1
|
Wang HX, Deng ZA, Li YY, Li J, Chen YX, Zhao YJ, Huang KR, Tian WN, Tong AP, Zhou LX. Inhibition of histone deacetylase 6 activity mitigates neurological impairment and post-hemorrhagic hydrocephalus after intraventricular hemorrhage by modulating pyroptosis and autophagy pathways. Fluids Barriers CNS 2025; 22:45. [PMID: 40336077 PMCID: PMC12057270 DOI: 10.1186/s12987-025-00658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Posthemorrhagic hydrocephalus (PHH) is a frequent and significant complication that impacts the prognosis of patients suffering from intraventricular hemorrhage (IVH). However, the underlying mechanism is uncertain. Neuronal pyroptosis is characterized by neuronal lysis and destruction, along with the release of inflammatory factors. Autophagy is known to inhibit inflammation, and histone deacetylase-6 (HDAC6) is implicated in the regulation of both autophagy and the NLRP3 inflammasome. However, the role of these proteins in the regulation of neuronal pyroptosis in an IVH model has not been determined. METHODS In this study, an IVH mouse (6-8 weeks) model was generated via the intracerebroventricular administration of autologous blood at a volume of 40 µL/animal. After the surgical operation, we monitored the mice at various time points, assessing ventricle size via MRI. Additionally, during both the acute (3 days) and chronic (28 days) phases post-surgery, we examined neuronal cell damage and ventricular cilia, as well as neurological function, using HE staining, Nissl staining, scanning electron microscopy, and behavioral experiments such as neurological function scoring and water maze tests. Finally, we detected activation of the pyroptosis and autophagy pathway through western blotting and immunofluorescence staining. RESULTS Autophagy induction attenuated cerebral neuronal pyroptosis caused by acute-phase autologous blood injection. HDAC6 was implicated in regulating pyroptosis in the acute phase IVH through its influence on the transcription of nuclear factor kappa-B (NF-κB). Furthermore, HDAC6 regulates excessive autophagic activation in neurons in the chronic phase of IVH. Treatment with ricolinostat improved neurological deficits and ventricular damage during the acute phase of IVH. Moreover, it alleviated mood, memory, and learning deficits in the chronic phase of IVH while also improving PHH. CONCLUSIONS Enhanced autophagy attenuates activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and inhibits neuronal pyroptosis in the acute phase of IVH. HDAC6 plays an important role in regulating the interaction between autophagy and pyroptosis. Ricolinostat treatment significantly attenuated the upregulation of inflammatory factors and neurological impairments induced by pyroptosis in the acute phase of IVH. In addition, ricolinostat effectively reduced excessive autophagy and apoptosis in neurons in the chronic phase and attenuated the formation of PHH.
Collapse
Affiliation(s)
- Hao-Xiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zi-Ang Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan-You Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jun Li
- Department of Neurosurgery, The Fifth People's Hospital of Ningxia Hui Autonomous Region, Shizuishan, Ningxia Hui Autonomous Region, China
| | - Ya-Xing Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan-Jie Zhao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ke-Ru Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei-Ning Tian
- Department of Neurosurgery, The Fifth People's Hospital of Ningxia Hui Autonomous Region, Shizuishan, Ningxia Hui Autonomous Region, China.
| | - Ai-Ping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China.
| | - Liang-Xue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Department of Neurosurgery, The Fifth People's Hospital of Ningxia Hui Autonomous Region, Shizuishan, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
2
|
Manescu MD, Catalin B, Baldea I, Mateescu VO, Rosu GC, Boboc IKS, Istrate‐Ofiteru A, Liliac IM, Streba CT, Kumar‐Singh S, Pirici D. Aquaporin 4 modulation drives amyloid burden and cognitive abilities in an APPPS1 mouse model of Alzheimer's disease. Alzheimers Dement 2025; 21:e70164. [PMID: 40329616 PMCID: PMC12056304 DOI: 10.1002/alz.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Deficiency in the aquaporin-4 (AQP4) water channel has been linked to impaired amyloid beta (Aβ) clearance. However, a detailed morphopathological analysis of amyloid deposition following AQP4 therapeutic modulation remains unexplored. METHODS Two-month-old amyloid precursor protein presenilin 1 (APPPS1) mice were treated daily for 28 days with either the AQP4 facilitator N-(3-(Benzyloxy)pyridin-2-yl) benzene-sulfonamide (TGN-073) or the AQP4 inhibitor N-(1,3,4-thiadiazol-2-yl)pyridine-3-carboxamide dihydrochloride (TGN-020) (both at 200 mg/kg). Controls included vehicle-treated APPPS1 and WT C57BL/6J mice. Comprehensive histopathological, biochemical, and behavioral analyses were conducted. RESULTS Mice treated with AQP4 facilitator showed a significant reduction in total Aβ, fibrillar deposits, and soluble Aβ, while the AQP4 inhibitor caused a substantial increase in brain Aβ. AQP4-facilitator treatment also reduced Aβ40 levels and Aβ40/Aβ42 ratio, whereas the inhibitor treatment increased both Aβ40 and Aβ42. Additionally, facilitator-treated mice demonstrated reduced anxiety and improved memory performance. DISCUSSION These findings suggest that AQP4 modulation is a promising strategy to enhance Aβ clearance and a potential therapeutic target in Alzheimer's disease. HIGHLIGHTS Intramural periarterial drainage of the interstitial fluid mediated by aquaporin-4 (AQP4) is a key element that ensures clearance of catabolites/Aβ peptide from within the brain parenchyma. Inhibition of AQP4 in an APPPS1 mouse model of AD leads to increased amyloid deposition and deficient behavior compared to untreated transgenic animals. Pharmaceutical facilitation of AQP4 in the same APPPS1 mouse model leads to a massive decrease in amyloid burden and improves the behavioral performance of the animals compared to untreated control APPPS1 mice.
Collapse
Affiliation(s)
| | - Bogdan Catalin
- Department of PhysiologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Ioana Baldea
- Department of PhysiologyIuliu Haţieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | | | | | | | | | - Ilona Mihaela Liliac
- Department of HistologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Costin Teodor Streba
- Department of PulmonologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Samir Kumar‐Singh
- Laboratory of Cell Biology and Histology, Molecular Pathology Group, Faculty of Medical and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Daniel Pirici
- Department of HistologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
3
|
D'Acierno M, Fenton RA, Hoorn EJ. The biology of water homeostasis. Nephrol Dial Transplant 2025; 40:632-640. [PMID: 39435642 PMCID: PMC11960738 DOI: 10.1093/ndt/gfae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
Water homeostasis is controlled by a brain-kidney axis that consists of central osmoreceptors, synthesis and secretion of arginine vasopressin (AVP) and AVP-responsive aquaporin-2 (AQP2) water channels in kidney collecting duct principal cells that facilitate water reabsorption. In addition to AVP, thirst represents a second line of defence to maintain water balance. Water balance disorders arise because of deficiency, resistance or inappropriate secretion of AVP or disturbances in thirst sensation (hypodipsia, polydipsia). People with water balance disorders are prone to develop hyponatraemia or hypernatraemia, which expose cells to osmotic stress and activate cell volume regulation mechanisms. This review covers several recent insights that have expanded our understanding of central osmoregulation, AQP2 regulation and cell volume regulation. This includes the role of with no lysine kinase 1 (WNK1) as a putative central osmolality sensor and, more generally, as an intracellular crowding sensor that coordinates the cell volume rescue response by activating sodium and potassium cotransporters. Furthermore, several new regulators of AQP2 have been identified, including AVP-dependent AQP2 regulation (yes-associated protein, nuclear factor of activated T-cells, microRNAs) and AVP-independent AQP2 regulation (epidermal growth factor receptor, fluconazole, prostaglandin E2). It is also becoming increasingly clear that long-term cell volume adaptation to chronic hypotonicity through release of organic osmolytes comes at the expense of compromised organ function. This potentially explains the complications of chronic hyponatraemia, including cognitive impairment, bone loss and vascular calcification. This review illustrates why these new insights derived from basic science are also relevant for developing new approaches to treat water balance disorders.
Collapse
Affiliation(s)
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Fernández-Albarral JA, Simón-García A, Salobrar-García E, Salazar JJ, López-Menéndez C, Pajuelo LSM, Matamoros JA, de Hoz R, López-Cuenca I, Elvira-Hurtado L, Sanchez-Puebla L, Sánchez-Carralero MP, Sanz M, Ramírez JM, Iglesias T, Ramírez AI. Kidins220-deficient hydrocephalus mice exhibit altered glial phenotypes and AQP4 differential regulation in the retina and optic nerve, with preserved retinal ganglion cell survival. Fluids Barriers CNS 2025; 22:16. [PMID: 39939990 PMCID: PMC11823095 DOI: 10.1186/s12987-025-00626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
Hydrocephalus, characterized by ventriculomegaly due to cerebrospinal fluid accumulation in the cerebral ventricles, is a co-morbidity factor in several neurodevelopmental, psychiatric and neurodegenerative diseases. Aquaporin-4 (AQP4) is crucial for brain water homeostasis, with Aqp4 knockout mice showing sporadic ventriculomegaly and increased brain water content. Kinase D interacting substrate of 220 kDa (Kidins220), a transmembrane protein involved in neuronal survival, synaptic activity and neurogenesis, controls AQP4 levels in ependymocytes and brain astrocytes. Indeed, Kidins220 deficiency in mice leads to hydrocephalus by downregulating VPS35, a key component of the retromer complex, and targeting AQP4 to lysosomal degradation. Importantly, the ependymal barrier of idiopathic normal pressure hydrocephalus patients shows a similar downregulation of KIDINS220 and AQP4. In addition, pathogenic variants in the KIDINS220 gene are linked to SINO syndrome, a rare disorder characterized by spastic paraplegia, intellectual disability, nystagmus, and obesity associated with hydrocephalus and ventriculomegaly. Given the retina's structural and functional similarities to the brain, we hypothesized that Kidins220 deficiency would affect retinal water regulation. However, the diminished expression of Kidins220 and VPS35 in the retina of Kidins220-deficient hydrocephalus mice, did not cause edema or downregulate AQP4 in Müller cells. Surprisingly, there was an increase in AQP4 levels within this glial cell population. Conversely, AQP4 expression in the optic nerve astrocytes was reduced, as observed in brain astrocytes, suggesting a distinctive adaptive response to hydrocephalus in Müller glia within the Kidins220-deficient retina. Furthermore, we observed phenotypic modifications in retinal glia in Kidins220-deficient hydrocephalus mice. However, we did not find any signs of neuronal damage in the retina. Future studies using OCT and OCTA in SINO syndrome patients with ventriculomegaly will be essential in elucidating the relationship between KIDINS220 pathogenic variants, retinal alterations, papilledema, and visual function.
Collapse
Affiliation(s)
- Jose A Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Ana Simón-García
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Juan J Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Celia López-Menéndez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Luis S M Pajuelo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Jose A Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Lidia Sanchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, 28040, Spain
| | - Marina P Sánchez-Carralero
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Marina Sanz
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - José M Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, 28040, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, 28029, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain.
| | - Ana I Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, 28040, Spain.
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain.
| |
Collapse
|
5
|
Tish MM, Voss NA, Bertolli AX, Klimara MJ, Smith RJ, Thedens DR, Allamargot C, Hefti MM, Howard MA, Aldridge GM, Geerling JC. Normal Pressure Hydrocephalus in Adult Mice Causes Gait Impairment, Cognitive Deficits, and Urinary Frequency with Incontinence. eNeuro 2024; 11:ENEURO.0412-24.2024. [PMID: 39542734 PMCID: PMC11595603 DOI: 10.1523/eneuro.0412-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024] Open
Abstract
Normal pressure hydrocephalus (NPH) is marked by enlarged cerebral ventricles with normal intracranial pressure, plus three stereotypical symptoms: gait impairment, cognitive dysfunction, and urinary frequency with urge incontinence. The neural circuit dysfunction responsible for each of these symptoms remains unknown, and an adult mouse model would expand opportunities to explore these mechanisms in preclinical experiments. Here, we describe the first mouse model of chronic, communicating hydrocephalus with normal intracranial pressure. Hydrocephalic male and female mice had unsteady gait and reduced maximum velocity. Despite performing well on a variety of behavioral tests, they exhibited subtle learning impairments. Hydrocephalic mice also developed urinary frequency, and many became incontinent. This mouse model, with symptoms resembling human NPH, can be combined with molecular-genetic tools in any mouse strain to explore the neural circuit mechanisms of these symptoms. Preclinical work using this hydrocephalus model will lead to the development of new treatments for NPH symptoms.
