1
|
Min X, Lin S, Hu J, Jing R, Zhao Q, Shang F, Zeng Y. The opposite effect of ELP4 and ZEB2 on TCF7L2-mediated microglia polarization in ischemic stroke. J Cell Commun Signal 2025; 19:e12061. [PMID: 39822731 PMCID: PMC11736883 DOI: 10.1002/ccs3.12061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Microglia M1 polarization plays important role in the development of ischemic stroke (IS). This study explored the role of transcription factor 7 like 2 (TCF7L2) in regulating microglia M1 polarization during IS. TTC staining was used to determine the cerebral infarction, and Nissl staining was applied to examine neuronal injury. The secretion levels of cytokines were measured using ELISA. The interaction between Zinc finger E-Box binding homeobox 2 (ZEB2) and TCF7L2 was analyzed by Co-IP, and H3K27ac enrichment in the TCF7L2 promoter was detected by ChIP assay. TCF7L2 knockdown reduced MCAO/R-induced mice cerebral injury. TCF7L2 silencing or TAK-242 (TLR4 antagonist) injection inhibited OGD/R-induced microglia M1 polarization by repressing the TLR4/NF-κB signal, and TCF7L2 knockdown combined with TAK-242 treatment further inhibited microglia M1 polarization. TCF7L2 promoted transcriptional activation of TLR4. ELP4 enhanced H3K27ac-mediated transcriptional activation of TCF7L2, and ZEB2 promoted the K48-linked ubiquitination of TCF7L2. TCF7L2 overexpression abolished the inhibitory effect of ELP4 knockdown or ZEB2 overexpression on OGD/R-induced microglia M1 polarization. TCF7L2 exacerbated cerebral injury by promoting microglia M1 polarization during IS progression. Mechanistically, ELP4 promoted TCF7L2 expression by promoting H3K27ac enrichment in the TCF7L2 promoter, while ZEB2 promoted TCF7L2 ubiquitination degradation.
Collapse
Affiliation(s)
- Xiao‐li Min
- Department of Cerebrovascular DiseasesThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Sixian Lin
- Department of Cerebrovascular DiseasesThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Jia‐yi Hu
- Department of Cerebrovascular DiseasesThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Rui Jing
- Department of Cerebrovascular DiseasesThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Qing Zhao
- Department of Cerebrovascular DiseasesThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Fei‐fei Shang
- Institute of Life ScienceChongqing Medical UniversityChongqingChina
| | - Yong Zeng
- Department of PsychiatryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
2
|
Chen J, Quan X, Li Y, Chen J, Hu J, Zhou M, Chen Y, Chen J, Wu C, Yu H, Zhao Y. Siegesbeckia orientalis ethanol extract impedes RAGE-CD11b interaction driven by HMGB1 to alleviate neutrophil-involved neuronal injury poststroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156541. [PMID: 39986221 DOI: 10.1016/j.phymed.2025.156541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/10/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Ischemic stroke is a life-threatening cerebrovascular disease with limited therapeutic options. During the progression of acute ischemic stroke (AIS), neutrophil-involved inflammation mediated by high mobility group box 1 (HMGB1) considerably contributes to intensification of neuronal injury. Siegesbeckia orientalis L. (SO), one of the primary sources of Sigesbeckiae Herba, is promising in anti-neuroinflammation and neutrophil function modulation. Consequently, it is supposed that SO could fight against neuronal inflammatory injury following AIS. PURPOSE The current study struggles to explore the ameliorative effects of ethanol extract of SO (EESO) on neuronal inflammatory injury following AIS, and dissect the related mechanisms focusing on HMGB1-driven neutrophil recruitment and neutrophil extracellular traps (NETs) generation. METHODS Murine photothrombotic stroke model was established to evaluate the ameliorative effects of EESO administration against AIS. Histopathological examination and immunofluorescence staining were conducted for the observation of cerebral neuronal injury, neutrophil infiltration and NETs generation. Additionally, inflammatory indexes and serum HMGB1 levels were also detected through qPCR and ELISA, respectively. In vitro, the effects of EESO-containing serum administration on neutrophil migration and NETs generation were also assessed. HMGB1-overexpressed mimic transfection, cellular thermal shift assay and coimmunoprecipitation were employed to investigate whether the compounds from EESO-containing serum targeted HMGB1 to block the receptor for advanced glycation end products (RAGE)-CD11b interaction. Furthermore, potential active compounds of EESO targeting HMGB1 were screened and verified. RESULTS EESO administration alleviated photochemically induced murine AIS as revealed by remarkably reducing infract volume as well as improving cerebral blood flow and neurological functions. Moreover, EESO administration prominently mitigated secondary neuronal injury, restrained neutrophil infiltration and NETs generation, as well as lowered the levels of serum pro-inflammatory mediators and HMGB1. In vitro, the compounds in EESO-containing serum directly interacted with neuron-derived HMGB1. HMGB1-driven neutrophil migration and NETs generation through the RAGE-CD11b interaction were also reversed by EESO-containing serum administration. Additionally, isoimperatorin, 4,7-dimethyltetral-1-one, perillartine and darutigenol, as the active components, contributed to the suppressive effects of EESO on neutrophil migration and NETs generation driven by HMGB1. CONCLUSION In the present study, it was demonstrated that HMGB1 promoted interaction between CD11b and RAGE to drive NETs generation for the first time. Furthermore, EESO was proved to target neuron-derived HMGB1 to inhibit neutrophil infiltration and NETs generation against neuronal inflammatory injury poststroke, which was attributed to the components absorbed in the blood including isoimperatorin, 4,7-dimethyltetral-1-one, perillartine and darutigenol.
Collapse
Affiliation(s)
- Jinfen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Xingping Quan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yiyang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Junming Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Jiacheng Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Manfei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Ying Chen
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiali Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
3
|
Hong JM, Shin HS. Reinforcement of Transdural Angiogenesis: A Novel Approach to Treating Ischemic Stroke With Cerebral Perfusion Impairment. J Stroke 2025; 27:30-40. [PMID: 39916452 PMCID: PMC11834342 DOI: 10.5853/jos.2024.02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 02/20/2025] Open
Abstract
Cerebral hypoperfusion plays a critical role in early neurological deterioration and long-term outcomes in patients with acute ischemic stroke, which remains a major global health challenge. This review explored transdural angiogenesis as a promising therapeutic strategy to restore cerebral perfusion in patients with ischemic stroke. The multiple burr hole procedure has been preliminarily used as an indirect revascularization method to induce transdural arteriogenesis. Theoretically, its efficacy could be enhanced by combining it with angiogenic boosters, such as erythropoietin. Recent clinical and preclinical studies have revealed that this combination therapy promotes angiogenesis and arteriogenesis, leading to successful revascularization across the dura mater and improved cerebral blood flow. This strategy may be particularly beneficial for high-risk patients with recurrent ischemic events, such as those with moyamoya disease or intracranial arterial occlusion, representing an effective strategy when conventional medical treatments are insufficient. This review highlights the potential of transdural angiogenesis enhancement as a novel intervention for ischemic stroke, offering an alternative to thrombolysis or endovascular treatment, particularly in acute stroke patients with impaired cerebral perfusion. This approach has the potential to bridge the treatment gap for patients outside the therapeutic window for acute stroke interventions. Although further research is required to refine this technique and validate its efficacy in broader clinical settings, early results have revealed promising outcomes at reducing stroke-related complications and improving patient prognosis. This review indicates that this novel strategy may offer hope for managing ischemic stroke and related conditions associated with significant cerebral hypoperfusion.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Science, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Korea
| | - Hee Sun Shin
- Department of Biomedical Science, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
4
|
Kunze R, Wacker P, Breuer P, Nasyrov E, Kur IM, Weigert A, Wagner AH, Marti HH, Korff T. Adequate post-ischemic reperfusion of the mouse brain requires endothelial NFAT5. Acta Neuropathol Commun 2024; 12:200. [PMID: 39710754 DOI: 10.1186/s40478-024-01918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Severity and outcome of strokes following cerebral hypoperfusion are significantly influenced by stress responses of the blood vessels. In this context, brain endothelial cells (BEC) regulate inflammation, angiogenesis and the vascular resistance to rapidly restore perfusion. Despite the relevance of these responses for infarct volume and tissue recovery, their transcriptional control in BEC is not well characterized. We revealed that oxygen and nutrient-deprived BEC activate nuclear factor of activated T-cells 5 (NFAT5)-a transcription factor that adjusts the cellular transcriptome to cope with environmental stressors. We hypothesized that NFAT5 controls the expression of genes regulating the response of BEC in the ischemic brain. The functional relevance of NFAT5 was assessed in mice, allowing the conditional EC-specific knock-out of Nfat5 (Nfat5(EC)-/-). Cerebral ischemia was induced by transient middle cerebral artery occlusion (MCAO) followed reperfusion up to 28 days. While loss of endothelial Nfat5 did not evoke any phenotypic abnormalities in mice under control conditions, infarct volumes, neurological deficits and the degree of brain atrophy were significantly pronounced following MCAO as compared to control animals (Nfat5fl/fl). In contrast, MCAO-induced edema formation, inflammatory processes and angiogenesis were not altered in Nfat5(EC)-/- mice. RNAseq analyses of cultured BEC suggested that loss of NFAT5 impairs the expression of Kcnj2 encoding a potassium channel that may affect reperfusion. In fact, lower levels of KCNJ2 were detected in arterial endothelial cells of Nfat5(EC)-/- versus Nfat5fl/fl mice. Laser speckle contrast imaging of the brain revealed an impaired perfusion recovery in Nfat5(EC)-/- versus Nfat5fl/fl mice after MCAO.Collectively, NFAT5 in arterial BEC is required for an adequate reperfusion response after brain ischemia that is presumably dependent on the maintenance of Kcnj2 expression. Consequently, impairment of the protective role of endothelial NFAT5 results in enlarged infarct sizes and more severe functional deficits of brain functions.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Paul Wacker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Paula Breuer
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Emil Nasyrov
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
- Centre for Ophthalmology, University Eye Hospital Tuebingen, Tuebingen, Germany
| | - Ivan M Kur
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Magrì A, Tomasello B, Naletova I, Tabbì G, Cairns WRL, Greco V, Sciuto S, La Mendola D, Rizzarelli E. New BDNF and NT-3 Cyclic Mimetics Concur with Copper to Activate Trophic Signaling Pathways as Potential Molecular Entities to Protect Old Brains from Neurodegeneration. Biomolecules 2024; 14:1104. [PMID: 39334869 PMCID: PMC11430436 DOI: 10.3390/biom14091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
A low level of Neurotrophins (NTs), their Tyrosine Kinase Receptors (Trks), Vascular Endothelial Growth Factors (VEGFs) and their receptors, mainly VEGFR1 and VEGFR2, characterizes AD brains. The use of NTs and VEGFs as drugs presents different issues due to their low permeability of the blood-brain barrier, the poor pharmacokinetic profile, and the relevant side effects. To overcome these issues, different functional and structural NT mimics have been employed. Being aware that the N-terminus domain as the key domain of NTs for the binding selectivity and activation of Trks and the need to avoid or delay proteolysis, we herein report on the mimicking ability of two cyclic peptide encompassing the N-terminus of Brain Derived Growth Factor (BDNF), (c-[HSDPARRGELSV-]), cBDNF(1-12) and of Neurotrophin3 (NT3), (c-[YAEHKSHRGEYSV-]), cNT3(1-13). The two cyclic peptide features were characterized by a combined thermodynamic and spectroscopic approach (potentiometry, NMR, UV-vis and CD) that was extended to their copper(II) ion complexes. SH-SY5Y cell assays show that the Cu2+ present at the sub-micromolar level in the complete culture media affects the treatments with the two peptides. cBDNF(1-12) and cNT3(1-13) act as ionophores, induce neuronal differentiation and promote Trks and CREB phosphorylation in a copper dependent manner. Consistently, both peptide and Cu2+ stimulate BDNF and VEGF expression as well as VEGF release; cBDNF(1-12) and cNT3(1-13) induce the expression of Trks and VEGFRs.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Warren R. L. Cairns
- CNR-Institute of Polar Sciences (CNR-ISP), 155 Via Torino, 30172 Venice, Italy;
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
6
|
Chen H, Liu Z, Zhao L, Jia Z. Neuroprotective effects of salvianolic acids combined with Panax notoginseng saponins in cerebral ischemia/reperfusion rats concerning the neurovascular unit and trophic coupling. Brain Behav 2024; 14:e70036. [PMID: 39295106 PMCID: PMC11410882 DOI: 10.1002/brb3.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/16/2024] [Accepted: 08/03/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND The neurovascular unit (NVU) and neurovascular trophic coupling (NVTC) play a key regulatory role in brain injury caused by ischemic stroke. Salvianolic acids (SAL) and Panax notoginseng saponins (PNS) are widely used in China to manage ischemic stroke. Neuroprotective effects of SAL and PNS, either taken alone or in combination, were examined in this research. METHODS Wistar rats were randomly divided into the following groups: Sham group (Sham), cerebral ischemia/reperfusion group (I/R), I/R with SAL group (SAL), I/R with PNS group (PNS), I/R with SAL combined with PNS (SAL + PNS), and I/R with edaravone group (EDA). Treatment was administered once daily for two days after modeling of middle cerebral artery occlusion/reperfusion (MCAO/R). RESULTS Compared with the I/R group, SAL, PNS, or SAL + PNS treatment reduced infarct size, improved neurological deficit score, reduced Evans blue extravasation, increased expression of CD31 and tight junction proteins (TJs), including zonula occludens-1 (ZO-1), zonula occludens-2 (ZO-2), and junctional adhesion molecule-1 (JAM-1). Furthermore, SAL, PNS, or SAL + PNS suppressed the activations of microglia and astrocyte and led to the amelioration of neuron and pericyte injury. Treatment also inhibited NVU dissociation of GFAP/PDGFRβ and Collagen IV/GFAP while upregulated the expression level of BDNF/TrkB and BDNF/NeuN. CONCLUSIONS SAL and PNS have significantly remedied structural and functional disorders of NVU and NVTC in I/R injury. These effects were more pronounced when SAL and PNS were combined than when used separately.
