1
|
Kappagoda C, Senavirathna I, Agampodi T, Agampodi SB. Role of Toll-like receptor 2 during infection of Leptospira spp: A systematic review. PLoS One 2024; 19:e0312466. [PMID: 39729468 DOI: 10.1371/journal.pone.0312466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024] Open
Abstract
The involvement of Toll-like receptor 2 (TLR2) in leptospirosis is poorly understood. Our systematic review examined its role across in-vitro, in-vivo, ex-vivo, and human studies. Original articles published in English up to January 2024, exploring the role of TLR2 during leptospirosis, were selected from databases including PubMed, Web of Science, Scopus, Trip, and Google Scholar. Cochrane guidelines and Preferred Reporting Items for Systematic Reviews and Meta-Analyses were followed by this systematic review. The National Institute of Health Quality Assessment tool, Systematic Review Centre for Laboratory Animal Experimentation risk of bias tool, and Office of Health Assessment and Translation extended tool were used to assess the risk of bias of the studies. Out of 2458 studies retrieved, 35 were selected for the systematic review. These comprised 3 human, 17 in-vitro, 5 in-vivo, 3 ex-vivo, and 7 studies with combined experimental models. We assessed the direct TLR2 expression and indirect TLR2 involvement via the secretion/mRNA expression of immune effectors during leptospirosis. Notably, we observed the secretion/mRNA expression of several cytokines (IL6, IL8, IL-1β, TNFα, IFNγ, IL10, CCL2/MCP-1, CCL10, COX2, CXCL1/KC, CXCL2/MIP2) and immune effectors (hBD2, iNOS, Fibronectin, Oxygen, and Nitrogen reactive species) as key aspects of host TLR2 responses during leptospirosis. Even though increased TLR2 expression in in-vivo and in-vitro studies was evident, human studies reported mixed results showing that the postulated effect of TLR2 response based on other studies may not be valid for human leptospirosis. Besides the role of TLR2 in response to leptospirosis, the involvement of TLR4 and TLR5 was identified in in-vitro and in-vivo studies. TLR2 expression is inconclusive during human leptospirosis and further studies are needed to examine the immune effector regulation, through TLR2 for mitigating the harmful effects and promoting effective immune responses.
Collapse
Affiliation(s)
- Chamila Kappagoda
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
| | - Indika Senavirathna
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
| | - Thilini Agampodi
- Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Anuradhapura, Sri Lanka
- International Vaccine Institute, Seoul, Republic of Korea
| | - Suneth Buddhika Agampodi
- International Vaccine Institute, Seoul, Republic of Korea
- Department of Internal Medicine, Section of Infectious Diseases, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
2
|
Hung CC, Chen KH, Hsu HH, Chang MY, Ko YC, Yang HY, Yang CW. Noscapine alleviates unilateral ureteral obstruction-induced inflammation and fibrosis by regulating the TGFβ1/Smads signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119594. [PMID: 37730129 DOI: 10.1016/j.bbamcr.2023.119594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 09/02/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Renal fibrosis is a common pathway leading to progressive renal function loss in various forms of chronic kidney disease. Many fibrogenic factors regulate renal fibrosis; two key players are post-injury inflammation and transforming growth factor-β1 (TGF-β1)-induced myofibroblast differentiation. Myofibroblast differentiation is tightly regulated by the microtubule polymerization. Noscapine, an antitussive plant alkaloid, is a potent microtubule-interfering agent previously identified as a potential anticancer compound. Here, we examined how noscapine affects renal fibrogenesis in an in vitro renal fibroblast model and an in vivo unilateral ureteral obstruction (UUO) model. UUO mice were intraperitoneally treated with noscapine at 1 day before UUO surgery and daily thereafter. At 7 days post-surgery, kidneys were collected for further analysis. To analyze whether noscapine inhibits downstream TGF-β1-related signaling, we pre-incubated NRK-49F fibroblasts with noscapine and then performed TGF-β1 stimulation. In UUO mice, noscapine attenuated extracellular matrix protein deposition and the expression levels of type I collagen, type IV collagen, α-smooth muscle actin, and fibronectin. In addition, noscapine decreased tubulointerstitial inflammation in UUO kidneys by reducing TLR2 expression, modulating NLRP3 inflammasome activation, reducing macrophage infiltration, and antagonizing the M2 macrophage phenotype. Furthermore, noscapine pre-incubation suppressed the TGF-β1-induced fibroblast-myofibroblast transformation by downregulating the TGF-β/Smads signaling pathways in NRK-49F cells. These results suggest that noscapine reduces tubulointerstitial inflammation and fibrosis in the kidneys of UUO mice and inhibits the fibroblast-myofibroblast transformation induced by TGF-β1. Noscapine is an over-the-counter antitussive that has been used safely for several decades. Therefore, noscapine is an attractive therapeutic agent for inhibiting renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Cheng-Chieh Hung
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan.