Collapse
Affiliation(s)
- Margaret M Tish
- Department of Neurology, University of Iowa, Iowa City, Iowa 52246
- Iowa Neuroscience Institute, Iowa City, Iowa 52246
| | - Natalie A Voss
- Department of Neurology, University of Iowa, Iowa City, Iowa 52246
| | - Aimee X Bertolli
- Department of Neurology, University of Iowa, Iowa City, Iowa 52246
| | - Miles J Klimara
- Departments of Otolaryngology, University of Iowa, Iowa City, Iowa 52246
| | - Richard J Smith
- Departments of Otolaryngology, University of Iowa, Iowa City, Iowa 52246
| | | | - Chantal Allamargot
- Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa 52246
| | - Marco M Hefti
- Iowa Neuroscience Institute, Iowa City, Iowa 52246
- Departments of Pathology, University of Iowa, Iowa City, Iowa 52246
| | | | - Georgina M Aldridge
- Department of Neurology, University of Iowa, Iowa City, Iowa 52246
- Iowa Neuroscience Institute, Iowa City, Iowa 52246
| | - Joel C Geerling
- Department of Neurology, University of Iowa, Iowa City, Iowa 52246
- Iowa Neuroscience Institute, Iowa City, Iowa 52246
| |
Collapse
|
6
|
Das N, Dhamija R, Sarkar S. The role of astrocytes in the glymphatic network: a narrative review. Metab Brain Dis 2024; 39:453-465. [PMID: 38008886 DOI: 10.1007/s11011-023-01327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
To date, treatment of Central Nervous System (CNS) pathology has largely focused on neuronal structure and function. Yet, revived attention towards fluid circulation within the CNS has exposed the need to further explore the role of glial cells in maintaining homeostasis within neural networks. In the past decade, discovery of the neural glymphatic network has revolutionized traditional understanding of fluid dynamics within the CNS. Advancements in neuroimaging have revealed alternative pathways of cerebrospinal fluid (CSF) generation and efflux. Here, we discuss emerging perspectives on the role of astrocytes in CSF hydrodynamics, with particular focus on the contribution of aquaporin-4 channels to the glymphatic network. Astrocytic structural features and expression patterns are detailed in relation to their function in maintaining integrity of the Blood Brain Barrier (BBB) as part of the neurovascular unit (NVU). This narrative also highlights the potential role of glial dysfunction in pathogenesis of neurodegenerative disease, hydrocephalus, intracranial hemorrhage, ischemic stroke, and traumatic brain injury. The purpose of this literature summary is to provide an update on the changing landscape of scientific theory surrounding production, flow, and absorption of cerebrospinal fluid. The overarching aim of this narrative review is to advance the conception of basic, translational, and clinical research endeavors investigating glia as therapeutic targets for neurological disease.
Collapse
Affiliation(s)
- Nikita Das
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ravi Dhamija
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, HFT-132, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
7
|
Li Y, Nan D, Liu R, Li J, Zhang Z, Deng J, Zhang Y, Yan Z, Hou C, Yao E, Sun W, Wang Z, Huang Y. Aquaporin 4 Mediates the Effect of Iron Overload on Hydrocephalus After Intraventricular Hemorrhage. Neurocrit Care 2024; 40:225-236. [PMID: 37208490 PMCID: PMC10861395 DOI: 10.1007/s12028-023-01746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/01/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Iron overload plays an important role in hydrocephalus development following intraventricular hemorrhage (IVH). Aquaporin 4 (AQP4) participates in the balance of cerebrospinal fluid secretion and absorption. The current study investigated the role of AQP4 in the formation of hydrocephalus caused by iron overload after IVH. METHODS There were three parts to this study. First, Sprague-Dawley rats received an intraventricular injection of 100 µl autologous blood or saline control. Second, rats had IVH and were treated with deferoxamine (DFX), an iron chelator, or vehicle. Third, rats had IVH and were treated with 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020), a specific AQP4 inhibitor, or vehicle. Rats underwent T2-weighted and T2* gradient-echo magnetic resonance imaging to assess lateral ventricular volume and intraventricular iron deposition at 7, 14, and 28 days after intraventricular injection and were then euthanized. Real-time quantitative polymerase chain reaction, western blot analysis, and immunofluorescence analyses were conducted on the rat brains to evaluate the expression of AQP4 at different time points. Hematoxylin and eosin-stained brain sections were obtained to assess the ventricular wall damage on day 28. RESULTS Intraventricular injection of autologous blood caused a significant ventricular dilatation, iron deposition, and ventricular wall damage. There was increased AQP4 mRNA and protein expression in the periventricular tissue in IVH rats through day 7 to day 28. The DFX treatment group had a lower lateral ventricular volume and less intraventricular iron deposition and ventricular wall damage than the vehicle-treated group after IVH. The expression of AQP4 protein in periventricular tissue was also inhibited by DFX on days 14 and 28 after IVH. The use of TGN-020 attenuated hydrocephalus development after IVH and inhibited the expression of AQP4 protein in the periventricular tissue between day 14 and day 28 without a significant effect on intraventricular iron deposition or ventricular wall damage. CONCLUSIONS AQP4 located in the periventricular area mediated the effect of iron overload on hydrocephalus after IVH.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jieyu Li
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhuangzhuang Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yang Zhang
- Department of Neurosurgery, Peking University First Hospital, Beijing, China
| | - Ziguang Yan
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Chao Hou
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Ensheng Yao
- Department of Neurology, First Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang, China
| | - Weiping Sun
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| |
Collapse
|
8
|
Davoudi S, Rahdar M, Hosseinmardi N, Behzadi G, Janahmadi M. Chronic inhibition of astrocytic aquaporin-4 induces autistic-like behavior in control rat offspring similar to maternal exposure to valproic acid. Physiol Behav 2023:114286. [PMID: 37402416 DOI: 10.1016/j.physbeh.2023.114286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/06/2023]
Abstract
Social communication and interaction deficits, memory impairment, and anxiety-like behavior are characterized in many people identified with autism spectrum disorder (ASD). A thorough understanding of the specific aspects that contribute to the deficiencies associated with ASD can aid research into the etiology of the disorder while also providing targets for more effective intervention. As part of the ASD pathophysiology, alterations in synaptogenesis and abnormal network connections were seen in high-order brain areas, which control social behavior and communication. The early emergence of microglia during nervous system development may contribute to synaptic dysfunction and the pathobiology of ASD. Since aquaporin-4 (AQP4) appears to be required for the basic procedures of synapse activation, certain behavioral and cognitive impairments as well as disturbance in water homeostasis might likely arise from AQP4 deficiency. Here, through the measurement of the water content of the hippocampus and behavioral experiments we aim to explore the contribution of astrocytic AQP4 to the autism-like behavior induced by prenatal valproic acid (VPA) exposure and whether inhibition of AQP4 per se can induce autistic-like behavior in control rats. Microinjection of TGN-020 (10µM, i.c.v), a specific AQP4 inhibitor, for 7 successive days before behavioral tasks from postnatal day 28 to 35 revealed that inhibition of AQP4 in the control offspring caused lower social interaction and locomotor activity, higher anxiety, and decreased ability to recognize novel objects, very similar to the behavioral changes observed in offspring prenatally exposed to VPA. However, VPA-exposed offspring treated with TGN-020, showed no further remarkable behavioral impairments than those detected in the autistic-like rats. Furthermore, both control offspring treated with TGN-020 and offspring exposed to VPA had a considerable accumulation of water in their hippocampi. But AQP4 inhibition did not affect the water status of the autistic-like rats. The findings of this study revealed that control offspring exhibited similar hippocampal water retention and behavioral impairments that were observed in maternal VPA-exposed offspring following inhibition of astrocytic AQP4, whereas, in autistic-like rats, it did not produce any significant change in water content and behaviors. Findings suggest that AQP4 deficiency could be associated with autistic disorder and may be a potential pharmaceutical target for treating autism in the future.
Collapse
Affiliation(s)
- Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Neurophysiology Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Silverglate B, Gao X, Lee HP, Maliha P, Grossberg GT. The aquaporin-4 water channel and updates on its potential as a drug target for Alzheimer's disease. Expert Opin Ther Targets 2023; 27:523-530. [PMID: 37475487 DOI: 10.1080/14728222.2023.2240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Although there are several FDA-approved treatments for Alzheimer's disease (AD), only recently have disease-modifying therapies received approval for use in patients. In this narrative review, we examine the history of aquaporin-4 (AQP4) as a therapeutic target for NMOSD (neuromyelitis optica spectrum disorder) and as a potential therapeutic target for AD. AREAS COVERED We review the basic science and discovery of AQP4, a transmembrane water-channel essential to regulating water balance in the central nervous system (CNS). We also review the pathogenesis of NMOSD, an autoimmune disease characterized by the destruction of cells that express AQP4. Then, we review how AQP4 is likely involved in the pathogenesis of Alzheimer's disease (AD). Finally, we discuss future challenges with drug design that would modulate AQP4 to potentially slow AD development. The literature search for this article consisted of searching Google Scholar and PubMed for permutations of the keywords 'Alzheimer's disease,' 'aquaporin-4,' 'neuromyelitis optica,' and their abbreviations. EXPERT OPINION We place research into AQP4 into context with other recent developments in AD research. A major difficulty with drug development for Alzheimer's is the lack of strategies to cleanly target the early pathogenesis of the disease. Targeting AQP4 may provide such a strategy.
Collapse
Affiliation(s)
- Bret Silverglate
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Xiaoyi Gao
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Hannah P Lee
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Peter Maliha
- Carolyn Wells-Peterson Geriatric Psychiatry Research Fellow, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - George T Grossberg
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Paez-Gonzalez P, Lopez-de-San-Sebastian J, Ceron-Funez R, Jimenez AJ, Rodríguez-Perez LM. Therapeutic strategies to recover ependymal barrier after inflammatory damage: relevance for recovering neurogenesis during development. Front Neurosci 2023; 17:1204197. [PMID: 37397456 PMCID: PMC10308384 DOI: 10.3389/fnins.2023.1204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The epithelium covering the surfaces of the cerebral ventricular system is known as the ependyma, and is essential for maintaining the physical and functional integrity of the central nervous system. Additionally, the ependyma plays an essential role in neurogenesis, neuroinflammatory modulation and neurodegenerative diseases. Ependyma barrier is severely affected by perinatal hemorrhages and infections that cross the blood brain barrier. The recovery and regeneration of ependyma after damage are key to stabilizing neuroinflammatory and neurodegenerative processes that are critical during early postnatal ages. Unfortunately, there are no effective therapies to regenerate this tissue in human patients. Here, the roles of the ependymal barrier in the context of neurogenesis and homeostasis are reviewed, and future research lines for development of actual therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Patricia Paez-Gonzalez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | - Raquel Ceron-Funez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
| | - Antonio J. Jimenez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Luis Manuel Rodríguez-Perez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Sports, University of Malaga, Málaga, Spain
| |
Collapse
|
11
|
Garcia-Bonilla M, Nair A, Moore J, Castaneyra-Ruiz L, Zwick SH, Dilger RN, Fleming SA, Golden RK, Talcott MR, Isaacs AM, Limbrick DD, McAllister JP. Impaired neurogenesis with reactive astrocytosis in the hippocampus in a porcine model of acquired hydrocephalus. Exp Neurol 2023; 363:114354. [PMID: 36822393 PMCID: PMC10411821 DOI: 10.1016/j.expneurol.2023.114354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Hydrocephalus is a neurological disease with an incidence of 0.3-0.7 per 1000 live births in the United States. Ventriculomegaly, periventricular white matter alterations, inflammation, and gliosis are among the neuropathologies associated with this disease. We hypothesized that hippocampus structure and subgranular zone neurogenesis are altered in untreated hydrocephalus and correlate with recognition memory deficits. METHODS Hydrocephalus was induced by intracisternal kaolin injections in domestic juvenile pigs (43.6 ± 9.8 days). Age-matched sham controls received similar saline injections. MRI was performed to measure ventricular volume, and/or hippocampal and perirhinal sizes at 14 ± 4 days and 36 ± 8 days post-induction. Recognition memory was assessed one week before and after kaolin induction. Histology and immunohistochemistry in the hippocampus were performed at sacrifice. RESULTS The hippocampal width and the perirhinal cortex thickness were decreased (p < 0.05) in hydrocephalic pigs 14 ± 4 days post-induction. At sacrifice (36 ± 8 days post-induction), significant expansion of the cerebral ventricles was detected (p = 0.005) in hydrocephalic pigs compared with sham controls. The area of the dorsal hippocampus exhibited a reduction (p = 0.035) of 23.4% in the hydrocephalic pigs at sacrifice. Likewise, in hydrocephalic pigs, the percentages of neuronal precursor cells (doublecortin+ cells) and neurons decreased (p < 0.01) by 32.35%, and 19.74%, respectively, in the subgranular zone of the dorsal hippocampus. The percentage of reactive astrocytes (vimentin+) was increased (p = 0.041) by 48.7%. In contrast, microglial cells were found to decrease (p = 0.014) by 55.74% in the dorsal hippocampus in hydrocephalic pigs. There was no difference in the recognition index, a summative measure of learning and memory, one week before and after the induction of hydrocephalus. CONCLUSION In untreated juvenile pigs, acquired hydrocephalus caused morphological alterations, reduced neurogenesis, and increased reactive astrocytosis in the hippocampus and perirhinal cortex.