Collapse
Affiliation(s)
- Hongyang Chen
- School of Basic Medical SciencesYunnan University of Chinese MedicineKunmingP. R. China
| | - Zhen Liu
- Department of Traditional Chinese MedicineThe Baotou Central HospitalBaotouP. R. China
| | - Lei Zhao
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Zhuangzhuang Jia
- School of Basic Medical SciencesYunnan University of Chinese MedicineKunmingP. R. China
| |
Collapse
|
7
|
Gong C, Liu C, Wang Y, Chen L, Yuan J, Zhang J, Xiaoming L, Chen Y, Huang L, Xu T, Chen Y. Effect of statin treatment on clinical outcomes in cardioembolic stroke with endovascular thrombectomy. J Neurointerv Surg 2024; 16:947-954. [PMID: 37586821 DOI: 10.1136/jnis-2023-020619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND While statins have been widely used in patients with large-artery atherosclerotic stroke, their effectiveness in patients with cardioembolic large vessel occlusion (CE-LVO) undergoing endovascular treatment (EVT) remains unclear. This study aimed to evaluate whether combining statin therapy with EVT could improve clinical outcomes in patients with acute ischemic stroke caused by CE-LVO in the anterior circulation. METHODS We performed a retrospective screening on patients with CE-LVO in the anterior circulation who underwent EVT in 27 hospitals across China between 2018 and 2021. The primary outcome measure was functional independence, defined as a 90-day modified Rankin Scale (mRS) score of 0 to 2. Safety outcomes included 90-day mortality and symptomatic intracranial hemorrhage (sICH). RESULTS A total of 510 patients with CE-LVO in the anterior circulation undergoing EVT were included in this study. Of these, 404 (79.2%) patients received statin treatment (statin group), while 106 (20.8%) did not (non-statin group). Statin treatment was significantly associated with improved functional independence (adjusted OR (aOR) 2.072, 95% CI 1.197 to 3.586, P=0.009). Moreover, statin use was associated with a lower rate of 90-day mortality (aOR 0.343, 95% CI 0.197 to 0.596, P<0.001) and a lower rate of sICH (aOR 0.153, 95% CI 0.072 to 0.325, P<0.001). CONCLUSION Statin treatment was associated with improved clinical outcomes and reduced risks of mortality and sICH in patients with CE-LVO in the anterior circulation undergoing EVT.
Collapse
Affiliation(s)
- Chen Gong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - You Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liyuan Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinxian Yuan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Xiaoming
- Department of Intensive Care Unit, Chongqing University Cancer Hospital, Chongqing, China
| | - Yanru Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Huang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Cheriki M, Habibian M, Moosavi SJ. Curcumin attenuates brain aging by reducing apoptosis and oxidative stress. Metab Brain Dis 2024; 39:833-840. [PMID: 38687459 DOI: 10.1007/s11011-023-01326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/17/2023] [Indexed: 05/02/2024]
Abstract
Brain aging is a physiological event, and oxidative stress and apoptosis are involved in the natural aging process of the brain. Curcumin is a natural antioxidant with potent anti-aging and neuroprotective properties. Therefore, we investigated the protective effects of curcumin on brain apoptosis and oxidative stress, brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) in aged rats. Old female Wistar rats were randomly divided into three groups (n = 7); as follows: (1) control; (2); saline and (3) curcumin (received 30 mg/kg of curcumin, 5 days/week for 8 weeks, intraperitoneally). Our results indicated that treatment with curcumin in aged rats attenuates brain lipid peroxidation, which was accompanied by a significant increase in the BDNF, VEGF, superoxide dismutase (SOD) activity, and anti-apoptotic protein BCl-2. No significant change in brain anti-apoptotic Bax protein levels was observed after curcumin treatment. The study indicates that curcumin could alleviate brain aging which may be due to attenuating oxidative stress, inhibiting apoptosis, and up-regulating SOD activity, which in turn enhances VEGF and BDNF. Therefore, curcumin has potential therapeutic value in the treatment of neurological apoptosis, neurogenesis, and angiogenesis changes caused by brain aging.
Collapse
Affiliation(s)
- Mehran Cheriki
- Department of Physical Education and Sports Sciences, Qaemshahar Branch, Islamic Azad University, Qaemshahar, Iran
| | - Masoumeh Habibian
- Department of Physical Education and Sports Sciences, Qaemshahar Branch, Islamic Azad University, Qaemshahar, Iran.
| | - Seyyed Jafar Moosavi
- Department of Physical Education and Sports Sciences, Qaemshahar Branch, Islamic Azad University, Qaemshahar, Iran
| |
Collapse
|
9
|
Madai S, Kilic P, Schmidt RM, Bas-Orth C, Korff T, Büttner M, Klinke G, Poschet G, Marti HH, Kunze R. Activation of the hypoxia-inducible factor pathway protects against acute ischemic stroke by reprogramming central carbon metabolism. Theranostics 2024; 14:2856-2880. [PMID: 38773968 PMCID: PMC11103502 DOI: 10.7150/thno.88223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/08/2024] [Indexed: 05/24/2024] Open
Abstract
Cell metabolism reprogramming to sustain energy production, while reducing oxygen and energy consuming processes is crucially important for the adaptation to hypoxia/ischemia. Adaptive metabolic rewiring is controlled by hypoxia-inducible factors (HIFs). Accumulating experimental evidence indicates that timely activation of HIF in brain-resident cells improves the outcome from acute ischemic stroke. However, the underlying molecular mechanisms are still incompletely understood. Thus, we investigated whether HIF-dependent metabolic reprogramming affects the vulnerability of brain-resident cells towards ischemic stress. Methods: We used genetic and pharmacological approaches to activate HIF in the murine brain in vivo and in primary neurons and astrocytes in vitro. Numerous metabolomic approaches and molecular biological techniques were applied to elucidate potential HIF-dependent effects on the central carbon metabolism of brain cells. In animal and cell models of ischemic stroke, we analysed whether HIF-dependent metabolic reprogramming influences the susceptibility to ischemic injury. Results: Neuron-specific gene ablation of prolyl-4-hydroxylase domain 2 (PHD2) protein, negatively regulating the protein stability of HIF-α in an oxygen dependent manner, reduced brain injury and functional impairment of mice after acute stroke in a HIF-dependent manner. Accordingly, PHD2 deficient neurons showed an improved tolerance towards ischemic stress in vitro, which was accompanied by enhanced HIF-1-mediated glycolytic lactate production through pyruvate dehydrogenase kinase-mediated inhibition of the pyruvate dehydrogenase. Systemic treatment of mice with roxadustat, a low-molecular weight pan-PHD inhibitor, not only increased the abundance of numerous metabolites of the central carbon and amino acid metabolism in murine brain, but also ameliorated cerebral tissue damage and sensorimotor dysfunction after acute ischemic stroke. In neurons and astrocytes roxadustat provoked a HIF-1-dependent glucose metabolism reprogramming including elevation of glucose uptake, glycogen synthesis, glycolytic capacity, lactate production and lactate release, which enhanced the ischemic tolerance of astrocytes, but not neurons. We found that strong activation of HIF-1 in neurons by non-selective inhibition of all PHD isoenzymes caused a HIF-1-dependent upregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 redirecting glucose-6-phosphate from pentose phosphate pathway (PPP) to the glycolysis pathway. This was accompanied by a reduction of NADPH production in the PPP, which further decreased the low intrinsic antioxidant reserve of neurons, making them more susceptible to ischemic stress. Nonetheless, in organotypic hippocampal cultures with preserved neuronal-glial interactions roxadustat decreased the neuronal susceptibility to ischemic stress, which was largely prevented by restricting glycolytic energy production through lactate transport blockade. Conclusion: Collectively, our results indicate that HIF-1-mediated metabolic reprogramming alleviates the intrinsic vulnerability of brain-resident cells to ischemic stress.
Collapse
Affiliation(s)
- Sarah Madai
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Pinar Kilic
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Rolf M. Schmidt
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Glynis Klinke
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Gu X, Xie Y, Cao Q, Hou Z, Zhang Y, Wang W. Fisetin alleviates cerebral ischemia/reperfusion injury by regulating Sirt1/Foxc1/Ubqln1 pathway-mediated proteostasis. Int Immunopharmacol 2024; 130:111742. [PMID: 38452414 DOI: 10.1016/j.intimp.2024.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (IRI) is pathologically associated with protein damage. The flavonoid fisetin has good therapeutic effects on cerebral IRI. However, the role of fisetin in regulating protein damage during cerebral IRI development remains unclear. This study investigated the pharmacological effects of fisetin on protein damage during cerebral IRI progression and defined the underlying mechanism of action. METHODS In vivo and in vitro models of cerebral IRI were established by middle cerebral artery occlusion/reperfusion (MACO/R) and oxygen-glucose deprivation/reperfusion (OGD/R) treatment, respectively. Triphenyl tetrazolium chloride staining was performed to detect cerebral infarct size, and the modified neurologic severity score was used to examine neurological deficits. LDH activity and protein damage were assessed using kits. HT22 cell vitality and apoptosis were examined using CCK-8 assay and TUNEL staining, respectively. Interactions between Foxc1, Ubqln1, Sirt1, and Ezh2 were analyzed using CoIP, ChIP and/or dual-luciferase reporter gene assays. RESULTS Fisetin alleviated protein damage and ubiquitinated protein aggregation and neuronal death caused by MCAO/R and OGD/R. Ubqln1 knockdown abrogated the inhibitory effect of fisetin on OGD/R-induced protein damage, ubiquitinated protein aggregation, and neuronal death in HT22 cells. Further experiments demonstrated that Foxc1 functions as a transcriptional activator of Ubqln1 and that Sirt1 promotes Foxc1 expression by deacetylating Ezh2 and inhibiting its activity. Furthermore, Sirt1 knockdown abrogated fisetin-mediated biological effects on OGD/R-treated HT22 cells. CONCLUSION Fisetin improved proteostasis during cerebral IRI by regulating the Sirt1/Foxc1/Ubqln1 signaling axis. Our findings strongly suggest that fisetin-mediated inhibition of protein damage after ischemic stroke is a part of the mechanism through which fisetin is neuroprotective in cerebral IRI.
