1
|
Ong E, Clottes P, Leon C, Guedouari H, Gallo-Bona N, Lo Grasso M, Motter L, Bolbos R, Ovize M, Nighogossian N, Wiart M, Paillard M. Mitochondria dysfunction, a potential cytoprotection target against ischemia-reperfusion injury in a mouse stroke model. Neurotherapeutics 2025; 22:e00549. [PMID: 39933968 PMCID: PMC12014409 DOI: 10.1016/j.neurot.2025.e00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 02/02/2025] [Indexed: 02/13/2025] Open
Abstract
More than 50 % of patients undergoing mechanical thrombectomy (MT) for ischemic stroke have a poor functional outcome despite timely and successful angiographic reperfusion, highlighting the need for adjunctive treatments to reperfusion therapy. Mitochondria are key regulators of cell fate, by controlling cell bioenergetics via oxidative phosphorylation (OXPHOS) and cell death through the mitochondrial permeability transition pore (mPTP). Whether these two main mitochondrial functions are altered by reperfusion and could represent a new cytoprotective approach remains to be elucidated in mice. Swiss male mice underwent either permanent or transient middle cerebral artery occlusion (pMCAO or tMCAO), with neuroscore evaluation and multimodal imaging. The area at risk of necrosis was evaluated by per-occlusion dynamic contrast-enhanced ultrasound. Final infarct size was assessed at day 1 by MRI. Cortical mitochondrial isolation was subsequently performed to assess mPTP sensitivity by calcium retention capacity (CRC) and OXPHOS. A cytoprotective treatment targeting mitochondria, ciclosporine A (CsA), was tested in tMCAO, to mimick the clinical situation of patients treated with MT. Reperfusion after 60 min of ischemia improves neuroscores but does not significantly reduce infarct size or mitochondrial dysfunction compared to permanent ischemia. CsA treatment at reperfusion mitigates stroke outcome, decreases final infarct size and improves mitochondrial CRC and OXPHOS. Mitochondrial dysfunctions, i.e. reduced mPTP sensitivity and decreased oxygen consumption rates, were observed in pMCAO and tMCAO regardless of the reperfusion status. CsA improved mitochondrial functions when injected at reperfusion. These suggest that both mPTP opening and OXPHOS alterations are thus early but reversible hallmarks of cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Elodie Ong
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Paul Clottes
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Christelle Leon
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Hala Guedouari
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Noelle Gallo-Bona
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Megane Lo Grasso
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Lucas Motter
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Radu Bolbos
- CERMEP-Imagerie du Vivant, 69500 Bron, France
| | - Michel Ovize
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Norbert Nighogossian
- Stroke Department, Hospices Civils de Lyon, 69500 Bron, France; Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Marlene Wiart
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France; CNRS, 69100 Villeurbanne, France
| | - Melanie Paillard
- Laboratoire CarMeN - IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France.
| |
Collapse
|
2
|
Han Z, Zhang L, Ma M, Keshavarzi M. Effects of MicroRNAs and Long Non-coding RNAs on Beneficial Action of Exercise on Cognition in Degenerative Diseases: A Review. Mol Neurobiol 2025; 62:485-500. [PMID: 38869810 DOI: 10.1007/s12035-024-04292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Recent research has exposed a growing body of proof underscoring the importance of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in maintaining the physical composition of neurons and influencing cognitive functioning in both standard and atypical circumstances. Extensive research has been conducted on the possible application of miRNAs and lncRNAs as biomarkers for various diseases, with a particular focus on brain disorders, as they possess remarkable durability in cell-free surroundings and can endure repeated freezing and thawing processes. It is intriguing to note that miRNAs and lncRNAs have the ability to function through paracrine mechanisms, thereby playing a role in communication between different organs. Recent research has proposed that the improvement of cognitive abilities through physical exercise in mentally healthy individuals is a valuable method for uncovering potential connections between miRNAs, or microRNAs, and lncRNAs, and human cognitive function. The process of cross-correlating data from disease models and patients with existing data will be crucial in identifying essential miRNAs and lncRNAs, which can potentially act as biomarkers or drug targets in the treatment of cognitive disorders. By combining this method with additional research in animal models, we can determine the function of these molecules and their potential impact on therapy. This article discusses the latest research about the primary miRNAs, lncRNAs, and their exosomes that are affected by physical activity in terms of human cognitive function.
Collapse
Affiliation(s)
- Zhen Han
- Department of Physical Education, Zhejiang International Studies University, Hangzhou, 310023, Zhejiang, China
| | - Lei Zhang
- Institute of Physical Education and Sports, Capital University Of Physical Education And Sports, Beijing, 100191, China.
| | - Minhang Ma
- Department of Physical Education, Zhejiang International Studies University, Hangzhou, 310023, Zhejiang, China
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Alhashimi A, Kamarova M, Baig SS, Nair KPS, Wang T, Redgrave J, Majid A, Ali AN. Remote ischaemic conditioning for neurological disorders-a systematic review and narrative synthesis. Syst Rev 2024; 13:308. [PMID: 39702489 DOI: 10.1186/s13643-024-02725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Remote ischaemic conditioning (RIC) refers to the use of controlled transient ischemic and reperfusion cycles, commonly of the upper or lower limb, to mitigate cellular damage from ischaemic injury. Preclinical studies demonstrate that RIC may have a neuroprotective effect and therefore could represent a novel therapeutic option in the management of neurological disorders. The aim of this review is to comprehensively describe the current clinical evidence of RIC in neurological disorders. METHODS A computerised search of EMBASE and OVID MEDLINE was conducted from 2002 to October 2023 for randomised controlled trials (RCTs) investigating RIC in neurological diseases. RESULTS A total of 46 different RCTs in 12 different neurological disorders (n = 7544) were included in the analysis. Conditions included acute ischaemic stroke, symptomatic intracranial stenosis and vascular cognitive impairment. The most commonly used RIC protocol parameters in the selected studies were as follows: cuff pressure at 200 mmHg (27 trials), 5-min cycle length (42 trials), 5 cycles of ischaemia and reperfusion (24 trials) and the application to the upper limb unilaterally (23 trials). CONCLUSIONS The comprehensive analysis of the included studies reveals promising results regarding the safety and therapeutic effect of RIC as an option for managing neurological diseases. Particularly, the strongest evidence supports its potential use in chronic stroke patients and vascular cognitive impairment. The neuroprotective effects of RIC, as demonstrated in preclinical studies, suggest that this therapeutic approach could extend its benefits to various other diseases affecting the nervous system. However, to establish the efficacy of RIC across different neurological disorders, further trials with larger sample sizes and more diverse patient populations are warranted. Upcoming trials are expected to provide valuable evidence that will not only confirm the efficacy of RIC in neurological disease management but also help identify the most optimal RIC regimen for specific conditions.
Collapse
Affiliation(s)
| | - Marharyta Kamarova
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Sheharyar S Baig
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | | | - Tao Wang
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Jessica Redgrave
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Arshad Majid
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Ali N Ali
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
4
|
Kotorová K, Končeková J, Bona M, Bonová P. New alternative approaches to stroke treatment: the blood cell-derived secretome shows promise in individuals with obesity. Metab Brain Dis 2024; 40:56. [PMID: 39641824 PMCID: PMC11624225 DOI: 10.1007/s11011-024-01491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Ischaemic tolerance induced by remote ischaemic conditioning (RIC) has been extensively demonstrated in several preclinical models of cerebral ischaemia. However, animals with common stroke-related comorbidities do not benefit from the recent advances of RIC. Therefore, we investigated two alternative approaches for obese animals with stroke: (1) the efficacy of an additional round of the standard RIC protocol, and (2) the paracrine potential of the blood cell-derived secretome derived from RIC-induced healthy young rats. We found that a second round of remote ischaemic postconditioning (RIPostC) stimulus reduced neurodegeneration and exerted antioxidant effects but failed to decrease the infarct volume and alter glutamate homeostasis. However, when obese rats were administered the secretome from healthy, young RIC-stimulated rats, they exhibited improved neurological post-stroke outcomes. Intravenous administration of the tolerant secretome activated several endogenous mechanisms, including a reduction in the infarct volume and neurodegeneration in the penumbra. Furthermore, the blood cell-derived secretome accelerated brain-to-blood glutamate efflux in obese rats, and demonstrated antioxidant properties that may have contributed to the induction of tolerance in obese rats with stroke. These findings indicate that the blood cell-derived secretome has unique abilities and represents a new potential treatment for individuals with obesity and ischaemic stroke.
Collapse
Affiliation(s)
- Klaudia Kotorová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Neurobiology, Soltesovej 4-6, 040 01, Košice, Slovak Republic
| | - Jana Končeková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Neurobiology, Soltesovej 4-6, 040 01, Košice, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Košice, 040 01, Slovak Republic
| | - Petra Bonová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Neurobiology, Soltesovej 4-6, 040 01, Košice, Slovak Republic.
| |
Collapse
|
5
|
Liu S, Wu Q, Xu C, Wang L, Wang J, Liu C, Zhao H. Ischemic Postconditioning Regulates New Cell Death Mechanisms in Stroke: Disulfidptosis. Biomolecules 2024; 14:1390. [PMID: 39595569 PMCID: PMC11591815 DOI: 10.3390/biom14111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Stroke poses a critical health issue without effective neuroprotection. We explore ischemic postconditioning's (IPostC) potential to mitigate stroke-induced brain injury, focusing on its interaction with disulfidptosis, a novel cell death pathway marked by protein disulfide accumulation. We aim to clarify IPostC's protective mechanisms against stroke through gene sequencing and experimental analysis in mice. METHODS Through our initial investigation, we identified 27 disulfidptosis-related genes (DRGs) and uncovered their interactions. Additionally, differential gene analysis revealed 11 potential candidate genes that are linked to disulfidptosis, stroke, and IPostC. Our comprehensive study employed various analytical approaches, including machine learning, functional enrichment analysis, immune analysis, drug sensitivity analysis, and qPCR experiments, to gain insights into the molecular mechanisms underlying these processes. RESULTS Our study identified and expanded the list of disulfidptosis-related genes (DRGs) critical to stroke, revealing key genes and their interactions. Through bioinformatics analyses, including PCA, UMAP, and differential gene expression, we were able to differentiate the effects of stroke from those of postconditioning, identifying Peroxiredoxin 1 (PRDX1) as a key gene of interest. GSEA highlighted PRDX1's involvement in protective pathways against ischemic damage, while its correlations with various proteins suggest a broad impact on stroke pathology. Constructing a ceRNA network and analyzing drug sensitivities, we explored PRDX1's regulatory mechanisms, proposing novel therapeutic avenues. Additionally, our immune infiltration analysis linked PRDX1 to key immune cells, underscoring its dual role in stroke progression and recovery. PRDX1 is identified as a key target in ischemic stroke based on colocalization analysis, which revealed that PRDX1 and ischemic stroke share the causal variant rs17522918. The causal relationship between PRDX1-related methylation sites (cg02631906 and cg08483560) and the risk of ischemic stroke further validates PRDX1 as a crucial target. CONCLUSIONS These results suggest that the DRGs are interconnected with various cell death pathways and immune processes, potentially contributing to IPostC regulating cell death mechanisms in stroke.
Collapse
Affiliation(s)
- Shanpeng Liu
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (S.L.); (Q.W.); (L.W.); (J.W.)
| | - Qike Wu
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (S.L.); (Q.W.); (L.W.); (J.W.)
| | - Can Xu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Liping Wang
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (S.L.); (Q.W.); (L.W.); (J.W.)
| | - Jialing Wang
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (S.L.); (Q.W.); (L.W.); (J.W.)
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing 100069, China;
| | - Heng Zhao
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (S.L.); (Q.W.); (L.W.); (J.W.)
| |
Collapse
|
6
|
Lu M, Wang Y, Ren H, Yin X, Li H. Research progress on the mechanism of action and clinical application of remote ischemic post-conditioning for acute ischemic stroke. Clin Neurol Neurosurg 2024; 244:108397. [PMID: 38968813 DOI: 10.1016/j.clineuro.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
Remote ischemic post-conditioning (RIPostC) can reduce cerebral ischemia reperfusion injury (IRI) by inducing endogenous protective effects, the distal limb ischemia post-treatment and in situ ischemia post-treatment were classified according to the site of intervention. And in the process of clinical application distal limb ischemia post-treatment is more widely used and more conducive to clinical translation. Therefore, in this paper, we review the mechanism of action and clinical application of RIPostC in cerebral ischemia, hoping to provide reference help for future experimental directions and clinical translation.