Collapse
Affiliation(s)
- Maria Garcia-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| | - Arjun Nair
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jason Moore
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | | | - Sarah H Zwick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Ryan N Dilger
- Neuroscience Program, Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Stephen A Fleming
- Neuroscience Program, Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA; Traverse Science, Champaign, IL 61801, USA
| | - Rebecca K Golden
- Neuroscience Program, Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Michael R Talcott
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; AbbVie, Inc., North Chicago, IL 60064, USA
| | - Albert M Isaacs
- Department of Neurological Surgery, Vanderbilt, University Medical Center, Nashville, TN 37232, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James P McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Donnaloja F, Limonta E, Mancosu C, Morandi F, Boeri L, Albani D, Raimondi MT. Unravelling the mechanotransduction pathways in Alzheimer's disease. J Biol Eng 2023; 17:22. [PMID: 36978103 PMCID: PMC10045049 DOI: 10.1186/s13036-023-00336-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) represents one of the most common and debilitating neurodegenerative disorders. By the end of 2040, AD patients might reach 11.2 million in the USA, around 70% higher than 2022, with severe consequences on the society. As now, we still need research to find effective methods to treat AD. Most studies focused on the tau and amyloid hypothesis, but many other factors are likely involved in the pathophysiology of AD. In this review, we summarize scientific evidence dealing with the mechanotransduction players in AD to highlight the most relevant mechano-responsive elements that play a role in AD pathophysiology. We focused on the AD-related role of extracellular matrix (ECM), nuclear lamina, nuclear transport and synaptic activity. The literature supports that ECM alteration causes the lamin A increment in the AD patients, leading to the formation of nuclear blebs and invaginations. Nuclear blebs have consequences on the nuclear pore complexes, impairing nucleo-cytoplasmic transport. This may result in tau hyperphosphorylation and its consequent self-aggregation in tangles, which impairs the neurotransmitters transport. It all exacerbates in synaptic transmission impairment, leading to the characteristic AD patient's memory loss. Here we related for the first time all the evidence associating the mechanotransduction pathway with neurons. In addition, we highlighted the entire pathway influencing neurodegenerative diseases, paving the way for new research perspectives in the context of AD and related pathologies.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| | - Emma Limonta
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Christian Mancosu
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Francesco Morandi
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Lucia Boeri
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Manuela Teresa Raimondi
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
13
|
Gomolka RS, Hablitz LM, Mestre H, Giannetto M, Du T, Hauglund NL, Xie L, Peng W, Martinez PM, Nedergaard M, Mori Y. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. eLife 2023; 12:e82232. [PMID: 36757363 PMCID: PMC9995113 DOI: 10.7554/elife.82232] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here, we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion measures and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to enlargement and stagnation of fluid in the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.
Collapse
Affiliation(s)
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- Department of Neurology, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- School of Pharmacy, China Medical UniversityShenyangChina
| | | | - Lulu Xie
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Yuki Mori
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
14
|
Xiao M, Hou J, Xu M, Li S, Yang B. Aquaporins in Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:99-124. [PMID: 36717489 DOI: 10.1007/978-981-19-7415-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the nine AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2, and AQP4 expressed in the peripheral nervous system are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica, brain tumors, and neurodegenerative disorders. Moreover, AQP4 has been demonstrated as a functional regulator of recently discovered glymphatic system that is a main contributor to clearance of toxic macromolecule from the brain. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.
Collapse
Affiliation(s)
- Ming Xiao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jiaoyu Hou
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengmeng Xu
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
15
|
Palavicini JP, Ding L, Pan M, Qiu S, Wang H, Shen Q, Dupree JL, Han X. Sulfatide Deficiency, an Early Alzheimer's Lipidomic Signature, Causes Brain Ventricular Enlargement in the Absence of Classical Neuropathological Hallmarks. Int J Mol Sci 2022; 24:233. [PMID: 36613677 PMCID: PMC9820719 DOI: 10.3390/ijms24010233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss and a decline in activities of daily life. Ventricular enlargement has been associated with worse performance on global cognitive tests and AD. Our previous studies demonstrated that brain sulfatides, myelin-enriched lipids, are dramatically reduced in subjects at the earliest clinically recognizable AD stages via an apolipoprotein E (APOE)-dependent and isoform-specific process. Herein, we provided pre-clinical evidence that sulfatide deficiency is causally associated with brain ventricular enlargement. Specifically, taking advantage of genetic mouse models of global and adult-onset sulfatide deficiency, we demonstrated that sulfatide losses cause ventricular enlargement without significantly affecting hippocampal or whole brain volumes using histological and magnetic resonance imaging approaches. Mild decreases in sulfatide content and mild increases in ventricular areas were also observed in human APOE4 compared to APOE2 knock-in mice. Finally, we provided Western blot and immunofluorescence evidence that aquaporin-4, the most prevalent aquaporin channel in the central nervous system (CNS) that provides fast water transportation and regulates cerebrospinal fluid in the ventricles, is significantly increased under sulfatide-deficient conditions, while other major brain aquaporins (e.g., aquaporin-1) are not altered. In short, we unraveled a novel and causal association between sulfatide deficiency and ventricular enlargement. Finally, we propose putative mechanisms by which sulfatide deficiency may induce ventricular enlargement.
Collapse
Affiliation(s)
- Juan Pablo Palavicini
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lin Ding
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Meixia Pan
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shulan Qiu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hu Wang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qiang Shen
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jeffrey L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23284, USA
- Research Service, McGuire Veterans Affairs Medical Center, Richmond, VA 23249, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
16
|
Verghese JP, Terry A, de Natale ER, Politis M. Research Evidence of the Role of the Glymphatic System and Its Potential Pharmacological Modulation in Neurodegenerative Diseases. J Clin Med 2022; 11:jcm11236964. [PMID: 36498538 PMCID: PMC9735716 DOI: 10.3390/jcm11236964] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The glymphatic system is a unique pathway that utilises end-feet Aquaporin 4 (AQP4) channels within perivascular astrocytes, which is believed to cause cerebrospinal fluid (CSF) inflow into perivascular space (PVS), providing nutrients and waste disposal of the brain parenchyma. It is theorised that the bulk flow of CSF within the PVS removes waste products, soluble proteins, and products of metabolic activity, such as amyloid-β (Aβ). In the experimental model, the glymphatic system is selectively active during slow-wave sleep, and its activity is affected by both sleep dysfunction and deprivation. Dysfunction of the glymphatic system has been proposed as a potential key driver of neurodegeneration. This hypothesis is indirectly supported by the close relationship between neurodegenerative diseases and sleep alterations, frequently occurring years before the clinical diagnosis. Therefore, a detailed characterisation of the function of the glymphatic system in human physiology and disease would shed light on its early stage pathophysiology. The study of the glymphatic system is also critical to identifying means for its pharmacological modulation, which may have the potential for disease modification. This review will critically outline the primary evidence from literature about the dysfunction of the glymphatic system in neurodegeneration and discuss the rationale and current knowledge about pharmacological modulation of the glymphatic system in the animal model and its potential clinical applications in human clinical trials.
Collapse
|
17
|
Jin X, Zeng X, Zhao D, Jiang N. Liver transplantation in rare late-onset ornithine transcarbamylase deficiency with central nervous system injury: A case report and review of the literature. Brain Behav 2022; 12:e2765. [PMID: 36128655 PMCID: PMC9575608 DOI: 10.1002/brb3.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/29/2022] [Accepted: 08/28/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Ornithine transcarbamylase deficiency (OTCD) is a genetic metabolic disease. Its clinical manifestations are mainly central nervous system dysfunction caused by high blood ammonia. Late-onset OTCD combined with central nervous system injury has a poor therapeutic response, which is one of the main factors affecting the prognosis and quality of life of patients. liver transplantation (LT) has gradually become a radical treatment for OTCD, which has achieved good results. However, there is no consensus on the timing of LT and problems of nervous system damage and repair. METHODS We report the development of late-onset OTCD with central nervous system injury in an 11-year-old child who received liver transplantation at our transplant center. His first symptoms were nonprojectile vomiting, followed by irritability and disturbance of consciousness, after which the disease progressed rapidly and finally resulted in a coma. After liver transplantation, the child's consciousness returned to normal, muscle strength of the limbs gradually recovered from grade 0 to grade 4, and muscle tone gradually recovered from grade 4 to grade 1, suggesting that the motor nerves had gradually recovered. However, the child is currently mentally retarded, and the language center has not yet fully recovered.At the same time, we made a literature review of OTCD. CONCLUSION For OTCD patients with central nervous system injury, liver transplantation can fundamentally solve the problem of ammonia metabolism in the liver and avoids further damage to the central nervous system caused by hyperammonemia. At the same time, children's nervous systems are in the developmental stage when neuroplasticity is greatest. If liver transplantation is performed as soon as possible, nerve repair is still possible.
Collapse
Affiliation(s)
- Xin Jin
- Division of Liver Surgery and Organ Transplantation Center, Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Xinchen Zeng
- Division of Liver Surgery and Organ Transplantation Center, Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Dong Zhao
- Division of Liver Surgery and Organ Transplantation Center, Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Nan Jiang
- Division of Liver Surgery and Organ Transplantation Center, Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Shenzhen, China
| |
Collapse
|
18
|
Zhao Z, He J, Chen Y, Wang Y, Wang C, Tan C, Liao J, Xiao G. The pathogenesis of idiopathic normal pressure hydrocephalus based on the understanding of AQP1 and AQP4. Front Mol Neurosci 2022; 15:952036. [PMID: 36204139 PMCID: PMC9530743 DOI: 10.3389/fnmol.2022.952036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disorder without a recognized cause. Aquaporins (AQPs) are transmembrane channels that carry water through cell membranes and are critical for cerebrospinal fluid circulation and cerebral water balance. The function of AQPs in developing and maintaining hydrocephalus should be studied in greater detail as a possible diagnostic and therapeutic tool. Recent research indicates that patients with iNPH exhibited high levels of aquaporin 1 and low levels of aquaporin 4 expression, suggesting that these AQPs are essential in iNPH pathogenesis. To determine the source of iNPH and diagnose and treat it, it is necessary to examine and appreciate their function in the genesis and maintenance of hydrocephalus. The expression, function, and regulation of AQPs in iNPH are reviewed in this article, in order to provide fresh targets and suggestions for future research.