Collapse
Affiliation(s)
- Xunhu Gu
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yuqin Xie
- Department of Laboratory Medicine, Nanchang medical College, Nanchang 330006, Jiangxi, China
| | - Qian Cao
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhuo Hou
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Wei Wang
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
11
|
Chen L, Xiong Y, Chopp M, Pang H, Emanuele M, Zhang ZG, Mahmood A, Zhang Y. Vepoloxamer improves functional recovery in rat after traumatic brain injury: A dose-response and therapeutic window study. Neurochem Int 2024; 173:105659. [PMID: 38142856 PMCID: PMC10872547 DOI: 10.1016/j.neuint.2023.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. There are no effective therapies available for TBI patients. Vepoloxamer is an amphiphilic polyethylene-polypropylene-polyethylene tri-block copolymer that seals membranes and restores plasma membrane integrity in damaged cells. We previously demonstrated that treatment of TBI rats with Vepoloxamer improves functional recovery. However, additional studies are needed to potentially translate Vepoloxamer treatment from preclinical studies into clinical applications. We thus conducted a study to investigate dose-response and therapeutic window of Vepoloxamer on functional recovery of adult rats after TBI. To identify the most effective dose of Vepoloxamer, male Wistar adult rats with controlled cortical impact (CCI) injury were randomly treated with 0 (vehicle), 100, 300, or 600 mg/kg of Vepoloxamer, administered intravenously (IV) at 2 h after TBI. We then performed a therapeutic window study in which the rats were treated IV with the most effective single dose of Vepoloxamer at different time points of 2 h, 4 h, 1 day, or 3 days after TBI. A battery of cognitive and neurological tests was performed. Animals were killed 35 days after TBI for histopathological analysis. Dose-response experiments showed that Vepoloxamer at all three tested doses (100, 300, 600 mg/kg) administered 2 h post injury significantly improved cognitive functional recovery, whereas Vepoloxamer at doses of 300 and 600 mg/kg, but not the 100 mg/kg dose, significantly reduced lesion volume compared to saline treatment. However, Vepoloxamer at 300 mg/kg showed significantly improved neurological and cognitive outcomes than treatment with a dose of 600 mg/kg. In addition, our data demonstrated that the dose of 300 mg/kg of Vepoloxamer administered at 2 h, 4 h, 1 day, or 3 days post injury significantly improved neurological function compared with vehicle, whereas Vepoloxamer administered at 2 h or 4 h post injury significantly improved cognitive function compared with the 1-day and 3-day treatments, with the most robust effect administered at 2 h post injury. The present study demonstrated that Vepoloxamer improves functional recovery in a dose-and time-dependent manner, with therapeutic efficacy compared with vehicle evident even when the treatment is initiated 3 days post TBI in the rat.
Collapse
Affiliation(s)
- Liang Chen
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Haiyan Pang
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA
| | | | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Yanlu Zhang
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA.
| |
Collapse
|
12
|
Su D, Zhang R, Wang X, Ding Q, Che F, Zhang W, Wu W, Li P, Tang B. A new multi-parameter imaging platform for in vivo drug efficacy evaluation of ischemic stroke. Talanta 2024; 266:125133. [PMID: 37659227 DOI: 10.1016/j.talanta.2023.125133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Ischemic stroke with high incidence and disability rate severely endangers human health. Current clinical treatment strategies are quite limited, new drugs for ischemic stroke are urgently needed. However, most existing methods for the efficacy evaluation of new drugs possess deficiencies of divorcing from the true biological context, single detection indicator and complex operations, leading to evaluation biases and delaying drug development process. In this work, leveraging the advantages of fluorescence imaging with non-invasive, real-time, in-situ, high selectivity and high sensitivity, a new multi-parameter simultaneous fluorescence imaging platform (MPSFL-Platform) based on two fluorescence materials was constructed to evaluate the efficacy of new drug for ischemic stroke. Through simultaneous fluorescence observing three key indicators of ischemic stroke, malondialdehyde (MDA), formaldehyde (FA), and monoamine oxidase A (MAO-A), the efficacy evaluations of three drugs for ischemic stroke were real-time and in-situ performed. Compared with edaravone and butylphthalide, edaravone dexborneol exhibited better therapeutic effect by using MPSFL-Platform. The successful establishment of MPSFL-Platform is serviceable to accelerate the conduction of preclinical trial and the exploration of pathophysiology mechanism for drugs related to ischemic stroke and other brain diseases, which is perspective to promote the efficiency of new drug development.
Collapse
Affiliation(s)
- Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| | - Qi Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Feida Che
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Wei Wu
- Department of Neurology, Qi-Lu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Kang X, Cao Y, Sun G, Fei D, Kang K, Meng X, Zhao M. CircPTP4A2 Promotes Microglia Polarization in Cerebral Ischemic Stroke via miR-20b-5p/YTHDF1/TIMP2 Axis. Neuromolecular Med 2023; 25:501-515. [PMID: 37704831 DOI: 10.1007/s12017-023-08751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/12/2023] [Indexed: 09/15/2023]
Abstract
Activated microglia play dual roles in ischemic stroke (IS) according to its polarization states. Herein, we investigated the function of circPTP4A2 in regulating microglia polarization in IS. IS models were established by MACO/R and OGD/R treatment. TTC staining was employed to detect cerebral infarct size. Cell vitality was measured using CCK-8 assay. CD16 and CD206 levels were examined using flow cytometry. The interactions between circPTP4A2, miR-20b-5p, and YTHDF1 were analyzed by dual-luciferase reporter gene, RIP, or RNA pull-down assays. circPTP4A2 was upregulated in IS patients. circPTP4A2 knockdown alleviated MCAO/R-induced cerebral injury in mice. circPTP4A2 knockdown promoted microglia M2 polarization after OGD/R. circPTP4A2 promoted YTHDF1 expression by sponging miR-20b-5p. The promoting effect of circPTP4A2 knockdown on microglia M2 polarization was abrogated by miR-20b-5p inhibition. YTHDF1 activated the NF-κB pathway by increasing TIMP2 mRNA stability and expression. circPTP4A2 downregulation promoted microglia M2 polarization to inhibit IS development by regulating the miR-20b-5p/YTHDF1/TIMP2/NF-κB axis.
Collapse
Affiliation(s)
- Xianxin Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Yanhui Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Guodong Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Dongsheng Fei
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Nangang District, Harbin, 150000, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
14
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
15
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential therapeutic effect of statins in multiple sclerosis: beneficial or detrimental effects. Inflammopharmacology 2023; 31:1671-1682. [PMID: 37160526 DOI: 10.1007/s10787-023-01240-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
Multiple sclerosis (MS) is a chronic progressive disabling disease of the central nervous system (CNS) characterized by demyelination and neuronal injury. Dyslipidemia is observed as one of the imperative risk factors involved in MS neuropathology. Also, chronic inflammation in MS predisposes to the progress of dyslipidemia. Therefore, treatment of dyslipidemia in MS by statins may attenuate dyslipidemia-induced MS and avert MS-induced metabolic changes. Therefore, the present review aimed to elucidate the possible effects of statins on the pathogenesis and outcomes of MS. Statins adversely affect the cognitive function in MS by decreasing brain cholesterol CoQ10, which is necessary for the regulation of neuronal mitochondrial function. However, statins could be beneficial in MS by shifting the immune response from pro-inflammatory Th17 to an anti-inflammatory regulatory T cell (Treg). The protective effect of statins against MS is related to anti-inflammatory and immunomodulatory effects with modulation of fibrinogen and growth factors. In conclusion, the effects of statins on MS neuropathology seem to be conflicting, as statins seem to be protective in the acute phase of MS through anti-inflammatory and antioxidant effects. However, statins lead to detrimental effects in the chronic phase of MS by reducing brain cholesterol and inhibiting the remyelination process.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M. B. Ch. B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M. B. Ch. B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
16
|
Wang J, Wang Y, Xiaohalati X, Su Q, Liu J, Cai B, Yang W, Wang Z, Wang L. A Bioinspired Manganese-Organic Framework Ameliorates Ischemic Stroke through its Intrinsic Nanozyme Activity and Upregulating Endogenous Antioxidant Enzymes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206854. [PMID: 37129343 PMCID: PMC10369237 DOI: 10.1002/advs.202206854] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Following stroke, oxidative stress induced by reactive oxygen species (ROS) aggravates neuronal damage and enlarges ischemic penumbra, which is devastating to stroke patients. Nanozyme-based antioxidants are emerging to treat stroke through scavenging excessive ROS. However, most of nanozymes cannot efficiently scavenge ROS in neuronal cytosol and mitochondria, due to low-uptake abilities of neurons and barriers of organelle membranes, significantly limiting nanozymes' neuroprotective effects. To overcome this limitation, a manganese-organic framework modified with polydopamine (pDA-MNOF), capable of not only mimicking catalytic activities of natural SOD2's catalytic domain but also upregulating two endogenous antioxidant enzymes in neurons is fabricated. With such a dual anti-ROS effect, this nanozyme robustly decreases cellular ROS and effectively protects them from ROS-induced injury. STAT-3 signaling is found to play a vital role in pDA-MNOF activating the two antioxidant enzymes, HO1 and SOD2. In vivo pDA-MNOF treatment significantly improves the survival of middle cerebral artery occlusion (MCAo) mice by reducing infarct volume and more importantly, promotes animal behavioral recovery. Further, pDA-MNOF activates vascular endothelial growth factor expression, a downstream target of STAT3 signaling, thus enhancing angiogenesis. Taken together, the biochemical, cell-biological, and animal-level behavioral data demonstrate the potentiality of pDA-MNOF as a dual ROS-scavenging agent for stroke treatment.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Yang Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Xiakeerzhati Xiaohalati
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Qiangfei Su
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Jingwei Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Bo Cai
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Wen Yang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Lin Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| |
Collapse
|
17
|
Shabani Z, Farhoudi M, Rahbarghazi R, Karimipour M, Mehrad H. Cellular, histological, and behavioral pathological alterations associated with the mouse model of photothrombotic ischemic stroke. J Chem Neuroanat 2023; 130:102261. [PMID: 36967096 DOI: 10.1016/j.jchemneu.2023.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Photothrombotic (PT) stroke model is a reliable method to induce ischemic stroke in the target site using the excitation of photosensitive agents such as Rose Bengal (RB) dye after light illumination. Here, we performed a PT-induced brain ischemic model using a green laser and photosensitive agent RB and confirmed its efficiency through cellular, histological, and neurobehavioral approaches. METHODS Mice were randomly allocated into RB; Laser irradiation; and RB + Laser irradiation groups. Mice were exposed to a green laser at a wavelength of 532 nm and intensity of 150 mW in a mouse model after injection of RB under stereotactic surgery. The pattern of Hemorrhagic and ischemic changes were evaluated throughout the study. The volume of the lesion site was calculated using unbiased stereological methods. For investigation of neurogenesis, we performed double - (BrdU/NeuN) immunofluorescence (IF) staining on day 28 following the last- BrdU injection. To assess the effect and quality of ischemic stroke on neurological behavior, the Modified neurological severity score (mNSS) test was done on days 1, 7, 14, and 28 days after stroke induction. RESULTS Laser irradiation plus RB induced hemorrhagic tissue and pale ischemic changes over the 5 days. In the next few days, microscopic staining revealed neural tissue degeneration, demarcated necrotic site, and neuronal injury. BrdU staining showed a significant number of proliferating cells in the periphery of the lesion site in the Laser irradiation plus RB group compared to the group (p < 0.05) while the percent of NeuN+ cells per BrdU- positive cells was reduced. Also, prominent astrogliosis was observed in the periphery of irradiated sites on day 28. Neurological deficits were detected in mice from Laser irradiation plus the RB group. No histological or functional deficits were detected in RB and Laser irradiation groups. CONCLUSIONS Taken together, our study showed cellular and histologic pathological changes which are associated with the PT induction model. Our findings indicated that the undesirable microenvironment and inflammatory conditions could affect neurogenesis concomitantly with functional deficits. Moreover, this research showed that this model is a focal, reproducible, noninvasive and accessible stroke model with a distinctive demarcation similar to human stroke conditions.