Collapse
Affiliation(s)
- Meng Lu
- Department of Nursing, The First Hospital of Jilin University, Changchun, China
| | - Yujiao Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hui Ren
- Department of Nursing, The First Hospital of Jilin University, Changchun, China
| | - Xin Yin
- Department of Nursing, The First Hospital of Jilin University, Changchun, China.
| | - Hongyan Li
- Department of Nursing, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Zhou H, Wang J, Zhu Z, Hu L, An E, Lu J, Zhao H. A New Perspective on Stroke Research: Unraveling the Role of Brain Oxygen Dynamics in Stroke Pathophysiology. Aging Dis 2024:AD.2024.0548. [PMID: 39226161 DOI: 10.14336/ad.2024.0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Stroke, a leading cause of death and disability, often results from ischemic events that cut off the brain blood flow, leading to neuron death. Despite treatment advancements, survivors frequently endure lasting impairments. A key focus is the ischemic penumbra, the area around the stroke that could potentially recover with prompt oxygenation; yet its monitoring is complex. Recent progress in bioluminescence-based oxygen sensing, particularly through the Green enhanced Nano-lantern (GeNL), offers unprecedented views of oxygen fluctuations in vivo. Utilized in awake mice, GeNL has uncovered hypoxic pockets within the cerebral cortex, revealing the brain's oxygen environment as a dynamic landscape influenced by physiological states and behaviors like locomotion and wakefulness. These findings illuminate the complexity of oxygen dynamics and suggest the potential impact of hypoxic pockets on ischemic injury and recovery, challenging existing paradigms and highlighting the importance of microenvironmental oxygen control in stroke resilience. This review examines the implications of these novel findings for stroke research, emphasizing the criticality of understanding pre-existing oxygen dynamics for addressing brain ischemia. The presence of hypoxic pockets in non-stroke conditions indicates a more intricate hypoxic scenario in ischemic brains, suggesting strategies to alleviate hypoxia could lead to more effective treatments and rehabilitation. By bridging gaps in our knowledge, especially concerning microenvironmental changes post-stroke, and leveraging new technologies like GeNL, we can pave the way for therapeutic innovations that significantly enhance outcomes for stroke survivors, promising a future where an understanding of cerebral oxygenation dynamics profoundly informs stroke therapy.
Collapse
Affiliation(s)
- Hongmei Zhou
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jialing Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Zhipeng Zhu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Li Hu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Erdan An
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jian Lu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Heng Zhao
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Bagheri SM, Allahtavakoli M, Hakimizadeh E. Neuroprotective effect of ischemic postconditioning against hyperperfusion and its mechanisms of neuroprotection. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:31. [PMID: 39239075 PMCID: PMC11376715 DOI: 10.4103/jrms.jrms_341_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/13/2023] [Accepted: 06/27/2023] [Indexed: 09/07/2024]
Abstract
Background In recent years, stroke and ischemia-reperfusion injury has motivated researchers to find new ways to reduce the complications. Although reperfusion is essential for brain survival, it is like a double-edged sword that may cause further damage to the brain. Ischemic postconditioning (IPostC) refers to the control of blood flow in postischemia-reperfusion that can reduce ischemia-reperfusion injuries. Materials and Methods Articles were collected by searching for the terms: Ischemic postconditioning and neuroprotective and ischemic postconditioning and hyperperfusion. Suitable articles were collected from electronic databases, including ISI Web of Knowledge, Medline/PubMed, ScienceDirect, Embase, Scopus, Biological Abstract, Chemical Abstract, and Google Scholar. Results New investigations show that IPostC has protection against hyperperfusion by reducing the amount of blood flow during reperfusion and thus reducing infarction volume, preventing the blood-brain barrier damage, and reducing the rate of apoptosis through the activation of innate protective systems. Numerous mechanisms have been suggested for IPostC, which include reduction of free radical production, apoptosis, inflammatory factors, and activation of endogenous protective pathways. Conclusion It seems that postconditioning can prevent damage to the brain by reducing the flow and blood pressure caused by hyperperfusion. It can protect the brain against damages such as stroke and hyperperfusion by activating various endogenous protection systems. In the present review article, we tried to evaluate both useful aspects of IPostC, neuroprotective effects, and fight against hyperperfusion.
Collapse
Affiliation(s)
- Seyyed Majid Bagheri
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
9
|
Wang J, Yang L, Wu L, Li S, Ren C, Ding Y, Wei M, Ji X, Zhao W. Direct Ischemic Postconditioning Following Stroke Thrombectomy: A Promising Therapy for Reperfusion Injury. Neurosci Bull 2024; 40:1017-1020. [PMID: 38856959 PMCID: PMC11250735 DOI: 10.1007/s12264-024-01243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/28/2024] [Indexed: 06/11/2024] Open
Affiliation(s)
- Jing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lu Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Longfei Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Sijie Li
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ming Wei
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300222, China.
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
10
|
Yao Y, Ni W, Feng L, Meng J, Tan X, Chen H, Shen J, Zhao H. Comprehensive immune modulation mechanisms of Angong Niuhuang Wan in ischemic stroke: Insights from mass cytometry analysis. CNS Neurosci Ther 2024; 30:e14849. [PMID: 39075660 PMCID: PMC11286541 DOI: 10.1111/cns.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Angong Niuhuang Wan (AGNHW, ), is a classical medicinal formula in Traditional Chinese Medicine (TCM) that has been appreciated for its neuroprotective properties in ischemic cerebral injuries, yet its intricate mechanisms remain only partially elucidated. AIMS This study leverages advanced Mass cytometry (CyTOF) to analyze AGNHW's multifaceted immunomodulation effects in-depth, emphasizing previously underexplored areas. RESULTS AGNHW mitigated monocyte-derived macrophages (MoDM) infiltration in the brain, distinguishing its effects on those from microglia. While the vehicle group exhibited elevated inflammatory markers like CD4, CD8a, and CD44 in ischemic brains, the AGNHW-treated group attenuated their expressions, indicating AGNHW's potential to temper the post-ischemic inflammatory response. Systemically, AGNHW modulated fundamental immune cell dynamics, notably augmenting CD8+ T cells, B cells, monocytes, and neutrophil counts in the peripheral blood under post-stroke conditions. Intracellularly, AGNHW exhibited its targeted modulation of the signaling pathways, revealing a remarked inhibition of key markers like IκBα, indicating potential suppression of inflammatory responses in ischemic brain injuries. CONCLUSION This study offers a comprehensive portrait of AGNHW's immunomodulation effects on ischemic stroke, illuminating its dual sites of action-both cerebral and systemic-and its nuanced modulation of cellular and molecular dynamics.
Collapse
Affiliation(s)
- Yang Yao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of NeurologyTianjin Medical University General HospitalTianjinChina
| | - Weihua Ni
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Liangshu Feng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Jihong Meng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaomu Tan
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Hansen Chen
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Jiangang Shen
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Heng Zhao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Fan YY, Li Y, Tian XY, Wang YJ, Huo J, Guo BL, Chen R, Yang CH, Li Y, Zhang HF, Niu BL, Zhang MS. Delayed Chronic Acidic Postconditioning Improves Poststroke Motor Functional Recovery and Brain Tissue Repair by Activating Proton-Sensing TDAG8. Transl Stroke Res 2024; 15:620-635. [PMID: 36853417 DOI: 10.1007/s12975-023-01143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Acidic postconditioning by transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects in the acute phase of stroke. However, the effects of delayed chronic acidic postconditioning (DCAPC) initiated during the subacute phase of stroke or other acute brain injuries are unknown. Mice received daily DCAPC by inhaling 5%/10%/20% CO2 for various durations (three cycles of 10- or 20-min CO2 inhalation/10-min break) at days 3-7, 7-21, or 3-21 after photothrombotic stroke. Grid-walk, cylinder, and gait tests were used to assess motor function. DCAPC with all CO2 concentrations significantly promoted motor functional recovery, even when DCAPC was delayed for 3-7 days. DCAPC enhanced the puncta density of GAP-43 (a marker of axon growth and regeneration) and synaptophysin (a marker of synaptogenesis) and reduced the amoeboid microglia number, glial scar thickness and mRNA expression of CD16 and CD32 (markers of proinflammatory M1 microglia) compared with those of the stroke group. Cerebral blood flow (CBF) increased in response to DCAPC. Furthermore, the mRNA expression of TDAG8 (a proton-activated G-protein-coupled receptor) was increased during the subacute phase of stroke, while DCAPC effects were blocked by systemic knockout of TDAG8, except for those on CBF. DCAPC reproduced the benefits by re-expressing TDAG8 in the peri-infarct cortex of TDAG8-/- mice infected with HBAAV2/9-CMV-TDAG8-3flag-ZsGreen. Taken together, we first showed that DCAPC promoted functional recovery and brain tissue repair after stroke with a wide therapeutic time window of at least 7 days after stroke. Brain-derived TDAG8 is a direct target of DCAPC that induces neuroreparative effects.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Yu Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Ying Tian
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Ying-Jing Wang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Huo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Bao-Lu Guo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Ru Chen
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Cai-Hong Yang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Yan Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hui-Feng Zhang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Bao-Long Niu
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Ming-Sheng Zhang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
12
|
Wu L, Wei M, Zhang B, Zhang B, Chen J, Wang S, Luo L, Liu S, Li S, Ren C, Hess DC, Song H, Zhao W, Ji X. Safety and Tolerability of Direct Ischemic Postconditioning Following Thrombectomy for Acute Ischemic Stroke. Stroke 2023; 54:2442-2445. [PMID: 37497674 DOI: 10.1161/strokeaha.123.044060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Experimental studies have demonstrated the neuroprotection of ischemic postconditioning (IPostC) in acute ischemic stroke by attenuating ischemia-reperfusion injury. This study aimed to investigate the safety and tolerability of direct IPostC in both a dog model and patients with acute ischemic stroke treated with thrombectomy. METHODS The study involved 2 parts. First, IPostC was induced by repeated balloon inflation and deflation in dogs, where a low-pressure balloon was navigated to the anterior spinal artery, and 4 cycles of 5-minute ischemia followed by 5-minute reperfusion were performed. Vascular injuries were assessed using angiography and vascular tissue specimens. Then, a 3+3 dose-escalation trial was conducted in patients with acute ischemic stroke following successful thrombectomy recanalization. Patients received direct IPostC with ischemia and reperfusion durations in progressive increments of 0, 1, 2, 3, 4, and 5 minutes ×4 cycles. Major adverse responses were defined as vessel perforation, rupture, dissection, reocclusion, severe vasospasm, thrombotic events, and rupture of the balloon. RESULTS IPostC was investigated in 4 dogs. No vessel perforation or rupture, dissection, or vasospasm was observed under the angiography. Only 1 vessel experienced mild injury between the intima and the internal elastic membrane detected on a histopathologic slide. Then, 18 patients were recruited. The duration of IPostC was progressively escalated with no major response happened. No patient experienced agitation, discomfort, or other tolerability issues. Five patients (27.8%) experienced any intracranial hemorrhage after thrombectomy, and 1 (5.6%) was symptomatic. At 3-month follow-up, no patient died, and 9 patients (50%) achieved functional independence. CONCLUSIONS Direct IPostC inducing by 4 cycles of 5-minute ischemia followed by 5-minute reperfusion is safe, feasible, and tolerable in patients with acute ischemic stroke treated with thrombectomy. Further investigations are needed to determine the safety and preliminary efficacy of direct IPostC. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT05153655.
Collapse
Affiliation(s)
- Longfei Wu
- Department of Neurology, Xuanwu Hospital (L.W., Bowei Zhang, H.S., W.Z.), Capital Medical University, Beijing, China
| | - Ming Wei
- Beijing Institute for Brain Disorders (M.W.), Capital Medical University, Beijing, China
- Department of Neurosurgery (M.W., S.W., S. Liu), Tianjin Huanhu Hospital, China
- Tianjin University, China (M.W.)
| | - Bohao Zhang
- Department of Neurology (Bohao Zhang, L.L.), Tianjin Huanhu Hospital, China
| | - Bowei Zhang
- Department of Neurology, Xuanwu Hospital (L.W., Bowei Zhang, H.S., W.Z.), Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital (J.C., X.J.), Capital Medical University, Beijing, China
| | - Sifei Wang
- Department of Neurosurgery (M.W., S.W., S. Liu), Tianjin Huanhu Hospital, China
| | - Leilei Luo
- Department of Neurology (Bohao Zhang, L.L.), Tianjin Huanhu Hospital, China
| | - Shuling Liu
- Department of Neurosurgery (M.W., S.W., S. Liu), Tianjin Huanhu Hospital, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital (S. Li, C.R.), Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital (S. Li, C.R.), Capital Medical University, Beijing, China
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University (D.C.H.)
