1
|
Carvalho GA, Cavalcante DP, Parreira RC, Chiareli RA, Ortiz Leoncini G, Gomez RS, Ulrich H, Ferreira Caixeta L, Oliveira-Lima OC, Pinto MCX. Neurobiology of L-proline: From molecules to behavior. Neuroscience 2025; 568:116-129. [PMID: 39826672 DOI: 10.1016/j.neuroscience.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
L-proline is an amino acid with a unique cyclic structure, involvement in various physiological processes, such as protein synthesis, collagen production, and neurotransmission. This review explores the complex roles of proline in the central nervous system (CNS), where it contributes to both excitatory and inhibitory neurotransmission. Additionally, L-proline has distinct metabolic functions attributed to its structural properties. The concentration-dependent effects of L-proline indicate its importance in CNS function, with potential implications for health and disease. Studies in animal models suggest that L-proline influences cognitive function and behavior, with dysregulated levels linked to learning and memory deficits. Furthermore, this review addresses the neuropathological consequences of hyperprolinemia, a metabolic disorder marked by elevated L-proline levels in the CNS and examines the potential role of L-proline in neurological and psychiatric disorders. In sum, this work provides a comprehensive perspective on the neurobiological importance of L-proline, underscoring its involvement in neurotransmission, behavioral modulation, and disease pathology.
Collapse
Affiliation(s)
- Gustavo Almeida Carvalho
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Daniel Pereira Cavalcante
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Raphaela Almeida Chiareli
- Universidade Estadual de Goiás, Instituto de Ciências Agrárias e Sustentabilidade, Campus São Luis de Montes Belos, Goiás, Brazil
| | - Giovanni Ortiz Leoncini
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Leonardo Ferreira Caixeta
- Faculdade de Medicina, Departamento de Neurologia e Neuropsiquiatria, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Mauro Cunha Xavier Pinto
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil.
| |
Collapse
|
2
|
Liu M, Li M, He J, He Y, Yang J, Sun Z. Chiral Amino Acid Profiling in Serum Reveals Potential Biomarkers for Alzheimer's Disease. J Alzheimers Dis 2023; 94:291-301. [PMID: 37248903 DOI: 10.3233/jad-230142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disease, and increasing evidence has linked dysregulation of amino acids to AD pathogenesis. However, the existing studies often ignore the chirality of amino acids, and some results are inconsistent and controversial. The changes of amino acid profiles in AD from the perspective of enantiomers remain elusive. OBJECTIVE The purpose of this study is to investigate whether the levels of amino acids, especially D-amino acids, are deregulated in the peripheral serum of AD patients, with the ultimate goal of discovering novel biomarkers for AD. METHODS The chiral amino acid profiles were determined by HPLC-MS/MS with a pre-column derivatization method. Experimental data obtained from 37 AD patients and 34 healthy controls (HC) were statistically analyzed. RESULTS Among the 35 amino acids detected, D-proline, D/total-proline ratio, D-aspartate, and D/total-aspartate ratio were decreased, while D-phenylalanine was elevated in AD compared to HC. Significant age-dependent increases in D-proline, D/total-proline ratio, and D-phenylalanine were observed in HC, but not in AD. Receiver operator characteristic analyses of the combination of D-proline, D-aspartate, D-phenylalanine, and age for discriminating AD from HC provided satisfactory area under the curve (0.87), specificity (97.0%), and sensitivity (83.8%). Furthermore, the D-aspartate level was significantly decreased with the progression of AD, as assessed by the Clinical Dementia Rating Scale and Mini-Mental State Examination. CONCLUSION The panels of D-proline, D-phenylalanine, and D-aspartate in peripheral serum may serve as novel biomarker candidates for AD. The latter parameter is further associated with the severity of AD.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mo Li
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Jing He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Pollegioni L, Molla G, Sacchi S, Murtas G. Human D-aspartate Oxidase: A Key Player in D-aspartate Metabolism. Front Mol Biosci 2021; 8:689719. [PMID: 34250021 PMCID: PMC8260693 DOI: 10.3389/fmolb.2021.689719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
In recent years, the D-enantiomers of amino acids have been recognized as natural molecules present in all kingdoms, playing a variety of biological roles. In humans, d-serine and d-aspartate attracted attention for their presence in the central nervous system. Here, we focus on d-aspartate, which is involved in glutamatergic neurotransmission and the synthesis of various hormones. The biosynthesis of d-aspartate is still obscure, while its degradation is due to the peroxisomal flavin adenine dinucleotide (FAD)-containing enzyme d-aspartate oxidase. d-Aspartate emergence is strictly controlled: levels decrease in brain within the first days of life while increasing in endocrine glands postnatally and through adulthood. The human d-aspartate oxidase (hDASPO) belongs to the d-amino acid oxidase-like family: its tertiary structure closely resembles that of human d-amino acid oxidase (hDAAO), the enzyme that degrades neutral and basic d-amino acids. The structure-function relationships of the physiological isoform of hDASPO (named hDASPO_341) and the regulation of gene expression and distribution and properties of the longer isoform hDASPO_369 have all been recently elucidated. Beyond the substrate preference, hDASPO and hDAAO also differ in kinetic efficiency, FAD-binding affinity, pH profile, and oligomeric state. Such differences suggest that evolution diverged to create two different ways to modulate d-aspartate and d-serine levels in the human brain. Current knowledge about hDASPO is shedding light on the molecular mechanisms underlying the modulation of d-aspartate levels in human tissues and is pushing novel, targeted therapeutic strategies. Now, it has been proposed that dysfunction in NMDA receptor-mediated neurotransmission is caused by disrupted d-aspartate metabolism in the nervous system during the onset of various disorders (such as schizophrenia): the design of suitable hDASPO inhibitors aimed at increasing d-aspartate levels thus represents a novel and useful form of therapy.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
4
|
Usiello A, Di Fiore MM, De Rosa A, Falvo S, Errico F, Santillo A, Nuzzo T, Chieffi Baccari G. New Evidence on the Role of D-Aspartate Metabolism in Regulating Brain and Endocrine System Physiology: From Preclinical Observations to Clinical Applications. Int J Mol Sci 2020; 21:E8718. [PMID: 33218144 PMCID: PMC7698810 DOI: 10.3390/ijms21228718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
The endogenous amino acids serine and aspartate occur at high concentrations in free D-form in mammalian organs, including the central nervous system and endocrine glands. D-serine (D-Ser) is largely localized in the forebrain structures throughout pre and postnatal life. Pharmacologically, D-Ser plays a functional role by acting as an endogenous coagonist at N-methyl-D-aspartate receptors (NMDARs). Less is known about the role of free D-aspartate (D-Asp) in mammals. Notably, D-Asp has a specific temporal pattern of occurrence. In fact, free D-Asp is abundant during prenatal life and decreases greatly after birth in concomitance with the postnatal onset of D-Asp oxidase expression, which is the only enzyme known to control endogenous levels of this molecule. Conversely, in the endocrine system, D-Asp concentrations enhance after birth during its functional development, thereby suggesting an involvement of the amino acid in the regulation of hormone biosynthesis. The substantial binding affinity for the NMDAR glutamate site has led us to investigate the in vivo implications of D-Asp on NMDAR-mediated responses. Herein we review the physiological function of free D-Asp and of its metabolizing enzyme in regulating the functions of the brain and of the neuroendocrine system based on recent genetic and pharmacological human and animal studies.