Collapse
|
18
|
Zhao Q, Li H, Li H, Xie F, Zhang J. Research progress of neuroinflammation-related cells in traumatic brain injury: A review. Medicine (Baltimore) 2023; 102:e34009. [PMID: 37352020 PMCID: PMC10289497 DOI: 10.1097/md.0000000000034009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
Neuroinflammation after traumatic brain injury (TBI) is related to chronic neurodegenerative diseases and is one of the causes of acute secondary injury after TBI. Therefore, it is particularly important to clarify the role of cellular mechanisms in the neuroinflammatory response after TBI. The objective of this article is to understand the involvement of cells during the TBI inflammatory response (for instance, astrocytes, microglia, and oligodendrocytes) and shed light on the recent progress in the stimulation and interaction of granulocytes and lymphocytes, to provide a novel approach for clinical research. We searched articles in PubMed published between 1950 and 2023, using the following keywords: TBI, neuroinflammation, inflammatory cells, neuroprotection, clinical. Articles for inclusion in this paper were finalized based on their novelty, representativeness, and relevance to the main arguments of this review. We found that the neuroinflammatory response after TBI includes the activation of glial cells, the release of inflammatory mediators in the brain, and the recruitment of peripheral immune cells. These inflammatory responses not only induce secondary brain damage, but also have a role in repairing the nervous system to some extent. However, not all of the mechanisms of cell-to-cell interactions have been well studied. After TBI, clinical treatment cannot simply suppress the inflammatory response, and the inflammatory phenotype of patients' needs to be defined according to their specific conditions after injury. Clinical trials of personalized inflammation regulation therapy for specific patients should be carried out in order to improve the prognosis of patients.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
19
|
Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio 2023; 20:100668. [PMID: 37273791 PMCID: PMC10232914 DOI: 10.1016/j.mtbio.2023.100668] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a complex disease that often appears in young adults. It is characterized by a high incidence, limited treatment options, and poor clinical outcomes. This disease not only causes dysfunction and psychological disorders in patients but also brings a heavy burden to the society. Currently, autologous nerve grafting is the gold standard in clinical treatment, but complications, such as the limited source of donor tissue and scar tissue formation, often further limit the therapeutic effect. Recently, a growing number of studies have used tissue-engineered materials to create a natural microenvironment similar to the nervous system and thus promote the regeneration of neural tissue and the recovery of impaired neural function with promising results. Hydrogels are often used as materials for the culture and differentiation of neurogenic cells due to their unique physical and chemical properties. Hydrogels can provide three-dimensional hydration networks that can be integrated into a variety of sizes and shapes to suit the morphology of neural tissues. In this review, we discuss the recent advances of engineered hydrogels for peripheral nerve repair and analyze the role of several different therapeutic strategies of hydrogels in PNI through the application characteristics of hydrogels in nerve tissue engineering (NTE). Furthermore, the prospects and challenges of the application of hydrogels in the treatment of PNI are also discussed.
Collapse
Affiliation(s)
- Yao Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Bin Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| |
Collapse
|
20
|
Liu Y, Dong X, Huo H, Feng L, Tong D, Liu J, Zhang H, Zheng Y, Wang S, Wang D. Effects of programmed flexor-extensor alternating electrical acupoint stimulation on upper limb motor functional reconstruction after stroke: study protocol for a double-blind, randomized controlled trial. Trials 2023; 24:324. [PMID: 37170159 PMCID: PMC10174617 DOI: 10.1186/s13063-023-07283-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Stroke's prevalence and morbidity are increasing (Guano, et al. Neuro 89:53-61, 2017), and limb motor dysfunction is left in most patients (Gittler, et al. JAMA 319:820-821, 2018). Particularly, the rehabilitation of upper limbs is more difficult and time-consuming (Borges, et al. The Cochrane database of systematic reviews 10:CD011887, 2018). METHODS A double-blind randomized controlled trial (RCT) will be conducted to investigate whether a new functional electrical stimulation (FES) combined with acupoint therapy is more effective in the rehabilitation of upper limb motor dysfunction after stroke. Patients who meet the inclusion criteria will be randomly divided into two groups: programmed flexor-extensor alternating electrical acupoint stimulation group (PES group) and conventional flexor-extensor alternating electrical acupoint stimulation group (CES group), which will be treated for 3 weeks. The primary outcome measures are electroencephalogram (EEG) and surface electromyogram (sEMG). The secondary outcome variables include MBI (modified Barthel index), China Stroke Scale (CSS), FMA-U (Fugl-Meyer assessment upper limb), MMT (manual muscle testing), and Brunnstrom. DISCUSSION The results of this study are expected to verify the efficacy of PES therapy in the rehabilitation of upper limb motor function after stroke. This may promote the widespread use of the therapy in hospitals, communities, and homes for early and continuous treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT05333497. Registered on April 11, 2022.
Collapse
Affiliation(s)
- Yang Liu
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Xu Dong
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China
| | - Hong Huo
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China
| | - Liyuan Feng
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China
| | - Dan Tong
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Jiahui Liu
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Hongyan Zhang
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Yingkang Zheng
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Shuai Wang
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Dongyan Wang
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China.
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China.
| |
Collapse
|
21
|
Qiao N, An Z, Fu Z, Chen X, Tong Q, Zhang Y, Ren H. Kinsenoside alleviates oxidative stress-induced blood-brain barrier dysfunction via promoting Nrf2/HO-1 pathway in ischemic stroke. Eur J Pharmacol 2023; 949:175717. [PMID: 37054938 DOI: 10.1016/j.ejphar.2023.175717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
An ischemic stroke usually causes blood-brain barrier (BBB) damage and excessive oxidative stress (OS) levels. Kinsenoside (KD), a major effective compound extracted in Chinese herbal medicine Anoectochilus roxburghii (Orchidaceae), has anti-OS effects. The present study focused on exploring KD's protection against OS-mediated cerebral endothelial cell damage and BBB damage within the mouse model. Intracerebroventricular administration of KD upon reperfusion after 1 h ischemia decreased infarct volumes, neurological deficit, brain edema, neuronal loss, and apoptosis 72 h post-ischemic stroke. KD improved BBB structure and function, as evidenced by a lower 18F-fluorodeoxyglucose pass rate of the BBB and upregulation of tight junction (TJ) proteins such as occludin, claudin-5, and zonula occludens-1 (ZO-1). KD protected bEnd.3 endothelial cells from oxygen and glucose deprivation/reoxygenation (OGD/R) injury in an in-vitro study. Meanwhile, OGD/R reduced transepithelial electronic resistance, whereas KD significantly increased TJ protein levels. Furthermore, based on in-vivo and in-vitro research, KD alleviated OS in endothelial cells, which is related to nuclear factor, erythroid 2 like 2 (Nrf2) nuclear translocation as well as Nrf2/haem oxygenase 1 signaling protein stimulation. Our findings demonstrated that KD might serve as a potential compound for treating ischemic stroke involving antioxidant mechanisms.
Collapse
Affiliation(s)
- Nan Qiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohong An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeyu Fu
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xingyu Chen
- Department of Clinical Laboratory, The Central Hospital of Wuhan, Wuhan, China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hong Ren
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Sugimoto K, Yang J, Fischer P, Takizawa T, Mulder I, Qin T, Erdogan TD, Yaseen MA, Sakadžić S, Chung DY, Ayata C. Optogenetic Spreading Depolarizations Do Not Worsen Acute Ischemic Stroke Outcome. Stroke 2023; 54:1110-1119. [PMID: 36876481 PMCID: PMC10050120 DOI: 10.1161/strokeaha.122.041351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/01/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Spreading depolarizations (SDs) are believed to contribute to injury progression and worsen outcomes in focal cerebral ischemia because exogenously induced SDs have been associated with enlarged infarct volumes. However, previous studies used highly invasive methods to trigger SDs that can directly cause tissue injury (eg, topical KCl) and confound the interpretation. Here, we tested whether SDs indeed enlarge infarcts when induced via a novel, noninjurious method using optogenetics. METHODS Using transgenic mice expressing channelrhodopsin-2 in neurons (Thy1-ChR2-YFP), we induced 8 optogenetic SDs to trigger SDs noninvasively at a remote cortical location in a noninjurious manner during 1-hour distal microvascular clip or proximal an endovascular filament occlusion of the middle cerebral artery. Laser speckle imaging was used to monitor cerebral blood flow. Infarct volumes were then quantified at 24 or 48 hours. RESULTS Infarct volumes in the optogenetic SD arm did not differ from the control arm in either distal or proximal middle cerebral artery occlusion, despite a 6-fold and 4-fold higher number of SDs, respectively. Identical optogenetic illumination in wild-type mice did not affect the infarct volume. Full-field laser speckle imaging showed that optogenetic stimulation did not affect the perfusion in the peri-infarct cortex. CONCLUSIONS Altogether, these data show that SDs induced noninvasively using optogenetics do not worsen tissue outcomes. Our findings compel a careful reexamination of the notion that SDs are causally linked to infarct expansion.
Collapse
Affiliation(s)
- Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 7558505, Japan
| | - Joanna Yang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Paul Fischer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Tsubasa Takizawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Inge Mulder
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Taylan D. Erdogan
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
| | - Mohammad A. Yaseen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - David Y. Chung
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
23
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
24
|
Peng C, Yang LJ, Zhang C, Jiang Y, Shang LWX, He JB, Zhou ZW, Tao X, Tie L, Chen AF, Xie HH. Low-dose nifedipine rescues impaired endothelial progenitor cell-mediated angiogenesis in diabetic mice. Acta Pharmacol Sin 2023; 44:44-57. [PMID: 35882957 PMCID: PMC9813355 DOI: 10.1038/s41401-022-00948-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/24/2022] [Indexed: 01/18/2023]
Abstract
It is of great clinical significance to develop potential novel strategies to prevent diabetic cardiovascular complications. Endothelial progenitor cell (EPC) dysfunction is a key contributor to diabetic vascular complications. In the present study we evaluated whether low-dose nifedipine could rescue impaired EPC-mediated angiogenesis and prevent cardiovascular complications in diabetic mice. Diabetes was induced in mice by five consecutive injections of streptozotocin (STZ, 60 mg·kg-1·d-1, i.p.). Diabetic mice were treated with low-dose nifedipine (1.5 mg·kg-1·d-1, i.g.) for six weeks. Then, circulating EPCs in the peripheral blood were quantified, and bone marrow-derived EPCs (BM-EPCs) were prepared. We showed that administration of low-dose nifedipine significantly increased circulating EPCs, improved BM-EPCs function, promoted angiogenesis, and reduced the cerebral ischemic injury in diabetic mice. Furthermore, we found that low-dose nifedipine significantly increased endothelial nitric oxide synthase (eNOS) expression and intracellular NO levels, and decreased the levels of intracellular O2.- and thrombospondin-1/2 (TSP-1/2, a potent angiogenesis inhibitor) in BM-EPCs of diabetic mice. In cultured BM-EPCs, co-treatment with nifedipine (0.1, 1 μM) dose-dependently protected against high-glucose-induced impairment of migration, and suppressed high-glucose-induced TSP-1 secretion and superoxide overproduction. In mice with middle cerebral artery occlusion, intravenous injection of diabetic BM-EPCs treated with nifedipine displayed a greater ability to promote local angiogenesis and reduce cerebral ischemic injury compared to injection of diabetic BM-EPCs treated with vehicle, and the donor-derived BM-EPCs homed to the recipient ischemic brain. In conclusion, low-dose nifedipine can enhance EPCs' angiogenic potential and protect against cerebral ischemic injury in diabetic mice. It is implied that chronic treatment with low-dose nifedipine may be a safe and economic manner to prevent ischemic diseases (including stroke) in diabetes.
Collapse
Affiliation(s)
- Cheng Peng
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Li-Jun Yang
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yu Jiang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Liu-Wen-Xin Shang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jia-Bei He
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhen-Wei Zhou
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - He-Hui Xie
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
25
|
Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci 2022; 23:11193. [PMID: 36232495 PMCID: PMC9570205 DOI: 10.3390/ijms231911193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.
Collapse
Affiliation(s)
- Alice Jacquens
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Edward J. Needham
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Vincent Degos
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Pierre Gressens
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - David Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
26
|
Quan X, Han Y, Lu P, Ding Y, Wang Q, Li Y, Wei J, Huang Q, Wang R, Zhao Y. Annexin V-Modified Platelet-Biomimetic Nanomedicine for Targeted Therapy of Acute Ischemic Stroke. Adv Healthc Mater 2022; 11:e2200416. [PMID: 35708176 DOI: 10.1002/adhm.202200416] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Indexed: 01/24/2023]
Abstract
Thromboembolic stroke is typically characterized by the activation of platelets, resulting in thrombus in the cerebral vascular system, leading to high morbidity and mortality globally. Intravenous thrombolysis by tissue plasminogen activator (tPA) administration within 4.5 h from the onset of symptoms is providing a standard therapeutic strategy for ischemic stroke, but this reagent simultaneously shows potential serious adverse effects, e.g., hemorrhagic transformation. Herein, a novel delivery platform based on Annexin V and platelet membrane is developed for tPA (APLT-PA) to enhance targeting efficiency, therapeutic effects, and reduce the risk of intracerebral hemorrhage in acute ischemic stroke. After preparation by extrusion of platelet membrane and subsequent insertion of Annexin V to liposomes, APLT-PA exhibits a high targeting efficiency to activated platelet in vitro and thrombosis site in vivo, due to the binding to phosphatidylserine (PS) and activated platelet membrane proteins. One dose of APLT-PA leads to obvious thrombolysis and significant improvement of neurological function within 7 days in mice with photochemically induced acute ischemic stroke. This study provides a novel, safe platelet-biomimetic nanomedicine for precise thrombolytic treatment of acute ischemic stroke, and offers new theories for the design and exploitation of cell-mimetic nanomedicine for diverse biomedical applications.