| | - Kuan-Hsing Chen
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Yi-Ching Ko
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Department of Nephrology and Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| |
Collapse
|
3
|
Hsu SH, Wu CT, Sun YJ, Chang MY, Li C, Ko YC, Chou LF, Yang CW. Crystal structure of Leptospira LSS_01692 reveals a dimeric structure and induces inflammatory responses through Toll-like receptor 2-dependent NF-κB and MAPK signal transduction pathways. FEBS J 2023; 290:4513-4532. [PMID: 37243454 DOI: 10.1111/febs.16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 05/28/2023]
Abstract
Leptospirosis is a commonly overlooked zoonotic disease that occurs in tropical and subtropical regions. Recent studies have divided the Leptospira spp. into three groups based on virulence, including pathogenic, intermediate, and saprophytic species. Pathogenic species express a protein family with leucine-rich repeat (LRR) domains, which are less expressed or absent in nonpathogenic species, highlighting the importance of this protein family in leptospirosis. However, the role of LRR domain proteins in the pathogenesis of leptospirosis is still unknown and requires further investigation. In this study, the 3D structure of LSS_01692 (rLRR38) was obtained using X-ray crystallography at a resolution of 3.2 Å. The results showed that rLRR38 forms a typical horseshoe structure with 11 α-helices and 11 β-sheets and an antiparallel dimeric structure. The interactions of rLRR38 with extracellular matrix and cell surface receptors were evaluated using ELISA and single-molecule atomic force microscopy. The results showed that rLRR38 interacted with fibronectin, collagen IV, and Toll-like receptor 2 (TLR2). Incubating HK2 cells with rLRR38 induced two downstream inflammation responses (IL-6 and MCP-1) in the TLR2 signal transduction pathway. The TLR2-TLR1 complex showed the most significant upregulation effects under rLRR38 treatment. Inhibitors also significantly inhibited nuclear factor κB and mitogen-activated protein kinases signals transduction under rLRR38 stimulation. In conclusion, rLRR38 was determined to be a novel LRR domain protein in 3D structure and demonstrated as a TLR2-binding protein that induces inflammatory responses. These structural and functional studies provide a deeper understanding of the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Shen-Hsing Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Che-Ting Wu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, Taiwan
| | - Yuh-Ju Sun
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien Li
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Li Z, Huang N, Zhang W, Li L. Biological function of C-X-C Motif Chemokine Ligand 1 gene (CXCL1) in ovarian malignant tumors. Hum Exp Toxicol 2023; 42:9603271231203392. [PMID: 37787042 DOI: 10.1177/09603271231203392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
OBJECTIVE To determine the function of the chemokine (C-X-C motif) ligand 1 (CXCL1) gene in ovarian cancer cells and to investigate the relationship between CXCL1 gene mRNA expression and ovarian tumor clinical pathology. METHODS Using bioinformatics methods to identify common differentially expressed genes associated with ovarian cancer in the GEO database. Growth curves of A2780 cells with or without CXCL1 expression were plotted by MTT assay. Cell cycles were measured by flow cytometry. Cell colony formation was enumerated in Transwell chambers. Migration and invasion in vitro were investigated using Cell Counting Kit-8 (CCK8), wound healing and Transwell, respectively. The relationship between CXCL1 gene mRNA expression and ovarian tumor clinical pathology was analyzed. RESULTS CXCL1 was found to be one of the co-upregulated differentially expressed genes in the GEO database. The migration of A2780 cells expressing CXCL1 was significantly higher than that of A2780 cells without CXCL1 expression. CXCL1 mRNA expression in ovarian malignancy was significantly higher than those in benign lesions and the normal control (p < .01). In advanced ovarian cancer (Stages III-IV), CXCL1 mRNA expression was also significantly higher than that in patients with early-stage ovarian cancer (Stages I-II) (p = .005). Kaplan-Meier survival curve showed no correlation between CXCL1 mRNA expression and ovarian cancer prognosis. A Cox proportional hazard model also showed that CXCL1 expression was not an independent prognostic factor for ovarian cancer patients. CONCLUSIONS CXCL1 gene could promotes ovarian cancer A2780 cell proliferation and invasion in vitro, and contributed theoretical knowledge for the target selection in molecular targeted therapy. CXCL1 mRNA over-expression may be correlated with the occurrence and development of ovarian malignancy. Level of plasma CXCL1 might serve as a biomarker for prognosis in ovarian carcinoma patients.
Collapse
Affiliation(s)
- Zhuang Li
- Department of Gynecological Oncology, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Ning Huang
- Department of Gynecological Oncology, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Wei Zhang
- Department of Gynecological Oncology, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| | - Li Li
- Department of Gynecological Oncology, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| |
Collapse
|
5
|
Gigliotti JC, Tin A, Pourafshar S, Cechova S, Wang YT, Sung SSJ, Bodonyi-Kovacs G, Cross JV, Yang G, Nguyen N, Chan F, Rebholz C, Yu B, Grove ML, Grams ME, Köttgen A, Scharpf R, Ruiz P, Boerwinkle E, Coresh J, Le TH. GSTM1 Deletion Exaggerates Kidney Injury in Experimental Mouse Models and Confers the Protective Effect of Cruciferous Vegetables in Mice and Humans. J Am Soc Nephrol 2020; 31:102-116. [PMID: 31727850 PMCID: PMC6935006 DOI: 10.1681/asn.2019050449] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/07/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND GSTM1 encodes glutathione S-transferase μ-1 (GSTM1), which belongs to a superfamily of phase 2 antioxidant enzymes. The highly prevalent GSTM1 deletion variant is associated with kidney disease progression in human cohorts: the African American Study of Kidney Disease and Hypertension and the Atherosclerosis Risk in Communities (ARIC) Study. METHODS We generated a Gstm1 knockout mouse line to study its role in a CKD model (involving subtotal nephrectomy) and a hypertension model (induced by angiotensin II). We examined the effect of intake of cruciferous vegetables and GSTM1 genotypes on kidney disease in mice as well as in human ARIC study participants. We also examined the importance of superoxide in the mediating pathways and of hematopoietic GSTM1 on renal inflammation. RESULTS Gstm1 knockout mice displayed increased oxidative stress, kidney injury, and inflammation in both models. The central mechanism for kidney injury is likely mediated by oxidative stress, because treatment with Tempol, an superoxide dismutase mimetic, rescued kidney injury in knockout mice without lowering BP. Bone marrow crosstransplantation revealed that Gstm1 deletion in the parenchyma, and not in bone marrow-derived cells, drives renal inflammation. Furthermore, supplementation with cruciferous broccoli powder rich in the precursor to antioxidant-activating sulforaphane significantly ameliorated kidney injury in Gstm1 knockout, but not wild-type mice. Similarly, among humans (ARIC study participants), high consumption of cruciferous vegetables was associated with fewer kidney failure events compared with low consumption, but this association was observed primarily in participants homozygous for the GSTM1 deletion variant. CONCLUSIONS Our data support a role for the GSTM1 enzyme in the modulation of oxidative stress, inflammation, and protective metabolites in CKD.
Collapse
Affiliation(s)
| | - Adrienne Tin
- Department of Epidemiology and
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | | | | | - Yves T Wang
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York
| | | | | | - Janet V Cross
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Guang Yang
- Division of Nephrology, Heinrich-Heine University of Dusseldorf, Dusseldorf, Germany
| | - Nhu Nguyen
- Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan
| | - Fang Chan
- Division of Nephrology, Department of Medicine and
| | - Casey Rebholz
- Department of Epidemiology and
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health and
| | - Megan L Grove
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas
| | - Morgan E Grams
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
- Department of Medicine and
| | - Anna Köttgen
- Department of Epidemiology and
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; and
| | - Robert Scharpf
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland
- Division of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Phillip Ruiz
- Department of Pathology, University of Miami, Miami, Florida
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas
| | - Josef Coresh
- Department of Epidemiology and
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, Maryland
| | - Thu H Le
- Division of Nephrology, Department of Medicine and
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Heath, Baltimore, Maryland
| |
Collapse
|
6
|
Werts C. Interaction of Leptospira with the Innate Immune System. Curr Top Microbiol Immunol 2019; 415:163-187. [PMID: 29038956 DOI: 10.1007/82_2017_46] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Innate immunity encompasses immediate host responses that detect and respond to microbes. Besides recognition by the complement system (see the chapter by A. Barbosa, this volume), innate immunity concerns cellular responses. These are triggered through recognition of conserved microbial components (called MAMPs) by pattern recognition receptors (PRRs), leading, through secretion of cytokines, antimicrobial peptides, and immune mediators, to cellular recruitment and phagocytosis. Leptospira spp. are successful zoonotic pathogenic bacteria that obviously overcome the immune system of their hosts. The first part of this chapter summarizes what is known about leptospires recognition and interaction with phagocytes and other innate immune cells, and the second part describes specific interactions of leptospiral MAMPs with PRRs from the TLR and NLR families. On the one hand, pathogenic leptospires appear to escape macrophage and neutrophil phagocytosis. On the other hand, studies about PRR sensing of leptospires remain very limited, but suggest that pathogenic leptospires escape some of the PRRs in a host-specific manner, due to peculiar cell wall specificities or post-translational modifications that may impair their recognition. Further studies are necessary to clarify the mechanisms and consequences of leptospiral escape on phagocytic functions and hopefully give clues to potential therapeutic strategies aimed at restoring the defective activation of PRRs by pathogenic Leptospira spp.