Collapse
Affiliation(s)
- Alessandro Usiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Arianna De Rosa
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Francesco Errico
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100, 80055 Portici, Italy;
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Tommaso Nuzzo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| |
Collapse
|
5
|
Seckler JM, Lewis SJ. Advances in D-Amino Acids in Neurological Research. Int J Mol Sci 2020; 21:ijms21197325. [PMID: 33023061 PMCID: PMC7582301 DOI: 10.3390/ijms21197325] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
D-amino acids have been known to exist in the human brain for nearly 40 years, and they continue to be a field of active study to today. This review article aims to give a concise overview of the recent advances in D-amino acid research as they relate to the brain and neurological disorders. This work has largely been focused on modulation of the N-methyl-D-aspartate (NMDA) receptor and its relationship to Alzheimer’s disease and Schizophrenia, but there has been a wealth of novel research which has elucidated a novel role for several D-amino acids in altering brain chemistry in a neuroprotective manner. D-amino acids which have no currently known activity in the brain but which have active derivatives will also be reviewed.
Collapse
Affiliation(s)
- James M. Seckler
- Department Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| | - Stephen J. Lewis
- Department Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
6
|
PET imaging of medulloblastoma with an 18F-labeled tryptophan analogue in a transgenic mouse model. Sci Rep 2020; 10:3800. [PMID: 32123231 PMCID: PMC7051973 DOI: 10.1038/s41598-020-60728-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
In vivo positron emission tomography (PET) imaging is a key modality to evaluate disease status of brain tumors. In recent years, tremendous efforts have been made in developing PET imaging methods for pediatric brain tumors. Carbon-11 labelled tryptophan derivatives are feasible as PET imaging probes in brain tumor patients with activation of the kynurenine pathway, but the short half-life of carbon-11 limits its application. Using a transgenic mouse model for the sonic hedgehog (Shh) subgroup of medulloblastoma, here we evaluated the potential of the newly developed 1-(2-[18F]fluoroethyl)-L-tryptophan (1-L-[18F]FETrp) as a PET imaging probe for this common malignant pediatric brain tumor. 1-L-[18F]FETrp was synthesized on a PETCHEM automatic synthesizer with good chemical and radiochemical purities and enantiomeric excess values. Imaging was performed in tumor-bearing Smo/Smo medulloblastoma mice with constitutive actvation of the Smoothened (Smo) receptor using a PerkinElmer G4 PET-X-Ray scanner. Medulloblastoma showed significant and specific accumulation of 1-L-[18F]FETrp. 1-L-[18F]FETrp also showed significantly higher tumor uptake than its D-enantiomer, 1-D-[18F]FETrp. The uptake of 1-L-[18F]FETrp in the normal brain tissue was low, suggesting that 1-L-[18F]FETrp may prove a valuable PET imaging probe for the Shh subgroup of medulloblastoma and possibly other pediatric and adult brain tumors.
Collapse
|
7
|
He W, Wu G. Metabolism of Amino Acids in the Brain and Their Roles in Regulating Food Intake. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:167-185. [PMID: 32761576 DOI: 10.1007/978-3-030-45328-2_10] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amino acids (AAs) and their metabolites play an important role in neurological health and function. They are not only the building blocks of protein but are also neurotransmitters. In the brain, glutamate and aspartate are the major excitatory neurotransmitters, whereas γ-aminobutyrate (GABA, a metabolite of glutamate) and glycine are the major inhibitory neurotransmitters. Nitric oxide (NO, a metabolite of arginine), H2S (a metabolite of cysteine), serotonin (a metabolite of tryptophan) and histamine (a metabolite of histidine), as well as dopamine and norepinephrine (metabolites of tyrosine) are neurotransmitters to modulate synaptic plasticity, neuronal activity, learning, motor control, motivational behavior, emotion, and executive function. Concentrations of glutamine (a precursor of glutamate and aspartate), branched-chain AAs (precursors of glutamate, glutamine and aspartate), L-serine (a precursor of glycine and D-serine), methionine and phenylalanine in plasma are capable of affecting neurotransmission through the syntheses of glutamate, aspartate, and glycine, as well as the competitive transport of tryptophan and tyrosine across from the blood-brain barrier. Adequate consumption of AAs is crucial to maintain their concentrations and the production of neurotransmitters in the central nervous system. Thus, the content and balance of AAs in diets have a profound impact on food intake by animals. Knowledge of AA transport and metabolism in the brain is beneficial for improving the health and well-being of humans and animals.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
The Effect of Chirality on the Application of 5-[18F]Fluoro-Aminosuberic Acid ([18F]FASu) for Oxidative Stress Imaging. Mol Imaging Biol 2019; 22:873-882. [DOI: 10.1007/s11307-019-01450-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Investigation of cis-4-[ 18F]Fluoro-D-Proline Uptake in Human Brain Tumors After Multimodal Treatment. Mol Imaging Biol 2019; 20:1035-1043. [PMID: 29687323 DOI: 10.1007/s11307-018-1197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Cis-4-[18F]fluoro-D-proline (D-cis-[18F]FPro) has been shown to pass the intact blood-brain barrier and to accumulate in areas of secondary neurodegeneration and necrosis in the rat brain while uptake in experimental brain tumors is low. This pilot study explores the uptake behavior of D-cis-[18F]FPro in human brain tumors after multimodal treatment. PROCEDURES In a prospective study, 27 patients with suspected recurrent brain tumor after treatment with surgery, radiotherapy, and/or chemotherapy (SRC) were investigated by dynamic positron emission tomography (PET) using D-cis-[18F]FPro (22 high-grade gliomas, one unspecified glioma, and 4 metastases). Furthermore, two patients with untreated lesions were included (one glioblastoma, one reactive astrogliosis). Data were compared with the results of PET using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) which detects viable tumor tissue. Tracer distribution, mean and maximum lesion-to-brain ratios (LBRmean, LBRmax), and time-to-peak (TTP) of the time activity curve (TAC) of tracer uptake were evaluated. Final diagnosis was determined by histology (n = 9), clinical follow-up (n = 10), or by [18F]FET PET (n = 10). RESULTS D-cis-[18F]FPro showed high uptake in both recurrent brain tumors (n = 11) and lesions classified as treatment-related changes (TRC) only (n = 16) (LBRmean 2.2 ± 0.7 and 2.1 ± 0.6, n.s.; LBRmax 3.4 ± 1.2 and 3.2 ± 1.3, n.s.). The untreated glioblastoma and the lesion showing reactive astrogliosis exhibited low D-cis-[18F]FPro uptake. Distribution of [18F]FET and D-cis-[18F]FPro uptake was discordant in 21/29 cases indicating that the uptake mechanisms are different. CONCLUSION The high accumulation of D-cis-[18F]FPro in pretreated brain tumors and TRC supports the hypothesis that tracer uptake is related to cell death. Further studies before and after therapy are needed to assess the potential of D-cis-[18F]FPro for treatment monitoring.