Collapse
Affiliation(s)
- Zitong Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yibing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Gelei Xiao
| |
Collapse
|
19
|
Metformin Alleviates Delayed Hydrocephalus after Intraventricular Hemorrhage by Inhibiting Inflammation and Fibrosis. Transl Stroke Res 2022; 14:364-382. [PMID: 35852765 DOI: 10.1007/s12975-022-01026-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/22/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022]
Abstract
Intraventricular hemorrhage (IVH) is a subtype of intracerebral hemorrhage (ICH) with high morbidity and mortality. Posthemorrhagic hydrocephalus (PHH) is a common and major complication that affects prognosis, but the mechanism is still unclear. Inflammation and fibrosis have been well established as the major causes of PHH after IVH. In this study, we aimed to investigate the effects of metformin on IVH in adult male mice and further explored the underlying molecular mechanisms of these effects. In the acute phase, metformin treatment exerted dose-dependent neuroprotective effects by reducing periependymal apoptosis and neuronal degeneration and decreasing brain edema. Moreover, high-dose metformin reduced inflammatory cell infiltration and the release of proinflammatory factors, thus protecting ependymal structure integrity and subependymal neurons. In the chronic phase, metformin administration improved neurocognitive function and reduced delayed hydrocephalus. Additionally, metformin significantly inhibited basal subarachnoid fibrosis and ependymal glial scarring. The ependymal structures partially restored. Mechanically, IVH reduced phospho-AMPK (p-AMPK) and SIRT1 expression and activated the phospho-NF-κB (p-NF-κB) inflammatory signaling pathway. However, metformin treatment increased AMPK/SIRT1 expression and lowered the protein expression of p-NF-κB and its downstream inflammation. Compound C and EX527 administration reversed the anti-inflammatory effect of metformin. In conclusion, metformin attenuated neuroinflammation and subsequent fibrosis after IVH by regulating AMPK /SIRT1/ NF-κB pathways, thereby reducing delayed hydrocephalus. Metformin may be a promising therapeutic agent to prevent delayed hydrocephalus following IVH.
Collapse
|
20
|
Hagen SM, Eftekhari S, Hamann S, Juhler M, Jensen RH. Intracranial pressure and optic disc changes in a rat model of obstructive hydrocephalus. BMC Neurosci 2022; 23:29. [PMID: 35606718 PMCID: PMC9128145 DOI: 10.1186/s12868-022-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The kaolin induced obstructive hydrocephalus (OHC) model is well known for its ability to increase intracranial pressure (ICP) in experimental animals. Papilledema (PE) which is a predominant hallmark of elevated ICP in the clinic has not yet been studied in this model using high-resolution digital fundus microscopy. Further, the long-term effect on ICP and optic nerve head changes have not been fully demonstrated. In this study we aimed to monitor epidural ICP after induction of OHC and to examine changes in the optic disc. In addition, we validated epidural ICP to intraventricular ICP in this disease model. METHOD Thirteen male Sprague-Dawley rats received an injection into the cisterna magna containing either kaolin-Ringer's lactate suspension (n = 8) or an equal amount of Ringer's lactate solution (n = 5). Epidural ICP was recorded post-operatively, and then continuously overnight and followed up after 1 week. The final epidural ICP value after 1 week was confirmed with simultaneous ventricular ICP measurement. Optic disc photos (ODP) were obtained preoperatively at baseline and after one week and were assessed for papilledema. RESULTS All animals injected with kaolin developed OHC and had significant higher epidural ICP (15.49 ± 2.47 mmHg) compared to control animals (5.81 ± 1.33 mmHg) on day 1 (p < 0.0001). After 1 week, the epidural ICP values were subsided to normal range in hydrocephalus animals and there was no significant difference in epidural ICP between the groups. Epidural ICP after 1 week correlated with the ventricular ICP with a Pearson's r = 0.89 (p < 0.0001). ODPs from both groups showed no signs of acute papilledema, but 5 out of 8 (62.5%) of the hydrocephalus animals were identified with peripapillary changes. CONCLUSIONS We demonstrated that the raised ICP at day 1 in the hydrocephalus animals was completely normalized within 1 week and that epidural ICP measurements are valid method in this model. No acute papilledema was identified in the hydrocephalus animals, but the peripapillary changes indicate a potential gliosis formation or an early state of a growing papilledema in the context of lateral ventricle dilation and increased ICP.
Collapse
Affiliation(s)
- Snorre Malm Hagen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark.
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark.
| | - Sajedeh Eftekhari
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark.
| | - Steffen Hamann
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark.
| | - Marianne Juhler
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.
| | - Rigmor H Jensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark.
| |
Collapse
|
21
|
Rana T, Behl T, Shamsuzzaman M, Singh S, Sharma N, Sehgal A, Alshahrani AM, Aldahish A, Chidambaram K, Dailah HG, Bhatia S, Bungau S. Exploring the role of astrocytic dysfunction and AQP4 in depression. Cell Signal 2022; 96:110359. [PMID: 35597427 DOI: 10.1016/j.cellsig.2022.110359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022]
Abstract
Aquaporin-4 (AQP4) is the water regulating channel found in the terminal processes of astrocytes in the brain and is implicated in regulating the astrocyte functions, whereas in neuropathologies, AQP4 performs an important role in astrocytosis and release of proinflammatory cytokines. However, several findings have revealed the modulation of the AQP4 water channel in the etiopathogenesis of various neuropsychiatric diseases. In the current article, we have summarized the recent studies and highlighted the implication of astrocytic dysfunction and AQP4 in the etiopathogenesis of depressive disorder. Most of the studies have measured the AQP4 gene or protein expression in the brain regions, particularly the locus coeruleus, choroid plexus, prefrontal cortex, and hippocampus, and found that in these brain regions, AQP4 gene expression decreased on exposure to chronic mild stress. Few studies also measured the peripheral AQP4 mRNA expression in the blood and AQP4 autoantibodies in the blood serum and revealed no change in the depressed patients in comparison with normal individuals.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Md Shamsuzzaman
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Saudi Arabia
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
22
|
Zhu J, Lee MJ, Chang HJ, Ju X, Cui J, Lee YL, Go D, Chung W, Oh E, Heo JY. Reactive microglia and mitochondrial unfolded protein response following ventriculomegaly and behavior defects in kaolin-induced hydrocephalus. BMB Rep 2022. [PMID: 34903317 PMCID: PMC9058473 DOI: 10.5483/bmbrep.2022.55.4.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ventriculomegaly induced by the abnormal accumulation of cerebrospinal fluid (CSF) leads to hydrocephalus, which is accompanied by neuroinflammation and mitochondrial oxidative stress. The mitochondrial stress activates mitochondrial unfolded protein response (UPRmt), which is essential for mitochondrial protein homeostasis. However, the association of inflammatory response and UPRmt in the pathogenesis of hydrocephalus is still unclear. To assess their relevance in the pathogenesis of hydrocephalus, we established a kaolin-induced hydrocephalus model in 8-week-old male C57BL/6J mice and evaluated it over time. We found that kaolin-injected mice showed prominent ventricular dilation, motor behavior defects at the 3-day, followed by the activation of microglia and UPRmt in the motor cortex at the 5-day. In addition, PARP-1/NF-κB signaling and apoptotic cell death appeared at the 5-day. Taken together, our findings demonstrate that activation of microglia and UPRmt occurs after hydrocephalic ventricular expansion and behavioral abnormal-ities which could be lead to apoptotic neuronal cell death, providing a new perspective on the pathogenic mechanism of hydrocephalus.
Collapse
Affiliation(s)
- Jiebo Zhu
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Min Joung Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Hee Jin Chang
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Neurology, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Xianshu Ju
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Jianchen Cui
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Yu Lim Lee
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Dahyun Go
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Woosuk Chung
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Eungseok Oh
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Neurology, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
23
|
Cellular Distribution of Brain Aquaporins and Their Contribution to Cerebrospinal Fluid Homeostasis and Hydrocephalus. Biomolecules 2022; 12:biom12040530. [PMID: 35454119 PMCID: PMC9025855 DOI: 10.3390/biom12040530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023] Open
Abstract
Brain aquaporins facilitate the movement of water between the four water compartments: blood, cerebrospinal fluid, interstitial fluid, and intracellular fluid. This work analyzes the expression of the four most abundant aquaporins (AQPs) (AQP1, AQP4, AQP9, and AQP11) in the brains of mice and discuss their contribution to hydrocephalus. We analyzed available data from single-cell RNA sequencing of the central nervous system of mice to describe the expression of aquaporins and compare their distribution with that based on qPCR, western blot, and immunohistochemistry assays. Expression of AQP1 in the apical cell membrane of choroid plexus epithelial cells and of AQP4 in ependymal cells, glia limitans, and astrocyte processes in the pericapillary end foot is consistent with the involvement of both proteins in cerebrospinal fluid homeostasis. The expression of both aquaporins compensates for experimentally induced hydrocephalus in the animals. Recent data demonstrate that hypoxia in aged animals alters AQP4 expression in the choroidal plexus and cortex, increasing the ventricle size and intraventricular pressure. Cerebral distensibility is reduced in parallel with a reduction in cerebrospinal fluid drainage and cognitive deterioration. We propose that aged mice chronically exposed to hypoxia represent an excellent experimental model for studying the pathophysiological characteristics of idiopathic normal pressure hydrocephalus and roles for AQPs in such disease.
Collapse
|
24
|
Castañeyra-Ruiz L, González-Marrero I, Hernández-Abad LG, Carmona-Calero EM, Pardo MR, Baz-Davila R, Lee S, Muhonen M, Borges R, Castañeyra-Perdomo A. AQP4 labels a subpopulation of white matter-dependent glial radial cells affected by pediatric hydrocephalus, and its expression increased in glial microvesicles released to the cerebrospinal fluid in obstructive hydrocephalus. Acta Neuropathol Commun 2022; 10:41. [PMID: 35346374 PMCID: PMC8962176 DOI: 10.1186/s40478-022-01345-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/11/2022] [Indexed: 01/16/2023] Open
Abstract
Hydrocephalus is a distension of the ventricular system associated with ventricular zone disruption, reactive astrogliosis, periventricular white matter ischemia, axonal impairment, and corpus callosum alterations. The condition's etiology is typically attributed to a malfunction in classical cerebrospinal fluid (CSF) bulk flow; however, this approach does not consider the unique physiology of CSF in fetal and perinatal patients. The parenchymal fluid contributes to the glymphatic system, and plays a fundamental role in pediatric hydrocephalus, with aquaporin 4 (AQP4) as the primary facilitator of these fluid movements. Despite the importance of AQP4 in the pathophysiology of hydrocephalus, it’s expression in human fetal life is not well-studied. This manuscript systematically defines the brain expression of AQP4 in human brain development under control (n = 13) and hydrocephalic conditions (n = 3). Brains from 8 postconceptional weeks (PCW) onward and perinatal CSF from control (n = 2), obstructive (n = 6) and communicating (n = 6) hydrocephalic samples were analyzed through immunohistochemistry, immunofluorescence, western blot, and flow cytometry. Our results indicate that AQP4 expression is observed first in the archicortex, followed by the ganglionic eminences and then the neocortex. In the neocortex, it is initially at the perisylvian regions, and lastly at the occipital and prefrontal zones. Characteristic astrocyte end-feet labeling surrounding the vascular system was not established until 25 PCW. We also found AQP4 expression in a subpopulation of glial radial cells with processes that do not progress radially but, rather, curve following white matter tracts (corpus callosum and fornix), which were considered as glial stem cells (GSC). Under hydrocephalic conditions, GSC adjacent to characteristic ventricular zone disruption showed signs of early differentiation into astrocytes which may affect normal gliogenesis and contribute to the white matter dysgenesis. Finally, we found that AQP4 is expressed in the microvesicle fraction (p < 0.01) of CSF from patients with obstructive hydrocephalus. These findings suggest the potential use of AQP4 as a diagnostic and prognostic marker of pediatric hydrocephalus and as gliogenesis biomarker.