Collapse
Affiliation(s)
- Catherine Werts
- Unité Biologie et Génétique de La Paroi Bactérienne, Institut Pasteur, Paris, France.
| |
Collapse
|
7
|
Huang D, Meran S, Nie SP, Midgley A, Wang J, Cui SW, Xie M, Phillips GO, Phillips AO. Cordyceps sinensis : Anti-fibrotic and inflammatory effects of a cultured polysaccharide extract. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Feigerlová E, Battaglia-Hsu SF, Hauet T, Guéant JL. Extracellular vesicles as immune mediators in response to kidney injury. Am J Physiol Renal Physiol 2017; 314:F9-F21. [PMID: 28855190 DOI: 10.1152/ajprenal.00336.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Important progress has been made on cytokine signaling in response to kidney injury in the past decade, especially cytokine signaling mediated by extracellular vesicles (EVs). For example, EVs released by injured renal tubular epithelial cells (TECs) can regulate intercellular communications and influence tissue recovery via both regulating the expression and transferring cytokines, growth factors, as well as other bioactive molecules at the site of injury. The effects of EVs on kidney tissue seem to vary depending on the sources of EVs; however, the literature data are often inconsistent. For example, in rodents EVs derived from mesenchymal stem cells (MSC-EVs) and endothelial progenitor cells (EPC-EVs) can have both beneficial and harmful effects on injured renal tissue. Caution is thus needed in the interpretation of these data as contradictory findings on EVs may not only be related to the origin of EVs, they can also be caused by the different methods used for EV isolation and the physiological and pathological states of the tissues/cells under which they were obtained. Here, we review and discuss our current understanding related to the immunomodulatory function of EVs in renal tubular repair in the hope of encouraging further investigations on mechanisms related to their antiinflammatory and reparative role to better define the therapeutic potential of EVs in renal diseases.
Collapse
Affiliation(s)
- Eva Feigerlová
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine, Lorraine, France.,Medical Faculty, University of Lorraine, Lorraine, France.,INSERM, UMR 1082, Poitiers , France.,Medical and Pharmaceutical Faculty, University of Poitiers , Poitiers , France
| | - Shyue-Fang Battaglia-Hsu
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine, Lorraine, France.,Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France
| | - Thierry Hauet
- INSERM, UMR 1082, Poitiers , France.,Medical and Pharmaceutical Faculty, University of Poitiers , Poitiers , France.,Service de Biochimie, Pôle BIOSPHARM, CHU de Poitiers, Poitiers , France
| | - Jean-Louis Guéant
- INSERM U954, Nutrition Génétique et Exposition aux Risques Environnementaux, Medical Faculty, University of Lorraine, Lorraine, France.,Regional University Hospital Center of Nancy, Vandœuvre les Nancy, France
| |
Collapse
|
9
|
Wang X, Wilkinson R, Kildey K, Potriquet J, Mulvenna J, Lobb RJ, Möller A, Cloonan N, Mukhopadhyay P, Kassianos AJ, Healy H. Unique molecular profile of exosomes derived from primary human proximal tubular epithelial cells under diseased conditions. J Extracell Vesicles 2017; 6:1314073. [PMID: 28473886 PMCID: PMC5405564 DOI: 10.1080/20013078.2017.1314073] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/24/2017] [Indexed: 12/26/2022] Open
Abstract
Human proximal tubular epithelial cells (PTEC) of the kidney are known to respond to and mediate the disease process in a wide range of kidney diseases, yet their exosomal production and exosome molecular cargo remain a mystery. Here we investigate, for the first time, the production and molecular content of exosomes derived from primary human PTEC cultured under normal and diseased conditions representing a spectrum of in vivo disease severity from early inflammation, experienced in multiple initial kidney disease states, through to hypoxia, frequently seen in late stage chronic kidney disease (CKD) due to fibrosis and vascular compromise. We demonstrate a rapid reproducible methodology for the purification of PTEC-derived exosomes, identify increased numbers of exosomes from disease-state cultures and identify differential expression levels of both known and unique miRNA and protein species from exosomes derived from different disease-culture conditions. The validity of our approach is supported by the identification of miRNA, proteins and pathways with known CKD associations, providing a rationale to further evaluate these novel and known pathways as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiangju Wang
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Ray Wilkinson
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Medical School, University of Queensland, Brisbane, Australia
| | - Katrina Kildey
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Richard J Lobb
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andreas Möller
- Medical School, University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicole Cloonan
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Medical School, University of Queensland, Brisbane, Australia
| | - Helen Healy
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
10
|
Qiu S, Xiao Z, Piao C, Zhang J, Dong Y, Cui W, Liu X, Zhang Y, Du J. AMPKα2 reduces renal epithelial transdifferentiation and inflammation after injury through interaction with CK2β. J Pathol 2015; 237:330-42. [PMID: 26108355 DOI: 10.1002/path.4579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/22/2022]
Abstract
TGFβ1/Smad, Wnt/β-catenin and snail1 are preferentially activated in renal tubular epithelia after injury, leading to epithelial-mesenchymal transition (EMT). The stress response is coupled to EMT and kidney injury; however, the underlying mechanism of the stress response in EMT remains elusive. AMP-activated protein kinase (AMPK) signalling is responsive to stress and regulates cell energy balance and differentiation. We found that knockdown of AMPKα, especially AMPKα2, enhanced EMT by up-regulating β-catenin and Smad3 in vitro. AMPKα2 deficiency enhanced EMT and fibrosis in a murine unilateral ureteral obstruction (UUO) model. AMPKα2 deficiency also increased the expression of chemokines KC and MCP-1, along with enhanced infiltration of inflammatory cells into the kidney after UUO. CK2β interacted physically with AMPKα and enhanced AMPKα Thr172 phosphorylation and its catalytic activity. Thus, activated AMPKα signalling suppresses EMT and secretion of chemokines in renal tubular epithelia through interaction with CK2β to attenuate renal injury.