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital (L.W., Bowei Zhang, H.S., W.Z.), Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital (L.W., Bowei Zhang, H.S., W.Z.), Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital (J.C., X.J.), Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Li X, Tan X, Zhou Q, Xie Z, Meng W, Pang Y, Huang L, Ding Z, Hu Y, Li R, Huang G, Li H. Limb Remote Ischemic Postconditioning Improves Glymphatic Dysfunction After Cerebral Ischemia-Reperfusion Injury. Neuroscience 2023; 521:20-30. [PMID: 37121383 DOI: 10.1016/j.neuroscience.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/29/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Delayed neuronal damage can be caused or aggravated after cerebral ischemia-reperfusion (I/R) injury. Recent studies have shown that glymphatic system dysfunction after cerebral ischemia-reperfusion injury is involved in ischemic brain edema and neuroinflammation, thereby regulating cerebral ischemia-reperfusion injury. The aim of this study is to investigate the changes of glymphatic system after cerebral ischemia-reperfusion injury and whether limb remote ischemic postconditioning (LRIP) can improve the function of glymphatic system to protect the brain. METHODS To establish a focal brain I/R injury mouse model, this study utilized the middle cerebral artery occlusion/reperfusion (MCAO/R) method. The present study classified eight-week-old C57BL/6 male mice into three groups. The changes in glymphatic function in different periods of ischemia and reperfusion were analyzed through immunofluorescence, transmission electron microscopy (TEM), and Western-Blot (WB) assays. The contents of the evaluation included cerebrospinal fluid flow, swelling degree of brain tissue, aquaporin-4 (AQP4) expression and polarization, and amyloid-β (Aβ) excretion. RESULTS In the early stages of cerebral ischemia, cerebrospinal fluid (CSF) flow is disturbed, accompanied by a decrease in AQP4 polarization. The polarity of AQP4 decreased from 12 h to 72 h of reperfusion, the Aβ deposition. LRIP can increase the expression of β-DG and AQP4 polarization, reduce the deposition of Aβ, improve the function of the glymphatic system, and reduce the expression of AQP4 to play A protective role in brain. CONCLUSION Glymphatic system impaired after cerebral ischemia-reperfusion injury in mice. LRIP may play a neuroprotective role by improving glymphatic function after I/R.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Xiaoli Tan
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Qian Zhou
- Department of Neurology, the Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Zhuoxi Xie
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Weiting Meng
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Yeyu Pang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Lizhen Huang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Zhihao Ding
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Yuanhong Hu
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Ruhua Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Guilan Huang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
14
|
Wu L, Zhang B, Zhao W, Ji X, Wei M. Ischemic post-conditioning in acute ischemic stroke thrombectomy: A phase-I duration escalation study. Front Neurosci 2022; 16:1054823. [DOI: 10.3389/fnins.2022.1054823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
BackgroundPrevious experimental studies have found that ischemic post-conditioning exhibits neuroprotective effects by alleviating ischemia-reperfusion injury in an acute ischemic stroke model, and its efficacy is thought to be related to the duration of ischemic post-conditioning. However, ischemic post-conditioning has not been used in patients with acute ischemic stroke. This study aims to determine the safety, tolerability, and maximum tolerable duration of ischemic post-conditioning in patients with acute ischemic stroke receiving mechanical thrombectomy.MethodsPatients with acute ischemic stroke with unilateral middle cerebral artery M1 segment occlusion eligible for mechanical thrombectomy will be enrolled. We adopt a 3 + 3 dose-escalation design with a duration escalation schedule of 0, 1, 2, 3, 4, and 5 min × 4 cycles for the ischemic post-conditioning study. After successful reperfusion following mechanical thrombectomy, the balloon for ischemic post-conditioning will be inflated at the site proximal to the culprit lesion four times for 0–5 min with low-pressure (3–4 atmospheres) inflations, each separated by 0–5 min of reflow. We pre-defined the major responses (vessel perforation or rupture, reocclusion of the culprit vessel after ischemic post-conditioning, vessel dissection, severe vasospasm, ischemic post-conditioning related thrombotic events, and rupture of the balloon used for ischemic post-conditioning) as the stopping rules. Each patient will undergo a rigorous evaluation to determine the safety, tolerability, and maximum tolerable duration of ischemic post-conditioning.DiscussionThis will be the first clinical study to ascertain the safety and tolerability of ischemic post-conditioning in patients with acute ischemic stroke receiving mechanical thrombectomy. The maximum tolerable duration obtained in this study will also serve as a starting point for future studies on the efficacy of ischemic post-conditioning.Clinical trial registration[https://clinicaltrials.gov], identifier [NCT05153655].
Collapse
|
15
|
Lu M, Wang Y, Yin X, Li Y, Li H. Cerebral protection by remote ischemic post-conditioning in patients with ischemic stroke: A systematic review and meta-analysis of randomized controlled trials. Front Neurol 2022; 13:905400. [PMID: 36212669 PMCID: PMC9532592 DOI: 10.3389/fneur.2022.905400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background There is evidence that remote limb ischemic postconditioning (RIPostC) can reduce ischemia-reperfusion injury (IRI) and improve the prognosis of patients with ischemic stroke. However, so far, only few relevant clinical studies have been conducted. Therefore, we carried out a meta-analysis of eligible randomized controlled trials to compare the RIPostC group with a control group (no intervention or sham surgery) in patients with ischemic stroke. Methods Four English-language publication databases, PubMed, Cochrane, Embase, and Web of Science, were systematically searched up to March 2022. The data were analyzed using Review Manager fixed-effects and random-effects models. Results A total of 12 studies were included, and 11 of those were analyzed quantitatively. Compared to controls, The RIPostC group showed significantly reduced NIHHS scores in patients with ischemic stroke, (MD: −1.09, 95% confidence interval [CI]: −1.60, −0.57, P < 0.0001) and improved patients' Montreal Cognitive Assessment (MoCA) scores, (MD: 1.89, 95% CI: 0.78, 3.00, P = 0.0009), Our results showed that RIPostC is safe, (RR = 0.81, 95%CI: 0.61, 1.08, P = 0.15). Conclusion Our meta-analysis showed that RIPostC is safe and effective and has a positive cerebral protective effect in patients with ischemic stroke, which is safe and effective, and future large-sample, multicenter trials are needed to validate the cerebral protective effect of RIPostC.
Collapse
Affiliation(s)
- Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yujiao Wang
- Department of Neurology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xin Yin
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yuanyuan Li
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Hongyan Li
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
- *Correspondence: Hongyan Li
| |
Collapse
|
16
|
Li S, Yang Y, Li N, Li H, Xu J, Zhao W, Wang X, Ma L, Gao C, Ding Y, Ji X, Ren C. Limb Remote Ischemic Conditioning Promotes Neurogenesis after Cerebral Ischemia by Modulating miR-449b/Notch1 Pathway in Mice. Biomolecules 2022; 12:biom12081137. [PMID: 36009031 PMCID: PMC9405712 DOI: 10.3390/biom12081137] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Neurogenesis plays an important role in the prognosis of stroke patients and is known to be promoted by the activation of the Notch1 signaling pathway. Studies on the airway epithelium have shown that miR-449b represses the Notch pathway. The study aimed to investigate whether limb remote ischemic conditioning (LRIC) was able to promote neurogenesis in cerebral ischemic mice, and to investigate the role of the miR-449b/Notch1 pathway in LRIC-induced neuroprotection. Male C57BL/6 mice (22–25 g) were subjected to transient middle cerebral artery occlusion (MCAO), and LRIC was performed in the bilateral lower limbs immediately after MCA occlusion. Immunofluorescence staining was performed to assess neurogenesis. The cell line NE-4C was used to elucidate the proliferation of neuronal stem cells in 8% O2. After LRIC treatment on day 28, mice recovered neurological function. Neuronal precursor proliferation was enhanced in the SVZ, and neuronal precursor migration was enhanced in the basal ganglia on day 7. LRIC promoted the improvement of neurological function in mice on day 28, promoted neuronal precursor proliferation in the SVZ, and enhanced neuronal precursor migration in the basal ganglia on day 7. The neurological function score was negatively correlated with the number of BrdU-positive/DCX-positive cells in the SVZ and striatum. LRIC promoted activated Notch1 protein expression in the SVZ and substantially downregulated miR-449b levels in the SVZ and plasma. In vitro, miR-449b was found to target Notch1. Lentivirus-mediated miR-449b knockdown increased Notch1 levels in NE-4C cells and increased proliferation in the cells. The effects of miR-449b inhibition on neurogenesis were ablated by the application of Notch1 shRNA. Our study showed that LRIC promoted the proliferation and migration of neural stem cells after MCAO, and these effects were modulated by the miR-449b/Notch1 pathway.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- Emergency Department, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Yong Yang
- School of Traditional Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- School of Traditional Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Jiali Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Wenbo Zhao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518054, China
| | - Linqing Ma
- Department of Neurology, The People’s Hospital of Suzhou New District, Suzhou 215129, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- Correspondence: ; Tel.: +86-10-83198931; Fax: +86-10-63010085
| |
Collapse
|
17
|
Ishizuka K, Hoshino T, Toi S, Mizuno T, Hosoya M, Saito M, Sato Y, Yagita Y, Todo K, Sakaguchi M, Ohashi T, Maruyama K, Hino S, Honma Y, Doijiri R, Yamagami H, Iguchi Y, Hirano T, Kimura K, Kitazono T, Kitagawa K. Remote ischemic conditioning for acute ischemic stroke part 2: Study protocol for a randomized controlled trial. Front Neurol 2022; 13:946431. [PMID: 36003294 PMCID: PMC9393485 DOI: 10.3389/fneur.2022.946431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Remote ischemic conditioning (RIC) refers to the application of repeated short periods of ischemia intended to protect remote areas against tissue damage during and after prolonged ischemia. Aim We aim to evaluate the efficacy of RIC, determined by the modified Rankin Scale (mRS) score at 90 days after stroke onset. Design and methods This study is an investigator-initiated, multicenter, prospective, randomized, open-label, parallel-group clinical trial. The sample size is 400, comprising 200 patients who will receive RIC and 200 controls. The patients will be divided into three groups according to their National Institutes of Health Stroke Scale score at enrollment: 5–9, mild; 10–14, moderate; 15–20, severe. The RIC protocol will be comprised of four cycles, each consisting of 5 min of blood pressure cuff inflation (at 200 mmHg or 50 mmHg above the systolic blood pressure) followed by 5 min of reperfusion, with the cuff placed on the thigh on the unaffected side. The control group will only undergo blood pressure measurements before and after the intervention period. This trial is registered with the UMIN Clinical Trial Registry (https://www.umin.ac.jp/: UMIN000046225). Study outcome The primary outcome will be a good functional outcome as determined by the mRS score at 90 days after stroke onset, with a target mRS score of 0–1 in the mild group, 0–2 in the moderate group, and 0–3 in the severe group. Discussion This trial may help determine whether RIC should be recommended as a routine clinical strategy for patients with ischemic stroke.
Collapse
Affiliation(s)
- Kentaro Ishizuka
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- *Correspondence: Kentaro Ishizuka
| | - Takao Hoshino
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sono Toi
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Takafumi Mizuno
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Megumi Hosoya
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Moeko Saito
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yasuto Sato
- Department of Public Health, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yoshiki Yagita
- Department of Stroke Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kenichi Todo
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manabu Sakaguchi
- Department of Neurology, Osaka General Medical Center, Osaka, Japan
| | - Takashi Ohashi
- Department of Neurology, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Kenji Maruyama
- Department of Neurology, Toda Chuo General Hospital, Saitama, Japan
| | - Shuji Hino
- Department of Neurology, Saitama Red Cross Hospital, Saitama, Japan
| | - Yutaka Honma
- Department of Neurology, Showa General Hospital, Tokyo, Japan
| | - Ryosuke Doijiri
- Department of Neurology, Iwate Prefectural Central Hospital, Iwate, Japan
| | - Hiroshi Yamagami
- Department of Stroke Neurology, National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Teruyuki Hirano
- Department of Stroke and Cerebrovascular Medicine, Kyorin University, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurology, Nippon Medical School, Tokyo, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Kazuo Kitagawa
| |
Collapse
|
18
|
Morisaki Y, Nakagawa I, Ogawa Y, Yokoyama S, Furuta T, Saito Y, Nakase H. Ischemic Postconditioning Reduces NMDA Receptor Currents Through the Opening of the Mitochondrial Permeability Transition Pore and K ATP Channel in Mouse Neurons. Cell Mol Neurobiol 2022; 42:1079-1089. [PMID: 33159622 PMCID: PMC11441301 DOI: 10.1007/s10571-020-00996-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022]
Abstract
Ischemic postconditioning (PostC) is known to reduce cerebral ischemia/reperfusion (I/R) injury; however, whether the opening of mitochondrial ATP-dependent potassium (mito-KATP) channels and mitochondrial permeability transition pore (mPTP) cause the depolarization of the mitochondrial membrane that remains unknown. We examined the involvement of the mito-KATP channel and the mPTP in the PostC mechanism. Ischemic PostC consisted of three cycles of 15 s reperfusion and 15 s re-ischemia, and was started 30 s after the 7.5 min ischemic load. We recorded N-methyl-D-aspartate receptors (NMDAR)-mediated currents and measured cytosolic Ca2+ concentrations, and mitochondrial membrane potentials in mouse hippocampal pyramidal neurons. Both ischemic PostC and the application of a mito-KATP channel opener, diazoxide, reduced NMDAR-mediated currents, and suppressed cytosolic Ca2+ elevations during the early reperfusion period. An mPTP blocker, cyclosporine A, abolished the reducing effect of PostC on NMDAR currents. Furthermore, both ischemic PostC and the application of diazoxide potentiated the depolarization of the mitochondrial membrane potential. These results indicate that ischemic PostC suppresses Ca2+ influx into the cytoplasm by reducing NMDAR-mediated currents through mPTP opening. The present study suggests that depolarization of the mitochondrial membrane potential by opening of the mito-KATP channel is essential to the mechanism of PostC in neuroprotection against anoxic injury.