Collapse
|
25
|
Garcia-Bonilla M, Castaneyra-Ruiz L, Zwick S, Talcott M, Otun A, Isaacs AM, Morales DM, Limbrick DD, McAllister JP. Acquired hydrocephalus is associated with neuroinflammation, progenitor loss, and cellular changes in the subventricular zone and periventricular white matter. Fluids Barriers CNS 2022; 19:17. [PMID: 35193620 PMCID: PMC8864805 DOI: 10.1186/s12987-022-00313-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hydrocephalus is a neurological disease with an incidence of 80-125 per 100,000 births in the United States. Neuropathology comprises ventriculomegaly, periventricular white matter (PVWM) alterations, inflammation, and gliosis. We hypothesized that hydrocephalus in a pig model is associated with subventricular and PVWM cellular alterations and neuroinflammation that could mimic the neuropathology described in hydrocephalic infants. METHODS Hydrocephalus was induced by intracisternal kaolin injections in 35-day old female pigs (n = 7 for tissue analysis, n = 10 for CSF analysis). Age-matched sham controls received saline injections (n = 6). After 19-40 days, MRI scanning was performed to measure the ventricular volume. Stem cell proliferation was studied in the Subventricular Zone (SVZ), and cell death and oligodendrocytes were examined in the PVWM. The neuroinflammatory reaction was studied by quantifying astrocytes and microglial cells in the PVWM, and inflammatory cytokines in the CSF. RESULTS The expansion of the ventricles was especially pronounced in the body of the lateral ventricle, where ependymal disruption occurred. PVWM showed a 44% increase in cell death and a 67% reduction of oligodendrocytes. In the SVZ, the number of proliferative cells and oligodendrocyte decreased by 75% and 57% respectively. The decrease of the SVZ area correlated significantly with ventricular volume increase. Neuroinflammation occurred in the hydrocephalic pigs with a significant increase of astrocytes and microglia in the PVWM, and high levels of inflammatory interleukins IL-6 and IL-8 in the CSF. CONCLUSION The induction of acquired hydrocephalus produced alterations in the PVWM, reduced cell proliferation in the SVZ, and neuroinflammation.
Collapse
Affiliation(s)
- Maria Garcia-Bonilla
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| | - Leandro Castaneyra-Ruiz
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah Zwick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michael Talcott
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.,Division of Comparative Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Ayodamola Otun
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Albert M Isaacs
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Alberta, T2N 2T9, Canada
| | - Diego M Morales
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - James P McAllister
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
26
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
27
|
Visser VL, Rusinek H, Weickenmeier J. Peak ependymal cell stretch overlaps with the onset locations of periventricular white matter lesions. Sci Rep 2021; 11:21956. [PMID: 34753951 PMCID: PMC8578319 DOI: 10.1038/s41598-021-00610-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022] Open
Abstract
Deep and periventricular white matter hyperintensities (dWMH/pvWMH) are bright appearing white matter tissue lesions in T2-weighted fluid attenuated inversion recovery magnetic resonance images and are frequent observations in the aging human brain. While early stages of these white matter lesions are only weakly associated with cognitive impairment, their progressive growth is a strong indicator for long-term functional decline. DWMHs are typically associated with vascular degeneration in diffuse white matter locations; for pvWMHs, however, no unifying theory exists to explain their consistent onset around the horns of the lateral ventricles. We use patient imaging data to create anatomically accurate finite element models of the lateral ventricles, white and gray matter, and cerebrospinal fluid, as well as to reconstruct their WMH volumes. We simulated the mechanical loading of the ependymal cells forming the primary brain-fluid interface, the ventricular wall, and its surrounding tissues at peak ventricular pressure during the hemodynamic cycle. We observe that both the maximum principal tissue strain and the largest ependymal cell stretch consistently localize in the anterior and posterior horns. Our simulations show that ependymal cells experience a loading state that causes the ventricular wall to be stretched thin. Moreover, we show that maximum wall loading coincides with the pvWMH locations observed in our patient scans. These results warrant further analysis of white matter pathology in the periventricular zone that includes a mechanics-driven deterioration model for the ventricular wall.
Collapse
Affiliation(s)
- Valery L Visser
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Institute for Regenerative Medicine, University of Zurich, Zurich, 8006, Switzerland
| | - Henry Rusinek
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Johannes Weickenmeier
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| |
Collapse
|
28
|
The α-dystrobrevins play a key role in maintaining the structure and function of the extracellular matrix-significance for protein elimination failure arteriopathies. Acta Neuropathol Commun 2021; 9:171. [PMID: 34674769 PMCID: PMC8532274 DOI: 10.1186/s40478-021-01274-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
The extracellular matrix (ECM) of the cerebral vasculature provides a pathway for the flow of interstitial fluid (ISF) and solutes out of the brain by intramural periarterial drainage (IPAD). Failure of IPAD leads to protein elimination failure arteriopathies such as cerebral amyloid angiopathy (CAA). The ECM consists of a complex network of glycoproteins and proteoglycans that form distinct basement membranes (BM) around different vascular cell types. Astrocyte endfeet that are localised against the walls of blood vessels are tethered to these BMs by dystrophin associated protein complex (DPC). Alpha-dystrobrevin (α-DB) is a key dystrophin associated protein within perivascular astrocyte endfeet; its deficiency leads to a reduction in other dystrophin associated proteins, loss of AQP4 and altered ECM. In human dementia cohorts there is a positive correlation between dystrobrevin gene expression and CAA. In the present study, we test the hypotheses that (a) the positive correlation between dystrobrevin gene expression and CAA is associated with elevated expression of α-DB at glial-vascular endfeet and (b) a deficiency in α-DB results in changes to the ECM and failure of IPAD. We used human post-mortem brain tissue with different severities of CAA and transgenic α-DB deficient mice. In human post-mortem tissue we observed a significant increase in vascular α-DB with CAA (CAA vrs. Old p < 0.005, CAA vrs. Young p < 0.005). In the mouse model of α-DB deficiency, there was early modifications to vascular ECM (collagen IV and BM thickening) that translated into reduced IPAD efficiency. Our findings highlight the important role of α-DB in maintaining structure and function of ECM, particularly as a pathway for the flow of ISF and solutes out of the brain by IPAD.
Collapse
|
29
|
Wang C, Wang X, Tan C, Wang Y, Tang Z, Zhang Z, Liu J, Xiao G. Novel therapeutics for hydrocephalus: Insights from animal models. CNS Neurosci Ther 2021; 27:1012-1022. [PMID: 34151523 PMCID: PMC8339528 DOI: 10.1111/cns.13695] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrocephalus is a cerebrospinal fluid physiological disorder that causes ventricular dilation with normal or high intracranial pressure. The current regular treatment for hydrocephalus is cerebrospinal fluid shunting, which is frequently related to failure and complications. Meanwhile, considering that the current nonsurgical treatments of hydrocephalus can only relieve the symptoms but cannot eliminate this complication caused by primary brain injuries, the exploration of more effective therapies has become the focus for many researchers. In this article, the current research status and progress of nonsurgical treatment in animal models of hydrocephalus are reviewed to provide new orientations for animal research and clinical practice.
Collapse
Affiliation(s)
- Chuansen Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaoqiang Wang
- Department of Pediatric NeurosurgeryXinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Changwu Tan
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yuchang Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhi Tang
- Department of NeurosurgeryHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Zhiping Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jingping Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Gelei Xiao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
30
|
Chen J, Wang L, Xu H, Wang Y, Liang Q. The lymphatic drainage system of the CNS plays a role in lymphatic drainage, immunity, and neuroinflammation in stroke. J Leukoc Biol 2021; 110:283-291. [PMID: 33884651 DOI: 10.1002/jlb.5mr0321-632r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
The lymphatic drainage system of the central nervous system (CNS) plays an important role in maintaining interstitial fluid balance and regulating immune responses and immune surveillance. The impaired lymphatic drainage system of the CNS might be involved in the onset and progression of various neurodegenerative diseases, neuroinflammation, and cerebrovascular diseases. A significant immune response and brain edema are observed after stroke, resulting from disrupted homeostasis in the brain. Thus, understanding the lymphatic drainage system of the CNS in stroke may lead to the development of new approaches for therapeutic interventions in the future. Here, we review recent evidence implicating the lymphatic drainage system of the CNS in stroke.
Collapse
Affiliation(s)
- Jinman Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Linmei Wang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of theory and therapy of muscles and bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
31
|
Cui H, Wang W, Zheng X, Xia D, Liu H, Qin C, Tian H, Teng J. Decreased AQP4 Expression Aggravates ɑ-Synuclein Pathology in Parkinson's Disease Mice, Possibly via Impaired Glymphatic Clearance. J Mol Neurosci 2021; 71:2500-2513. [PMID: 33772424 DOI: 10.1007/s12031-021-01836-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
The pathological hallmarks of Parkinson's disease (PD), a neurodegenerative disorder, are the selective loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and the presence of α-synuclein (α-syn) aggregates in the form of Lewy bodies/Lewy neurites (LBs/LNs) in neurons. Recent studies have indicated that aquaporin 4 (AQP4), as a predominant water channel protein in the brain, is involved in the progression of Parkinson's disease (PD). However, it remains unclear whether AQP4 expression affects α-syn pathology in Parkinson's disease. In this study, we established a progressive PD model by subjecting AQP4 null (AQP4+/-) mice to bilateral intrastriatal injection of α-syn preformed fibrils (PFFs) and investigated the effect of decreased AQP4 expression on the development of PD. We found that decreased expression of AQP4 accelerated pathologic deposition of α-syn and facilitated the loss of dopamine neurons and behavioral disorders. Draining of macromolecules from the brain via the glymphatic pathway was slowed due to decreased AQP4 expression. Taken together, these findings indicate that decreased AQP4 expression may aggravate PD-like pathology, possibly via impairment of the glymphatic pathway.
Collapse
Affiliation(s)
- Huili Cui
- Department of Neurology, Institute of Parkinson and Movement Disorder, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenkang Wang
- Department of Orthopedics, Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xinhui Zheng
- Department of Orthopedics, Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Danhao Xia
- Department of Neurology, Institute of Parkinson and Movement Disorder, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Han Liu
- Department of Neurology, Institute of Parkinson and Movement Disorder, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chi Qin
- Department of Neurology, Institute of Parkinson and Movement Disorder, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Tian
- Department of Neurology, Institute of Parkinson and Movement Disorder, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junfang Teng
- Department of Neurology, Institute of Parkinson and Movement Disorder, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
32
|
Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, Li XF, Liu HY. Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review. J Neurotrauma 2021; 38:1203-1224. [PMID: 33292072 DOI: 10.1089/neu.2020.7413] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The blood-spinal cord barrier (BSCB), a physical barrier between the blood and spinal cord parenchyma, prevents the toxins, blood cells, and pathogens from entering the spinal cord and maintains a tightly controlled chemical balance in the spinal environment, which is necessary for proper neural function. A BSCB disruption, however, plays an important role in primary and secondary injury processes related to spinal cord injury (SCI). After SCI, the structure of the BSCB is broken down, which leads directly to leakage of blood components. At the same time, the permeability of the BSCB is also increased. Repairing the disruption of the BSCB could alleviate the SCI pathology. We review the morphology and pathology of the BSCB and progression of therapeutic methods targeting BSCB in SCI.