Collapse
Affiliation(s)
- Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Pengde Lu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yuanfu Ding
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Qingfu Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Jianwen Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Qiaoxian Huang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, 999078, P. R. China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
27
|
Denorme F, Portier I, Rustad JL, Cody MJ, de Araujo CV, Hoki C, Alexander MD, Grandhi R, Dyer MR, Neal MD, Majersik JJ, Yost CC, Campbell RA. Neutrophil extracellular traps regulate ischemic stroke brain injury. J Clin Invest 2022; 132:154225. [PMID: 35358095 PMCID: PMC9106355 DOI: 10.1172/jci154225] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke prompts a strong inflammatory response, which is associated with exacerbated outcomes. In this study, we investigated mechanistic regulators of neutrophil extracellular trap (NET) formation in stroke and whether they contribute to stroke outcomes. NET-forming neutrophils were found throughout brain tissue of ischemic stroke patients, and elevated plasma NET biomarkers correlated with worse stroke outcomes. Additionally, we observed increased plasma and platelet surface-expressed high-mobility group box 1 (HMGB1) in stroke patients. Mechanistically, platelets were identified as the critical source of HMGB1 that caused NETs in the acute phase of stroke. Depletion of platelets or platelet-specific knockout of HMGB1 significantly reduced plasma HMGB1 and NET levels after stroke, and greatly improved stroke outcomes. We subsequently investigated the therapeutic potential of neonatal NET-inhibitory factor (nNIF) in stroke. Mice treated with nNIF had smaller brain infarcts, improved long-term neurological and motor function, and enhanced survival after stroke. nNIF specifically blocked NET formation without affecting neutrophil recruitment after stroke. Importantly, nNIF also improved stroke outcomes in diabetic and aged mice and was still effective when given 1 hour after stroke onset. These results support a pathological role for NETs in ischemic stroke and warrant further investigation of nNIF for stroke therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ramesh Grandhi
- Deparment of Radiology and Imaging Sciences, and,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Mitchell R. Dyer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Robert A. Campbell
- Molecular Medicine Program,,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
28
|
CX3CL1 inhibits NLRP3 inflammasome-induced microglial pyroptosis and improves neuronal function in mice with experimentally-induced ischemic stroke. Life Sci 2022; 300:120564. [DOI: 10.1016/j.lfs.2022.120564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022]
|
29
|
Tai SH, Huang SY, Chao LC, Lin YW, Huang CC, Wu TS, Shan YS, Lee AH, Lee EJ. Lithium upregulates growth-associated protein-43 (GAP-43) and postsynaptic density-95 (PSD-95) in cultured neurons exposed to oxygen-glucose deprivation and improves electrophysiological outcomes in rats subjected to transient focal cerebral ischemia following a long-term recovery period. Neurol Res 2022; 44:870-878. [PMID: 35348035 DOI: 10.1080/01616412.2022.2056817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Lithium has numerous neuroplastic and neuroprotective effects in patients with stroke. Here, we evaluated whether delayed and short-term lithium treatment reduces brain infarction volume and improves electrophysiological and neurobehavioral outcomes following long-term recovery after cerebral ischemia and the possible contributions of lithium-mediated mechanisms of neuroplasticity. METHODS Male Sprague Dawley rats were subjected to right middle cerebral artery occlusion for 90 min, followed by 28 days of recovery. Lithium chloride (1 mEq/kg) or vehicle was administered via intraperitoneal infusion once per day at 24 h after reperfusion onset. Neurobehavioral outcomes and somatosensory evoked potentials (SSEPs) were examined before and 28 days after ischemia-reperfusion. Brain infarction was assessed using Nissl staining. Primary cortical neuron cultures were exposed to oxygen-glucose deprivation (OGD) and treated with 2 or 20 μM lithium for 24 or 48 h; subsequent brain-derived neurotrophic factor (BDNF), growth-associated protein-43 (GAP-43), postsynaptic density-95 (PSD-95), and synaptosomal-associated protein-25 (SNAP-25) levels were analyzed using western blotting. RESULTS Compared to controls, lithium significantly reduced infarction volume in the ischemic brain and improved electrophysiological and neurobehavioral outcomes at 28 days post-insult. In cultured cortical neurons, BDNF, GAP-43, and PSD-95 expression were enhanced by 24- and 48-h treatment with lithium after OGD. CONCLUSION Lithium upregulates BDNF, GAP-43, and PSD-95, which partly accounts for its improvement of neuroplasticity and provision of long-term neuroprotection in the ischemic brain.Abbreviations: BDNF: brain-derived neurotrophic factor; ECM: extracellular matrix; EDTA: ethylenediaminetetraacetic acid; GAP-43: growth-associated protein-43; GSK-3β: glycogen synthase kinase-3β; HBSS: Hank's balanced salt solution; LCBF: local cortical blood perfusion; LDF: laser-Doppler flowmetry; MCAO: middle cerebral artery occlusion; MMP: matrix metalloproteinase; NMDA: N-methyl-D-aspartate; NMDAR: N-methyl-D-aspartate receptor; OCT: optimal cutting temperature compound; OGD: oxygen-glucose deprivation; PSD-95: postsynaptic density-95; SDS: sodium dodecyl sulfate; SNAP-25: synaptosomal-associated protein-25; SSEP: somatosensory evoked potential.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yang Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Chun Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Lin
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chih Huang
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Hua Lee
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - E-Jian Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
30
|
Mohamud Yusuf A, Hagemann N, Ludewig P, Gunzer M, Hermann DM. Roles of Polymorphonuclear Neutrophils in Ischemic Brain Injury and Post-Ischemic Brain Remodeling. Front Immunol 2022; 12:825572. [PMID: 35087539 PMCID: PMC8787127 DOI: 10.3389/fimmu.2021.825572] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 01/02/2023] Open
Abstract
Following ischemic stroke, polymorphonuclear neutrophils (PMNs) are rapidly recruited to the ischemic brain tissue and exacerbate stroke injury by release of reactive oxygen species (ROS), proteases and proinflammatory cytokines. PMNs may aggravate post-ischemic microvascular injury by obstruction of brain capillaries, contributing to reperfusion deficits in the stroke recovery phase. Thus, experimental studies which specifically depleted PMNs by delivery of anti-Ly6G antibodies or inhibited PMN brain entry, e.g., by CXC chemokine receptor 2 (CXCR2) or very late antigen-4 (VLA-4) blockade in the acute stroke phase consistently reduced neurological deficits and infarct volume. Although elevated PMN responses in peripheral blood are similarly predictive for large infarcts and poor stroke outcome in human stroke patients, randomized controlled clinical studies targeting PMN brain infiltration did not improve stroke outcome or even worsened outcome due to serious complications. More recent studies showed that PMNs have decisive roles in post-ischemic angiogenesis and brain remodeling, most likely by promoting extracellular matrix degradation, thereby amplifying recovery processes in the ischemic brain. In this minireview, recent findings regarding the roles of PMNs in ischemic brain injury and post-ischemic brain remodeling are summarized.
Collapse
Affiliation(s)
- Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Nina Hagemann
- Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany.,Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| |
Collapse
|
31
|
Troshev D, Voronkov D, Pavlova A, Abaimov D, Latanov A, Fedorova T, Berezhnoy D. Time Course of Neurobehavioral Disruptions and Regional Brain Metabolism Changes in the Rotenone Mice Model of Parkinson’s Disease. Biomedicines 2022; 10:biomedicines10020466. [PMID: 35203675 PMCID: PMC8962442 DOI: 10.3390/biomedicines10020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/10/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by slow progression with a long prodromal stage and the gradual evolution of both neuropsychological symptoms and subtle motor changes, preceding motor dysfunction. Thus, in order for animal models of PD to be valid, they should reproduce these characteristics of the disease. One of such models, in which neuropathology is induced by chronic injections of low doses of mitochondrial toxin rotenone, is well established in rats. However, data on this model adapted to mice remain controversial. We have designed the study to describe the timecourse of motor and non-motor symptoms during chronic subcutaneous administration of rotenone (4 mg/kg daily for 35 days) in C57BL/6 mice. We characterize the underlying neuropathological processes (dopaminergic neuron degeneration, regional brain metabolism, monoamine neurotransmitter and lipid peroxidation changes) at different timepoints: 1 day, 2 weeks and 5 weeks of daily rotenone exposure. Based on the behavioral data, we can describe three stages of pathology: cognitive changes from week 2 of rotenone exposure, subtle motor changes in week 3–4 and motor dysfunction starting roughly from week 4. Neuropathological changes in this model include a general decrease in COX activity in different areas of the brain (acute effect of rotenone) and a more specific decrease in midbrain (chronic effect), followed by significant neurodegeneration in SNpc but not VTA by the 5th week of rotenone exposure. However, we were unable to find changes in the level of monoamine neurotransmitters neither in the striatum nor in the cortex, nor in the level of lipid peroxidation in the brainstem. Thus, the gradual progression of pathology in this model is linked with metabolic changes, rather than with oxidative stress or tonic neurotransmitter release levels. Overall, this study supports the idea that a low-dose rotenone mouse model can also reproduce different stages of PD as well as rats.
Collapse
Affiliation(s)
- Dmitry Troshev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov Street, 26, 119334 Moscow, Russia;
| | - Dmitry Voronkov
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoeshosse, 80, 125367 Moscow, Russia; (D.V.); (D.A.); (T.F.)
| | - Anastasia Pavlova
- Biological Faculty, Moscow State University, Leninskie Gory, 1s12, 119234 Moscow, Russia; (A.P.); (A.L.)
| | - Denis Abaimov
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoeshosse, 80, 125367 Moscow, Russia; (D.V.); (D.A.); (T.F.)
| | - Alexander Latanov
- Biological Faculty, Moscow State University, Leninskie Gory, 1s12, 119234 Moscow, Russia; (A.P.); (A.L.)
| | - Tatiana Fedorova
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoeshosse, 80, 125367 Moscow, Russia; (D.V.); (D.A.); (T.F.)
| | - Daniil Berezhnoy
- Research Center of Neurology, Laboratory of Clinical and Experimental Neurochemistry, Volokolamskoeshosse, 80, 125367 Moscow, Russia; (D.V.); (D.A.); (T.F.)
- Biological Faculty, Moscow State University, Leninskie Gory, 1s12, 119234 Moscow, Russia; (A.P.); (A.L.)
- Correspondence:
| |
Collapse
|
32
|
Gonçalves SC, Bassi BL, Kangussu LM, Alves DT, Ramos LK, Fernandes LF, Alves MT, Sinisterra R, Bruch GE, Santos RA, Massensini AR, Campagnole-Santos MJ. Alamandine Induces Neuroprotection in Ischemic Stroke Models. Curr Med Chem 2022; 29:3483-3498. [DOI: 10.2174/0929867329666220204145730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Background and Objective:
Stroke, a leading cause of mortality and disability, characterized by neuronal death, can be induced by a reduction or interruption of blood flow. In this study, the role of Alamandine, a new peptide of the renin-angiotensin system, was evaluated in in-vitro and in-vivo brain ischemia models.
Method:
In the in-vitro model, hippocampal slices from male C57/Bl6 mice were placed in a glucose-free aCSF solution and bubbled with 95% N2 and 5% CO2 to mimic brain ischemia. An Alamandine concentration-response curve was generated to evaluate cell damage, glutamatergic excitotoxicity, and cell death. In the in-vivo model, cerebral ischemia/reperfusion was induced by bilateral occlusion of common carotid arteries (BCCAo-untreated) in SD rats. An intracerebroventricular injection of Alamandine was given 20–30 min before BCCAo. Animals were subjected to neurological tests 24 h and 72 h after BCCAo. Cytokine levels, oxidative stress markers, and immunofluorescence were assessed in the brain 72 h after BCCAo.
Results:
Alamandine was able to protect brain slices from cellular damage, excitotoxicity and cell death. When the Alamandine receptor was blocked, protective effects were lost. ICV injection of Alamandine attenuated neurological deficits of animals subjected to BCCAo and reduced the number of apoptotic neurons/cells. Furthermore, Alamandine induced anti-inflammatory effects in BCCAo animals as shown by reductions in TNFα, IL-1β, IL-6, and antioxidant effects through attenuation of the decreased SOD, catalase, and GSH activities in the brain.