Collapse
Affiliation(s)
- Shulan Qiu
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zhicheng Xiao
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Chunmei Piao
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jing Zhang
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yanjun Dong
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Wei Cui
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Xin Liu
- Centre for Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Youyi Zhang
- Laboratory of Cardiovascular Bioactive Molecules, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, People's Republic of China
| | - Jie Du
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
11
|
Abstract
Pathogenic Leptospira has the capacity to infect a broad range of mammalian hosts. Leptospirosis may appear as an acute, potentially fatal infection in accidental hosts, or progress into a chronic, largely asymptomatic infection in natural maintenance hosts. The course that Leptospira infection follows is dependent upon poorly understood factors, but is heavily influenced by both the host species and bacterial serovar involved in infection. Recognition of pathogen-associated molecular patterns (PAMPs) by a variety of host pattern recognition receptors (PRRs) activates the host immune system. The outcome of this response may result in bacterial clearance, limited bacterial colonization of a few target organs, principally the kidney, or induction of sepsis as the host succumbs to infection and dies. This chapter describes current knowledge of how the host recognizes Leptospira and responds to infection using innate and acquired immune responses. Aspects of immune-mediated pathology and pathogen strategies to evade the host immune response are also addressed.
Collapse
Affiliation(s)
- Richard L Zuerner
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University for Agricultural Sciences, 75007, Uppsala, Sweden,
| |
Collapse
|
12
|
Potential impact on kidney infection: a whole-genome analysis of Leptospira santarosai serovar Shermani. Emerg Microbes Infect 2014; 3:e82. [PMID: 26038504 PMCID: PMC4274889 DOI: 10.1038/emi.2014.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/01/2014] [Accepted: 09/11/2014] [Indexed: 11/21/2022]
Abstract
Leptospira santarosai serovar Shermani is the most frequently encountered
serovar, and it causes leptospirosis and tubulointerstitial nephritis in Taiwan. This
study aims to complete the genome sequence of L. santarosai serovar Shermani
and analyze the transcriptional responses of L. santarosai serovar Shermani
to renal tubular cells. To assemble this highly repetitive genome, we combined reads
that were generated from four next-generation sequencing platforms by using hybrid
assembly approaches to finish two-chromosome contiguous sequences without gaps by
validating the data with optical restriction maps and Sanger sequencing. Whole-genome
comparison studies revealed a 28-kb region containing genes that encode transposases
and hypothetical proteins in L. santarosai serovar Shermani, but this region
is absent in other pathogenic Leptospira spp. We found that lipoprotein gene
expression in both L. santarosai serovar Shermani and L.
interrogans serovar Copenhageni were upregulated upon interaction with renal
tubular cells, and LSS19962, a L. santarosai serovar Shermani-specific gene
within a 28-kb region that encodes hypothetical proteins, was upregulated in L.
santarosai serovar Shermani-infected renal tubular cells. Lipoprotein
expression during leptospiral infection might facilitate the interactions of
leptospires within kidneys. The availability of the whole-genome sequence of L.
santarosai serovar Shermani would make it the first completed sequence of
this species, and its comparison with that of other Leptospira spp. may
provide invaluable information for further studies in leptospiral pathogenesis.
Collapse
|
13
|
Haigh O, Depelsenaire AC, Meliga SC, Yukiko SR, McMillan NA, Frazer IH, Kendall MA. CXCL1 gene silencing in skin using liposome-encapsulated siRNA delivered by microprojection array. J Control Release 2014; 194:148-56. [DOI: 10.1016/j.jconrel.2014.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 05/09/2014] [Accepted: 08/23/2014] [Indexed: 11/26/2022]
|
14
|
Lau A, Wang S, Liu W, Haig A, Zhang ZX, Jevnikar AM. Glycyrrhizic acid ameliorates HMGB1-mediated cell death and inflammation after renal ischemia reperfusion injury. Am J Nephrol 2014; 40:84-95. [PMID: 25059568 DOI: 10.1159/000364908] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/24/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Renal ischemia reperfusion injury (IRI) leads to acute kidney injury (AKI) and the death of tubular epithelial cells (TEC). The release of high-mobility group box-1 (HMGB1) and other damage-associated molecular pattern moieties from dying cells may promote organ dysfunction and inflammation by effects on TEC. Glycyrrhizic acid (GZA) is a functional inhibitor of HMGB1, but its ability to attenuate the HMGB1-mediated injury of TEC has not been tested. METHODS/RESULTS In vitro, hypoxia and cytokine treatment killed TEC and resulted in the progressive release of HMGB1 into the supernatant. GZA reduced the hypoxia-induced TEC death as measured by annexin-V and propidium iodide. Hypoxia increased the expression of MCP-1 and CXCL1 in TEC, which was reduced by GZA in a dose-dependent manner. Similarly, the HMGB1 activation of effector NK cells was inhibited by GZA. To test the effect of HMGB1 neutralization by GZA in vivo, mice were subjected to renal IRI. HMGB1 protein expression increased progressively in kidneys from 4 to 24 h after ischemia and was detected in tubular cells by 4 h using immunohistochemistry. GZA preserved renal function after IRI and reduced tubular necrosis and neutrophil infiltration by histological analyses and ethidium homodimer staining. CONCLUSIONS Importantly, these data demonstrate for the first time that AKI following hypoxia and renal IRI may be promoted by HMGB1 release, which can reduce the survival of TEC and augment inflammation. Inhibition of the interaction of HMGB1 with TEC through GZA may represent a therapeutic strategy for the attenuation of renal injury following IRI and transplantation.