Collapse
|
10
|
Cis-4-[18F]fluoro-D-proline detects neurodegeneration in patients with akinetic-rigid parkinsonism. Nucl Med Commun 2019; 40:383-387. [PMID: 30875335 DOI: 10.1097/mnm.0000000000000982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES This study aimed to investigate whether the amino acid PET tracer cis-4-[F]fluoro-D-proline [D-cis-[F]FPro] shows increased uptake in the basal ganglia of patients with neurodegenerative akinetic-rigid parkinsonism. D-Cis-[F]FPro is a sensitive PET tracer for inflammation-associated neurodegeneration in animal models. We hypothesized that D-cis-[F]FPro might also be a sensitive marker of alterations of the basal ganglia in parkinsonian syndromes. PARTICIPANTS AND METHODS Ten patients with neurodegenerative akinetic-rigid parkinsonism (five with idiopathic Parkinson's disease and five with atypical parkinsonian syndromes) were imaged with D-cis-[F]FPro and compared with 13 patients with brain tumors who had no basal ganglia involvement. PET images 20-50 min after injection were evaluated and tracer uptake in the basal ganglia was quantified using volume-of-interest analysis with basal ganglia to background ratios. The severity of disease was assessed with unified Parkinson's disease rating scale III and correlated with D-cis-[F]FPro uptake. RESULTS In patients with parkinsonism, volume-of-interest analysis showed mild, but significantly increased D-cis-[F]FPro uptake in the basal ganglia, pronounced in the lenticular nucleus. Disease severity correlated with D-cis-[F]FPro uptake in the right pallidum (r=-0.687, P=0.041). CONCLUSION Data suggest that D-cis-[F]FPro is a sensitive marker of inflammation-associated degenerative processes in parkinsonian syndromes.
Collapse
|
11
|
Verhoork SJM, Killoran PM, Coxon CR. Fluorinated Prolines as Conformational Tools and Reporters for Peptide and Protein Chemistry. Biochemistry 2018; 57:6132-6143. [DOI: 10.1021/acs.biochem.8b00787] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sanne J. M. Verhoork
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street Campus, Liverpool L3 3AF, U.K
| | - Patrick M. Killoran
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street Campus, Liverpool L3 3AF, U.K
| | - Christopher R. Coxon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street Campus, Liverpool L3 3AF, U.K
| |
Collapse
|
12
|
Improved Radiosynthesis and Biological Evaluations of L- and D-1-[ 18F]Fluoroethyl-Tryptophan for PET Imaging of IDO-Mediated Kynurenine Pathway of Tryptophan Metabolism. Mol Imaging Biol 2018; 19:589-598. [PMID: 27815661 DOI: 10.1007/s11307-016-1024-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Tryptophan metabolism via indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway plays a role in immunomodulation and has been emerging as a plausible target for cancer immunotherapy. Imaging IDO-mediated kynurenine pathway of tryptophan metabolism with positron emission tomography (PET) could provide valuable information for noninvasive assessment of cancer immunotherapy response. In this work, radiotracer 1-(2-[18F]fluoroethyl)-L-tryptophan (1-L-[18F]FETrp) and its enantioisomer 1-D-[18F]FETrp were synthesized and evaluated for PET imaging of IDO-mediated kynurenine pathway of tryptophan metabolism. PROCEDURES Enantiopure 1-L-[18F]FETrp and 1-D-[18F]FETrp were prepared by a nucleophilic reaction of N-boc-1-(2-tosylethyl) tryptophan tert-butyl ester with [18F]Fluoride, followed by acid hydrolysis in a GE Tracerlab FX-N module. In vitro cell uptake assays were performed with a breast cancer cell line MDA-MB-231. Small animal PET/computed tomography (CT) imaging was carried out in a mouse model bearing MDA-MB-231 xenografts. RESULTS Automatic radiosynthesis of 1-L-[18F]FETrp and 1-D-[18F]FETrp was achieved by a one-pot two-step approach in 19.0 ± 7.0 and 9.0 ± 3.0 % (n = 3) decay-corrected yield with radiochemical purity over 99 %, respectively. In vitro cell uptake study indicated the uptake of 1-D-[18F]FETrp in MDA-MB-231 cells was 0.73 ± 0.07 %/mg of protein at 60 min, while, the corresponding uptake of 1-L-[18F]FETrp was 6.60 ± 0.77 %/mg. Further mechanistic assays revealed that amino acid transport systems L-tpye amino acid transporter (LAT) and alanine-, serine-, and cysteine-preferring (ASC), and enzyme IDO expression were involved in cell uptake of 1-L-[18F]FETrp. Small animal PET/CT imaging study showed the tumor uptake of 1-L-[18F]FETrp was 4.6 ± 0.4 % ID/g, while, the tumor uptake of 1-D-[18F]FETrp was low to 1.0 ± 0.2 % ID/g, which were confirmed by ex vivo biodistribution study. CONCLUSIONS We have developed a practical method for the automatic radiosynthesis of 1-L-[18F]FETrp and 1-D-[18F]FETrp. Our biological evaluation results suggest that 1-L-[18F]FETrp is a promising radiotracer for PET imaging of IDO-mediated kynurenine pathway of tryptophan metabolism in cancer.