Conclusion:
This study showed, for the first time, a neuroprotective role for Alamandine in different ischemic stroke models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gisele E. Bruch
- Neuroscience Center, Department of Physiology and Biophysics
| | | | | | | |
Collapse
|
33
|
Chen X, Wang J, Ge L, Lu G, Wan H, Jiang Y, Yao Z, Deng G, Zhang X. A fibrin targeted molecular imaging evaluation of microvascular no-reflow in acute ischemic stroke. Brain Behav 2022; 12:e2474. [PMID: 35025138 PMCID: PMC8865146 DOI: 10.1002/brb3.2474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/21/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To investigate the relationship between fibrin deposition and "no-reflow" within microcirculation after thrombolysis in acute ischemic stroke (AIS). MATERIALS AND METHODS Experiments were approved by the institutional animal care and use committee. An experimental AIS model was induced in C57BL/6 mice by middle cerebral artery occlusion (MCAO) via the photothrombotic method. Mice were randomly assigned to non-thrombolytic or thrombolytic treated groups (n = 12 per group). The modified Neurological Severity Score and Fast Beam Balance Test were performed by a researcher blinded to the treatment method. MRI was utilized to evaluate all of the mice. An FXIIIa-targeted probe was applied to detect fibrin deposition in acute ischemic brain regions by fluorescence imaging. Necrosis and pathological changes of brain tissue were estimated via Hematoxylin and eosin staining while fibrin deposition was observed by immunohistochemistry. RESULTS Thrombolytic therapy improved AIS clinical symptoms. The infarct area of non-thrombolytic treated mice was significantly greater than that of the thrombolytic treated mice (p < .0001). Fluorescent imaging indicated fibrin deposition in ischemic brain tissue in both groups, with less fibrin in non-thrombolytic treated mice than thrombolytic treated mice, though the difference was not significant. Brain cells with abnormal morphology, necrosis, and liquefication were observed in the infarcted area for both groups. Clotted red blood cells (RBCs) and fibrin build-up in capillaries were found near the ischemic area in both non-thrombolytic and thrombolytic treated groups of mice. CONCLUSION Fibrin deposition and stacked RBCs contribute to microcirculation no-reflow in AIS after thrombolytic therapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Ge
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hailin Wan
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yeqing Jiang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Deng
- Department of Intervention and Vascular Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaolong Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Chovsepian A, Berchtold D, Winek K, Mamrak U, Ramírez Álvarez I, Dening Y, Golubczyk D, Weitbrecht L, Dames C, Aillery M, Fernandez‐Sanz C, Gajewski Z, Dieterich M, Janowski M, Falkai P, Walczak P, Plesnila N, Meisel A, Pan‐Montojo F. A Primeval Mechanism of Tolerance to Desiccation Based on Glycolic Acid Saves Neurons in Mammals from Ischemia by Reducing Intracellular Calcium-Mediated Excitotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103265. [PMID: 34904402 PMCID: PMC8811841 DOI: 10.1002/advs.202103265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Indexed: 06/09/2023]
Abstract
Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.
Collapse
Affiliation(s)
- Alexandra Chovsepian
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
| | - Daniel Berchtold
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Katarzyna Winek
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
- Present address:
Present address: Edmond and Lily Safra Center for Brain SciencesHebrew University of JerusalemJerusalem9190401Israel
| | - Uta Mamrak
- Laboratory of Experimental Stroke ResearchInstitute for Stroke and Dementia Research (ISD)University of Munich Medical CenterFeodor‐Lynen‐Strasse 1781377MunichGermany
| | - Inés Ramírez Álvarez
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Yanina Dening
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
| | | | - Luis Weitbrecht
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Claudia Dames
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Marine Aillery
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
- Present address:
Present address: SeppicÎle‐de‐FranceLa Garenne‐Colombes92250France
| | - Celia Fernandez‐Sanz
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
- Present address:
Present address: Center for Translational MedicineDepartment of MedicineThomas Jefferson UniversityPhiladelphiaPA19107USA
| | - Zdzislaw Gajewski
- Center for Translational MedicineWarsaw University of Life SciencesWarsaw02‐787Poland
| | - Marianne Dieterich
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Miroslaw Janowski
- Program in Image Guided NeurointerventionsDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMD21201USA
| | - Peter Falkai
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
| | - Piotr Walczak
- Program in Image Guided NeurointerventionsDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMD21201USA
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke ResearchInstitute for Stroke and Dementia Research (ISD)University of Munich Medical CenterFeodor‐Lynen‐Strasse 1781377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Andreas Meisel
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Francisco Pan‐Montojo
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| |
Collapse
|
35
|
Dong XH, Peng C, Zhang YY, Jiang Y, Yang LJ, He JB, Tao X, Zhang C, Chen AF, Xie HH. Low-Dose Piperlongumine Rescues Impaired Function of Endothelial Progenitor Cells and Reduces Cerebral Ischemic Injury in High-Fat Diet-Fed Mice. Front Pharmacol 2021; 12:689880. [PMID: 34867315 PMCID: PMC8634707 DOI: 10.3389/fphar.2021.689880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
It is of great clinical significance to develop potential novel strategies to prevent cardio-cerebrovascular complications in patients with hyperlipidemia. Vascular Endothelial integrity and function play a key role in the prevention of cardio-cerebrovascular diseases. Endothelial progenitor cells (EPCs) can home to sites of ischemic injury and promote endothelial regeneration and neovascularization. Hypercholesterolemia impairs the function of EPC. The present study attempted to identify the effect of piperlongumine on EPCs’ angiogenic potential and cerebral ischemic injury in high-fat diet-fed (HFD-fed) mice. Here, we showed that treatment with low-does piperlongumine (0.25 mg/kg/day) for 8 weeks significantly improved EPCs function and reduced the cerebral ischemic injury (both infarct volumes and neurobehavioral outcomes) in HFD-fed mice. In addition, low-dose piperlongumine administration increased intracellular NO level and reduced intracellular O2- level in EPCs of HFD-fed mice. Moreover, incubation with piperlongumine (1.0 μM, 24 h) reduced thrombospondin-1/2 (TSP-1/2, a potent angiogenesis inhibitor) expression levels in EPCs from HFD-fed mice, increased the therapeutic effect of EPC from HFD-fed mice on cerebral ischemic injury reduction and angiogenesis promotion in HFD-fed mice, and the donor derived EPCs homed to the recipient ischemic brain. In conclusion, low-dose piperlongumine can enhance EPCs’ angiogenic potential and protect against cerebral ischemic injury in HFD-fed mice. It is implied that treatment with low-dose piperlongumine might be a potential option to prevent ischemic diseases (including stroke) in patients with hyperlipidemia, and priming with piperlongumine might be a feasible way to improve the efficacy of EPC-based therapy for ischemic diseases.
Collapse
Affiliation(s)
- Xiao-Hui Dong
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Peng
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Yi Zhang
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Jiang
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Li-Jun Yang
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Bei He
- School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - He-Hui Xie
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Public Health and Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Zhou M, Li D, Li L, Zhao P, Yue S, Li X, Du Y, Fan X, Zhang M. Post-stroke treatment of storax improves long-term outcomes of stroke in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114467. [PMID: 34343648 DOI: 10.1016/j.jep.2021.114467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/28/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The lack of widely applicable pharmacological treatments for ischemic stroke patients has led to a growing interest in traditional medicine. The identification of pharmacologically active components of the clinically used traditional medicine has been considered translationally significant. SuHeXiang Wan is a prescription containing 15 herbs approved by Chinese National Drug Administration (CNDA) for treating ischemic stroke. Storax is one of the main contents in this prescription and is believed to play a significant pharmacological role, which has been used to treat stroke for nearly 1000 years in traditional Chinese medicine. Emerging experimental investigations suggested Storax might be effective for treating ischemic stroke. AIM OF THE STUDY This study aimed to test our hypothesis that post-stroke treatment of Storax can improve long-term outcomes of stroke. MATERIALS AND METHODS Male Wistar rats (250-280 g) subjected to 2 h of MCAO following reperfusion were treated with Storax by intragastric at 1 h and repeated at 3 h, 6 h after stroke. In the first set experiment, an array of neurological function deficits assessments were tested before and after stroke, brain lesion size was examined at 28 days after ischemia. CD31 and synatophysin were analyzed by immunohistochemistry. In the second set experiment, markers of proinflammatory activation were determined at 24 h after stroke. ELISA was performed to analyze brain concentrations of TNF-α, IL-1β and circulating levels of iNOS, ET-1, and immunohistochemistry was performed to determine GFAP, IBA-1 and NF-κB p65. RESULTS Storax significantly alleviated neurological deficits from 7 days after stroke and lasted until 28 days, corresponding to the significantly decreased lesion volume at 28 days after stroke; Meanwhile, Storax increased the density of CD31and SYP in peri-infarct areas. At 24 h after stroke, Storax significantly inhibited brain TNF-α, IL-1β expression and circulating iNOS, ET-1 levels, reduced the NF-κB/p65 positive cell number, and decreased activated microglia/macrophages and astrocytes cell numbers alongside reversed their morphological transformations. CONCLUSION Our experimental findings demonstrate treatment of Storax at the acute phase significantly improves long-term neurological outcomes in the focal stroke model of rats. We also speculate that inhibition of acute proinflammation activation by Storax might be associated with its beneficial pharmacological effect, but remain to define and elucidate in future investigation.
Collapse
Affiliation(s)
- Min Zhou
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin, China.
| | - Dongna Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Pei Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Shaoqian Yue
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yuzheng Du
- Acupuncture and Moxibustion Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xiang Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Meng Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
37
|
Shabani Z, Rahbarghazi R, Karimipour M, Ghadiri T, Salehi R, Sadigh‐Eteghad S, Farhoudi M. Transplantation of bioengineered Reelin-loaded PLGA/PEG micelles can accelerate neural tissue regeneration in photothrombotic stroke model of mouse. Bioeng Transl Med 2021; 7:e10264. [PMID: 35111956 PMCID: PMC8780906 DOI: 10.1002/btm2.10264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/20/2021] [Accepted: 10/16/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemic stroke is characterized by extensive neuronal loss, glial scar formation, neural tissue degeneration that leading to profound changes in the extracellular matrix, neuronal circuitry, and long-lasting functional disabilities. Although transplanted neural stem cells (NSCs) can recover some of the functional deficit after stroke, retrieval is not complete and repair of lost tissue is negligible. Therefore, the current challenge is to use the combination of NSCs with suitably enriched biomaterials to retain these cells within the infarct cavity and accelerate the formation of a de novo tissue. This study aimed to test the regenerative potential of polylactic-co-glycolic acid-polyethylene glycol (PLGA-PEG) micelle biomaterial enriched with Reelin and embryonic NSCs on photothrombotic stroke model of mice to gain appropriate methods in tissue engineering. For this purpose, two sets of experiments, either in vitro or in vivo models, were performed. In vitro analyses exhibited PLGA-PEG plus Reelin-induced proliferation rate (Ki-67+ NSCs) and neurite outgrowth (axonization and dendritization) compared to PLGA-PEG + NSCs and Reelin + NSCs groups (p < 0.05). Besides, neural differentiation (Map-2+ cells) was high in NSCs cultured in the presence of Reelin-loaded PLGA-PEG micelles (p < 0.05). Double immunofluorescence staining showed that Reelin-loaded PLGA-PEG micelles increased the number of migrating neural progenitor cells (DCX+ cells) and mature neurons (NeuN+ cells) around the lesion site compared to the groups received PLGA-PEG and Reelin alone after 1 month (p < 0.05). Immunohistochemistry results showed that the PLGA/PEG plus Reelin significantly decreased the astrocytic gliosis and increased local angiogenesis (vWF-positive cells) relative to the other groups. These changes led to the reduction of cavity size in the Reelin-loaded PLGA-PEG+NSCs group. Neurobehavioral tests indicated Reelin-loaded PLGA-PEG+NSCs promoted neurological outcome and functional recovery (p < 0.05). These results indicated that Reelin-loaded PLGA-PEG is capable of promoting NSCs dynamic growth, neuronal differentiation, and local angiogenesis following ischemic injury via providing a desirable microenvironment. These features can lead to neural tissue regeneration and functional recovery.