Collapse
Affiliation(s)
- Yudai Morisaki
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan.
| | - Yoichi Ogawa
- Department of Neurophysiology, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Shohei Yokoyama
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Takanori Furuta
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Shijocho 840, Kashihara, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Shijocho 840, Kashihara, Japan
| |
Collapse
|
19
|
Zhai QY, Ren YQ, Ni QS, Song ZH, Ge KL, Guo YL. Transplantation of Human Umbilical Cord Mesenchymal Stem Cells-Derived Neural Stem Cells Pretreated with Neuregulin1β Ameliorate Cerebral Ischemic Reperfusion Injury in Rats. Biomolecules 2022; 12:428. [PMID: 35327620 PMCID: PMC8945978 DOI: 10.3390/biom12030428] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a common cerebrovascular disease and recovering blood flow as early as possible is essential to reduce ischemic damage and maintain neuronal viability, but the reperfusion process usually causes additional damage to the brain tissue in the ischemic area, namely ischemia reperfusion injury. The accumulated studies have revealed that transplantation of exogenous neural stem cells (NSCs) is an ideal choice for the treatment of ischemia reperfusion injury. At present, the source and efficacy of exogenous NSCs after transplantation is still one of the key issues that need to be resolved. In this study, human umbilical cord mesenchymal stem cells (hUC-MSCs) were obtained and induced into NSCs byadding growth factor and neuregulin1β (NRG1β) was introduced during the differentiation process of NSCs. Then, the rat middle cerebral artery occlusion/reperfusion (MCAO/R) models were established, and the therapeutic effects were evaluated among groups treated by NRG1β, NSCs and NSCs pretreated with 10 nM NRG1β (NSCs-10 nM NRG1β) achieved through intra-arterial injection. Our data show that the NSCs-10 nM NRG1β group significantly improves neurobehavioral function and infarct volume after MCAO/R, as well as cerebral cortical neuron injury, ferroptosis-related indexes and mitochondrial injury. Additionally, NSCs-10 nM NRG1β intervention may function through regulating the p53/GPX4/SLC7A11 pathway, and reducing the level of ferroptosis in cells, further enhance the neuroprotective effect on injured cells.
Collapse
Affiliation(s)
- Qiu-Yue Zhai
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Yu-Qian Ren
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Qin-Shuai Ni
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Zhen-Hua Song
- Institute of Pharmacology, Qingdao Medical College, Qingdao University, Qingdao 266021, China;
| | - Ke-Li Ge
- Institute of Integrative Medicine, Qingdao Medical College, Qingdao University, Qingdao 266021, China;
| | - Yun-Liang Guo
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| |
Collapse
|
20
|
p53 Inhibition Protects against Neuronal Ischemia/Reperfusion Injury by the p53/PRAS40/mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4729465. [PMID: 34900085 PMCID: PMC8664552 DOI: 10.1155/2021/4729465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/28/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022]
Abstract
The underlying mechanisms of cerebral ischemia/reperfusion (I/R) injury are unclear. Within this study, we aimed to explore whether p53 inhibition exerts protective effects via the p53/PRAS40/mTOR pathway after stroke and its potential mechanism. Both an in vitro oxygen-glucose deprivation (OGD) model with a primary neuronal culture and in vivo stroke models (dMCAO or MCAO) were used. We found that the infarction size, neuronal apoptosis, and autophagy were less severe in p53 KO mice and p53 KO neurons after cerebral I/R or OGD/R injury. By activating the mTOR pathway, p53 knockdown alleviated cerebral I/R injury both in vitro and in vivo. When PRAS40 was knocked out, the regulatory effects of p53 overexpression or knockdown against stroke disappeared. PRAS40 knockdown could inhibit the activities of the mTOR pathway; moreover, neuronal autophagy and apoptosis were exacerbated by PRAS40 knockdown. To sum up, in this study, we showed p53 inhibition protects against neuronal I/R injury after stroke via the p53/PRAS40/mTOR pathway, which is a novel and pivotal cerebral ischemic injury signaling pathway. The induction of neuronal autophagy and apoptosis by the p53/PRAS40/mTOR pathway may be the potential mechanism of this protective effect.
Collapse
|
21
|
MicroRNA as a Potential Biomarker and Treatment Strategy for Ischemia-Reperfusion Injury. Int J Genomics 2021; 2021:9098145. [PMID: 34845433 PMCID: PMC8627352 DOI: 10.1155/2021/9098145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a progressive injury that aggravates the pathological state when the organ tissue restores blood supply after a certain period of ischemia, including the myocardial, brain, liver, kidney, and intestinal. With growing evidence that microRNAs (miRNAs) play an important role as posttranscription gene silencing mediators in many I/R injury, in this review, we highlight the microRNAs that are related to I/R injury and their regulatory molecular pathways. In addition, we discussed the potential role of miRNA as a biomarker and its role as a target in I/R injury treatment. Developing miRNAs are not without its challenges, but prudent design combined with existing clinical treatments will result in more effective therapies for I/R injury. This review is aimed at providing new research results obtained in this research field. It is hoped that new research on this topic will not only generate new insights into the pathophysiology of miRNA in I/R injury but also can provide a basis for the clinical application of miRNA in I/R.
Collapse
|
22
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
23
|
Ren C, Liu Y, Stone C, Li N, Li S, Li H, Cheng Z, Hu J, Li W, Jin K, Ji X, Ding Y. Limb Remote Ischemic Conditioning Ameliorates Cognitive Impairment in Rats with Chronic Cerebral Hypoperfusion by Regulating Glucose Transport. Aging Dis 2021; 12:1197-1210. [PMID: 34341702 PMCID: PMC8279524 DOI: 10.14336/ad.2020.1125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/14/2020] [Indexed: 11/01/2022] Open
Abstract
Cognitive impairment is closely associated with the slowing of glucose metabolism in the brain. Glucose transport, a rate-limiting step of glucose metabolism, plays a key role in this phenomenon. Previous studies have reported that limb remote ischemic conditioning (LRIC) improves cognitive performance in rats with chronic cerebral hypoperfusion (CCH). Here, we determined whether LRIC could ameliorate cognitive impairment in rats with CCH by regulating glucose transport. A total of 170 male Sprague-Dawley rats were used. Animals subjected to permanent double carotid artery occlusion (2VO) were assigned to the control or LRIC treatment group. LRIC was applied beginning 3 days after the 2VO surgery. We found that LRIC can improve learning and memory; decrease the ratio of ADP/ATP; increase glucose content; upregulate the expression of pAMPKα, GLUT1 and GLUT3; and increase the number of GLUT1 and GLUT3 transporters in cerebral cortical neurons. The expression of GLUT1 and GLUT3 in the cortex displayed a strong correlation with learning and memory. Pearson correlation analysis showed that the levels of GLUT1 and GLUT3 are correlated with neurological function scores. All of these beneficial effects of LRIC were ablated by application of the AMPK inhibitor, dorsomorphin. In summary, LRIC ameliorated cognitive impairment in rats with CCH by regulating glucose transport via the AMPK/GLUT signaling pathway. We conclude that AMPK-mediated glucose transport plays a key role in LRIC. These data also suggest that supplemental activation of glucose transport after CCH may provide a clinically applicable intervention for improving cognitive impairment.
Collapse
Affiliation(s)
- Changhong Ren
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,5Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yuanyuan Liu
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Department of Endocrinology, The Affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, China
| | - Christopher Stone
- 4Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ning Li
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,5Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Sijie Li
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiyan Li
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,5Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zichao Cheng
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Department of Rehabilitation Medicine, Affiliated 3201 Hospital of Xi'an Jiaotong University School of Medicine, Hanzhong, China
| | - Jiangnan Hu
- 6Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Weiguang Li
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kunlin Jin
- 7Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Xunming Ji
- 5Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- 1Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,4Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
24
|
Yao Y, Li Y, Ni W, Li Z, Feng L, Wang Y, Meng J, Zhao H. Systematic Study of Immune Cell Diversity in ischemic postconditioning Using High-Dimensional Single-Cell Analysis with Mass Cytometry. Aging Dis 2021; 12:812-825. [PMID: 34094644 PMCID: PMC8139206 DOI: 10.14336/ad.2020.1115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/15/2020] [Indexed: 11/21/2022] Open
Abstract
Ischemic postconditioning (IPostC) is a concept of ischemic stroke treatment, in which several cycles of brief reocclusion after reperfusion are repeated. It is essential to have an accurate understanding of the immune response in IPostC. By using high parametric single-cell mass cytometry, immune cell subsets and characterize their unique functions from ischemic brain and peripheral blood were identified after IPostC. This study enabled us to better understand the immune cell phenotypical and functional characteristics in ischemic brain and peripheral blood at the single-cell and protein levels. Since some cell surface markers can serve as functional markers, reflecting the degree of inflammation, the cell surface marker intensity among different groups was analyzed. The results showed that downregulation of 4E-BP1 and p38 of Microglia and MoDM in the ischemic brain was involved in IPostC-induced protection. In the peripheral blood, downregulation of P38 of CD4 T cell and Treg has also participated in IPostC-induced protection.
Collapse
Affiliation(s)
- Yang Yao
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yaning Li
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weihua Ni
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhijun Li
- 2Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liangshu Feng
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yan Wang
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jihong Meng
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heng Zhao
- 1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Li CY, Ma W, Liu KP, Yang JW, Wang XB, Wu Z, Zhang T, Wang JW, Liu W, Liu J, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. Advances in intervention methods and brain protection mechanisms of in situ and remote ischemic postconditioning. Metab Brain Dis 2021; 36:53-65. [PMID: 33044640 DOI: 10.1007/s11011-020-00562-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
Ischemic postconditioning (PostC) conventionally refers to a series of brief blood vessel occlusions and reperfusions, which can induce an endogenous neuroprotective effect and reduce cerebral ischemia/reperfusion (I/R) injury. Depending on the site of adaptive ischemic intervention, PostC can be classified as in situ ischemic postconditioning (ISPostC) and remote ischemic postconditioning (RIPostC). Many studies have shown that ISPostC and RIPostC can reduce cerebral IS injury through protective mechanisms that increase cerebral blood flow after reperfusion, decrease antioxidant stress and anti-neuronal apoptosis, reduce brain edema, and regulate autophagy as well as Akt, MAPK, PKC, and KATP channel cell signaling pathways. However, few studies have compared the intervention methods, protective mechanisms, and cell signaling pathways of ISPostC and RIPostC interventions. Thus, in this article, we compare the history, common intervention methods, neuroprotective mechanisms, and cell signaling pathways of ISPostC and RIPostC.