Collapse
|
13
|
Errico F, Nuzzo T, Carella M, Bertolino A, Usiello A. The Emerging Role of Altered d-Aspartate Metabolism in Schizophrenia: New Insights From Preclinical Models and Human Studies. Front Psychiatry 2018; 9:559. [PMID: 30459655 PMCID: PMC6232865 DOI: 10.3389/fpsyt.2018.00559] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
Besides d-serine, another d-amino acid with endogenous occurrence in the mammalian brain, d-aspartate, has been recently shown to influence NMDA receptor (NMDAR)-mediated transmission. d-aspartate is present in the brain at extracellular level in nanomolar concentrations, binds to the agonist site of NMDARs and activates this subclass of glutamate receptors. Along with its direct effect on NMDARs, d-aspartate can also evoke considerable l-glutamate release in specific brain areas through the presynaptic activation of NMDA, AMPA/kainate and mGlu5 receptors. d-aspartate is enriched in the embryonic brain of rodents and humans and its concentration strongly decreases after birth, due to the post-natal expression of the catabolising enzyme d-aspartate oxidase (DDO). Based on the hypothesis of NMDAR hypofunction in schizophrenia pathogenesis, recent preclinical and clinical studies suggested a relationship between perturbation of d-aspartate metabolism and this psychiatric disorder. Consistently, neurophysiological and behavioral characterization of Ddo knockout (Ddo -/-) and d-aspartate-treated mice highlighted that abnormally higher endogenous d-aspartate levels significantly increase NMDAR-mediated synaptic plasticity, neuronal spine density and memory. Remarkably, increased d-aspartate levels influence schizophrenia-like phenotypes in rodents, as indicated by improved fronto-hippocampal connectivity, attenuated prepulse inhibition deficits and reduced activation of neuronal circuitry induced by phencyclidine exposure. In healthy humans, a genetic polymorphism associated with reduced prefrontal DDO gene expression predicts changes in prefrontal phenotypes including greater gray matter volume and enhanced functional activity during working memory. Moreover, neurochemical detections in post-mortem brain of schizophrenia-affected patients have shown significantly reduced d-aspartate content in prefrontal regions, associated with increased DDO mRNA expression or DDO enzymatic activity. Overall, these findings suggest a possible involvement of dysregulated embryonic d-aspartate metabolism in schizophrenia pathophysiology and, in turn, highlight the potential use of free d-aspartate supplementation as a new add-on therapy for treating the cognitive symptoms of this mental illness.
Collapse
Affiliation(s)
- Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Tommaso Nuzzo
- Translational Neuroscience Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Translational Neuroscience Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Alessandro Usiello
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
14
|
Sacchi S, Novellis VD, Paolone G, Nuzzo T, Iannotta M, Belardo C, Squillace M, Bolognesi P, Rosini E, Motta Z, Frassineti M, Bertolino A, Pollegioni L, Morari M, Maione S, Errico F, Usiello A. Olanzapine, but not clozapine, increases glutamate release in the prefrontal cortex of freely moving mice by inhibiting D-aspartate oxidase activity. Sci Rep 2017; 7:46288. [PMID: 28393897 PMCID: PMC5385520 DOI: 10.1038/srep46288] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
D-aspartate levels in the brain are regulated by the catabolic enzyme D-aspartate oxidase (DDO). D-aspartate activates NMDA receptors, and influences brain connectivity and behaviors relevant to schizophrenia in animal models. In addition, recent evidence reported a significant reduction of D-aspartate levels in the post-mortem brain of schizophrenia-affected patients, associated to higher DDO activity. In the present work, microdialysis experiments in freely moving mice revealed that exogenously administered D-aspartate efficiently cross the blood brain barrier and stimulates L-glutamate efflux in the prefrontal cortex (PFC). Consistently, D-aspartate was able to evoke L-glutamate release in a preparation of cortical synaptosomes through presynaptic stimulation of NMDA, mGlu5 and AMPA/kainate receptors. In support of a potential therapeutic relevance of D-aspartate metabolism in schizophrenia, in vitro enzymatic assays revealed that the second-generation antipsychotic olanzapine, differently to clozapine, chlorpromazine, haloperidol, bupropion, fluoxetine and amitriptyline, inhibits the human DDO activity. In line with in vitro evidence, chronic systemic administration of olanzapine induces a significant extracellular release of D-aspartate and L-glutamate in the PFC of freely moving mice, which is suppressed in Ddo knockout animals. These results suggest that the second-generation antipsychotic olanzapine, through the inhibition of DDO activity, increases L-glutamate release in the PFC of treated mice.
Collapse
Affiliation(s)
- Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, 21100, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli studi dell'Insubria, 20131, Milano, Italy
| | - Vito De Novellis
- Department of Experimental Medicine, Section of Pharmacology, The Second University of Naples (SUN), 80138, Naples, Italy
| | - Giovanna Paolone
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100, Ferrara, Italy
| | - Tommaso Nuzzo
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples (SUN), 81100, Caserta, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Section of Pharmacology, The Second University of Naples (SUN), 80138, Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Section of Pharmacology, The Second University of Naples (SUN), 80138, Naples, Italy
| | - Marta Squillace
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy
| | - Paolo Bolognesi
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100, Ferrara, Italy
| | - Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, 21100, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli studi dell'Insubria, 20131, Milano, Italy
| | - Zoraide Motta
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, 21100, Varese, Italy
| | - Martina Frassineti
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100, Ferrara, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, 70121, Bari, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, 21100, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli studi dell'Insubria, 20131, Milano, Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100, Ferrara, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology, The Second University of Naples (SUN), 80138, Naples, Italy
| | - Francesco Errico
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Alessandro Usiello
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples (SUN), 81100, Caserta, Italy
| |
Collapse
|
15
|
Newberry RW, Raines RT. 4-Fluoroprolines: Conformational Analysis and Effects on the Stability and Folding of Peptides and Proteins. TOPICS IN HETEROCYCLIC CHEMISTRY 2016; 48:1-25. [PMID: 28690684 PMCID: PMC5501414 DOI: 10.1007/7081_2015_196] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proline is unique among proteinogenic amino acids because a pyrrolidine ring links its amino group to its side chain. This heterocycle constrains the conformations of the main chain and thus templates particular secondary structures. Proline residues undergo post-translational modification at the 4-position to yield 4-hydroxyproline, which is especially prevalent in collagen. Interest in characterizing the effects of this modification led to the use of 4-fluoroprolines to enhance inductive properties relative to the hydroxyl group of 4-hydroxyproline and to eliminate contributions from hydrogen bonding. The strong inductive effect of the fluoro group has three main consequences: enforcing a particular pucker upon the pyrrolidine ring, biasing the conformation of the preceding peptide bond, and accelerating cis/trans prolyl peptide bond isomerization. These subtle, yet reliable modulations make 4-fluoroproline-incorporation a complement to traditional genetic approaches for exploring structure-function relationships in peptides and proteins, as well as for endowing peptides and proteins with conformational stability.