Collapse
Affiliation(s)
- Zahra Shabani
- Neurosciences Research Center (NSRC)Tabriz University of Medical SciencesTabrizIran,Department of Neurosciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran,Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimipour
- Department of Neurosciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran,Department of Anatomical Sciences, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Tahereh Ghadiri
- Department of Neurosciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Saeed Sadigh‐Eteghad
- Neurosciences Research Center (NSRC)Tabriz University of Medical SciencesTabrizIran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC)Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|
38
|
Qiu X, Chen H, Feng D, Dong W. [G-protein coupled receptor Smo positively regulates proliferation and migration of adult neural stem cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1588-1592. [PMID: 34755677 DOI: 10.12122/j.issn.1673-4254.2021.10.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of G-protein coupled receptor Smoothened (Smo) in regulating proliferation and migration of adult neural stem cells (ANSCs) and explore the underlying mechanism. METHODS Cultured ANSCs were treated with purmorphamine (PM, an agonist of Smo) or cyclopamine (CPM, an inhibitor of Smo), and the changes in cell proliferation migration abilities were assessed using cell counting kit-8 (CCK8) assay and wound healing assay, respectively. The mRNA expressions of membrane receptor Patched 1 (Ptch1), Smo, glioma-associated oncogene homolog 1 (Gli1), axon guidance cue slit1 (Slit1) and brain-derived neurotrophic factor (BDNF) in the treated cells were detected using real-time quantitative PCR (RT-PCR). RESULTS PM significantly promoted the proliferation (P < 0.01) and migration of ANSCs (P < 0.01), and up-regulated the mRNA expressions of Ptch1, Smo, Gli1, Slit1 and BDNF. Treatment with CPM significantly inhibited the proliferation and migration of ANSCs. CONCLUSION Modulating Smo activity can positively regulate the proliferation and migration of ANSCs possibly by regulating the expressions of BDNF and Slit1.
Collapse
Affiliation(s)
- X Qiu
- Experiment Teaching and Administration Center, Southern Medical University, Guangzhou 510515, China
| | - H Chen
- Department of Neurosurgery, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - D Feng
- Institute of Oncology, Southern Medical University, Guangzhou 510515, China
| | - W Dong
- Experiment Teaching and Administration Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
39
|
Fang J, Chopp M, Xin H, Zhang L, Wang F, Golembieski W, Zhang ZG, He L, Liu Z. Plasminogen deficiency causes reduced angiogenesis and behavioral recovery after stroke in mice. J Cereb Blood Flow Metab 2021; 41:2583-2592. [PMID: 33853408 PMCID: PMC8504962 DOI: 10.1177/0271678x211007958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plasminogen is involved in the process of angiogenesis; however, the underlying mechanism is unclear. Here, we investigated the potential contribution of plasmin/plasminogen in mediating angiogenesis and thereby contributing to functional recovery post-stroke. Wild-type plasminogen naive (Plg+/+) mice and plasminogen knockout (Plg-/-) mice were subjected to unilateral permanent middle cerebral artery occlusion (MCAo). Blood vessels were labeled with FITC-dextran. Functional outcomes, and cerebral vessel density were compared between Plg+/+ and Plg-/- mice at different time points after stroke. We found that Plg-/- mice exhibited significantly reduced functional recovery, associated with significantly decreased vessel density in the peri-infarct area in the ipsilesional cortex compared with Plg+/+ mice. In vitro, cerebral endothelial cells harvested from Plg-/- mice exhibited significantly reduced angiogenesis assessed using tube formation assay, and migration, as evaluated using Scratch assays, compared to endothelial cells harvested from Plg+/+ mice. In addition, using Western blots, expression of thrombospondin (TSP)-1 and TSP-2 were increased after MCAo in the Plg-/- group compared to Plg+/+ mice, especially in the ipsilesional side of brain. Taken together, our data suggest that plasmin/plasminogen down-regulates the expression level of TSP-1 and TSP-2, and thereby promotes angiogenesis in the peri-ischemic brain tissue, which contributes to functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jinghuan Fang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Department of Neurology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Department of Physics, Oakland University, Rochester, MI, USA
| | - Hongqi Xin
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Fengjie Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | | | - Li He
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
40
|
Alrafiah A, Alofi E, Almohaya Y, Hamami A, Qadah T, Almaghrabi S, Hakami N, Alrawaili MS, Tayeb HO. Angiogenesis Biomarkers in Ischemic Stroke Patients. J Inflamm Res 2021; 14:4893-4900. [PMID: 34588795 PMCID: PMC8473716 DOI: 10.2147/jir.s331868] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 01/01/2023] Open
Abstract
Introduction Stroke is a global health issue, and ischemic stroke is among the most common strokes affecting many people worldwide. Throughout ischemic stroke, various immune cells counter its effect by releasing cytokines, chemokines, and angiogenic molecules. These molecules can work as potential biomarkers in the diagnosis and monitoring of the progress of ischemic stroke. The current study investigated the use of angiogenic molecules as biomarkers in ischemic stroke patients. Methods The samples were obtained from twenty healthy subjects and nineteen patients with ischemic stroke. Multiplex assay was used to measure the serum levels of angiogenic biomarkers, including endoglin, VEGF-A, endothelin-1, G-CSF, and angiopoietin-2. All data were analyzed using an unpaired Student’s t-test. Correlations between measured parameters were made using Pearson correlations. Results Angiopoietin-2, VEGF-A, endothelin-1, and endoglin levels in stroke patients were significantly higher compared to healthy controls. Nevertheless, G-CSF level showed a non-significant increase in patients compared to controls. The correlation coefficient of measured angiogenic biomarkers among patients showed significant correlations between endoglin, angiopoietin, VEGF-A, and endothelin-1. Discussion The angiogenic factors were significantly increased in patients with ischemic stroke, which may help in the early detection of ischemic stroke and consequently prompt treatment and better prognosis.
Collapse
Affiliation(s)
- Aziza Alrafiah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebtisam Alofi
- Department of Physiology, Medical School, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yasser Almohaya
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Hamami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Talal Qadah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safa Almaghrabi
- Department of Physiology, Medical School, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nora Hakami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moafaq S Alrawaili
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Motevalian M, Tekyeh Maroof N, Nematollahi MH, Khajehasani F, Fatemi I. Atorvastatin modulates the expression of aging-related genes in the brain of aging induced by D-galactose in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1388-1394. [PMID: 35096297 PMCID: PMC8769518 DOI: 10.22038/ijbms.2021.58502.12996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Atorvastatin (AT), a competitive inhibitor of 3-hydroxymethyl-3-glutaryl-coenzyme-A reductase, is a cholesterol-lowering drug. AT has been shown to have neuroprotective, antioxidant, and anti-inflammatory properties. Previously, we have reported that AT could attenuate the behavioral, renal, and hepatic manifestations of aging. To clarify further the mechanisms involved, the present study was designed to evaluate the effect of AT on the expression of some aging-related genes in the brain of aging mice induced by D-galactose (DG). MATERIALS AND METHODS For this purpose, AT (0.1 and 1 mg/kg/p.o.) was administrated daily in DG-received (500 mg/kg/p.o.) mice model of aging for six weeks. At the end of the experiment, mice were decapitated to remove the brains. Then, the expression profiles of sirtuin 1 (Sirt1), P53, P21, Bcl-2, Bax, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), interleukin 1 beta (IL1β), tumor necrosis factor-alpha (TNFα), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and brain-derived neurotrophic factor (BDNF) were assessed using the real-time PCR method. RESULTS The present study shows that DG decreases the expression of Sirt1, Bcl-2, CAT, GPx, and BDNF while increasing the expression of P53, P21, Bax, IL-1β, iNOS, COX-2, and TNF-α. According to the findings of the present study, AT (more potentially at the dose of 1 mg/kg) modulates the expression of these aging-related genes in the brain of aging mice. CONCLUSION The results of the present study confirmed our previous reports on the anti-aging effects of AT at the gene level, the precise mechanisms and underlying pathways need further studies.
Collapse
Affiliation(s)
- Manijeh Motevalian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran , Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Tekyeh Maroof
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Khajehasani
- Department of Radiology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran,Corresponding author: Iman Fatemi. Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
42
|
Khalighfard S, Khori V, Alizadeh AM, Vahabzadeh G, Tajaldini M, Sedighi S, Nozarian Z, Khodayari H, Khodayari S, Ganji F, Veisi Malekshahi Z, Mirmajidi T. Dual effects of atorvastatin on angiogenesis pathways in the differentiation of mesenchymal stem cells. Eur J Pharmacol 2021; 907:174281. [PMID: 34217710 DOI: 10.1016/j.ejphar.2021.174281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Atorvastatin (ATO) can improve the transplantation efficacy of mesenchymal stem cells (MSCs) after acute myocardial infarction. The present study aimed at ATO effects on the angiogenesis-signaling pathways from MSCs' differentiation to tissue angiogenesis. MSCs were first prepared from BALB/c mouse bone marrow. MTT assay was then done for the biodegradability of MSCs with the extracellular matrix. After that, the differentiation of cells into the bone and fat tissues was confirmed by Alizarin and Oil Red O staining. The extracellular matrix was then combined with the cells to the implant. Animals were intraperitoneally treated with ATO (2 and 40 mg/kg, daily) three days before cell transplantation to one week after. Finally, the assays were carried out by electron microscopy, immunocytochemistry, ELISA, Western blot, and RT-qPCR techniques. A phase-contrast microscope confirmed the morphology of cells. The cell differentiation into bone and fat tissues was confirmed by Alizarin red staining and flow cytometry, and the cell proliferation was confirmed by MTT assay. Unlike ATO 40 mg/kg group, ATO 2 mg/kg was significantly increased the CD31, eNOS, podocalyxin, von Willibrand factor, and alpha-smooth muscle actin proteins levels compared to the control group in vitro experiment. The expression of CD31 and VEGF proteins, as angiogenesis markers, and Ki-67 protein, as a proliferation marker, was significantly higher in a low dose of ATO (2 mg/kg) than that of the control group in vivo experiment. Unlike ATO 40 mg/kg, the expression levels of ERK, AKT, NF-ҝB, Rho, STAT3, Ets-1, HIF-1α, and VEGF proteins and genes were significantly increased in ATO 2 mg/kg compared to the control. A low dose of ATO can be a beneficial tool in the function of MSCs and their differentiation to tissue angiogenesis.
Collapse
Affiliation(s)
- Solmaz Khalighfard
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahboubeh Tajaldini
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Sedighi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zohreh Nozarian
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Khodayari
- International Center for Personalized Medicine, Düsseldorf, Germany
| | - Saeed Khodayari
- International Center for Personalized Medicine, Düsseldorf, Germany
| | - Fatemeh Ganji
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Mirmajidi
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Shi X, Bai H, Wang J, Wang J, Huang L, He M, Zheng X, Duan Z, Chen D, Zhang J, Chen X, Wang J. Behavioral Assessment of Sensory, Motor, Emotion, and Cognition in Rodent Models of Intracerebral Hemorrhage. Front Neurol 2021; 12:667511. [PMID: 34220676 PMCID: PMC8248664 DOI: 10.3389/fneur.2021.667511] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the second most common type of stroke and has one of the highest fatality rates of any disease. There are many clinical signs and symptoms after ICH due to brain cell injury and network disruption resulted from the rupture of a tiny artery and activation of inflammatory cells, such as motor dysfunction, sensory impairment, cognitive impairment, and emotional disturbance, etc. Thus, researchers have established many tests to evaluate behavioral changes in rodent ICH models, in order to achieve a better understanding and thus improvements in the prognosis for the clinical treatment of stroke. This review summarizes existing protocols that have been applied to assess neurologic function outcomes in the rodent ICH models such as pain, motor, cognition, and emotion tests. Pain tests include mechanical, hot, and cold pain tests; motor tests include the following 12 types: neurologic deficit scale test, staircase test, rotarod test, cylinder test, grid walk test, forelimb placing test, wire hanging test, modified neurologic severity score, beam walking test, horizontal ladder test, and adhesive removal test; learning and memory tests include Morris water maze, Y-maze, and novel object recognition test; emotion tests include elevated plus maze, sucrose preference test, tail suspension test, open field test, and forced swim test. This review discusses these assessments by examining their rationale, setup, duration, baseline, procedures as well as comparing their pros and cons, thus guiding researchers to select the most appropriate behavioral tests for preclinical ICH research.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiying Bai
- Zhengzhou University Hospital Outpatient Surgery Center, Zhengzhou, China
| | - Junmin Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiarui Wang
- Keieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD, United States
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Meimei He
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuejun Zheng
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zitian Duan
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Danyang Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaxin Zhang
- Saint John Paul the Great Catholic High School, Dumfries, VA, United States
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Maeda Y, Otsuka T, Mitsuhara T, Okazaki T, Yuge L, Takeda M. A novel bone-thinning technique for transcranial stimulation motor-evoked potentials in rats. Sci Rep 2021; 11:12496. [PMID: 34127706 PMCID: PMC8203740 DOI: 10.1038/s41598-021-91780-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
Transcranial electrical stimulated motor-evoked potentials (tcMEPs) are widely used to evaluate motor function in humans, and even in animal studies, tcMEPs are used to evaluate neurological dysfunction. However, there is a dearth of reports on extended tcMEP recordings in both animal models and humans. Therefore, this study examined a new technique for stably recording tcMEPs over several weeks in six healthy female Sprague–Dawley rats. We thinned the skull bone using the skull base and spinal surgery technique to reduce electrical resistance for electrical stimulation. tcMEPs were recorded on days 1, 7, 14, 21, and 28 after surgery. The onset latency and amplitude of tcMEPs from the hindlimbs were recorded and evaluated, and histological analysis was performed. Stable amplitude and onset latency could be recorded over several weeks, and histological analysis indicated no complications attributable to the procedure. Thus, our novel technique allows for less invasive, safer, easier, and more stable extended tcMEP recordings than previously reported techniques. The presently reported technique may be applied to the study of various nerve injury models in rats: specifically, to evaluate the degree of nerve dysfunction and recovery in spinal cord injury, cerebral infarction, and brain contusion models.