Collapse
Affiliation(s)
- Lin-Yu Jin
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| | - Kai-Feng Wang
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Wei-Wei Xia
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Zhen-Qi Zhu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Chun-Ru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xin-Feng Li
- Department of Spinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Hai-Ying Liu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| |
Collapse
|
33
|
Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation. Mol Psychiatry 2021; 26:6411-6426. [PMID: 34002021 PMCID: PMC8760065 DOI: 10.1038/s41380-021-01127-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023]
Abstract
Several psychiatric, neurologic and neurodegenerative disorders present increased brain ventricles volume, being hydrocephalus the disease with the major manifestation of ventriculomegaly caused by the accumulation of high amounts of cerebrospinal fluid (CSF). The molecules and pathomechanisms underlying cerebral ventricular enlargement are widely unknown. Kinase D interacting substrate of 220 kDa (KIDINS220) gene has been recently associated with schizophrenia and with a novel syndrome characterized by spastic paraplegia, intellectual disability, nystagmus and obesity (SINO syndrome), diseases frequently occurring with ventriculomegaly. Here we show that Kidins220, a transmembrane protein effector of various key neuronal signalling pathways, is a critical regulator of CSF homeostasis. We observe that both KIDINS220 and the water channel aquaporin-4 (AQP4) are markedly downregulated at the ventricular ependymal lining of idiopathic normal pressure hydrocephalus (iNPH) patients. We also find that Kidins220 deficient mice develop ventriculomegaly accompanied by water dyshomeostasis and loss of AQP4 in the brain ventricular ependymal layer and astrocytes. Kidins220 is a known cargo of the SNX27-retromer, a complex that redirects endocytosed plasma membrane proteins (cargos) back to the cell surface, thus avoiding their targeting to lysosomes for degradation. Mechanistically, we show that AQP4 is a novel cargo of the SNX27-retromer and that Kidins220 deficiency promotes a striking and unexpected downregulation of the SNX27-retromer that results in AQP4 lysosomal degradation. Accordingly, SNX27 silencing decreases AQP4 levels in wild-type astrocytes whereas SNX27 overexpression restores AQP4 content in Kidins220 deficient astrocytes. Together our data suggest that the KIDINS220-SNX27-retromer-AQP4 pathway is involved in human ventriculomegaly and open novel therapeutic perspectives.
Collapse
|
34
|
de Laurentis C, Cristaldi P, Arighi A, Cavandoli C, Trezza A, Sganzerla EP, Giussani CG, Di Cristofori A. Role of aquaporins in hydrocephalus: what do we know and where do we stand? A systematic review. J Neurol 2020; 268:4078-4094. [PMID: 32747978 DOI: 10.1007/s00415-020-10122-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Glymphatic fluid circulation may be considered the lymphatic system of the brain and the main role of such system seems to be played by aquaporins (AQPs), a family of proteins which regulates water exchange, in particular AQP4 and 1. Alterations of glymphatic fluid circulation through AQPs variations are now emerging as central elements in the pathophysiology of different brain conditions, like hydrocephalus. This systematic review provides an insight about the role of AQPs in hydrocephalus establishment and compensation, investigating their possible role as diagnostic tools or therapeutic targets. METHODS PubMed database was screened searching for the relevant existing literature in English language published until February 29th 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. RESULTS A total of 40 articles met the inclusion criteria for our systematic analysis. AQP4 resulted the most studied water channel, followed by AQP1. The changes in cerebrospinal fluid (CSF), brain parenchyma and choroid plexus (CP) in different hydrocephalus type were analyzed. Moreover, important pharmacological interactions regarding AQP and molecules or conditions were discussed. A very interesting result is the general consensus on increase of AQP4 in hydrocephalic patients, unless in patients suffering from idiopathic normal pressure hydrocephalus, where AQP4 shows a tendency in reduction. CONCLUSION AQP seem to play a central role in the pathophysiology of hydrocephalus and in its compensation mechanisms. Further studies are required to definitively establish their precise roles and their quantitative changes to allow their utilization as diagnostic tools or therapeutic targets.
Collapse
Affiliation(s)
- Camilla de Laurentis
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Paola Cristaldi
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Andrea Arighi
- Unit of Neurology - UOSD Malattie Neurodegenerative, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, MI, Italy.,Dino Ferrari Center - Università degli Studi di Milano, Milan, MI, Italy
| | - Clarissa Cavandoli
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Università degli Studi di Milano, Milan, MI, Italy
| | - Andrea Trezza
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy
| | - Erik P Sganzerla
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Carlo G Giussani
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.,Department of Surgery and Medicine, Università degli Studi Milano-Bicocca, Milan, MI, Italy
| | - Andrea Di Cristofori
- Unit of Neurosurgery, Ospedale San Gerardo, Azienda Socio Sanitaria Territoriale Monza, Via G. B. Pergolesi 33, 20900, Monza, MB, Italy.
| |
Collapse
|
35
|
Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y, Nahavandi P, Ahmed Z, Fisher A, Meftah S, Murray TK, Ottersen OP, Nagelhus EA, O’Neill MJ, Wells JA, Lythgoe MF. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model. Brain 2020; 143:2576-2593. [PMID: 32705145 PMCID: PMC7447521 DOI: 10.1093/brain/awaa179] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 01/09/2023] Open
Abstract
The glymphatic system, that is aquaporin 4 (AQP4) facilitated exchange of CSF with interstitial fluid (ISF), may provide a clearance pathway for protein species such as amyloid-β and tau, which accumulate in the brain in Alzheimer's disease. Further, tau protein transference via the extracellular space, the compartment that is cleared by the glymphatic pathway, allows for its neuron-to-neuron propagation, and the regional progression of tauopathy in the disorder. The glymphatic system therefore represents an exciting new target for Alzheimer's disease. Here we aim to understand the involvement of glymphatic CSF-ISF exchange in tau pathology. First, we demonstrate impaired CSF-ISF exchange and AQP4 polarization in a mouse model of tauopathy, suggesting that this clearance pathway may have the potential to exacerbate or even induce pathogenic accumulation of tau. Subsequently, we establish the central role of AQP4 in the glymphatic clearance of tau from the brain; showing marked impaired glymphatic CSF-ISF exchange and tau protein clearance using the novel AQP4 inhibitor, TGN-020. As such, we show that this system presents as a novel druggable target for the treatment of Alzheimer's disease, and possibly other neurodegenerative diseases alike.
Collapse
Affiliation(s)
- Ian F Harrison
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| | - Ozama Ismail
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| | - Asif Machhada
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Niall Colgan
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
- School of Physics, National University of Ireland Galway, Ireland
| | - Yolanda Ohene
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| | - Payam Nahavandi
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| | - Zeshan Ahmed
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, UK
| | - Alice Fisher
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, UK
| | - Soraya Meftah
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, UK
| | - Tracey K Murray
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey, UK
| | - Ole P Ottersen
- Office of the President, Karolinska Institutet, Stockholm, Sweden
| | - Erlend A Nagelhus
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Department of Imaging, Division of Medicine, University College London, London, UK
| |
Collapse
|
36
|
The Pattern of AQP4 Expression in the Ageing Human Brain and in Cerebral Amyloid Angiopathy. Int J Mol Sci 2020; 21:ijms21041225. [PMID: 32059400 PMCID: PMC7072949 DOI: 10.3390/ijms21041225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
In the absence of lymphatics, fluid and solutes such as amyloid-β (Aβ) are eliminated from the brain along basement membranes in the walls of cerebral capillaries and arteries—the Intramural Peri-Arterial Drainage (IPAD) pathway. IPAD fails with age and insoluble Aβ is deposited as plaques in the brain and in IPAD pathways as cerebral amyloid angiopathy (CAA); fluid accumulates in the white matter as reflected by hyperintensities (WMH) on MRI. Within the brain, fluid uptake by astrocytes is regulated by aquaporin 4 (AQP4). We test the hypothesis that expression of astrocytic AQP4 increases in grey matter and decreases in white matter with onset of CAA. AQP4 expression was quantitated by immunocytochemistry and confocal microscopy in post-mortem occipital grey and white matter from young and old non-demented human brains, in CAA and in WMH. Results: AQP4 expression tended to increase with normal ageing but AQP4 expression in severe CAA was significantly reduced when compared to moderate CAA (p = 0.018). AQP4 expression tended to decline in the white matter with CAA and WMH, both of which are associated with impaired IPAD. Adjusting the level of AQP4 activity may be a valid therapeutic target for restoring homoeostasis in the brain as IPAD fails with age and CAA.
Collapse
|
37
|
Alimajstorovic Z, Pascual-Baixauli E, Hawkes CA, Sharrack B, Loughlin AJ, Romero IA, Preston JE. Cerebrospinal fluid dynamics modulation by diet and cytokines in rats. Fluids Barriers CNS 2020; 17:10. [PMID: 32036786 PMCID: PMC7008525 DOI: 10.1186/s12987-020-0168-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
Background Idiopathic intracranial hypertension (IIH) is a neurological disorder characterised by raised cerebrospinal fluid (CSF) pressure in the absence of any intracranial pathology. IIH mainly affects women with obesity between the ages of 15 and 45. Two possible mechanisms that could explain the increased CSF pressure in IIH are excessive CSF production by the choroid plexus (CP) epithelium or impaired CSF drainage from the brain. However, the molecular mechanisms controlling these mechanisms in IIH remain to be determined. Methods In vivo ventriculo-cisternal perfusion (VCP) and variable rate infusion (VRI) techniques were used to assess changes in rates of CSF secretion and resistance to CSF drainage in female and male Wistar rats fed either a control (C) or high-fat (HF) diet (under anaesthesia with 20 μl/100 g medetomidine, 50 μl/100 g ketamine i.p). In addition, CSF secretion and drainage were assessed in female rats following treatment with inflammatory mediators known to be elevated in the CSF of IIH patients: C–C motif chemokine ligand 2 (CCL2), interleukin (IL)-17 (IL-17), IL-6, IL-1β, tumour necrosis factor-α (TNF-α), as well as glucocorticoid hydrocortisone (HC). Results Female rats fed the HF diet had greater CSF secretion compared to those on control diet (3.18 ± 0.12 μl/min HF, 1.49 ± 0.15 μl/min control). Increased CSF secretion was seen in both groups following HC treatment (by 132% in controls and 114% in HF) but only in control rats following TNF-α treatment (137% increase). The resistance to CSF drainage was not different between control and HF fed female rats (6.13 ± 0.44 mmH2O min/μl controls, and 7.09 ± 0.26 mmH2O min/μl HF). and when treated with CCL2, both groups displayed an increase in resistance to CSF drainage of 141% (controls) and 139% (HF) indicating lower levels of CSF drainage. Conclusions Weight loss and therapies targeting HC, TNF-α and CCL2, whether separately or in combination, may be beneficial to modulate rates of CSF secretion and/or resistance to CSF drainage pathways, both factors likely contributing to the raised intracranial pressure (ICP) observed in female IIH patients with obesity.
Collapse
Affiliation(s)
- Zerin Alimajstorovic
- School of Life, Health and Chemical Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Ester Pascual-Baixauli
- School of Life, Health and Chemical Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Cheryl A Hawkes
- School of Life, Health and Chemical Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Basil Sharrack
- Department of Neuroscience, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | - A Jane Loughlin
- School of Life, Health and Chemical Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Ignacio A Romero
- School of Life, Health and Chemical Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jane E Preston
- Institute of Pharmaceutical Science, King's College London, 3rd Floor, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
38
|
Klebe D, McBride D, Krafft PR, Flores JJ, Tang J, Zhang JH. Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: Established mechanisms and proposed pathways. J Neurosci Res 2020; 98:105-120. [PMID: 30793349 PMCID: PMC6703985 DOI: 10.1002/jnr.24394] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/05/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
Abstract
In addition to being the leading cause of morbidity and mortality in premature infants, germinal matrix hemorrhage (GMH) is also the leading cause of acquired infantile hydrocephalus. The pathophysiology of posthemorrhagic hydrocephalus (PHH) development after GMH is complex and vaguely understood, although evidence suggests fibrosis and gliosis in the periventricular and subarachnoid spaces disrupts normal cerebrospinal fluid (CSF) dynamics. Theories explaining general hydrocephalus etiology have substantially evolved from the original bulk flow theory developed by Dr. Dandy over a century ago. Current clinical and experimental evidence supports a new hydrodynamic theory for hydrocephalus development involving redistribution of vascular pulsations and disruption of Starling forces in the brain microcirculation. In this review, we discuss CSF flow dynamics, history and development of theoretical hydrocephalus pathophysiology, and GMH epidemiology and etiology as it relates to PHH development. We highlight known mechanisms and propose new avenues that will further elucidate GMH pathophysiology, specifically related to hydrocephalus.
