
|
Kitano H, Young JM, Cheng J, Wang L, Hurn PD, Murphy SJ. Gender-specific response to isoflurane preconditioning in focal cerebral ischemia. J Cereb Blood Flow Metab 2007; 27:1377-86. [PMID: 17264860 PMCID: PMC2266686 DOI: 10.1038/sj.jcbfm.9600444] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inhalation anesthetics are effective chemical preconditioning agents in experimental cerebral ischemia. However, previous work has been performed exclusively in male animals. We determined if there is a gender difference in ischemic outcome after isoflurane preconditioning (IsoPC), and if this sex-specific response is linked to differences in Akt phosphorylation or expression of neuronal inducible cell-death putative kinase (NIPK), a negative modulator of Akt activation. Young and middle-aged male and female mice were preconditioned for 4 h with air (sham PC) or 1.0% IsoPC and recovered for 24 h. Cortices were subdissected from preconditioned young male and female mice for measurement of Akt phosphorylation (Western blot) and NIPK mRNA (quantitative polymerase chain reaction). Additional cohorts underwent 2 h of reversible middle cerebral artery occlusion. Lastly, male and female Akt1(+/+) and Akt1(-/-) mice were studied to determine if gender differences in ischemic outcome after IsoPC is Akt1-dependent. Infarction volume was determined at 22 h reperfusion (2,3,5-triphenyltetrazolium chloride). As expected, IsoPC decreased ischemic damage as compared with sham PC in young and middle-aged male mice. In contrast, IsoPC markedly increased infarction in young female mice and had no effect in middle-aged female mice. Cortical phospho-Akt was increased by IsoPC versus sham PC only in male mice. No increase was observed in IsoPC female mice. NIPK mRNA was higher in female mice than in male mice regardless of preconditioning status. Male IsoPC neuroprotection was lost in Akt1-deficient male mice. We conclude that IsoPC is beneficial only in ischemic male brain and that sex differences in IsoPC are mediated through Akt activation and basal NIPK expression.
Collapse
Affiliation(s)
- Hideto Kitano
- Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | | | | | | | |
Collapse
|
42
|
Macrae IM, Carswell HV. Oestrogen and stroke: the potential for harm as well as benefit. Biochem Soc Trans 2007; 34:1362-5. [PMID: 17073819 DOI: 10.1042/bst0341362] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidemiological studies point to a beneficial influence of the female reproductive hormones on stroke risk in that women have a lower incidence of stroke prior to the menopause compared with men, but this difference weakens with age and stroke risk in women rises after the menopause. However, recent Women's Health Initiative trials in post-menopausal women report an increased stroke risk on hormone replacement therapy. An influence of gender is also apparent on stroke outcome in animal models: female rats exposed to transient MCA (middle cerebral artery) occlusion sustain less brain damage than age-matched males, with loss of protection following ovariectomy. The major hormone thought to be responsible for beneficial influences on stroke incidence and outcome is oestrogen, and a large preclinical literature now exists where exogenously administered oestrogen has been studied in male and ovariectomized female rats using a range of stroke models and outcome measures. Most of these studies administer oestrogen prior to the stroke, use a model of transient ischaemia followed by reperfusion and report a significant oestrogen-induced neuroprotection. However, in some studies where the MCA is permanently occluded, oestrogen pre-treatment in ovariectomized female rats has been shown to significantly exacerbate ischaemic damage. Therefore preclinical results demonstrate harmful as well as beneficial influences of oestrogen on the ischaemic brain, highlighting the need for further study to elucidate the mechanisms responsible for both detrimental and beneficial influences. Ultimately, this could lead to the development of new classes of oestrogenic compounds with improved risk/benefit profiles, designed to selectively activate pathways inducing only the beneficial effects of oestrogen in vivo.
Collapse
Affiliation(s)
- I M Macrae
- Division of Clinical Neuroscience, Wellcome Surgical Institute, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK.
| | | |
Collapse
|
43
|
Krause DN, Duckles SP, Pelligrino DA. Influence of sex steroid hormones on cerebrovascular function. J Appl Physiol (1985) 2006; 101:1252-61. [PMID: 16794020 DOI: 10.1152/japplphysiol.01095.2005] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral vasculature is a target tissue for sex steroid hormones. Estrogens, androgens, and progestins all influence the function and pathophysiology of the cerebral circulation. Estrogen decreases cerebral vascular tone and increases cerebral blood flow by enhancing endothelial-derived nitric oxide and prostacyclin pathways. Testosterone has opposite effects, increasing cerebral artery tone. Cerebrovascular inflammation is suppressed by estrogen but increased by testosterone and progesterone. Evidence suggests that sex steroids also modulate blood-brain barrier permeability. Estrogen has important protective effects on cerebral endothelial cells by increasing mitochondrial efficiency, decreasing free radical production, promoting cell survival, and stimulating angiogenesis. Although much has been learned regarding hormonal effects on brain blood vessels, most studies involve young, healthy animals. It is becoming apparent that hormonal effects may be modified by aging or disease states such as diabetes. Furthermore, effects of testosterone are complicated because this steroid is also converted to estrogen, systemically and possibly within the vessels themselves. Elucidating the impact of sex steroids on the cerebral vasculature is important for understanding male-female differences in stroke and conditions such as menstrual migraine and preeclampsia-related cerebral edema in pregnancy. Cerebrovascular effects of sex steroids also need to be considered in untangling current controversies regarding consequences of hormone replacement therapies and steroid abuse.