Collapse
Affiliation(s)
- Yuyo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Takashi Otsuka
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takahito Okazaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaaki Takeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
45
|
Wang J, Su Q, Lv Q, Cai B, Xiaohalati X, Wang G, Wang Z, Wang L. Oxygen-Generating Cyanobacteria Powered by Upconversion-Nanoparticles-Converted Near-Infrared Light for Ischemic Stroke Treatment. NANO LETTERS 2021; 21:4654-4665. [PMID: 34008994 DOI: 10.1021/acs.nanolett.1c00719] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stroke is one of most common causes of death and disability. Most of neuroprotective agents fail to rescue neurons from cerebral ischemic insults, mainly because of targeting downstream cascading events, such as excitotoxicity, oxidative and nitrosative stress, and inflammation, rather than improving hypoxia that initially occurs. Here, we report a near-infrared light (NIR)-driven nanophotosynthesis biosystem capable of generating oxygen and absorbing carbon dioxide, thus rescuing neurons from ischemia toward treating stroke. Through cerebral delivery of S. elongatus that spontaneously photosynthesize and upconversion nanoparticles (UCNPs), NIR with excellent tissue penetrating capability is converted to visible light by UCNPs to activate S. elongatus generating oxygen in vivo, enhancing angiogenesis, reducing infarction, and facilitating repair of brain tissues, thus improving neuronal function recovery. The combination of cell-biological, biochemical, and animal-level behavioral data provides compelling evidence demonstrating that this oxygen-generating biosystem through jointly utilizing microorganism and nanotechnology represents a novel approach to stroke treatment.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiangfei Su
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiakeerzhati Xiaohalati
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
46
|
Xin H, Liu Z, Buller B, Li Y, Golembieski W, Gan X, Wang F, Lu M, Ali MM, Zhang ZG, Chopp M. MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells enhance axon-myelin remodeling and motor electrophysiological recovery after stroke. J Cereb Blood Flow Metab 2021; 41:1131-1144. [PMID: 32811262 PMCID: PMC8054728 DOI: 10.1177/0271678x20950489] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MiR-17-92 cluster enriched exosomes derived from multipotent mesenchymal stromal cells (MSCs) increase functional recovery after stroke. Here, we investigate the mechanisms underlying this recovery. At 24 h (h) post transient middle cerebral artery occlusion, rats received control liposomes or exosomes derived from MSCs infected with pre-miR-17-92 expression lentivirus (Exo-miR-17-92+) or control lentivirus (Exo-Con) intravenously. Compared to the liposomes, exosomes significantly reduced the intracortical microstimulation threshold current of the contralateral cortex for evoking impaired forelimb movements (day 21), increased the neurite and myelin density in the ischemic boundary area, and contralesional axonal sprouting into the caudal forelimb area of ipsilateral side and in the denervated spinal cord (day 28), respectively. The Exo-miR-17-92+ further enhanced axon-myelin remodeling and electrophysiological recovery compared with the EXO-Con. Ex vivo cultured rat brain slice data showed that myelin and neuronal fiber density were significantly increased by Exo-miR-17-92+, while significantly inhibited by application of the PI3K/Akt/mTOR pathway inhibitors. Our studies suggest that the miR-17-92 cluster enriched MSC exosomes enhanced neuro-functional recovery of stroke may be attributed to an increase of axonal extension and myelination, and this enhanced axon-myelin remodeling may be mediated in part via the activation of the PI3K/Akt/mTOR pathway induced by the downregulation of PTEN.
Collapse
Affiliation(s)
- Hongqi Xin
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Benjamin Buller
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Yanfeng Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | | | - Xinling Gan
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Fengjie Wang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Mei Lu
- Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Meser M Ali
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Zheng G Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA.,Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
47
|
Troshev D, Berezhnoy D, Kulikova O, Abaimov D, Muzychuk O, Nalobin D, Stvolinsky S, Fedorova T. The dynamics of nigrostriatal system damage and neurobehavioral changes in the rotenone rat model of Parkinson's disease. Brain Res Bull 2021; 173:1-13. [PMID: 33892082 DOI: 10.1016/j.brainresbull.2021.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Subcutaneous administration of rotenone to rats is currently a widely used method of reproducing Parkinson's disease (PD) symptoms, due to its convenience and effectiveness. Despite this, its influence on the temporal dynamics of parkinsonism development has yet to be investigated. The present study characterizes behavioral and neurochemical disruptancies underlying the dynamics of parkinsonism development in rats, induced by chronic subcutaneous administration of 2 mg/kg rotenone over the course of 18 days. In this article, the presence of two stages of pathology development in the model in question - the premotor and motor disability stages - are illustrated through a complex assessment of animal behavior, the development of an original neurological symptoms scale, and the establishment of the dynamics of histological and neurochemical changes in the brain. The premotor stage was observed up to 3 days of rotenone administration, and was characterized by a decrease in the motivational component of behavior, shown both in the food-getting task and in the "sucrose preference" test. A 30 % decrease in the number of cells in the substantia nigra pars compacta by the 3rd day of rotenone administration was also shown during the premotor stage. No changes in the metabolism of dopamine and other monoamine mediators were observed at this time. At the same time, acute administration of rotenone caused an increase in the GSH / GSSG ratio by 69 %. The motor stage developed after a decrease in the number of cells in the SNpc by more than 30 %, and was characterized by changes in the dopaminergic system, leading up to a 71 % reduction in dopamine levels in the striatum. It was shown that starting from 4 to 6 days of rotenone injection, experimental group animals begin to develop motor symptoms of Parkinson's disease, including bradykinesia, rigidity and postural instability. The development of motor impairment in all rats of this group was accompanied by significantly reduced activity of the antioxidant system in brain frontal lobe tissue homogenates, as compared to intact rats. Thus, in the used model of rotenone-induced parkinsonism, the dynamics of neuropathology development are described and the premotor stage of the disease is highlighted, which allows future using of this model in developing new approaches for treatment of parkinsonism at an early stage.
Collapse
Affiliation(s)
- Dmitry Troshev
- Faculty of Biology, Moscow State University, Leninskie gory, 1s12, Moscow, 119234, Russia.
| | - Daniil Berezhnoy
- Faculty of Biology, Moscow State University, Leninskie gory, 1s12, Moscow, 119234, Russia; Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| | - Olga Kulikova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| | - Denis Abaimov
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| | - Olga Muzychuk
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| | - Denis Nalobin
- Faculty of Biology, Moscow State University, Leninskie gory, 1s12, Moscow, 119234, Russia; Faculty of Biotechnology, Moscow State University, Leninskie gory, 1s51, Moscow, 119991, Russia
| | - Sergey Stvolinsky
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| | - Tatiana Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Volokolamskoe shosse, 80, Moscow, 125367, Russia
| |
Collapse
|
48
|
Krinock MJ, Singhal NS. Diabetes, stroke, and neuroresilience: looking beyond hyperglycemia. Ann N Y Acad Sci 2021; 1495:78-98. [PMID: 33638222 DOI: 10.1111/nyas.14583] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and mortality among type 2 diabetic patients. Preclinical and translational studies have identified critical pathophysiological mediators of stroke risk, recurrence, and poor outcome in diabetic patients, including endothelial dysfunction and inflammation. Most clinical trials of diabetes and stroke have focused on treating hyperglycemia alone. Pioglitazone has shown promise in secondary stroke prevention for insulin-resistant patients; however, its use is not yet widespread. Additional research into clinical therapies directed at diabetic pathophysiological processes to prevent stroke and improve outcome for diabetic stroke survivors is necessary. Resilience is the process of active adaptation to a stressor. In patients with diabetes, stroke recovery is impaired by insulin resistance, endothelial dysfunction, and inflammation, which impair key neuroresilience pathways maintaining cerebrovascular integrity, resolving poststroke inflammation, stimulating neural plasticity, and preventing neurodegeneration. Our review summarizes the underpinnings of stroke risk in diabetes, the clinical consequences of stroke in diabetic patients, and proposes hypotheses and new avenues of research for therapeutics to stimulate neuroresilience pathways and improve stroke outcome in diabetic patients.
Collapse
Affiliation(s)
- Matthew J Krinock
- Department of Neurology, University of California - San Francisco, San Francisco, California
| | - Neel S Singhal
- Department of Neurology, University of California - San Francisco, San Francisco, California
| |
Collapse
|
49
|
Wang J, Zhao J, Li S. Research progress on the therapeutic effect of olfactory ensheathing cell transplantation on ischemic stroke. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are a special type of glial cell in the olfactory system, which exhibit neuroprotective, immunomodulatory, and angiogenic effects. Although many studies have focused on the reversal of demyelination and axonal degeneration (during spinal cord injury) by OECs, few reports have focused on the ability of OECs to repair ischemic nerve injury. This article reviews the protective effects of OEC transplantation in ischemic stroke and provides a theoretical basis and new strategy for OEC transplantation in the treatment of ischemic stroke.
Collapse
|
50
|
Alam JJ, Krakovsky M, Germann U, Levy A. Continuous administration of a p38α inhibitor during the subacute phase after transient ischemia-induced stroke in the rat promotes dose-dependent functional recovery accompanied by increase in brain BDNF protein level. PLoS One 2020; 15:e0233073. [PMID: 33275615 PMCID: PMC7717516 DOI: 10.1371/journal.pone.0233073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
There is unmet need for effective stroke therapies. Numerous neuroprotection attempts for acute cerebral ischemia have failed and as a result there is growing interest in developing therapies to promote functional recovery through increasing synaptic plasticity. For this research study, we hypothesized that in addition to its previously reported role in mediating cell death during the acute phase, the alpha isoform of p38 mitogen-activated protein kinase, p38α, may also contribute to interleukin-1β-mediated impairment of functional recovery during the subacute phase after acute ischemic stroke. Accordingly, an oral, brain-penetrant, small molecule p38α inhibitor, neflamapimod, was evaluated as a subacute phase stroke treatment to promote functional recovery. Neflamapimod administration to rats after transient middle cerebral artery occlusion at two dose levels was initiated outside of the previously characterized therapeutic window for neuroprotection of less than 24 hours for p38α inhibitors. Six-week administration of neflamapimod, starting at 48 hours after reperfusion, significantly improved behavioral outcomes assessed by the modified neurological severity score at Week 4 and at Week 6 post stroke in a dose-dependent manner. Neflamapimod demonstrated beneficial effects on additional measures of sensory and motor function. It also resulted in a dose-related increase in brain-derived neurotrophic factor (BDNF) protein levels, a previously reported potential marker of synaptic plasticity that was measured in brain homogenates at sacrifice. Taken together with literature evidence on the role of p38α-dependent suppression by interleukin-1β of BDNF-mediated synaptic plasticity and BDNF production, our findings support a mechanistic model in which inhibition of p38α promotes functional recovery after ischemic stroke by blocking the deleterious effects of interleukin-1β on synaptic plasticity. The dose-related in vivo efficacy of neflamapimod offers the possibility of having a therapy for stroke that could be initiated outside the short time window for neuroprotection and for improving recovery after a completed stroke.
Collapse
Affiliation(s)
- John J. Alam
- EIP Pharma, Inc., Boston, Massachusetts, United States of America
- * E-mail:
| | | | - Ursula Germann
- EIP Pharma, Inc., Boston, Massachusetts, United States of America
| | | |
Collapse
|