Collapse
Affiliation(s)
- Damon Klebe
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Devin McBride
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Paul R Krafft
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350
- Department of Anesthesiology and Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92350
| |
Collapse
|
39
|
Close LN, Zanaty M, Kirby P, Dlouhy BJ. Acute Hydrocephalus Resulting from Neuromyelitis Optica: A Case Report and Review of the Literature. World Neurosurg 2019; 129:367-371. [PMID: 31200081 DOI: 10.1016/j.wneu.2019.05.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Neuromyelitis optica is an autoimmune disorder of the central nervous system that predominantly affects the optic nerves and spinal cord. The neuropathologic hallmark of the disease is deposits of antibodies and complement, loss of astrocytes, secondary degeneration of oligodendrocytes and neurons, and necrotic lesions with infiltration of neutrophilic and eosinophilic granulocytes. It can rarely be associated with hydrocephalus, but the cause and mechanisms that result in hydrocephalus are not clear. CASE DESCRIPTION A 35-year-old woman with a history of neuromyelitis optica presented with a 5-day history of progressively worsening lethargy, fatigue, somnolence, and headaches. Imaging demonstrated new hydrocephalus without evidence of obstruction, and extensive periventricular enhancement concerning for active demyelination. She underwent placement of a ventriculostomy, and subsequently underwent endoscopic biopsy and ventriculoperitoneal shunt placement. Pathology confirmed demyelination secondary to neuromyelitis optica. CONCLUSIONS This case provides evidence of the rapid development of hydrocephalus in association with periventricular inflammation, without aqueductal stenosis. In a state of aquaporin-4 dysfunction such as in neuromyelitis optica, altered cerebrospinal fluid resorption could lead to acute hydrocephalus by a nonobstructive mechanism.
Collapse
Affiliation(s)
- Liesl N Close
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, University of Iowa Stead Family Children's Hospital, Iowa City, Iowa, USA
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, University of Iowa Stead Family Children's Hospital, Iowa City, Iowa, USA
| | - Patricia Kirby
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Brian J Dlouhy
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, University of Iowa Stead Family Children's Hospital, Iowa City, Iowa, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
40
|
Norwood JN, Zhang Q, Card D, Craine A, Ryan TM, Drew PJ. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. eLife 2019; 8:44278. [PMID: 31063132 PMCID: PMC6524970 DOI: 10.7554/elife.44278] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/06/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebrospinal fluid (CSF) flows through the brain, transporting chemical signals and removing waste. CSF production in the brain is balanced by a constant outflow of CSF, the anatomical basis of which is poorly understood. Here, we characterized the anatomy and physiological function of the CSF outflow pathway along the olfactory sensory nerves through the cribriform plate, and into the nasal epithelia. Chemical ablation of olfactory sensory nerves greatly reduced outflow of CSF through the cribriform plate. The reduction in CSF outflow did not cause an increase in intracranial pressure (ICP), consistent with an alteration in the pattern of CSF drainage or production. Our results suggest that damage to olfactory sensory neurons (such as from air pollution) could contribute to altered CSF turnover and flow, providing a potential mechanism for neurological diseases.
Collapse
Affiliation(s)
- Jordan N Norwood
- Cellular and Developmental Biology Graduate Program, Pennsylvania State University, University Park, United States
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, United States
| | - David Card
- Department of Physics, Pennsylvania State University, University Park, United States
| | - Amanda Craine
- Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, University Park, United States
| | - Patrick J Drew
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, United States.,Department of Biomedical Engineering, Pennsylvania State University, University Park, United States.,Department of Neurosurgery, Pennsylvania State University, University Park, United States
| |
Collapse
|
41
|
Pu T, Zou W, Feng W, Zhang Y, Wang L, Wang H, Xiao M. Persistent Malfunction of Glymphatic and Meningeal Lymphatic Drainage in a Mouse Model of Subarachnoid Hemorrhage. Exp Neurobiol 2019; 28:104-118. [PMID: 30853828 PMCID: PMC6401547 DOI: 10.5607/en.2019.28.1.104] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event that often is followed by permanent brain impairments. It is necessary to explore the pathogenesis of secondary pathological damages in order to find effective interventions for improving the prognosis of SAH. Blockage of brain lymphatic drainage has been shown to worsen cerebral ischemia and edema after acute SAH. However, whether or not there is persistent dysfunction of cerebral lymphatic drainage following SAH remains unclear. In this study, autologous blood was injected into the cisterna magna of mice to establish SAH model. One week after surgery, SAH mice showed decreases in fluorescent tracer drainage to the deep cervical lymph nodes (dcLNs) and influx into the brain parenchyma after injection into the cisterna magna. Moreover, SAH impaired polarization of astrocyte aquaporin-4 (AQP4) that is a functional marker of glymphatic clearance and resulted in accumulations of Tau proteins as well as CD3+, CD4+, and CD8+ cells in the brain. In addition, pathological changes, including microvascular spasm, activation of glial cells, neuroinflammation, and neuronal apoptosis were observed in the hippocampus of SAH mice. Present results demonstrate persistent malfunction of glymphatic and meningeal lymphatic drainage and related neuropathological damages after SAH. Targeting improvement of brain lymphatic clearance potentially serves as a new strategy for the treatment of SAH.
Collapse
Affiliation(s)
- Tinglin Pu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Wenyan Zou
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Linmei Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Hongxing Wang
- Deptment of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
42
|
AQP1 and AQP4 Contribution to Cerebrospinal Fluid Homeostasis. Cells 2019; 8:cells8020197. [PMID: 30813473 PMCID: PMC6406452 DOI: 10.3390/cells8020197] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/23/2022] Open
Abstract
Aquaporin 1 (AQP1), expressed in epithelial cells of the choroid plexus, and aquaporin 4 (AQP4) present in ependymal cells and glia limitants have been proposed to play a significant role in cerebrospinal fluid (CSF) production and homeostasis. However, the specific contribution of each water channel to these functions remains unknown, being a subject of debate during the last years. Here, we analyzed in detail how AQP1 and AQP4 participate in different aspects of the CSF homeostasis such as the load and drainage of ventricles, and further explored if these proteins play a role in the ventricular compliance. To do that, we carried out records of intraventricular pressure and CSF outflow, and evaluated ventricular volume by magnetic resonance imaging in AQP1−/−, AQP4−/−, double AQP1−/−-AQP4−/− knock out and wild type mice controls. The analysis performed clearly showed that both AQPs have a significant participation in the CSF production, and additionally revealed that the double AQP1-AQP4 mutation alters the CSF drainage and the ventricular compliance. The data reported here indicate a significant extra-choroidal CSF formation mediated by AQP4, supporting the idea of an important and constant CSF production/absorption process, sustained by efflux/influx of water between brain capillaries and interstitial fluid. Moreover, our results suggest the participation of AQPs in structural functions also related with CSF homeostasis such as the distensibility capacity of the ventricular system.
Collapse
|
43
|
Aquaporin-4 Water Channel in the Brain and Its Implication for Health and Disease. Cells 2019; 8:cells8020090. [PMID: 30691235 PMCID: PMC6406241 DOI: 10.3390/cells8020090] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 02/08/2023] Open
Abstract
Aquaporin-4 (AQP4) is a water channel expressed on astrocytic endfeet in the brain. The role of AQP4 has been studied in health and in a range of pathological conditions. Interest in AQP4 has increased since it was discovered to be the target antigen in the inflammatory autoimmune disease neuromyelitis optica spectrum disorder (NMOSD). Emerging data suggest that AQP4 may also be implicated in the glymphatic system and may be involved in the clearance of beta-amyloid in Alzheimer’s disease (AD). In this review, we will describe the role of AQP4 in the adult and developing brain as well as its implication for disease.
Collapse
|
44
|
Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Castellanos Rivera RM, Simon MJ, Pike MM, Plá V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, Thomas JH, Xiao M, Hirase H, Asokan A, Iliff JJ, Nedergaard M. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 2018; 7:40070. [PMID: 30561329 PMCID: PMC6307855 DOI: 10.7554/elife.40070] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
The glymphatic system is a brain-wide clearance pathway; its impairment contributes to the accumulation of amyloid-β. Influx of cerebrospinal fluid (CSF) depends upon the expression and perivascular localization of the astroglial water channel aquaporin-4 (AQP4). Prompted by a recent failure to find an effect of Aqp4 knock-out (KO) on CSF and interstitial fluid (ISF) tracer transport, five groups re-examined the importance of AQP4 in glymphatic transport. We concur that CSF influx is higher in wild-type mice than in four different Aqp4 KO lines and in one line that lacks perivascular AQP4 (Snta1 KO). Meta-analysis of all studies demonstrated a significant decrease in tracer transport in KO mice and rats compared to controls. Meta-regression indicated that anesthesia, age, and tracer delivery explain the opposing results. We also report that intrastriatal injections suppress glymphatic function. This validates the role of AQP4 and shows that glymphatic studies must avoid the use of invasive procedures.
Collapse
Affiliation(s)
- Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Anna Lr Xavier
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Weixi Feng
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Wenyan Zou
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Tinglin Pu
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Hiromu Monai
- RIKEN Center for Brain Science, Wako, Japan.,Ochanomizu University, Tokyo, Japan
| | - Giridhar Murlidharan
- Gene Therapy Center, The University of North Carolina, Chapel Hill, United States
| | | | - Matthew J Simon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, United States
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, United States
| | - Virginia Plá
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Benjamin T Kress
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | | | - Benjamin A Plog
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States
| | - Alexander S Thrane
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway
| | - Iben Lundgaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States.,Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yoichiro Abe
- Department of Pharmacology,School of Medicine, Keio University, Tokyo, Japan
| | - Masato Yasui
- Department of Pharmacology,School of Medicine, Keio University, Tokyo, Japan
| | - John H Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, United States.,Department of Physics and Astronomy, University of Rochester, Rochester, United States
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Hajime Hirase
- RIKEN Center for Brain Science, Wako, Japan.,Brain and Body System Science Institute, Saitama University, Saitama, Japan
| | - Aravind Asokan
- Gene Therapy Center, The University of North Carolina, Chapel Hill, United States.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, North Carolina, United States.,Department of Surgery, Duke University School of Medicine, Durham, United States
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, United States.,Knight Cardiovascular Institute, Oregon Health and Science University, Portland, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, United States.,Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Cao X, Xu H, Feng W, Su D, Xiao M. Deletion of aquaporin-4 aggravates brain pathology after blocking of the meningeal lymphatic drainage. Brain Res Bull 2018; 143:83-96. [PMID: 30347264 DOI: 10.1016/j.brainresbull.2018.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023]
Abstract
The glymphatic pathway and meningeal lymphatic vessels are involved in clearance of metabolic macromolecules from the brain. However, the functional interaction between the two systems in the maintenance of brain homeostasis remains unclear. Here we reported that deletion of aquaporin-4 (AQP4), a functional regulator of glymphatic clearance, aggravated brain pathology of 3 month-old mice after blocking of the meningeal lymphatic drainage for 2 weeks via ligation of the deep cervical lymphatic nodes (LdcLNs). LdcLNs increased total and phosphorylated Tau protein levels in the hippocampus of both genotype mice, but increased hippocampal amyloid beta 1-40 and 1-42 levels only in AQP4 null mice, with up-regulation of beta-site amyloid precursor protein-cleaving enzyme 1 and down-regulation of insulin degrading enzyme. Consistently, LdcLNs caused microglial reactivity and activation of nod-like receptor protein-3 inflammasomes in the AQP4 null hippocampus. These mice also showed hippocampal neuronal apoptosis and declines in exploring and cognitive abilities. Deletion of AQP4, but not LdcLNs, increased brain water content. Together, these findings have revealed respective and interactive roles of the glymphatic system and the dural lymphatic system in maintaining amyloid beta, Tau proteins and water homeostasis in the brain, helping to understand the pathogenesis of neurological diseases associated with mis-accumulation of brain macromolecules.