Collapse
Affiliation(s)
- Arthur Lau
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, Ont., Canada
| | | | | | | | | | | |
Collapse
|
15
|
Fanton d'Andon M, Quellard N, Fernandez B, Ratet G, Lacroix-Lamandé S, Vandewalle A, Boneca IG, Goujon JM, Werts C. Leptospira Interrogans induces fibrosis in the mouse kidney through Inos-dependent, TLR- and NLR-independent signaling pathways. PLoS Negl Trop Dis 2014; 8:e2664. [PMID: 24498450 PMCID: PMC3907306 DOI: 10.1371/journal.pntd.0002664] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 12/12/2013] [Indexed: 12/24/2022] Open
Abstract
Background Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Rodents carry L. interrogans asymptomatically in their kidneys and excrete bacteria in the urine, contaminating the environment. Humans get infected through skin contact and develop a mild or severe leptospirosis that may lead to renal failure and fibrosis. L. interrogans provoke an interstitial nephritis, but the induction of fibrosis caused by L. interrogans has not been studied in murine models. Innate immune receptors from the TLR and NLR families have recently been shown to play a role in the development and progression of tissue fibrosis in the lung, liver and kidneys under different pathophysiological situations. We recently showed that TLR2, TLR4, and NLRP3 receptors were crucial in the defense against leptospirosis. Moreover, infection of a human cell line with L. interrogans was shown to induce TLR2-dependent production of fibronectin, a component of the extracellular matrix. Therefore, we thought to assess the presence of renal fibrosis in L. interrogans infected mice and to analyze the contribution of some innate immune pathways in this process. Methodology/principal findings Here, we characterized by immunohistochemical studies and quantitative real-time PCR, a model of Leptospira-infected C57BL/6J mice, with chronic carriage of L. interrogans inducing mild renal fibrosis. Using various strains of transgenic mice, we determined that the renal infiltrates of T cells and, unexpectedly, TLR and NLR receptors, are not required to generate Leptospira-induced renal fibrosis. We also show that the iNOS enzyme, known to play a role in Leptospira-induced interstitial nephritis, also plays a role in the induction of renal fibrosis. Conclusion/significance To our knowledge, this work provides the first experimental murine model of sustained renal fibrosis induced by a chronic bacterial infection that may be peculiar, since it does not rely on TLR or NLR receptors. This model may prove useful to test future therapeutic strategies to combat Leptospira-induced renal lesions. Leptospirosis is a bacterial disease transmitted by asymptomatic rodents to humans. The symptoms may be mild, or severe with kidney failure. Renal fibrosis, occurring during inflammatory situations, is characterized by the pathological accumulation of extra-cellular matrix components and can compromise the kidney functions of patients with leptospirosis. Recent research revealed that both innate and adaptive immune responses are involved in the establishment of fibrosis, in several organs and in different pathophysiological situations. In the present study, we characterized a mouse model of chronic infection with Leptospira that provokes mild renal fibrosis. We show that fibrogenesis requires the presence of live Leptospira in the kidney and that B and T cells from the adaptive immune response do not participate in the induction of renal fibrosis. Unexpectedly, we also found that innate immune receptors, TLRs and NLRs, are not involved in the Leptospira-induced fibrosis. Finally, we show that the enzyme responsible for NO production, iNOS, known to participate in renal inflammatory lesions induced by Leptospira, is also involved in renal fibrosis. Our work provides a novel mouse model to study fibrosis occurring due to leptospirosis.
Collapse
Affiliation(s)
- Martine Fanton d'Andon
- Institut Pasteur, Biology and Genetics of the Bacterial Cell Wall Unit, Paris, France
- INSERM, équipe Avenir, Paris, France
| | - Nathalie Quellard
- Service d'Anatomie et Cytologie Pathologiques, CHU Poitiers; Université de Poitiers, Poitiers, France
| | - Béatrice Fernandez
- Service d'Anatomie et Cytologie Pathologiques, CHU Poitiers; Université de Poitiers, Poitiers, France
| | - Gwenn Ratet
- Institut Pasteur, Biology and Genetics of the Bacterial Cell Wall Unit, Paris, France
- INSERM, équipe Avenir, Paris, France
| | - Sonia Lacroix-Lamandé
- Institut National de la Recherche Agronomique, Infectiologie et Santé Publique, Nouzilly, France
| | - Alain Vandewalle
- INSERM U773 and Université Paris 7 - Denis Diderot, Paris, France
| | - Ivo G. Boneca
- Institut Pasteur, Biology and Genetics of the Bacterial Cell Wall Unit, Paris, France
- INSERM, équipe Avenir, Paris, France
| | - Jean-Michel Goujon
- Service d'Anatomie et Cytologie Pathologiques, CHU Poitiers; Université de Poitiers, Poitiers, France
| | - Catherine Werts
- Institut Pasteur, Biology and Genetics of the Bacterial Cell Wall Unit, Paris, France
- INSERM, équipe Avenir, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Lo YY, Hsu SH, Ko YC, Hung CC, Chang MY, Hsu HH, Pan MJ, Chen YW, Lee CH, Tseng FG, Sun YJ, Yang CW, Pan RL. Essential calcium-binding cluster of Leptospira LipL32 protein for inflammatory responses through the Toll-like receptor 2 pathway. J Biol Chem 2013; 288:12335-44. [PMID: 23486465 DOI: 10.1074/jbc.m112.418699] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Leptospirosis is the most widespread zoonosis caused by the pathogenic Leptospira worldwide. LipL32, a 32-kDa lipoprotein, is the most abundant protein on the outer membrane of Leptospira and has an atypical poly(Asp) motif ((161)DDDDDGDD(168)). The x-ray crystallographic structure of LipL32 revealed that the calcium-binding cluster of LipL32 includes several essential residues Asp(132), Thr(133), Asp(164), Asp(165), and Tyr(178). The goals of this study were to determine possible roles of the Ca(2+)-binding cluster for the interaction of LipL32 and Toll-like receptor 2 (TLR2) in induced inflammatory responses of human kidney cells. Site-directed mutagenesis was employed to individually mutate Ca(2+)-binding residues of LipL32 to Ala, and their effects subsequently were observed. These mutations abolished primarily the structural integrity of the calcium-binding cluster in LipL32. The binding assay and atomic force microscopy analysis further demonstrated the decreased binding capability of LipL32 mutants to TLR2. Inflammatory responses induced by LipL32 variants, as determined by TLR2 pathway intermediates hCXCL8/IL-8, hCCL2/MCP-1, hMMP7, and hTNF-α, were also lessened. In conclusion, the calcium-binding cluster of LipL32 plays essential roles in presumably sustaining LipL32 conformation for its proper association with TLR2 to elicit inflammatory responses in human renal cells.
Collapse
Affiliation(s)
- Yueh-Yu Lo
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu 30013, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang ZX, Min WP, Jevnikar AM. Use of RNA interference to minimize ischemia reperfusion injury. Transplant Rev (Orlando) 2012; 26:140-155. [PMID: 22000663 DOI: 10.1016/j.trre.2011.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi) is an endogenous mechanism of cellular RNA control through degradation of specific messenger RNA sequences. This process of gene silencing may be exploited by the use of small interfering RNA (siRNA) to mediate precise control of targeted cellular functions. The nature of transplantation leads invariably to tissue injury, as organs are damaged by the loss of blood supply and resultant ischemia associated with the procurement procedure. Upon reperfusion, an inflammatory program is activated, and subsequent injury results in delayed graft function and, potentially, organ failure. Many of the molecular components in ischemia-reperfusion injury (IRI) have been identified, but effective therapeutics are not currently available. Accumulating evidence supports a role for siRNA in controlling IRI, as siRNA is specific, relatively low in toxicity, and limited in duration of effect. The capacity of siRNA to control IRI-related transcription factors, cell death and apoptosis, complement factors, and oxidative stress molecules supports the concept that RNAi-based therapeutics represent a novel and promising strategy for the control of IRI. However, there are issues of RNAi strategies, including siRNA design, "off-target" effects, and delivery that merit consideration in approaching IRI with gene silencing. This review will provide an overview of current concepts in RNAi and the potential application to IRI in solid organ transplantation.