Collapse
Affiliation(s)
- Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Tong Zhang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Jia-Wei Wang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
26
|
Li CY, Ma W, Liu KP, Yang JW, Wang XB, Wu Z, Zhang T, Wang JW, Liu W, Liu J, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. Different ischemic duration and frequency of ischemic postconditioning affect neuroprotection in focal ischemic stroke. J Neurosci Methods 2020; 346:108921. [PMID: 32888963 DOI: 10.1016/j.jneumeth.2020.108921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/02/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Many studies have confirmed that "in situ ischemia postconditioning" (ISPostC) and "remote ischemic postconditioning" (RIPostC) can reduce cerebral ischemia/reperfusion injury, but there is no comparison was made on the consistency of neuroprotection in ISPostC and RIPostC to different ischemic duration and number of cycles. NEW METHOD We used a transient middle cerebral artery occlusion model to compare the neuroprotection of ISPostC and RIPostC. We conducted ISPostC and RIPostC via brief and repeated MCA and Femoral artery occlusion followed by different ischemic duration and number of cycles. Infarct volume, brain edema, Neurological deficit scores and Apoptosis were evaluated. RESULTS First, the ISPostC with three cycles of 10-s occlusion/30-s release of both carotid arteries and the RIPostC with three cycles of 10-min occlusion/10-min release of the left and right femoral arteries can obviously reduce cerebral infarction size, brain edema, apoptosis, and improve behavioral deficits than other approaches. Second, three cycles of ischemia/reperfusion may be the best for RIPostC. COMPARISON WITH EXISTING METHOD(S) In this paper, we compared different ischemic duration and frequency of ISPostC and RIPostC models to determine the best method. This conclusion helps to unify the experimental methods. CONCLUSIONS Different ischemic duration and frequency of ischemic postconditioning affect neuroprotection. three cycles of 10-s occlusion/30-s release of both carotid arteries and three cycles of 10-min occlusion/10-min release of both femoral arteries could be the first choice to study mechanisms of ischemic postconditioning and be conducive to the unification of research results.
Collapse
Affiliation(s)
- Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Tong Zhang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Jia-Wei Wang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan, Kunming 650032, China.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Yunnan, Kunming, 650500, China.
| |
Collapse
|
27
|
Khan H, Kashyap A, Kaur A, Singh TG. Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 2020; 72:1513-1527. [PMID: 33460133 DOI: 10.1111/jphp.13336] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ischaemia/reperfusion (I/R) injury is defined as the damage to the tissue which is caused when blood supply returns to tissue after ischaemia. To protect the ischaemic tissue from irreversible injury, various protective agents have been studied but the benefits have not been clinically applicable due to monotargeting, low potency, late delivery or poor tolerability. KEY FINDINGS Strategies involving preconditioning or postconditioning can address the issues related to the failure of protective therapies. In principle, postconditioning (PoCo) is clinically more applicable in the conditions in which there is unannounced ischaemic event. Moreover, PoCo is an attractive beneficial strategy as it can be induced rapidly at the onset of reperfusion via series of brief I/R cycles following a major ischaemic event or it can be induced in a delayed manner. Various pharmacological postconditioning (pPoCo) mechanisms have been investigated systematically. Using different animal models, most of the studies on pPoCo have been carried out preclinically. SUMMARY However, there is a need for the optimization of the clinical protocols to quicken pPoCo clinical translation for future studies. This review summarizes the involvement of various receptors and signalling pathways in the protective mechanisms of pPoCo.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Kashyap
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
28
|
Jiang R, Liao J, Yang MC, Deng J, Hu YX, Li P, Li MT. Lidocaine mediates the progression of cerebral ischemia/reperfusion injury in rats via inhibiting the activation of NF-κB p65 and p38 MAPK. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:548. [PMID: 32411771 PMCID: PMC7214891 DOI: 10.21037/atm-20-3066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Lidocaine is a commonly used local anesthetic, and low-dose lidocaine has neuroprotective effects on cerebral ischemia/reperfusion (CI/R) injury; the mechanism for this, however, is still unclear. The aim of this study was to investigate the role and the possible mechanisms of lidocaine on CI/R injury in rats. Methods We constructed a rat (male Sprague-Dawley rats, 6–8 weeks old) model of CI/R injury induced by middle cerebral artery occlusion (MCAO). Histopathology, neuronal apoptosis, oxidative stress, and inflammatory response were evaluated using hematoxylin and eosin (HE) staining, Nissl staining, enzyme-linked immunosorbent assay (ELISA) and western blotting, respectively. In addition, brain water content, infarct volume, neurological deficit score each evaluated. Results The findings showed that lidocaine improved spatial learning and memory impairment, protected I/R-induced brain injury and attenuated neuronal death and apoptosis. Furthermore, lidocaine also regulated the levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), IL-6, IL-10, iNOS, and IL-4.Notably, lidocaine markedly inhibited the expression of p65 and p38. Conclusions The results indicate that lidocaine protects against cerebral injury induced by I/R in rats via the nuclear factor kappa-B (NF-κB) p65 and p38 mitogen-activated protein kinase (MAPK) signaling pathway, it provided a candidate for the treatment of CI/R-induced injury.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Juan Liao
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Meng-Chang Yang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jia Deng
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yun-Xia Hu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Peng Li
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Mei-Ting Li
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| |
Collapse
|
29
|
Hosseini M, Wilson RH, Crouzet C, Amirhekmat A, Wei KS, Akbari Y. Resuscitating the Globally Ischemic Brain: TTM and Beyond. Neurotherapeutics 2020; 17:539-562. [PMID: 32367476 PMCID: PMC7283450 DOI: 10.1007/s13311-020-00856-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrest (CA) afflicts ~ 550,000 people each year in the USA. A small fraction of CA sufferers survive with a majority of these survivors emerging in a comatose state. Many CA survivors suffer devastating global brain injury with some remaining indefinitely in a comatose state. The pathogenesis of global brain injury secondary to CA is complex. Mechanisms of CA-induced brain injury include ischemia, hypoxia, cytotoxicity, inflammation, and ultimately, irreversible neuronal damage. Due to this complexity, it is critical for clinicians to have access as early as possible to quantitative metrics for diagnosing injury severity, accurately predicting outcome, and informing patient care. Current recommendations involve using multiple modalities including clinical exam, electrophysiology, brain imaging, and molecular biomarkers. This multi-faceted approach is designed to improve prognostication to avoid "self-fulfilling" prophecy and early withdrawal of life-sustaining treatments. Incorporation of emerging dynamic monitoring tools such as diffuse optical technologies may provide improved diagnosis and early prognostication to better inform treatment. Currently, targeted temperature management (TTM) is the leading treatment, with the number of patients needed to treat being ~ 6 in order to improve outcome for one patient. Future avenues of treatment, which may potentially be combined with TTM, include pharmacotherapy, perfusion/oxygenation targets, and pre/postconditioning. In this review, we provide a bench to bedside approach to delineate the pathophysiology, prognostication methods, current targeted therapies, and future directions of research surrounding hypoxic-ischemic brain injury (HIBI) secondary to CA.
Collapse
Affiliation(s)
- Melika Hosseini
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Robert H Wilson
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Christian Crouzet
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Arya Amirhekmat
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Kevin S Wei
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Yama Akbari
- Department of Neurology, School of Medicine, University of California, Irvine, USA.
- Beckman Laser Institute, University of California, Irvine, USA.
| |
Collapse
|
30
|
Zhao L, Liao Q, Zhang Y, Tan S, Li S, Ke T. Ischemic Postconditioning Mitigates Retinopathy in Tree Shrews with Diabetic Cerebral Ischemia. J Diabetes Res 2020; 2020:6286571. [PMID: 32104713 PMCID: PMC7037873 DOI: 10.1155/2020/6286571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 12/25/2022] Open
Abstract
Ischemic postconditioning (PC) is proved to efficiently protect diabetic patients with acute myocardial infarction from ischemia-reperfusion injury. We aimed to explore the protective roles of ischemic PC on diabetic retinopathy in tree shrews with diabetic cerebral ischemia. A diabetic tree shrew model was established through high-fat diet feeding combined with streptozotocin (STZ) injection, while cortical thrombotic cerebral ischemia was induced photochemically. Tree shrews were divided into the normal control group, sham operation group, diabetes mellitus group, diabetes mellitus+cerebral ischemia group, and diabetes mellitus+cerebral ischemia+PC group (in which the tree shrews with diabetic cerebral ischemia were treated with ischemic PC). H&E staining was used to examine the pathological changes in the retina, and immunohistochemistry was performed to determine the retinal expression of VEGF (vascular endothelial growth factor). The modeling resulted in 77% tree shrews with diabetes. Ischemic PC reduced the blood glucose levels in the tree shrews with diabetic cerebral ischemia. Tree shrews with diabetes had thinned retina with disordered structures, and these pathological changes were aggravated after cerebral ischemia. The retinopathy was alleviated after ischemic PC. Retina expression of VEGF was mainly distributed in the ganglion cell layer in tree shrews. Diabetes and cerebral ischemia increased retinal VEGF expression in a step-wise manner, while additional ischemic PC reduced retinal VEGF expression. Therefore, ischemic PC effectively alleviates retinopathy in tree shrews with diabetic cerebral ischemia, and this effect is associated with reduced retinal VEGF expression.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Yunnan 650101, China
| | - Qiwei Liao
- Department of Cardiology, The Yan-an Affiliated Hospital of Kunming Medical University, Yunnan 650051, China
| | - Yueting Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Yunnan 650101, China
| | - Shufen Tan
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan 650101, China
| | - Shuqing Li
- Department of Pathophysiology, Kunming Medical University, Yunnan 650050, China
| | - Tingyu Ke
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Yunnan 650101, China
| |
Collapse
|
31
|
Qin C, Yan X, Jin H, Zhang R, He Y, Sun X, Zhang Y, Guo ZN, Yang Y. Effects of Remote Ischemic Conditioning on Cerebral Hemodynamics in Ischemic Stroke. Neuropsychiatr Dis Treat 2020; 16:283-299. [PMID: 32021218 PMCID: PMC6988382 DOI: 10.2147/ndt.s231944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is one of the most common cerebrovascular diseases and is the leading cause of disability all over the world. It is well known that cerebral blood flow (CBF) is disturbed or even disrupted when ischemic stroke happens. The imbalance between demand and shortage of blood supply makes ischemic stroke take place or worsen. The search for treatments that can preserve CBF, especially during the acute phase of ischemic stroke, has become a research hotspot. Animal and clinical experiments have proven that remote ischemic conditioning (RIC) is a beneficial therapeutic strategy for the treatment of ischemic stroke. However, the mechanism by which RIC affects CBF has not been fully understood. This review aims to discuss several possible mechanisms of RIC on the cerebral hemodynamics in ischemic stroke, such as the improvement of cardiac function and collateral circulation of cerebral vessels, the protection of neurovascular units, the formation of gas molecules, the effect on the function of vascular endothelial cells and the nervous system. RIC has the potential to become a therapeutic treatment to improve CBF in ischemic stroke. Future studies are needed to highlight our understanding of RIC as well as accelerate its clinical translation.
Collapse
Affiliation(s)
- Chen Qin
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Xiuli Yan
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Hang Jin
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Ruyi Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yaode He
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Xin Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yihe Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Zhen-Ni Guo
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
32
|
Shang X, Lin K, Yu R, Zhu P, Zhang Y, Wang L, Xu J, Chen K. Resveratrol Protects the Myocardium in Sepsis by Activating the Phosphatidylinositol 3-Kinases (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) Pathway and Inhibiting the Nuclear Factor-κB (NF-κB) Signaling Pathway. Med Sci Monit 2019; 25:9290-9298. [PMID: 31806860 PMCID: PMC6911307 DOI: 10.12659/msm.918369] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Sepsis combined with myocardial injury is an important cause of septic shock and multiple organ failure. However, the molecular mechanism of sepsis-induced myocardial dysfunction has not yet been thoroughly studied. Resveratrol has been an important research topic due its organ-protection function, but the specific mechanism is unclear. The purpose of this study was to explore the mechanism of organ injury in sepsis and to investigate the molecular mechanism of resveratrol in myocardial protection in sepsis. Material/Methods A classical Sprague-Dawley rat model of sepsis peritonitis was constructed for further experiments. The PI3K inhibitor LY294002 and resveratrol were used to intervene in a rat model of cardiomyopathy. HE staining was used to observe pathological changes. Cardiomyocyte apoptosis was detected by TUNEL assay. Western blot analysis was used to detect the level of maker proteins. Results The PI3K inhibitors could promote cardiac abnormalities and apoptosis, but resveratrol showed the opposite effect. The upregulation function of the PI3K inhibitor on the expression of NF-κB, IL-6, IL-1β, and TLR4 in LPS rats was not obvious, but the expression of TNF-α in LPS+LY294002 rats was increased by 22.85% compared with that in LPS rats (P<0.05). Compared with the LPS group, the expression of NF-κB, TNF-α, IL-6, IL-1β, and TLR4 in the LPS+resveratrol group was decreased. The expression of p-PI3K, p-AKT, and p-mTOR in LPS+LY294002 was reduced. The expression p-PI3K, p-AKT, and p-mTOR in the myocardium of the LPS+resveratrol group was increased. Conclusions Resveratrol can protect the myocardium in sepsis by activating the PI3K/AKT/mTOR signaling pathway and inhibiting the NF-κB signaling pathway and related inflammatory factors.