Collapse
Affiliation(s)
- Robert W Newberry
- Departments of Chemistry and Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Ronald T Raines
- Departments of Chemistry and Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
16
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
17
|
Synthesis and biological evaluation of 18F-labeled fluoropropyl tryptophan analogs as potential PET probes for tumor imaging. Eur J Med Chem 2013; 70:768-80. [DOI: 10.1016/j.ejmech.2013.10.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022]
|
18
|
Geisler S, Willuweit A, Schroeter M, Zilles K, Hamacher K, Galldiks N, Shah NJ, Coenen HH, Langen KJ. Detection of remote neuronal reactions in the Thalamus and Hippocampus induced by rat glioma using the PET tracer cis-4-[¹⁸F]fluoro-D-proline. J Cereb Blood Flow Metab 2013; 33:724-31. [PMID: 23385199 PMCID: PMC3652687 DOI: 10.1038/jcbfm.2013.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/03/2013] [Accepted: 01/12/2013] [Indexed: 12/16/2022]
Abstract
After cerebral ischemia or trauma, secondary neurodegeneration may occur in brain regions remote from the lesion. Little is known about the capacity of cerebral gliomas to induce secondary neurodegeneration. A previous study showed that cis-4-[(18)F]fluoro-D-proline (D-cis-[(18)F]FPro) detects secondary reactions of thalamic nuclei after cortical infarction with high sensitivity. Here we investigated the potential of D-cis-[(18)F]FPro to detect neuronal reactions in remote brain areas in the F98 rat glioma model using ex vivo autoradiography. Although the tumor tissue of F98 gliomas showed no significant D-cis-[(18)F]FPro uptake, we observed prominent tracer uptake in 7 of 10 animals in the nuclei of the ipsilateral thalamus, which varied with the specific connectivity with the cortical areas affected by the tumor. In addition, strong D-cis-[(18)F]FPro accumulation was noted in the hippocampal area CA1 in two animals with ipsilateral F98 gliomas involving hippocampal subarea CA3 rostral to that area. Furthermore, focal D-cis-[(18)F]FPro uptake was present in the necrotic center of the tumors. Cis-4-[(18)F]fluoro-D-proline uptake was accompanied by microglial activation in the thalamus, in the hippocampus, and in the necrotic center of the tumors. The data suggest that brain tumors induce secondary neuronal reactions in remote brain areas, which may be detected by positron emission tomography (PET) using D-cis-[(18)F]FPro.
Collapse
Affiliation(s)
- Stefanie Geisler
- Institute of Neuroscience and Medicine, INM-4—Medical Imaging Physics, Research Centre Jülich, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, INM-4—Medical Imaging Physics, Research Centre Jülich, Jülich, Germany
| | - Michael Schroeter
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine, INM-1—Structural and Functional Organization of the Brain, Research Centre Jülich, Jülich, Germany
- C & O Vogt-Institute of Brain Research, University of Düsseldorf, Düsseldorf, Germany
| | - Kurt Hamacher
- C & O Vogt-Institute of Brain Research, University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, INM-5—Nuclear Chemistry, Research Centre Jülich, Jülich, Germany
| | - Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine, INM-4—Medical Imaging Physics, Research Centre Jülich, Jülich, Germany
| | - Heinz H Coenen
- C & O Vogt-Institute of Brain Research, University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, INM-5—Nuclear Chemistry, Research Centre Jülich, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, INM-4—Medical Imaging Physics, Research Centre Jülich, Jülich, Germany
| |
Collapse
|
19
|
Ermert J, Coenen HH. Methods for11C- and18F-labelling of amino acids and derivatives for positron emission tomography imaging. J Labelled Comp Radiopharm 2013; 56:225-36. [DOI: 10.1002/jlcr.2996] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/15/2012] [Accepted: 11/06/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Forschungszentrum Jülich GmbH; 52425; Jülich; Germany
| | - Heinz H. Coenen
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Forschungszentrum Jülich GmbH; 52425; Jülich; Germany
| |
Collapse
|
20
|
Wang L, Lieberman BP, Plössl K, Qu W, Kung HF. Synthesis and comparative biological evaluation of l- and d-isomers of 18F-labeled fluoroalkyl phenylalanine derivatives as tumor imaging agents. Nucl Med Biol 2011; 38:301-12. [DOI: 10.1016/j.nucmedbio.2010.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
|
21
|
McConathy J, Zhou D, Shockley SE, Jones LA, Griffin EA, Lee H, Adams SJ, Mach RH. Click Synthesis and Biologic Evaluation of (
R
)- and (
S
)-2-Amino-3-[1-(2-[
18
F]Fluoroethyl)-1
H
-[1,2,3]Triazol-4-yl]Propanoic Acid for Brain Tumor Imaging with Positron Emission Tomography. Mol Imaging 2010. [DOI: 10.2310/7290.2010.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jonathan McConathy
- Department of Radiology (Radiologic Sciences), Washington University School of Medicine, St. Louis, MO; Division of Radiological Sciences, Mallinckrodt Institute of Radiology, St. Louis, MO; and Molecular Neuroimaging, New Haven, CT
| | - Dong Zhou
- Department of Radiology (Radiologic Sciences), Washington University School of Medicine, St. Louis, MO; Division of Radiological Sciences, Mallinckrodt Institute of Radiology, St. Louis, MO; and Molecular Neuroimaging, New Haven, CT
| | - Stephany E. Shockley
- Department of Radiology (Radiologic Sciences), Washington University School of Medicine, St. Louis, MO; Division of Radiological Sciences, Mallinckrodt Institute of Radiology, St. Louis, MO; and Molecular Neuroimaging, New Haven, CT
| | - Lynne A. Jones
- Department of Radiology (Radiologic Sciences), Washington University School of Medicine, St. Louis, MO; Division of Radiological Sciences, Mallinckrodt Institute of Radiology, St. Louis, MO; and Molecular Neuroimaging, New Haven, CT
| | - Elizabeth A. Griffin
- Department of Radiology (Radiologic Sciences), Washington University School of Medicine, St. Louis, MO; Division of Radiological Sciences, Mallinckrodt Institute of Radiology, St. Louis, MO; and Molecular Neuroimaging, New Haven, CT
| | - Hsiaoju Lee
- Department of Radiology (Radiologic Sciences), Washington University School of Medicine, St. Louis, MO; Division of Radiological Sciences, Mallinckrodt Institute of Radiology, St. Louis, MO; and Molecular Neuroimaging, New Haven, CT
| | - Susan J. Adams
- Department of Radiology (Radiologic Sciences), Washington University School of Medicine, St. Louis, MO; Division of Radiological Sciences, Mallinckrodt Institute of Radiology, St. Louis, MO; and Molecular Neuroimaging, New Haven, CT
| | - Robert H. Mach
- Department of Radiology (Radiologic Sciences), Washington University School of Medicine, St. Louis, MO; Division of Radiological Sciences, Mallinckrodt Institute of Radiology, St. Louis, MO; and Molecular Neuroimaging, New Haven, CT
| |
Collapse
|
22
|
Abstract
D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes certain D-amino acids, notably the endogenous N-methyl D-aspartate receptor (NMDAR) co-agonist, D-serine. As such, it has the potential to modulate the function of NMDAR and to contribute to the widely hypothesized involvement of NMDAR signalling in schizophrenia. Three lines of evidence now provide support for this possibility: DAO shows genetic associations with the disorder in several, although not all, studies; the expression and activity of DAO are increased in schizophrenia; and DAO inactivation in rodents produces behavioural and biochemical effects, suggestive of potential therapeutic benefits. However, several key issues remain unclear. These include the regional, cellular and subcellular localization of DAO, the physiological importance of DAO and its substrates other than D-serine, as well as the causes and consequences of elevated DAO in schizophrenia. Herein, we critically review the neurobiology of DAO, its involvement in schizophrenia, and the therapeutic value of DAO inhibition. This review also highlights issues that have a broader relevance beyond DAO itself: how should we weigh up convergent and cumulatively impressive, but individually inconclusive, pieces of evidence regarding the role that a given gene may have in the aetiology, pathophysiology and pharmacotherapy of schizophrenia?