Collapse
Affiliation(s)
- Zhu-Xu Zhang
- The Multi-Organ Transplant Program, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
18
|
Induction of TNF-alfa and CXCL-2 mRNAs in different organs of mice infected with pathogenic Leptospira. Microb Pathog 2012; 52:206-16. [PMID: 22342618 DOI: 10.1016/j.micpath.2012.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/27/2011] [Accepted: 01/03/2012] [Indexed: 01/24/2023]
Abstract
The role of innate immune response in protection against leptospirosis is poorly understood. We examined the expression of the chemokine CXCL2/MIP-2 and the cytokine TNF-α in experimental resistant and susceptible mice models, C3H/HeJ, C3H/HePas and BALB/c strains, using a virulent strain of Leptospira interrogans serovar Copenhageni. Animals were infected intraperitoneally with 10(7) cells and the development of the disease was followed. Mortality of C3H/HeJ mice was observed whereas C3H/HePas presented jaundice and BALB/c mice remained asymptomatic. The infection was confirmed by the presence of leptospiral DNA in the organs of the animals, demonstrated by PCR. Sections of the organs were analyzed, after H&E stain. The relative expression of mRNA of chemokine CXCL2/MIP-2 and cytokine TNF-α was measured in lung, kidney and liver of the mice by qPCR. The concentrations of these proteins were measured in extracts of tissues and in serum of the animals, by ELISA. Increasing levels of transcripts and protein CXCL2/MIP-2 were detected since the first day of infection. The highest expression was observed at third day of infection in kidney, liver and lung of BALB/c mice. In C3H/HeJ the expression of CXCL2/MIP-2 was delayed, showing highest protein concentration in lung and kidney at the 5th day. Increasing in TNF-α transcripts were detected after infection, in kidney and liver of animals from the three mice strains. The expression of TNF-α protein in C3H/HeJ was also delayed, being detected in kidney and lung. Our data demonstrated that Leptospira infection stimulates early expression of CXCL2/MIP-2 and TNF-α in the resistant strain of mice. Histological analysis suggests that the expression of those molecules may be related to the influx of distinct immune cells and plays a role in the naturally acquired protective immunity.
Collapse
|
19
|
Tian YC, Hung CC, Li YJ, Chen YC, Chang MY, Yen TH, Hsu HH, Wu MS, Phillips A, Yang CW. Leptospira santorosai Serovar Shermani detergent extract induces an increase in fibronectin production through a Toll-like receptor 2-mediated pathway. Infect Immun 2011; 79:1134-1142. [PMID: 21173310 PMCID: PMC3067514 DOI: 10.1128/iai.01287-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/04/2010] [Accepted: 11/29/2010] [Indexed: 01/22/2023] Open
Abstract
Leptospirosis can activate inflammatory responses through Toll-like receptors (TLRs) and may cause renal tubulointerstitial fibrosis characterized by the accumulation of extracellular matrix (ECM). We have previously demonstrated that Leptospira santorosai serovar Shermani detergent extract stimulates ECM accumulation in vitro. The aim of this study was to examine the mechanistic basis of these previous observations and, in particular, to examine the potential involvement of TLRs. The addition of serovar Shermani detergent extract led to an increase in fibronectin gene expression and production. Inhibition of TLR2 but not TLR4 expression abrogated serovar Shermani detergent extract-mediated increases in fibronectin production. This response was also blocked by the knockdown of the gene expression of the TLR2 downstream transducers myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6). Serovar Shermani detergent extract also activated nuclear factor-κB, and its inhibition by curcumin-attenuated serovar Shermani detergent extract induced increases in fibronectin production. These effects were also mimicked by the specific TLR2 agonist, Pam(3)CsK(4), a response that was also abrogated by the knockdown of MyD88 and TRAF6. Similarly, the administration of live leptospires to cells also induced fibronectin production that was blocked by inhibition of TLR2 and MyD88 expression. In conclusion, serovar Shermani detergent extract can induce fibronectin production through the TLR2-associated cascade, providing evidence of an association between TLRs and leptospirosis-mediated ECM deposition.
Collapse
Affiliation(s)
- Ya-Chung Tian
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei and Taiwan, and Chang Gung University, Tao Yuan, Taiwan, Institute of Nephrology, Cardiff University, Wales, United Kingdom
| | - Cheng-Chieh Hung
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei and Taiwan, and Chang Gung University, Tao Yuan, Taiwan, Institute of Nephrology, Cardiff University, Wales, United Kingdom
| | - Yi-Jung Li
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei and Taiwan, and Chang Gung University, Tao Yuan, Taiwan, Institute of Nephrology, Cardiff University, Wales, United Kingdom
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei and Taiwan, and Chang Gung University, Tao Yuan, Taiwan, Institute of Nephrology, Cardiff University, Wales, United Kingdom
| | - Ming-Yang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei and Taiwan, and Chang Gung University, Tao Yuan, Taiwan, Institute of Nephrology, Cardiff University, Wales, United Kingdom
| | - Tzung-Hai Yen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei and Taiwan, and Chang Gung University, Tao Yuan, Taiwan, Institute of Nephrology, Cardiff University, Wales, United Kingdom
| | - Hsiang-Hao Hsu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei and Taiwan, and Chang Gung University, Tao Yuan, Taiwan, Institute of Nephrology, Cardiff University, Wales, United Kingdom
| | - Mai-Szu Wu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei and Taiwan, and Chang Gung University, Tao Yuan, Taiwan, Institute of Nephrology, Cardiff University, Wales, United Kingdom
| | - Aled Phillips
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei and Taiwan, and Chang Gung University, Tao Yuan, Taiwan, Institute of Nephrology, Cardiff University, Wales, United Kingdom
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taipei and Taiwan, and Chang Gung University, Tao Yuan, Taiwan, Institute of Nephrology, Cardiff University, Wales, United Kingdom
| |
Collapse
|
20
|
Lee JC, Greenwich JL, Zhanel GG, Han X, Cumming A, Saward L, McLoughlin RM. Modulation of the local neutrophil response by a novel hyaluronic acid-binding peptide reduces bacterial burden during staphylococcal wound infection. Infect Immun 2010; 78:4176-86. [PMID: 20643855 PMCID: PMC2950352 DOI: 10.1128/iai.01364-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/25/2010] [Accepted: 07/02/2010] [Indexed: 02/06/2023] Open
Abstract
Novel approaches targeting the host's immune response to treat Staphylococcus aureus infections have significant potential to improve clinical outcomes, in particular during infection with antibiotic-resistant strains. The hyaluronic acid-binding peptide (HABP) PEP35 was assessed for its ability to treat S. aureus infections using a clinically relevant murine model of surgical wound infection. PEP35 demonstrated no direct antimicrobial activity against a range of antibiotic-susceptible and antibiotic-resistant clinical isolates of Staphylococcus aureus. However, when this peptide was administered at the onset of infection and up to 4 h postchallenge with a methicillin-susceptible (MSSA) or a methicillin-resistant (MRSA) strain of S. aureus, it significantly reduced the bacterial burden at the wound infection site. PEP35 reduced the tissue bacterial burden by exclusively modulating the local neutrophil response. PEP35 administration resulted in a significant early increase in local CXCL1 and CXCL2 production, which resulted in a more rapid influx of neutrophils to the infection site. Importantly, neutrophil influx was not sustained after treatment with PEP35, and administration of PEP35 alone did not induce a local inflammatory response. The immunomodulatory effects of PEP35 on CXC chemokine production were TLR2 and NF-κB dependent. We propose a novel role for a HABP as an innate immunomodulator in the treatment of MSSA and MRSA surgical wound infection through enhancement of the local CXC chemokine-driven neutrophil response.