Collapse
Affiliation(s)
- Diana N Krause
- Department of Pharmacology, School of Medicine, University of California, Irvine, 92697-4625, USA.
| | | | | |
Collapse
|
44
|
Farr TD, Carswell HVO, Gallagher L, Condon B, Fagan AJ, Mullin J, Macrae IM. 17β-Estradiol treatment following permanent focal ischemia does not influence recovery of sensorimotor function. Neurobiol Dis 2006; 23:552-62. [PMID: 16759876 DOI: 10.1016/j.nbd.2006.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/07/2006] [Accepted: 04/24/2006] [Indexed: 11/23/2022] Open
Abstract
The development of therapy to aid poststroke recovery is essential. The female hormone 17beta-estradiol has been shown to promote synaptogenesis; the purpose of this study was to attempt to harness these mechanisms to promote repair and recovery in the peri-infarct zone. Rats were ovariectomized, tested for sensorimotor function, and the middle cerebral artery permanently occluded (MCAO). Infarct volumes were calculated using MRI, and damage was equivalent in all animals prior to implantation of either 17beta-estradiol or placebo pellets. Animals were tested for functional recovery for 28 days and tissue processed for synaptic marker syntaxin immunohistochemistry. The stroke induced a significant behavioral deficit, which persisted out to 28 days, and was not significantly different between 17beta-estradiol and placebo treatment groups. There was no difference in syntaxin immunostaining between groups in either the peri-infarct cortex or in the dendritic CA1 reference region. In conclusion, 17beta-estradiol treatment, delivered poststroke, did not influence recovery of function or synaptogenesis.
Collapse
Affiliation(s)
- Tracy D Farr
- 7TMRI Facility and Wellcome Surgical Institute, Division of Clinical Neuroscience, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow, Scotland G61 1QH, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Gordon KB, Macrae IM, Carswell HVO. Effects of 17β-oestradiol on cerebral ischaemic damage and lipid peroxidation. Brain Res 2005; 1036:155-62. [PMID: 15725413 DOI: 10.1016/j.brainres.2004.12.052] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 12/15/2004] [Accepted: 12/17/2004] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Numerous studies demonstrate oestrogen's neuroprotective effect in stroke models, although the mechanisms are unclear. Since oestrogen is an antioxidant, we tested the hypothesis that oestrogen reduces stroke-induced damage by reducing free radical damage, particularly lipid peroxidation. METHODS Sprague-Dawley rats were ovariectomised and a 17beta-oestradiol (0.25 mg, 21 day release) or placebo pellet implanted subcutaneously. Two weeks later, permanent middle cerebral artery occlusion (MCAO) was induced by intraluminal filament. At 2 and 24 h post-MCAO, neurological deficits were assessed. At the 24 h end point, plasma oestradiol was measured and brain sections stained with haematoxylin and eosin or lipid peroxidation marker, 4-hydroxynonenol (4-HNE) immunohistochemistry carried out to measure infarct volume and volume of tissue displaying oxidative damage, respectively. RESULTS Plasma 17beta-oestradiol in oestradiol and placebo groups was 72.6+/-38.0 and 9.3+/-7.4 pg/ml (mean+/-SD), respectively. Infarct volume was significantly increased (118%) with oestradiol treatment (oestradiol=124+/-84.5, placebo=57+/-46.4 mm3, mean+/-SD, P<0.05). The relationship between 4-HNE and infarct volume was significantly influenced by 17beta-oestradiol. Neurological deficits were similar between groups (oestradiol median=13, placebo=14, max score=33). CONCLUSION Two week pre-treatment with a high physiological dose of 17beta-oestradiol increased infarct volume after permanent MCAO. Although contrary to our original hypothesis, this result demonstrates that oestrogen does have the capacity to promote detrimental actions in the stroke-injured brain. Given the wide use of oestrogen (contraception, osteoporosis and menopause), more research to clarify the influence of oestrogen on brain injury is urgently required.
Collapse
Affiliation(s)
- Kirsty B Gordon
- Division of Clinical Neuroscience, Wellcome Surgical Institute, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow G61 1QH, UK
| | | | | |
Collapse
|