Collapse
|
23
|
Bejot R, Fowler T, Carroll L, Boldon S, Moore J, Declerck J, Gouverneur V. Fluorous Synthesis of18F Radiotracers with the [18F]Fluoride Ion: Nucleophilic Fluorination as the Detagging Process. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200803897] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Bejot R, Fowler T, Carroll L, Boldon S, Moore J, Declerck J, Gouverneur V. Fluorous Synthesis of18F Radiotracers with the [18F]Fluoride Ion: Nucleophilic Fluorination as the Detagging Process. Angew Chem Int Ed Engl 2009; 48:586-9. [DOI: 10.1002/anie.200803897] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
McConathy J, Goodman MM. Non-natural amino acids for tumor imaging using positron emission tomography and single photon emission computed tomography. Cancer Metastasis Rev 2008; 27:555-73. [PMID: 18648909 DOI: 10.1007/s10555-008-9154-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Amino acids are required nutrients for proliferating tumor cells, and amino acid transport is upregulated in many tumor types. Studies of radiolabeled amino acids in animals and humans demonstrate that amino acid based tracers have advantageous characteristics relative to 2-[(18)F]fluoro-2-deoxyglucose in certain tumors, particularly brain gliomas. Non-natural amino acids for tumor imaging generally have greater metabolic stability and can be labeled with longer-lived radionuclides for positron emission tomography and single photon emission computed tomography such as fluorine-18 and iodine-123. Amino acids enter cells via amino acid transport with varying selectivity based on their chemical structure. This review focuses on the rationale, biological basis, current status and future prospects of radiolabeled non-natural amino acids for tumor imaging and discusses various classes of these compounds including aromatic, alicyclic and alpha,alpha-dialkyl amino acids.
Collapse
Affiliation(s)
- Jonathan McConathy
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA.
| | | |
Collapse
|
26
|
cis-4-[(18)F]-Fluoro-l-proline fails to detect peripheral tumors in humans. Nucl Med Biol 2008; 35:895-900. [PMID: 19026951 DOI: 10.1016/j.nucmedbio.2008.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/11/2008] [Accepted: 08/26/2008] [Indexed: 11/21/2022]
Abstract
UNLABELLED System A amino acid transport is increased in transformed and malignant cells. The amino acid 4-cis[(18)F]fluoro-l-proline (cis-[(18)F]FPro) has been shown to be a substrate of the System A amino acid carrier. In this pilot study, we investigated the diagnostic potential of cis-[(18)F]FPro in patients with various tumors in comparison with [(18)F]fluorodeoxyglucose-positron emission tomography (FDG-PET). METHODS Eight patients (seven females, one male, age range 43-77 years) with large primary, recurrent or metastatic tumors of different histologies were included in this study. One patient had a recurrent non-Hodgkin lymphoma; two patients, metastatic colon or rectal cancer; one, a metastatic endometrial cancer; one, a multiple myeloma; one, an Ewing sarcoma; one, a metastatic breast cancer and one, a gastrointestinal stromal tumor. PET scans of the trunk were acquired at 1 h after intravenous injection of 400 MBq cis-[(18)F]FPro and compared to PET scans with [(18)F]FDG. RESULTS None of the tumors or metastatic lesions in this series of patients demonstrated relevant uptake of cis-[(18)F]FPro. In contrast, all tumors with exception of the multiple myeloma showed an intensive uptake of [(18)F]FDG. The mean standardized uptake value of cis-[(18)F]FPro in the tumor or metastases was significantly lower than that of [(18)F]FDG uptake (1.7+/-0.6 vs. 5.7+/-3.0; n=8; P<.01). CONCLUSION Although other System A-specific tracers have shown relevant tumor uptake, cis-[(18)F]FPro fails to detect most types of human tumors. Based on these results, we cannot recommend a further evaluation of this tracer as a tumor-seeking agent.
Collapse
|
27
|
Chorghade MS, Mohapatra DK, Sahoo G, Gurjar MK, Mandlecha MV, Bhoite N, Moghe S, Raines RT. Practical syntheses of 4-fluoroprolines. J Fluor Chem 2008; 129:781-784. [PMID: 19727323 PMCID: PMC2598397 DOI: 10.1016/j.jfluchem.2008.06.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
4-Fluoroprolines are among the most useful nonnatural amino acids in chemical biology. Here, practical routes are reported for the synthesis of the 2S,4R, 2S,4S, and 2R,4S diastereomers of 4-fluoroproline. Each route starts with (2S,4R)-4-hydroxyproline, which is a prevalent component of collagen and hence readily available, and uses a fluoride salt to install the fluoro group. Hence, the routes provide process-scale access to these useful nonnatural amino acids.