Collapse
Affiliation(s)
- Jerry C. Lee
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada, Cangene Corporation, Winnipeg, Manitoba R3T 5Y3, Canada
| | - Jennifer L. Greenwich
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada, Cangene Corporation, Winnipeg, Manitoba R3T 5Y3, Canada
| | - George G. Zhanel
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada, Cangene Corporation, Winnipeg, Manitoba R3T 5Y3, Canada
| | - Xiaobing Han
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada, Cangene Corporation, Winnipeg, Manitoba R3T 5Y3, Canada
| | - Andrew Cumming
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada, Cangene Corporation, Winnipeg, Manitoba R3T 5Y3, Canada
| | - Laura Saward
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada, Cangene Corporation, Winnipeg, Manitoba R3T 5Y3, Canada
| | - Rachel M. McLoughlin
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9, Canada, Cangene Corporation, Winnipeg, Manitoba R3T 5Y3, Canada
| |
Collapse
|
21
|
Lowanitchapat A, Payungporn S, Sereemaspun A, Ekpo P, Phulsuksombati D, Poovorawan Y, Chirathaworn C. Expression of TNF-alpha, TGF-beta, IP-10 and IL-10 mRNA in kidneys of hamsters infected with pathogenic Leptospira. Comp Immunol Microbiol Infect Dis 2010; 33:423-434. [PMID: 19559480 DOI: 10.1016/j.cimid.2009.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2009] [Indexed: 01/19/2023]
Abstract
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. Although several components of this organism have been identified, the molecular mechanisms underlying pathogenesis of this infectious disease are still poorly understood. Besides, direct injury by microbial factors, cytokines produced in response to infection have been proposed to be involved in pathogenesis of leptospirosis. In this study, cytokine gene expression in kidneys was investigated. Hamsters were injected with pathogenic Leptospira interrogans serovar Pyrogenes and were sacrificed on days 3, 5 and 7 after infection. RNA was extracted from kidney tissues. Real-time PCR was performed to demonstrate expression of TNF-alpha, TGF-beta, IP-10 and IL-10 mRNA in kidneys. TNF-alpha, TGF-beta and IP-10 expression could be demonstrated since day 3 post-infection whereas IL-10 expression was detected later on day 5. Leptospira infection resulted in not only expression of a proinflammatory cytokine, TNF-alpha, but also a T cell chemokine, IP-10. Detection of IP-10 suggested the involvement of T cell recruitment in the immune response or pathology in infected kidneys. Expressions of anti-inflammatory cytokines, TGF-beta and IL-10 were also observed. However, the level of TGF-beta expression was prominent since day 3 post-infection whereas IL-10 expression was clearly observed on day 5. Further experiments will provide additional information whether there is a correlation between the expression of these cytokines and pathologies found in an affected organ.
Collapse
Affiliation(s)
- Alisa Lowanitchapat
- Medical Science Master Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
22
|
Liu S, Lutz J, Chang J, Liu D, Heemann U, Baumann M. TRAF6 knockdown promotes survival and inhibits inflammatory response to lipopolysaccharides in rat primary renal proximal tubule cells. Acta Physiol (Oxf) 2010; 199:339-46. [PMID: 20136795 DOI: 10.1111/j.1748-1716.2010.02097.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM TRAF6 is a unique adaptor protein of the tumour necrosis factor receptor-associated factor family that mediates both tumour necrosis factor receptor (TNFR) and interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signalling. Activation of IL-1R/TLR and TNFR pathways in renal tubular cells contributes to renal injury. This study aimed to investigate if blockade of lipopolysaccharide (LPS)-triggered TLR4 signalling by small interfering RNA (siRNA) targeting TRAF6 protects survival and inhibits inflammatory response in isolated rat renal proximal tubular cells (PTCs). METHODS PTCs isolated from F344 rat kidneys were transfected with chemically synthesized siRNA targeting TRAF6 mRNA. Real-time quantitative PCR was applied to measure mRNA level of TRAF6, TNF-alpha, IL-6 and monocyte chemoattractant protein-1 (MCP-1). Protein levels of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase, caspase 3 and cleaved caspase 3 were evaluated by Western blotting. Cell viability was analysed with XTT reagents. RESULTS We found that the TRAF6 gene was effectively silenced in PTCs using siRNA. TRAF6 knockdown resulted in reduced TNF-alpha and IL-6 mRNA expression upon LPS challenge. LPS-induced phosphorylation of JNK and p38 was attenuated in TRAF6 siRNA-transfected cells while the change in the phosphorylation of ERK was not remarkable. TRAF6 knockdown was associated with increased cell viability and reduced protein level of cleaved caspase-3, both, in the absence and presence of LPS. CONCLUSION Our studies suggest that TRAF6 knockdown may inhibit inflammatory response and promote cell survival upon LPS challenge in primary rat proximal renal tubular cells.