Collapse
Affiliation(s)
- Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Kaiyang Lin
- Department of Cardiology, Fujian Provincial Hospital, Fujian Cardiovascular Institute, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Rongguo Yu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Pengli Zhu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial, Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Yingrui Zhang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Ling Wang
- Department of Pharmacy, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Jingqing Xu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Kaihua Chen
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
33
|
Samandari H, Nabavizadeh F, Ashabi G. Age-related difference in protective effect of early post-conditioning on ischemic brain injury: possible involvement of MAP-2/Synaptophysin role. Metab Brain Dis 2019; 34:1771-1780. [PMID: 31471737 DOI: 10.1007/s11011-019-00484-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
Abstract
Brain Ischemia/Reperfusion (I/R) injury leads to the failure of the microtubules function and neuronal death. Ischemic post-conditioning is defined as a series of rapid alternating interruptions of blood flow in the first seconds of reperfusion. In the present study, the caspase-3, Microtubule-Associated Protein-2 (MAP-2), Protein Kinase C α (PKCα), c-fos, and synaptophysin were evaluated in the hippocampus of focal I/R post-conditioning model in a time -dependent study in aged and young rats. Adult and aged rats were subjected to right MCAO for 30 min and post-conditioned (10 s) for 3 cycles. Sensory-motor tests were performed, and locomotion and anxiety-like behavior were evaluated. Molecular tests were done by detection kit, RT-PCR, and Western blotting techniques. Ninety-six hours after I/R post-conditioning, neurological signs, locomotion, anxiety-like behavior, and ischemic area were improved in young rats compared to 6 h after I/R post-conditioning (P < 0.001). Caspase-3 activity declined in the hippocampus and cortex of I/R post-conditioned young rats in 96 h after I/R post-conditioning compared with 6 h after I/R post-conditioning (P < 0.001). Also, MAP-2 mRNA, MAP-2 protein level, PKCα, c-fos and synaptophysin protein levels were enhanced during post-conditioning in young rats in 96 h after I/R post-conditioning compared with 6 h after induction of I/R post-conditioning. The results of the present study suggested that, early post-conditioning might be considered as a candidate for therapeutic methods against I/R in the adult animals not aged rats. Moreover, inhibition of cell death in post-conditioned ischemic rats was found to be regulated by some neuroprotective molecules as well as MAP-2 and c-fos in young rats. Graphical abstract Graphical abstract representing the post-conditioning (PC) treatment timeline in adult and old rats.
Collapse
Affiliation(s)
- Hedayat Samandari
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Burda R, Morochovič R, Némethová M, Burda J. Remote ischemic postconditioning as well as blood plasma from double-conditioned donor ameliorate reperfusion syndrome in skeletal muscle. J Plast Surg Hand Surg 2019; 54:59-65. [PMID: 31702408 DOI: 10.1080/2000656x.2019.1688163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to verify the possibility of preparation and effectiveness of the use of blood plasma containing an effector of ischemic tolerance activated by applying two sublethal stresses to a donor. As sublethal stresses, two periods of 20-minute hindlimb ischemia were used with a two-day interval between them. Active plasma was isolated six hours after the second hindlimb ischemia. The effectiveness of active plasma as well as remote postconditioning was tested after three hours of tourniquet-induced ischemia on the gastrocnemius muscle. The wet/dry ratio of gastrocnemius muscle (degree of tissue oedema), nitroblue tetrazolium reduction (tissue necrosis), and CatWalk test (hind limb functionality) were evaluated 24 h after the end of ischemia. Three hours of ischemia increased muscle oedema and necrosis in comparison to control by 26.72% (p < 0.001) and 41.58% (p < 0.001) respectively. Remote ischemic postconditioning as well as injection of conditioned blood plasma significantly prevented these changes, even when they were applied one or three hours after the end of ischemia. Equally effective double-conditioned plasma appears to have better prospects in life-threatening situations such as stroke and myocardial infarction.
Collapse
Affiliation(s)
- Rastislav Burda
- Department of Trauma Surgery, University Hospital of L. Pasteur, Košice, Slovakia
| | - Radoslav Morochovič
- Department of Trauma Surgery, University Hospital of L. Pasteur, Košice, Slovakia.,University of P.J. Šafarik, Košice, Slovakia
| | - Miroslava Némethová
- Institute of Neurobiology of Biomedical Research Center Slovak Academy of Sciences, Košice, Slovakia
| | - Jozef Burda
- Institute of Neurobiology of Biomedical Research Center Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
35
|
Zhan L, Liu D, Wen H, Hu J, Pang T, Sun W, Xu E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 Inhibition and GSK-3β inactivation. FASEB J 2019; 33:9291-9307. [PMID: 31120770 DOI: 10.1096/fj.201802633r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Wingless/Int (Wnt)/β-catenin pathway plays an essential role in cell survival. Although postconditioning with 8% oxygen can alleviate transient global cerebral ischemia (tGCI)-induced neuronal damage in hippocampal CA1 subregion in adult rats as demonstrated by our previous studies, little is understood about the role of Wnt/β-catenin pathway in hypoxic postconditioning (HPC)-induced neuroprotection. This study tried to investigate the involvement of Wnt/β-catenin pathway in HPC-induced neuroprotection against tGCI and explore the underlying molecular mechanism thereof. We observed that HPC elevated nuclear β-catenin level as well as increased Wnt3a and decreased Dickkopf-1 (Dkk1) expression in CA1 after tGCI. Accordingly, HPC enhanced the expression of survivin and reduced the ratio of B-cell lymphoma/lewkmia-2 (Bcl-2)-associated X protein (Bax) to Bcl-2 following reperfusion. Moreover, our study has shown that these effects of HPC were abolished by lentivirus-mediated overexpression of Dkk1, and that the overexpression of Dkk1 completely reversed HPC-induced neuroprotection. Furthermore, HPC suppressed the activity of glycogen synthase kinase-3β (GSK-3β) in CA1 after tGCI, and the inhibition of GSK-3β activity with SB216763 increased the nuclear accumulation of β-catenin, up-regulated the expression of survivin, and reduced the ratio of Bax to Bcl-2, thus preventing the delayed neuronal death after tGCI. Finally, the administration of LY294002, an inhibitor of PI3K, increased GSK-3β activity and blocked nuclear β-catenin accumulation, thereby decreasing survivin expression and elevating the Bax-to-Bcl-2 ratio after HPC. These results suggest that activation of the Wnt/β-catenin pathway through Dkk1 inhibition and PI3K/protein kinase B pathway-mediated GSK-3β inactivation contributes to the neuroprotection of HPC against tGCI.-Zhan, L., Liu, D., Wen, H., Hu, J., Pang, T., Sun, W., Xu, E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 inhibition and GSK-3β inactivation.
Collapse
Affiliation(s)
- Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dandan Liu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Haixia Wen
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jiaoyue Hu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Taoyan Pang
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
36
|
Wang D, Li X, Jiang Y, Jiang Y, Ma W, Yu P, Mao L. Ischemic Postconditioning Recovers Cortex Ascorbic Acid during Ischemia/Reperfusion Monitored with an Online Electrochemical System. ACS Chem Neurosci 2019; 10:2576-2583. [PMID: 30883085 DOI: 10.1021/acschemneuro.9b00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As a promising therapeutic treatment, ischemic postconditioning has recently received considerable attention. Although the neuroprotection effect of postconditioning has been observed, a reliable approach that can evaluate the neuroprotective efficiency of postconditioning treatment during the acute period after ischemia remains to be developed. This study investigates the dynamics of cortex ascorbic acid during the acute period of cerebral ischemia before and after ischemic postconditioning with an online electrochemical system (OECS). The cerebral ischemia/reperfusion injury and the neuronal functional outcome are evaluated with triphenyltetrazolium chloride staining, immunohistochemistry, and electrophysiological recording techniques. Electrochemical recording results show that cortex ascorbic acid sharply increases 10 min after middle cerebral artery occlusion and then reaches a plateau. After direct reperfusion following ischemia (i.e., without ischemic postconditioning), the cortex ascorbic acid further increases and then starts to decrease slowly at a time point of about 40 min after reperfusion. In striking contrast, the cortex ascorbic acid drops and recovers to its basal level after ischemic postconditioning followed by reperfusion. With the recovery of cortex ascorbic acid, ischemic postconditioning concomitantly promotes the recovery of neural function and reduces the oxidative damage. These results demonstrate that our OECS for monitoring cortex ascorbic acid can be used as a platform for evaluating the neuroprotective efficiency of ischemic postconditioning in the acute phase of cerebral ischemia, which is of great importance for screening proper postconditioning parameters for preventing ischemic damages.
Collapse
Affiliation(s)
- Dalei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Xianchan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Ying Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Effects of Combined Remote Ischemic Pre-and Post-Conditioning on Neurologic Complications in Moyamoya Disease Patients Undergoing Superficial Temporal Artery-Middle Cerebral Artery Anastomosis. J Clin Med 2019; 8:jcm8050638. [PMID: 31075871 PMCID: PMC6572043 DOI: 10.3390/jcm8050638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
Superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis is the most commonly used treatment for Moyamoya disease. During the perioperative period, however, these patients are vulnerable to ischemic injury or hyperperfusion syndrome. This study investigated the ability of combined remote ischemic pre-conditioning (RIPC) and remote ischemic post-conditioning (RIPostC) to reduce the occurrence of major neurologic complications in Moyamoya patients undergoing STA-MCA anastomosis. The 108 patients were randomly assigned to a RIPC with RIPostC group (n = 54) or a control group (n = 54). Patients in the RIPC with RIPostC group were treated with four cycles of 5-min ischemia and 5-min reperfusion before craniotomy and after STA-MCA anastomosis (RIPostC). The incidence of postoperative neurologic complications and the duration of hospital stay were determined. The overall incidence of neurologic complication was significantly higher in the control group than in the RIPC with RIPostC group (13 vs. 3, p = 0.013). The duration of hospital stay was significantly longer in the control group than in the RIPC with RIPostC group (17.8 (11.3) vs. 13.8 (5.9) days, p = 0.023). Combined remote ischemic pre- and post-conditioning can be effective in reducing neurologic complications and the duration of hospitalization in Moyamoya patients undergoing STA-MCA anastomosis.
Collapse
|
38
|
Yokoyama S, Nakagawa I, Ogawa Y, Morisaki Y, Motoyama Y, Park YS, Saito Y, Nakase H. Ischemic postconditioning prevents surge of presynaptic glutamate release by activating mitochondrial ATP-dependent potassium channels in the mouse hippocampus. PLoS One 2019; 14:e0215104. [PMID: 30978206 PMCID: PMC6461229 DOI: 10.1371/journal.pone.0215104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/26/2019] [Indexed: 01/09/2023] Open
Abstract
A mild ischemic load applied after a lethal ischemic insult reduces the subsequent ischemia–reperfusion injury, and is called ischemic postconditioning (PostC). We studied the effect of ischemic PostC on synaptic glutamate release using a whole-cell patch-clamp technique. We recorded spontaneous excitatory post-synaptic currents (sEPSCs) from CA1 pyramidal cells in mouse hippocampal slices. The ischemic load was perfusion of artificial cerebrospinal fluid (ACSF) equilibrated with mixed gas (95% N2 and 5% CO2). The ischemic load was applied for 7.5 min, followed by ischemic PostC 30 s later, consisting of three cycles of 15 s of reperfusion and 15 s of re-ischemia. We found that a surging increase in sEPSCs frequency occurred during the immediate-early reperfusion period after the ischemic insult. We found a significant positive correlation between cumulative sEPSCs and the number of dead CA1 neurons (r = 0.70; p = 0.02). Ischemic PostC significantly suppressed this surge of sEPSCs. The mitochondrial KATP (mito-KATP) channel opener, diazoxide, also suppressed the surge of sEPSCs when applied for 15 min immediately after the ischemic load. The mito-KATP channel blocker, 5-hydroxydecanoate (5-HD), significantly attenuated the suppressive effect of both ischemic PostC and diazoxide application on the surge of sEPSCs. These results suggest that the opening of mito-KATP channels is involved in the suppressive effect of ischemic PostC on synaptic glutamate release and protection against neuronal death. We hypothesize that activation of mito-KATP channels prevents mitochondrial malfunction and breaks mutual facilitatory coupling between glutamate release and Ca2+ entry at presynaptic sites.