Collapse
|
28
|
Shikano N, Nakajima S, Kotani T, Ogura M, Sagara JI, Iwamura Y, Yoshimoto M, Kubota N, Ishikawa N, Kawai K. Transport of d-[1-14C]-amino acids into Chinese hamster ovary (CHO-K1) cells: implications for use of labeled d-amino acids as molecular imaging agents. Nucl Med Biol 2007; 34:659-65. [PMID: 17707806 DOI: 10.1016/j.nucmedbio.2007.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 04/28/2007] [Accepted: 05/10/2007] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The fact that d-amino acids have been found in various tissues and are involved in various functions is a clue to how to develop new imaging agents. We examined d-amino acid transport mechanisms in Chinese hamster ovary (CHO-K1) cells because CHO-K1 cells are widely used in biomedical studies and are thought to be useful for expression of genes involved in metabolism of D-amino acids. METHODS Uptake experiments were performed. CHO-K1 cells cultured in 60-mm plastic culture dishes under ordinary culture conditions were incubated with 18.5 kBq of radiolabeled amino acid in 2 ml of phosphate-buffered-saline-based uptake solution at 37 degrees C. The following radiolabeled amino acid tracers were used: D-[1-(14)C]-alanine, L-[1-(14)C]-alanine, D-[1-(14)C]-serine, L-[1-(14)C]-serine, D-[1-(14)C]-methionine, L-[1-(14)C]-methionine, D-[1-(14)C]-phenylalanine, L-[1-(14)C]-phenylalanine, D-[1-(14)C]-leucine, L-[1-(14)C]-leucine, D-[1-(14)C]-valine, L-[1-(14)C]-valine, D-[1-(14)C]-tyrosine, L-[1-(14)C]-tyrosine, D-[1-(14)C]-glutamic acid, L-[1-(14)C]-glutamic acid, D-[1-(14)C]-lysine, L-[1-(14)C]-lysine, D-[1-(14)C]-arginine and L-[L-(14)C]-arginine. We tested the inhibitory effects of the following compounds (1.0 mM) on transport: 2-(methylamino)isobutyric acid (a specific inhibitor of system A, in Na(+)-containing uptake solution) and 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (a specific inhibitor of system L, in Na(+)-free uptake solution). RESULTS D-[1-(14)C]-methionine, D-[1-(14)C]-phenylalanine and D-[1-(14)C]-tyrosine accumulated mainly via system L. D-[1-(14)C]-alanine and D-[1-(14)C]-serine accumulated primarily via system ASC. High uptake of D-[1-(14)C]-alanine, D-[1-(14)C]-methionine, D-[1-(14)C]-phenylalanine and D-[1-(14)C]-leucine was observed. The uptake of radiolabeled serine, valine, tyrosine, glutamic acid and arginine into CHO-K1 was highly stereoselective for l-isomers. CONCLUSIONS We observed high uptake of D-[1-(14)C]-alanine via system ASC (most likely alanine-serine-cysteine-selective amino acid transporter-1) and high uptake of D-[1-(14)C]-methionine and D-[1-(14)C]-phenylalanine via system L (most likely L-type amino acid transporter-1).
Collapse
Affiliation(s)
- Naoto Shikano
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Smith DF, Jakobsen S. Stereoselective neuroimaging in vivo. Eur Neuropsychopharmacol 2007; 17:507-22. [PMID: 17368004 DOI: 10.1016/j.euroneuro.2007.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 01/17/2007] [Accepted: 02/06/2007] [Indexed: 01/08/2023]
Abstract
Stereoselectivity is a basic property of many neuronal processes due to the spatial features of molecules involved in neurotransmission. Today, neuroimaging procedures are available for studying stereoselectivity in the living brain. Mirror-image radiotracers are the molecular tools that are used, together with single photon emission tomography (SPECT) and positron emission tomography (PET), for studying stereoselective neuronal mechanisms. This review presents the findings obtained in those studies of cholinergic, noradrenergic, dopaminergic, serotonergic, glutamatergic, opioid, cannabinoid, and second messenger neurotransmission.
Collapse
Affiliation(s)
- Donald F Smith
- Center for Psychiatric Research, Psychiatric Hospital of Aarhus University, 8240 Risskov, Denmark.
| | | |
Collapse
|
30
|
Makrides V, Bauer R, Weber W, Wester HJ, Fischer S, Hinz R, Huggel K, Opfermann T, Herzau M, Ganapathy V, Verrey F, Brust P. Preferred transport of O-(2-[18F]fluoroethyl)-d-tyrosine (d-FET) into the porcine brain. Brain Res 2007; 1147:25-33. [PMID: 17343835 DOI: 10.1016/j.brainres.2007.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/29/2007] [Accepted: 02/02/2007] [Indexed: 11/21/2022]
Abstract
Amino acids are valuable tracers for brain tumor imaging with positron emission tomography (PET). In this study the transport of O-(2-[(18)F]fluoroethyl)-D-tyrosine (D-FET) across the blood-brain barrier (BBB) was studied with PET in anesthetized piglets and patients after subtotal resection of brain tumors and compared with O-(2-[(18)F]fluoroethyl)-L-tyrosine (L-FET) and 3-O-methyl-6-[(18)F]fluoro-L-DOPA (L-OMFD). In piglets, compartmental modeling of PET data was used to calculate the rate constants for the blood-brain (K(1)) and the brain-blood (k(2)) transfer of D-FET, L-FET and L-OMFD. In patients standardized uptake values (SUVs) were calculated in brain cortex and lesions. Additionally, affinity determinations on various amino acid transporters (LAT1, LAT2, PAT1, XPCT) were performed in vitro using unlabeled D-FET, L-FET and L-OMFD. The initial brain uptake of D-FET in piglets was more than two-fold higher than that of l-FET, whereas the initial brain uptake of D-FET in patients was similar to that of L-FET. Calculation of K(1) and k(2) from the brain uptake curves and the plasma input data in piglets revealed about 4- and 2-fold higher values for D-FET compared to L-FET and L-OMFD, respectively. The distribution volume of D-FET in the piglet brain was slightly higher than that of L-FET as it was also found for most other organs. In brain tumor patients, initial D-FET uptake in the brain was similar to that of L-FET but showed faster tracer washout. L-FET uptake remained rather constant and provided a better delineation of residual tumor than D-FET. In conclusion, our data indicate considerable differences of stereoselective amino acid transport at the BBB in different species. Therefore, the results from animal experiments concerning BBB amino acid transport may not be transferable to humans.