Collapse
Affiliation(s)
- Xuejin Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Key Laboratory for Aging & Disease, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, China
| | - Hanrong Xu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Key Laboratory for Aging & Disease, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, China
| | - Dongyuan Su
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Key Laboratory for Aging & Disease, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
46
|
The effect of tumor removal via craniotomies on preoperative hydrocephalus in adult patients with intracranial tumors. Neurosurg Rev 2018; 43:141-151. [PMID: 30120611 DOI: 10.1007/s10143-018-1021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
The efficacy of tumor removal via craniotomies on preoperative hydrocephalus (HC) in adult patients with intracranial tumors is largely unknown. Therefore, we sought to evaluate the effect of tumor resection in patients with preoperative HC and identify the incidence and risk factors for postoperative VP shunt dependency. All craniotomies for intracranial tumors at Oslo University Hospital in patients ≥ 18 years old during a 10-year period (2004-2013) were reviewed. Patients with radiologically confirmed HC requiring surgery and subsequent development of shunt dependency were identified by cross-linking our prospectively collected tumor database to surgical procedure codes for hydrocephalus treatment (AAF). Patients with preexisting ventriculoperitoneal (VP) shunts (N = 41) were excluded. From 4774 craniotomies performed on 4204 patients, a total of 373 patients (7.8%) with HC preoperatively were identified. Median age was 54.4 years (range 18.1-83.9 years). None were lost to follow-up. Of these, 10.5% (39/373) required permanent CSF shunting due to persisting postoperative HC. The risk of becoming VP shunt dependent in patients with preexisting HC was 7.0% (26/373) within 30 days and 8.9% (33/373) within 90 days. Only secondary (repeat) surgery was a significant risk factor for VP shunt dependency. In this large, contemporary, single-institution consecutive series, 10.5% of intracranial tumor patients with preoperative HC became shunt-dependent post-craniotomy, yielding a surgical cure rate for HC of 89.5%. To the best of our knowledge, this is the first and largest study regarding postoperative shunt dependency after craniotomies for intracranial tumors, and can serve as benchmark for future studies.
Collapse
|
47
|
Trillo-Contreras JL, Ramírez-Lorca R, Hiraldo-González L, Sánchez-Gomar I, Galán-Cobo A, Suárez-Luna N, Sánchez de Rojas-de Pedro E, Toledo-Aral JJ, Villadiego J, Echevarría M. Combined effects of aquaporin-4 and hypoxia produce age-related hydrocephalus. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3515-3526. [PMID: 30293570 DOI: 10.1016/j.bbadis.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
Abstract
Aquaporin-4, present in ependymal cells, in glia limiting and abundantly in pericapillary astrocyte foot processes, and aquaporin-1, expressed in choroid plexus epithelial cells, play an important role in cerebrospinal fluid production and may be involved in the pathophysiology of age-dependent hydrocephalus. The finding that brain aquaporins expression is regulated by low oxygen tension led us to investigate how hypoxia and elevated levels of cerebral aquaporins may result in an increase in cerebrospinal fluid production that could be associated with a hydrocephalic condition. Here we have explored, in young and aged mice exposed to hypoxia, whether aquaporin-4 and aquaporin-1 participate in the development of age-related hydrocephalus. Choroid plexus, striatum, cortex and ependymal tissue were analyzed separately both for mRNA and protein levels of aquaporins. Furthermore, parameters such as total ventricular volume, intraventricular pressure, cerebrospinal fluid outflow rate, ventricular compliance and cognitive function were studied in wild type, aquaporin-1 and aquaporin-4 knock-out animals subjected to hypoxia or normoxia. Our data demonstrate that hypoxia is involved in the development of age-related hydrocephalus by a process that depends on aquaporin-4 channels as a main route for cerebrospinal fluid movement. Significant increases in aquaporin-4 expression that occur over the course of animal aging, together with a reduced cerebrospinal fluid outflow rate and ventricular compliance, contribute to produce more severe hydrocephalus related to hypoxic events in aged mice, with a notable impairment in cognitive function. These results indicate that physiological events and/or pathological conditions presenting with cerebral hypoxia/ischemia contribute to the development of chronic adult hydrocephalus.
Collapse
Affiliation(s)
- José Luis Trillo-Contreras
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain
| | - Reposo Ramírez-Lorca
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain
| | - Laura Hiraldo-González
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain
| | - Ismael Sánchez-Gomar
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain
| | - Ana Galán-Cobo
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain
| | - Nela Suárez-Luna
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain
| | - Eva Sánchez de Rojas-de Pedro
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain
| | - Juan José Toledo-Aral
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain
| | - Javier Villadiego
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain.
| | - Miriam Echevarría
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital. (HUVR)/Spanish National Research Council (CSIC)/University of Seville, Seville 41013, Spain; Department of Physiology and Biophysics, University of Seville, Seville 41009, Spain.
| |
Collapse
|
48
|
Saadeh FS, Melamed EF, Rea ND, Krieger MD. Seizure outcomes of supratentorial brain tumor resection in pediatric patients. Neuro Oncol 2018; 20:1272-1281. [PMID: 29579305 PMCID: PMC6071648 DOI: 10.1093/neuonc/noy026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background This study aims to identify the prevalence of and risk factors for seizure development after supratentorial brain tumor resection in pediatric patients. This could be used to guide the postoperative management and usage of anti-epileptic drugs (AEDs). Methods Retrospective study was conducted for patients between 0 and 21 years with supratentorial tumor resection between 2005 and 2015 at a single institution. Results Two hundred patients (114 males/86 females) were identified. Median age at resection (±SD) was 9.025 ± 5.720 years and mean follow-up was 4 ± 2 years. Resection was gross total in 82 patients (41%) and partial in 118 patients (59%); 66 patients (33%) experienced preoperative seizures, and 67 patients (34%) experienced postoperative seizures; 18 patients (27%) had early seizures, and 49 patients (73%) had late seizures. Univariate analysis identified risk factors for postoperative seizures as: preoperative seizures (P < 0.001), age less than 2 years (P = 0.003), temporal location (P < 0.001), thalamic location (P = 0.017), preoperative hyponatremia (P = 0.017), World Health Organization grade (P = 0.008), and pathology (P = 0.005). Multivariate regression identified 5 robust risk factors: temporal location (odds ratio [OR] 4.7, 95% CI: 1.7-13.3, P = 0.003), age <2 years (OR 3.9, 95% CI: 1.0-15.4; P = 0.049), preoperative hydrocephalus (OR 3.8, 95% CI: 1.5-9.4; P = 0.005), preoperative seizure (OR 2.8, 95% CI: 1.2-6.5; P = 0.016) and parietal location (OR 0.25, 95% CI: 0.06-0.99; P = 0.049). Extent of resection did not correlate with seizure development (P > 0.05). Conclusions This study reveals 5 risk factors for postoperative seizures after resection of supratentorial tumors. These factors should be considered in postoperative management of these patients.
Collapse
Affiliation(s)
- Fadi S Saadeh
- Division of Neurosurgery, Children’s Hospital of Los Angeles, Los Angeles, California
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Edward F Melamed
- Division of Neurosurgery, Children’s Hospital of Los Angeles, Los Angeles, California
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nolan D Rea
- Division of Neurosurgery, Children’s Hospital of Los Angeles, Los Angeles, California
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mark D Krieger
- Division of Neurosurgery, Children’s Hospital of Los Angeles, Los Angeles, California
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
49
|
Guo J, Mi X, Zhan R, Li M, Wei L, Sun J. Aquaporin 4 Silencing Aggravates Hydrocephalus Induced by Injection of Autologous Blood in Rats. Med Sci Monit 2018; 24:4204-4212. [PMID: 29921834 PMCID: PMC6042309 DOI: 10.12659/msm.906936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Aquaporin 4 (AQP4), the most abundant aquaporin in the brain, is a type of bidirectional water channel controlling the brain-water balance and plays a critical role in physiologic and pathologic water balance in the brain. AQP4 was reported to be elevated in hydrocephalus; therefore, we hypothesized that AQP4 contributes to hydrocephalus. In this study, the role of AQP4 in hydrocephalus was explored. MATERIAL AND METHODS The hydrocephalus rat model was established by injection of autologous blood. On Day 1 and Day 3 after injection of autologous blood, magnetic resonance imaging (MRI) and hematoxylin-eosin (HE) staining were performed to detect the changes in ventricles, and quantitative real-time PCR (qRT-PCR) and immunohistochemistry were carried out to detect the changes in AQP4 level. Thereafter, an AQP4-specific siRNA was used to downregulate AQP4. Then, on Day 3 after injection of autologous blood, the levels of AQP4 and connexin-43 were detected by qRT-PCR, immunohistochemistry, immunofluorescence, or Western blot analysis. MRI and HE staining were performed to detect the changes in ventricles, and Evans blue extravasation assay was used to assess blood-brain barrier integrity. RESULTS The hydrocephalus rat model was established successfully, and hydrocephalus rats showed a higher AQP4 level. Silencing AQP4 aggravated the hydrocephalus, with enlarged lateral ventricles and destruction of ependymal integrity and blood-brain barrier. CONCLUSIONS Our study demonstrates that silencing AQP4 aggravates hydrocephalus, indicating that AQP4 protects against hydrocephalus.
Collapse
Affiliation(s)
- Jian Guo
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Xinjiang Mi
- Second Department of Surgery, Shandong Police Hospital, Jinan, Shandong, P.R. China
| | - Rucai Zhan
- Second Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Meng Li
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Lin Wei
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Jinlong Sun
- First Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
50
|
Akai T, Hatta T, Shimada H, Mizuki K, Kudo N, Hatta T, Otani H. Extracranial outflow of particles solved in cerebrospinal fluid: Fluorescein injection study. Congenit Anom (Kyoto) 2018; 58:93-98. [PMID: 28976018 DOI: 10.1111/cga.12257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022]
Abstract
Cerebrospinal fluid is thought to be mainly absorbed into arachnoid granules in the subarachnoid space and drained into the sagittal sinus. However, some observations such as late outbreak of arachnoid granules in fetus brain and recent cerebrospinal fluid movements study by magnetic resonance images, conflict with this hypothesis. In this study, we investigated the movement of cerebrospinal fluid in fetuses. Several kinds of fluorescent probes with different molecular weights were injected into the lateral ventricle or subarachnoid space in mouse fetuses at a gestational age of 13 days. The movements of the probes were monitored by live imaging under fluorescent microscope. Following intraventricular injection, the probes dispersed into the 3rd ventricle and aqueduct immediately, but did not move into the 4th ventricle and spinal canal. After injection of low and high molecular weight conjugated probes, both probes dispersed into the brain but only the low molecular weight probe dispersed into the whole body. Following intra-subarachnoid injection, both probes diffused into the spinal canal gradually. Neither probe dispersed into the brain and body. The probe injected into the lateral ventricle moved into the spinal central canal by the fetus head compression, and returned into the aqueduct by its release. We conclude this study as follows: (i) The movement of metabolites in cerebrospinal fluid in the ventricles will be restricted by molecular weight; (ii) Cerebrospinal fluid in the ventricle and in the subarachnoid space move differently; and (iii) Cerebrospinal fluid may not appear to circulate. In the event of high intracranial pressure, the fluid may move into the spinal canal.
Collapse
Affiliation(s)
- Takuya Akai
- Department of Neurosurgery, Kanazawa Medical University, Uchinada, Japan.,Department of Neurosurgery, Toyama University, Toyama, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan
| | - Hiroki Shimada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan
| | - Keiji Mizuki
- Department of Nanoscience, Sojo University, Kumamoto, Japan
| | - Nae Kudo
- Department of Nanoscience, Sojo University, Kumamoto, Japan
| | - Taizo Hatta
- Department of Nanoscience, Sojo University, Kumamoto, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Shimane University, Izumo, Japan
| |
Collapse
|