Collapse
Affiliation(s)
- Shohei Yokoyama
- Department of Neurosurgery, Nara Medical University, Kashihara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Japan
- * E-mail:
| | - Yoichi Ogawa
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| | - Yudai Morisaki
- Department of Neurosurgery, Nara Medical University, Kashihara, Japan
| | - Yasushi Motoyama
- Department of Neurosurgery, Nara Medical University, Kashihara, Japan
| | - Young Su Park
- Department of Neurosurgery, Nara Medical University, Kashihara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara, Japan
| |
Collapse
|
39
|
Tang Z, Yang C, Zuo B, Zhang Y, Wu G, Wang Y, Wang Z. Taxifolin protects rat against myocardial ischemia/reperfusion injury by modulating the mitochondrial apoptosis pathway. PeerJ 2019; 7:e6383. [PMID: 30723634 PMCID: PMC6360081 DOI: 10.7717/peerj.6383] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022] Open
Abstract
Background Taxifolin (TAX), is an active flavonoid, that plays an underlying protective role on the cardiovascular system. This study aimed to evaluate its effect and potential mechanisms on myocardial ischemia/reperfusion (I/R) injury. Methods Healthy rat heart was subjected to I/R using the Langendorff apparatus. Hemodynamic parameters, including heart rate, left ventricular developed pressure (LVDP), maximum/minimum rate of the left ventricular pressure rise (+dp/dtmax and −dp/dtmin) and rate pressure product (RPP) were recorded during the perfusion. Histopathological examination of left ventricular was measured by hematoxylin-eosin (H&E) staining. Creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) activities in the effluent perfusion, and the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) in the tissue were assayed. Apoptosis related proteins, such as B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), and cytochrome c (Cyt-c) were also assayed by ELISA. Western blot was employed to determine apoptosis-executive proteins, including caspase 3 and 9. Transferase-mediated dUTP-X nick end labeling assay was performed to evaluate the effect TAX on myocardial apoptosis. Results Taxifolin significantly improved the ventricular functional recovery, as evident by the increase in LVDP, +dp/dtmax, −dp/dtmin and RPP, the levels of SOD, GSH-PX were also increased, but those of LDH, CK-MB, and MDA were decreased. Furthermore, TAX up-regulated the Bcl-2 protein level but down-regulated the levels of Bax, Cyt-c, caspase 3 and 9 protein, thereby inhibits the myocardial apoptosis. Discussion Taxifolin treatment remarkably improved the cardiac function, regulated oxidative stress and attenuated apoptosis. Hence, TAX has a cardioprotective effect against I/R injury by modulating mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Zhenqiu Tang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Chunjuan Yang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.,Beijing Shunyue Technology Co., Ltd., Beijing, China
| | - Baoyan Zuo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yanan Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Gaosong Wu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Yudi Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
40
|
Cao J, Lin H, Li W, Dong Z, Shi Y, Zhang X, Xiao R. Ischemia postconditioning protects dermal microvascular endothelial cells of rabbit epigastric skin flaps against apoptosis via adenosine A2a receptors. J Plast Surg Hand Surg 2019; 53:76-82. [PMID: 30688144 DOI: 10.1080/2000656x.2018.1550417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND It has been shown that endogenous adenosine-induced by ischemia postconditioning attenuates apoptosis in recent studies; however, they focus only on parenchymal cells. The detailed mechanism has not been clearly clarified in any research and the subtype of adenosine receptors involved remains unknown. In our study, dermal microvascular endothelial cells (DMECs) are used to explore the role of adenosine A2a receptor in the anti-apoptotic effects of ischemic postconditioning. MATERIAL AND METHODS The epigastric skin flaps of rabbits were elevated. After 4 h of ischemia, the flaps were either abruptly reperfused or postconditioned by six cycles of brief reperfusion (15s) and re-ischemia (15s). Adenosine A2a receptor agonist (CGS-21680) and antagonist (ZM-241385) were used separately in other groups. The apoptosis-related proteins and adenosine A2a receptors were determined by immunohistochemical staining. Then apoptosis index was calculated by TUNEL. RESULTS Ischemia/reperfusion caused severe damages in DMECs of flaps as demonstrated by an increase in apoptosis index and an increase in expressions of apoptosis-related proteins, which can be significantly attenuated by IPC treatment or exposure to a selective adenosine A2a receptor agonist (all p values <.05). Meanwhile, the anti-apoptosis effects of IPC can be blocked by a selective adenosine A2a receptor antagonist. Statistical analysis revealed that the increase of apoptosis index closely correlated inversely with the relative increase of adenosine A2a receptors (p < .0001). CONCLUSIONS Ischemia postconditioning protects DMECs of rabbit skin flap against apoptosis via activation of adenosine A2a receptors.
Collapse
Affiliation(s)
- Jiankun Cao
- a Department of Aesthetic Plastic Surgery and Laser Medicine , Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases , Beijing , China.,b Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Huang Lin
- a Department of Aesthetic Plastic Surgery and Laser Medicine , Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases , Beijing , China
| | - Wenzhi Li
- a Department of Aesthetic Plastic Surgery and Laser Medicine , Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases , Beijing , China
| | - Ziying Dong
- c Cosmetic surgery , Rizhao People's Hospital , Rizhao , China
| | - Yanyu Shi
- a Department of Aesthetic Plastic Surgery and Laser Medicine , Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases , Beijing , China
| | - Xiufang Zhang
- d Intensive Care Unit , Jining NO.1 People's Hospital , Jining , China
| | - Ran Xiao
- b Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| |
Collapse
|
41
|
Guo L, Zhou D, Wu D, Ding J, He X, Shi J, Duan Y, Yang T, Ding Y, Ji X, Meng R. Short-term remote ischemic conditioning may protect monkeys after ischemic stroke. Ann Clin Transl Neurol 2019; 6:310-323. [PMID: 30847363 PMCID: PMC6389742 DOI: 10.1002/acn3.705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
Objective We aimed to evaluate the safety and effectiveness of short-term remote ischemic postconditioning (RIPC) in acute stroke monkey models. Methods Acute stroke monkeys were allocated to four groups based on the number of limbs exposed to RIPC. RIPC was initiated by 5-min cuff inflation/deflation cycles of the target limb(s) for 5-10 bouts. Vital signs, skin integrity, brain MRI, and serum levels of cardiac enzymes (myoglobin, creatine kinase [CK], CK-muscle/brain [CK-MB]), one inflammatory marker (high-sensitivity C-reactive protein [hsCRP], and one endothelial injury marker (von Willebrand factor [vWF]) were assessed. Spetzler scores were used to assess neurological function. Results No significant differences in vital signs or local skin integrity were found. Short-term RIPC did not reduce infarct volume under any condition at the 24th hour after stroke. However, neurological function improved in multi-limb RIPC compared with sham and single-limb RIPC at the 30th day follow-up after stroke. Myoglobin, CK, and CK-MB levels were reduced after multi-limb RIPC, regardless of the number of bouts. Moreover, multi-limb RIPC produced a greater diminution in CK-MB levels, whereas two-limb RIPC was more effective in reducing serum CK levels at the 24th hour after stroke. hsCRP increased after 5 bouts of multi-limb RIPC before decreasing below baseline and single-limb RIPC levels. Serum vWF was decreased at later time points after RIPC in all RIPC groups. Conclusions Stroke monkeys in hyperacute stage may benefit from short-term RIPC; however, whether this intervention can be translated into clinical use in patients with acute ischemic stroke warrants further study.
Collapse
Affiliation(s)
- Linlin Guo
- Department of Neurology Xuanwu Hospital Capital Medical University Beijing China.,Beijing Geriatric Hospital Beijing China.,China-America Institute of Neuroscience Xuanwu Hospital Capital Medical University Beijing China.,Center of Stroke Beijing Institute for Brain Disorders Beijing China
| | - Da Zhou
- Department of Neurology Xuanwu Hospital Capital Medical University Beijing China.,China-America Institute of Neuroscience Xuanwu Hospital Capital Medical University Beijing China.,Center of Stroke Beijing Institute for Brain Disorders Beijing China
| | - Di Wu
- China-America Institute of Neuroscience Xuanwu Hospital Capital Medical University Beijing China.,Center of Stroke Beijing Institute for Brain Disorders Beijing China
| | - Jiayue Ding
- Department of Neurology Xuanwu Hospital Capital Medical University Beijing China.,China-America Institute of Neuroscience Xuanwu Hospital Capital Medical University Beijing China.,Center of Stroke Beijing Institute for Brain Disorders Beijing China
| | - Xiaoduo He
- China-America Institute of Neuroscience Xuanwu Hospital Capital Medical University Beijing China
| | - Jingfei Shi
- China-America Institute of Neuroscience Xuanwu Hospital Capital Medical University Beijing China
| | - Yunxia Duan
- China-America Institute of Neuroscience Xuanwu Hospital Capital Medical University Beijing China
| | - Tingting Yang
- China-America Institute of Neuroscience Xuanwu Hospital Capital Medical University Beijing China.,Center of Stroke Beijing Institute for Brain Disorders Beijing China
| | - Yuchuan Ding
- China-America Institute of Neuroscience Xuanwu Hospital Capital Medical University Beijing China.,Center of Stroke Beijing Institute for Brain Disorders Beijing China.,Department of Neurosurgery Wayne State University School of Medicine Detroit Michigan
| | - Xunming Ji
- China-America Institute of Neuroscience Xuanwu Hospital Capital Medical University Beijing China.,Center of Stroke Beijing Institute for Brain Disorders Beijing China.,Department of Neurosurgery Xuanwu Hospital Capital Medical University Beijing China
| | - Ran Meng
- Department of Neurology Xuanwu Hospital Capital Medical University Beijing China.,China-America Institute of Neuroscience Xuanwu Hospital Capital Medical University Beijing China.,Center of Stroke Beijing Institute for Brain Disorders Beijing China
| |
Collapse
|
42
|
Liu SM, Cao XM, Qu XH, Cai W, Hu F, Cao WF, Wu LF, Wu XM. Effects of remote ischemic preconditioning on astrocyte proliferation and glial scars after cerebral infarction. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219846325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to investigate whether remote ischemic preconditioning (RIPC) can promote neurological function recovery after middle cerebral artery occlusion (MCAO) in rats and its possible mechanism. A total of 32 Sprague Dawley (SD) rats were randomly divided into RIPC group (n = 16) and MCAO group (n = 16). In the RIPC group, 1 h before induction of MCAO, the rats received bilateral femoral artery ischemic preconditioning (10 min/time), followed by 10 min of relaxation, and a total of three cycles were carried out. Then, the MCAO-2h model was established. In the MCAO group, the MCAO-2h model was established at 1 h after the separation of bilateral femoral arteries. The modified neurological severity score (mNSS) was assessed. At postmodeling day 7, triphenyltetrazolium chloride (TTC) staining and immunohistochemistry were conducted, and neurological function recovery, infarct size, and the expression levels of glial fibrillary acidic protein (GFAP), synaptophysin (SYN), and neurite outgrowth inhibitor A (Nogo-A) were observed. At postmodeling day 7, the difference in mNSS was statistically significant ( P < 0.05). Infarct size was significantly smaller in the RIPC group than in the MCAO group ( P < 0.05). The number of GFAP+ cells was significantly lesser in the RIPC group than in the MCAO group ( P < 0.05). The difference in thickness of the glial scar was not statistically significant ( P = 0.091). At postmodeling day 7, the expression level of SYN integrated optical density (IOD) was significantly higher in the RIPC group than in the MCAO group ( P < 0.05). The number of Nogo-A+ cells was significantly lesser in the RIPC group than in the MCAO group ( P < 0.05). At day 7 after MCAO, RIPC can promote neurological function recovery in rats and reduce infarct size. The mechanism may be that after 7 days, RIPC reduces GFAP expression, inhibits the trend of glial scar formation and Nogo-A expression, and increases SYN expression.