Collapse
|
31
|
Bauwens M, Lahoutte T, Kersemans K, Gallez C, Bossuyt A, Mertens J. Comparison of the uptake of [123/125I]-2-iodo-d-tyrosine and [123/125I]-2-iodo-l-tyrosine in R1M rhabdomyosarcoma cells in vitro and in R1M tumor-bearing Wag/Rij rats in vivo. Nucl Med Biol 2006; 33:735-41. [PMID: 16934692 DOI: 10.1016/j.nucmedbio.2006.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/03/2006] [Accepted: 05/08/2006] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Recently, promising results concerning uptake in vivo in tumors of D-amino acids have been published. Therefore, we decided to evaluate the tumor uptake of the D-analogue of [(123)I]-2-iodo-L-tyrosine, a tracer recently introduced by our group into clinical trials. The uptake of 2-amino-3-(4-hydroxy-2-[(123/125)I]iodophenyl)-D-propanoic acid (2-iodo-D-tyrosine) was studied in vitro in LAT1-expressing R1M rat rhabdomyosarcoma cells and in vivo in R1M tumor-bearing Wag/Rij rats. METHODS The uptake of [(125)I]-2-iodo-L-tyrosine and [(125)I]-2-iodo-D-tyrosine into R1M cells was determined in appropriate buffers, allowing the study of the involved transport systems. In vivo, the biodistribution in R1M-bearing rats of [(123)I]-2-iodo-L-tyrosine and [(123)I]-2-iodo-D-tyrosine was performed by both dynamic and static planar imaging with a gamma camera. RESULTS In in vitro conditions, the uptake of both [(125)I]-2-iodo-L-tyrosine and [(125)I]-2-iodo-D-tyrosine in the HEPES buffer was 25% higher in the presence of Na(+) ions. In the absence of Na(+) ions, [(125)I]-2-iodo-D-tyrosine was taken up reversibly in the R1M cells, with an apparent accumulation, probably for the larger part by the LAT1 system. Dynamic planar imaging showed that the uptake in the tumors of [(123)I]-2-iodo-D-tyrosine was somewhat lower than that of [(123)I]-2-iodo-L-tyrosine. At 30 min postinjection, the mean differential uptake ratio values of the L- and D-enantiomers are 2.5+/-0.7 and 1.7+/-0.6, respectively. Although the uptake of the D-isomer is lower, probably due to a faster clearance from the blood, the tumor-background ratio is the same as that of the l-analogue. CONCLUSION A large part (75%) of [(125)I]-2-iodo-D-tyrosine in vitro and [(123)I]-2-iodo-D-tyrosine in vivo is reversibly highly taken up in R1M tumor cells by Na(+)-independent LAT transport systems, more likely by the LAT1. The clearance from the blood of [(123)I]-2-iodo-D-tyrosine in the rats is faster than that of the L-analogue, resulting in a slightly lower tumor uptake but with the same tumor-background ratio.
Collapse
Affiliation(s)
- Matthias Bauwens
- Radiopharmaceutical Chemistry, BEFY, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
32
|
Nicolazzo JA, Charman SA, Charman WN. Methods to assess drug permeability across the blood-brain barrier. J Pharm Pharmacol 2006; 58:281-93. [PMID: 16536894 DOI: 10.1211/jpp.58.3.0001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Much research has focussed on the development of novel therapeutic agents to target various central nervous system disorders, however less attention has been given to determining the potential of such agents to permeate the blood-brain barrier (BBB), a factor that will ultimately govern the effectiveness of these agents in man. In order to assess the potential for novel compounds to permeate the BBB, various in-vitro, in-vivo and in-silico methods may be employed. Although in-vitro models (such as primary cell culture and immortalized cell lines) are useful as a screening method and can appropriately rank compounds in order of BBB permeability, they often correlate poorly to in-vivo brain uptake due to down-regulation of some BBB-specific transporters. In-vivo models (such as the internal carotid artery single injection or perfusion, intravenous bolus injection, brain efflux index and intracerebral microdialysis) provide more accurate information regarding brain uptake, and these can be complemented with novel imaging techniques (such as magnetic resonance imaging and positron emission tomography), although such methods are not suited to high-throughput permeability assessment. This paper reviews current methods used for assessing BBB permeability and highlights the particular advantages and disadvantages associated with each method, with a particular focus on methods suitable for moderate- to high-throughput screening.
Collapse
Affiliation(s)
- Joseph A Nicolazzo
- Centre for Drug Candidate Optimisation, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
33
|
Brandsch M. Transport of L-proline, L-proline-containing peptides and related drugs at mammalian epithelial cell membranes. Amino Acids 2006; 31:119-36. [PMID: 16622594 DOI: 10.1007/s00726-006-0307-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
Membrane transport of L-proline has received considerable attention in basic and pharmaceutical research recently. Of the most recently cloned members of the solute carrier family, two are "proline transporters". The amino acid transporter PAT1, expressed in intestine, kidney, brain and other organs, mediates the uptake of proline and derivatives in a pH gradient-dependent manner. The Na(+)-dependent proline transporter SIT1, cloned in 2005, exhibits the properties of the long-sought classical IMINO system. Proline-containing peptides are of interest for several reasons. Many biologically important peptide sequences contain highly conserved proline residues. Xaa-Pro peptides are very often resistant to enzymatic hydrolysis and display, in contrast to Pro-Xaa peptides, a high affinity to the H(+)/peptide cotransporter PEPT1 which is expressed in intestinal, renal, lung and biliary duct epithelial cells. Furthermore, several orally available drugs are recognized by PEPT1 as Xaa-Pro analogues due to their sterical resemblance to small peptides.
Collapse
Affiliation(s)
- M Brandsch
- Membrane Transport Group, Biozentrum, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
34
|
Langen KJ, Hamacher K, Pauleit D, Floeth FW, Stoffels G, Bauer D, Reifenberger G, Zilles K, Coenen HH. Evaluation of new 18F-labeled amino acids for brain PET. ACTA ACUST UNITED AC 2006; 210:455-61. [PMID: 16177907 DOI: 10.1007/s00429-005-0033-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K J Langen
- Brain Imaging Centre West, Jülich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bauer D, Hamacher K, Bröer S, Pauleit D, Palm C, Zilles K, Coenen HH, Langen KJ. Preferred stereoselective brain uptake of d-serine — a modulator of glutamatergic neurotransmission. Nucl Med Biol 2005; 32:793-7. [PMID: 16253803 DOI: 10.1016/j.nucmedbio.2005.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
Although it has long been presumed that d-amino acids are uncommon in mammalians, substantial amounts of free d-serine have been detected in the mammalian brain. d-Serine has been demonstrated to be an important modulator of glutamatergic neurotransmission and acts as an agonist at the strychnine-insensitive glycine site of N-methyl-d-aspartate receptors. The blood-to-brain transfer of d-serine is thought to be extremely low, and it is assumed that d-serine is generated by isomerization of l-serine in the brain. Stimulated by the observation of a preferred transport of the d-isomer of proline at the blood-brain barrier, we investigated the differential uptake of [3H]-d-serine and [3H]-l-serine in the rat brain 1 h after intravenous injection using quantitative autoradiography. Surprisingly, brain uptake of [3H]-d-serine was significantly higher than that of [3H]-l-serine, indicating a preferred transport of the d-enantiomer of serine at the blood-brain barrier. This finding indicates that exogenous d-serine may have a direct influence on glutamatergic neurotransmission and associated diseases.
Collapse
Affiliation(s)
- Dagmar Bauer
- Institute of Medicine, Research Center Jülich, D-52425 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|