Collapse
Affiliation(s)
- Shi-Min Liu
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Xian-Min Cao
- Jiangxi University of Finance and Economics, Nanchang, China
| | - Xin-Hui Qu
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Wen Cai
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Fan Hu
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Wen-Feng Cao
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Lin-Feng Wu
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Xiao-Mu Wu
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| |
Collapse
|
43
|
Li H, Luo XB, Xu Y, Hou XY. A Brief Ischemic Postconditioning Protects Against Amyloid-β Peptide Neurotoxicity by Downregulating MLK3-MKK3/6-P38MAPK Signal in Rat Hippocampus. J Alzheimers Dis 2019; 71:671-684. [PMID: 31424393 DOI: 10.3233/jad-190207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Oligomeric amyloid-β peptide (Aβ) is associated with dysfunctional neuronal networks and neuronal loss in the development of Alzheimer's disease (AD). Ischemic postconditioning protects against post-ischemic excitotoxicity, oxidative stress, and inflammatory process that have also been implicated in the pathogenesis of AD. Evaluating the roles of ischemic postconditioning in oligomeric Aβ-induced neurotoxicity and underlying signal events may provide potential strategy for medical therapy in AD. OBJECTIVES The aim of the present study was to explore whether and how a brief ischemic postconditioning protects against Aβ neurotoxicity in rat hippocampus. METHODS Oligomeric Aβ25-35 (20 nmol/rat) or Aβ1-42 (5 nmol/rat) was infused by intracerebroventricular injection in adult male Sprague-Dawley rats. Ischemic postconditioning, a brief episode of global brain ischemia (3 min), was conducted at 1, 3, or 7 days after Aβ treatment, respectively. RESULTS A brief ischemic postconditioning reduced neuronal loss and inhibited the activation of MLK3, MKK3/6, and P38MAPKs in rat hippocampal CA1 and CA3 subfields after Aβ oligomer infusion. An N-methyl-D-aspartate (NMDA) receptor antagonist amantadine, but not non-NMDA receptor antagonist CNQX, reversed the MLK3-MKK3/6-P38MAPK signal events and beneficial effect of ischemic postconditioning on neuronal survival. Such reversion was also realized by NVP-AAM077, a GluN2A-subunit-selective NMDA receptor antagonist. Moreover, posttreatment with low doses of NMDA (5 nmol-40 nmol/rat) suppressed the Aβ-induced P38MAPK signaling and imitated the neuroprotection of ischemic postconditioning against Aβ neurotoxicity. CONCLUSIONS Ischemic postconditioning provides neuroprotection against Aβ neurotoxicity by moderate upregulation of NMDA receptor signaling, especially GluN2A-containing NMDA receptor pathway, and thereafter downregulation of MLK3-MKK3/6-P38MAPK signal events.
Collapse
Affiliation(s)
- Hui Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Bing Luo
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yu Hou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
44
|
Lanigan SM, O'Connor JJ. Prolyl hydroxylase domain inhibitors: can multiple mechanisms be an opportunity for ischemic stroke? Neuropharmacology 2018; 148:117-130. [PMID: 30578795 DOI: 10.1016/j.neuropharm.2018.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Stroke and cerebrovascular disease are now the fifth most common cause of death behind other diseases such as heart, cancer and respiratory disease and accounts for approximately 40-50 fatalities per 100,000 people each year in the United States. Currently the only therapy for acute stroke, is intravenous administration of tissue plasminogen activator which was approved in 1996 by the FDA. Surprisingly no new treatments have come on the market since, although endovascular mechanical thrombectomy is showing promising results in trials. Recently focus has shifted towards a preventative therapy rather than trying to reverse or limit the amount of damage occurring following stroke onset. During one of the components of ischemia, hypoxia, a number of physiological changes occur within neurons which include the stabilization of hypoxia-inducible factors. The activity of these proteins is regulated by O2, Fe2+, 2-OG and ascorbate-dependant hydroxylases which contain prolyl-4-hydroxylase domains (PHDs). PHD inhibitors are capable of pharmacologically activating the body's own endogenous adaptive response to low levels of oxygen and have therefore become an attractive therapeutic target for treating ischemia. They have been widely used in the periphery and have been shown to have a preconditioning and protective effect against a later and more severe ischemic insult. Currently there are a number of these agents in phase 1, 2 and 3 clinical trials for the treatment of anemia. In this review we assess the neuroprotective effects of PHD inhibitors, including dimethyloxalylglycine and deferoxamine and suggest that not all of their effects in the CNS are HIF-dependent. Unravelling new roles and a better understanding of the function of PHD inhibitors in the CNS may be of great benefit especially when investigating their use in the treatment of stroke and other ischemic diseases.
Collapse
Affiliation(s)
- Sinead M Lanigan
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
45
|
Neuroprotective Mechanism of Hypoxic Post-conditioning Involves HIF1-Associated Regulation of the Pentose Phosphate Pathway in Rat Brain. Neurochem Res 2018; 44:1425-1436. [PMID: 30448928 DOI: 10.1007/s11064-018-2681-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 11/11/2018] [Indexed: 01/19/2023]
Abstract
Post-conditioning is exposure of an injured organism to the same harmful factors but of milder intensity which mobilizes endogenous protective mechanisms. Recently, we have developed a novel noninvasive post-conditioning (PostC) protocol involving three sequential episodes of mild hypobaric hypoxia which exerts pronounced neuroprotective action. In particular, it prevents development of pathological cascades caused by severe hypobaric hypoxia (SH) such as cellular loss, lipid peroxidation, abnormal neuroendocrine responses and behavioural deficit in experimental animals. Development of these post-hypoxic pathological effects has been associated with the delayed reduction of hypoxia-inducible factor 1 (HIF1) regulatory α-subunit levels in rat hippocampus, whereas PostC up-regulated it. The present study has been aimed at experimental examination of the hypothesis that intrinsic mechanisms underlying the neuroprotective and antioxidant effects of PostC involves HIF1-dependent stimulation of the pentose phosphate pathway (PPP). We have observed that SH leads to a decrease of glucose-6-phosphate dehydrogenase (G6PD) activity in the hippocampus and neocortex of rats as well as to a reduction in NADPH and total glutathione levels. This depletion of the antioxidant defense system together with excessive lipid peroxidation during the reoxygenation phase resulted in increased oxidative stress and massive cellular death observed after SH. In contrast, PostC led to normalization of G6PD activity, stabilization of the NADPH and total glutathione levels and thereby resulted in recovery of the cellular redox state and prevention of neuronal death. Our data suggest that stabilization of the antioxidant system via HIF1-associated PPP regulation represents an important neuroprotective mechanism enabled by PostC.
Collapse
|
46
|
Ischemic postconditioning confers cerebroprotection by stabilizing VDACs after brain ischemia. Cell Death Dis 2018; 9:1033. [PMID: 30305621 PMCID: PMC6180002 DOI: 10.1038/s41419-018-1089-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Ischemic postconditioning provides robust neuroprotection, therefore, determining the molecular events may provide promising targets for stroke treatment. Here, we showed that the expression of functional mitochondrial voltage-dependent anion channel proteins (VDAC1, VDAC2, and VDAC3) reduced in rat vulnerable hippocampal CA1 subfield after global ischemia. Ischemic postconditioning restored VDACs to physiological levels. Stabilized VDACs contributed to the benefits of postconditioning. VDAC1 was required for maintaining neuronal Ca2+ buffering capacity. We found that microRNA-7 (miR-7) was responsible for postischemic decline of VDAC1 and VDAC3. Notably, miR-7 was more highly expressed in the peripheral blood of patients with acute ischemic stroke compared to healthy controls. Inhibition of miR-7 attenuated neuronal loss and ATP decline after global ischemia, but also diminished the infarct volume with improved neurological functions after focal ischemia. Thus, ischemic postconditioning protects against mitochondrial damage by stabilizing VDACs. MiR-7 may be a potential therapeutic target for ischemic stroke.
Collapse
|
47
|
Vinciguerra A, Cuomo O, Cepparulo P, Anzilotti S, Brancaccio P, Sirabella R, Guida N, Annunziato L, Pignataro G. Models and methods for conditioning the ischemic brain. J Neurosci Methods 2018; 310:63-74. [PMID: 30287283 DOI: 10.1016/j.jneumeth.2018.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia. AIMS AND RESULTS The present review will describe the most common methods to induce brain conditioning, with particular regards to surgical, physical exercise, temperature-induced and pharmacological approaches. It has been well recognized that when the subliminal stimulus is delivered after the ischemic insult, the achieved neuroprotection is comparable to that observed in models of ischemic preconditioning. In addition, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. CONCLUSIONS The last decades have provided fascinating insights into the mechanisms and potential application of strategies to induce brain conditioning. Since the identification of intrinsic cell-survival pathways should provide more direct opportunities for translational neuroprotection trials, an accurate examination of the different models of preconditioning and postconditioning is mandatory before starting any new project.
Collapse
Affiliation(s)
- Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
48
|
Sarieva KV, Lyanguzov AY, Zorina II, Galkina OV, Vetrovoy OV. The Effects of Severe Hypoxia and Hypoxic Postconditioning on the Glutathione-Dependent Antioxidant System of the Rat Brain. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Sun Y, Zhang T, Zhang Y, Li J, Jin L, Sun Y, Shi N, Liu K, Sun X. Ischemic Postconditioning Alleviates Cerebral Ischemia-Reperfusion Injury Through Activating Autophagy During Early Reperfusion in Rats. Neurochem Res 2018; 43:1826-1840. [PMID: 30046966 PMCID: PMC6096887 DOI: 10.1007/s11064-018-2599-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 05/25/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022]
Abstract
This study aimed to investigate whether ischemic postconditioning (IpostC) alleviates cerebral ischemia/reperfusion (I/R) injury involved in autophagy. Adult Sprague–Dawley rats were divided into five groups: sham (sham surgery), I/R (middle cerebral artery occlusion [MCAO] for 100 min, then reperfusion), IpostC (MCAO for 100 min, reperfusion for 10 min, MCAO for 10 min, then reperfusion), IpostC+3MA (3-methyladenine, an autophagy inhibitor, administered 30 min before first reperfusion), and IpostC+Veh (vehicle control for IpostC+3MA group). Infarct volume was measured using cresyl violet staining. Autophagy-related proteins were detected by western blot and immunohistochemistry. Autophagosomes, autophagolysosomes, and mitochondrial damage were identified by transmission electron microscopy. Cortical cell apoptosis was detected by the TUNEL assay. Neurologic function was assessed using the modified Neurologic Severity Score. IpostC improved neurological function and reduced infarct volume after I/R (P < 0.05). These effects of IpostC were inhibited by 3MA (P < 0.05). Autophagosome formation was increased in the I/R and IpostC+Veh groups (P < 0.05), but not in the IpostC+3MA group. The I/R group showed enhanced LC3-II/LC3-I ratio, p62, and Cathepsin B levels and decreased LAMP-2 level (all P < 0.05 vs. sham), indicating dysfunction of autophagic clearance. IpostC reduced p62 and Cathepsin B levels and increased the LC3-II/LC3-I ratio, and nuclear translocation of transcription factor EB (all P < 0.05); these effects of IpostC were reversed by 3MA, suggesting IpostC enhanced autophagic flux. Furthermore, IpostC attenuated I/R-induced mitochondrial translocation of Bax and mitochondrial cytochrome-c release (all P < 0.05); 3MA inhibited these effects of IpostC (P < 0.05). In conclusion, IpostC may alleviate cerebral I/R injury by activating autophagy during early reperfusion.
Collapse
Affiliation(s)
- Yameng Sun
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Ting Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Yan Zhang
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People's Republic of China
| | - Jinfeng Li
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People's Republic of China
| | - Lei Jin
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People's Republic of China
| | - Yinyi Sun
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Nan Shi
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People's Republic of China
| | - Kangyong Liu
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People's Republic of China.
| | - Xiaojiang Sun
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
50
|
Xueshuantong injection (lyophilized) combined with salvianolate lyophilized injection protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress. Acta Pharmacol Sin 2018; 39:998-1011. [PMID: 29022576 DOI: 10.1038/aps.2017.128] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Salvianolate lyophilized injection (SLI) and Xueshuantong injection (lyophilized) (XST) are two herbal standardized preparations that have been widely used in China for the treatment of acute cerebral infarction. In this study, we investigated the neuroprotective effects of SLI combined with XST in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Wistar rats were subjected to 1.5 h of MCAO followed by reperfusion for 3 h, then were treated with SLI or XST alone, or with their combinations via tail vein injection daily for 3 d. Edaravone (EDI, 6 mg·kg-1·d-1) was used as a positive control drug, We showed that administration of a combination of 1X1S (XST 100 mg·kg-1·d-1 plus SLI 21 mg·kg-1·d-1) more effectively protected the ischemic brains than SLI or XST used alone. Administration of 1X1S not only significantly decreased neurological deficit scores and infarct volumes and increased regional cerebral blood flow, but also inhibited the activation of both microglia and astrocytes in the hippocampus. Furthermore, administration of 1X1S significantly decreased the levels of MDA and ROS with concomitant increases in the levels of antioxidant activity (SOD, CAT and GSH) in the brain tissues as compared with SLI and XST used alone. Moreover, administration of 1X1S remarkably upregulated the expression of Nrf-2, HO-1 and NQO-1, and downregulated the expression of Keap1 and facilitated the nuclear translocation of Nrf-2 in the brain tissues as compared with XST used alone. Our study demonstrates that a combination of 1X1S effectively protects MCAO/R injury via suppressing oxidative stress and the Nrf-2/Keap1 pathway.
Collapse
|