Collapse
Affiliation(s)
- S Liu
- Department of Nephrology, Technical University Munich, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Chassin C, Picardeau M, Goujon JM, Bourhy P, Quellard N, Darche S, Badell E, d'Andon MF, Winter N, Lacroix-Lamandé S, Buzoni-Gatel D, Vandewalle A, Werts C. TLR4- and TLR2-Mediated B Cell Responses Control the Clearance of the Bacterial Pathogen,Leptospira interrogans. THE JOURNAL OF IMMUNOLOGY 2009; 183:2669-77. [DOI: 10.4049/jimmunol.0900506] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
da Silva JB, Ramos TMV, de Franco M, Paiva D, Ho PL, Martins EAL, Pereira MM. Chemokines expression during Leptospira interrogans serovar Copenhageni infection in resistant BALB/c and susceptible C3H/HeJ mice. Microb Pathog 2009; 47:87-93. [PMID: 19460427 DOI: 10.1016/j.micpath.2009.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/28/2009] [Accepted: 05/04/2009] [Indexed: 11/24/2022]
Abstract
The role of innate immune responses in protection against leptospirosis remains unclear. We examined the expression of the chemokines CCL2/JE (MCP-1), CCL3/MIP-1 alpha (MIP-1 alpha) and CXCL1/KC (IL-8) regarding resistance and susceptibility to leptospirosis in experimental mice models BALB/c and C3H/HeJ, respectively. A virulent strain of Leptospira interrogans serovar Copenhageni was used in this study. Twenty-five animals of each mouse strain of C3H/HeJ and BALB/c, were infected intraperitoneally with 10(6) cells. Five un-infected animals of each strain were kept as control. Mortality of C3H/HeJ mouse was observed while BALB/c mice were asymptomatic. The presence of leptospire DNA in tissues of infected animals was demonstrated by PCR. Chemokines were measured in serum, spleen, liver, kidney and lung of both strains of animals using immunoenzymatic assay (ELISA). Elevations in the levels of chemokines MCP-1 and IL-8 occurred in all organs and sera of C3H/HeJ and BALB/c infected mice. The levels of MIP-1 alpha were lower when compared to MCP-1 and IL-8 in all analyzed organs, with a slight increase in liver and kidney. Our results indicate that the expression of inflammatory mediators can vary greatly, depending on the tissue and mouse strains. It is possible that the resistance to Leptospira can be partially correlated to the increase of MIP-1 alpha observed in BALB/c mice, while an increasing and a sustained expression of MCP-1 and IL-8 in the lungs of C3H/HeJ mice can be correlated to the severity and progression of leptospirosis.
Collapse
|
25
|
Weichhart T, Haidinger M, Hörl WH, Säemann MD. Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest 2008; 38 Suppl 2:29-38. [PMID: 18826479 DOI: 10.1111/j.1365-2362.2008.02006.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mucosal tissues such as the gastrointestinal tract are typically exposed to a tremendous number of microorganisms and many of them are potentially dangerous to the host. In contrast, the urogenital tract is rather infrequently colonized with bacterial organisms and also devoid of physical barriers as a multi-layered mucus or ciliated epithelia, thereby necessitating separate host defence mechanisms. Recurrent urinary tract infection (UTI) represents the successful case of microbial host evasion and poses a major medical and economic health problem. During recent years considerable advances have been made in our understanding of the mechanisms underlying the immune homeostasis of the urogenital tract. Hence, the system of pathogen-recognition receptors including the Toll-like receptors (TLRs) is able to sense danger signalling and thus activate the host immune system of the genitourinary tract. Additionally, various soluble antimicrobial molecules including iron-sequestering proteins, defensins, cathelicidin and Tamm-Horsfall protein (THP), as well as their role for the prevention of UTI by modulating innate and adaptive immunity, have been more clearly defined. Furthermore, signalling mediators like cyclic adenosine monophosphate (cAMP) or the circulatory hormone vasopressin were shown to be involved in the defence of uropathogenic microbes and maintenance of mucosal integrity. Beyond this, specific receptors e.g. CD46 or beta1/beta 3-integrins, have been elucidated that are hijacked by uropathogenic E. coli to enable invasion and survival within the urogenital system paving the way for chronic forms of urinary tract infection. Collectively, the majority of these findings offer novel avenues for basic and translational research implying effective therapies against the diverse forms of acute and chronic UTI.
Collapse
Affiliation(s)
- T Weichhart
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
26
|
Abstract
Leptospirosis is a prevalent infectious disease affecting both humans and animals worldwide. This infection is associated with occupational or recreational exposure to animals as well as contact with leptospires, particularly in flood-prone areas. Multiple organ dysfunctions may be associated with acute severe leptospirosis. A triad presentation of fever, jaundice, and acute renal failure in patients with acute multiple organ dysfunction should alert physicians to possible leptospirosis. Penicillin is effective and can rescue multiple organ failure if administered early. Renal involvement is common in leptospirosis characterized by tubulo-interstitial nephritis, and tubular dysfunction. Leptospira outer membrane proteins (OMPs) may elicit tubular injury and inflammation through Toll-like receptors (TLRs)-dependent pathway followed by activation of nuclear transcription factor kappa B and mitogen-activated protein kinases and a differential induction of chemokines and cytokines relevant to tubular inflammation. Leptospira OMP may also induce activation of the transforming growth factor-beta/Smad-associated fibrosis pathway leading to accumulation of extracellular matrix. Thus, leptospirosis renal disease is a model for understanding the pathogenesis and initiation of pathogen-induced tubulo-interstitial nephritis and fibrosis. In particular, TLRs may be important mediators.
Collapse
Affiliation(s)
- C-W Yang
- Department of Nephrology, Kidney Institute, Chang Gung Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
27
|
Lech M, Garlanda C, Mantovani A, Kirschning CJ, Schlöndorff D, Anders HJ. Different roles of TiR8/Sigirr on toll-like receptor signaling in intrarenal antigen-presenting cells and tubular epithelial cells. Kidney Int 2007; 72:182-92. [PMID: 17495864 DOI: 10.1038/sj.ki.5002293] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Toll-like receptors (TLRs) exist on both myeloid and intrinsic renal cells contributing to the initiation of innate immunity during renal infection with uropathogenic Escherichia coli. Toll-interleukin 1 receptor (IL-1R) (TIR)8/SIGIRR is an orphan receptor of the TLR/IL-1R family, which suppresses TLR signaling of immune cells and is highly expressed in the kidney. Lack of TIR8/SIGIRR is associated with enhanced renal chemokine signaling upon exposure to lipopolysaccharide (LPS). This was because of TIR8/SIGIRR expression on resident intrarenal myeloid cells rather than tubular epithelial cells which express it on basolateral and luminal membranes. The lack of TIR8/SIGIRR does not enhance TLR/IL-1R signaling in tubular epithelial cells as was observed in monocytes. TIR8/SIGIRR is induced in monocytes treated with LPS or tumor necrosis factor and interferon-gamma in a dose-dependent manner but was downregulated in treated tubule epithelial cells. This cell type-specific regulation and function did not relate to mRNA splice variants but was associated with N- and O-glycosylation of the receptor in renal cells of myeloid and nonmyeloid origin. Our studies show that resident myeloid cells contribute to TLR-mediated antimicrobial immunity in the kidney and that this function is controlled by Tir8/sigirr. TIR8/SIGIRR does not suppress TLR signaling in tubular epithelial cells, which supports their role as sensors of microbial infection in the kidney.
Collapse
Affiliation(s)
- M Lech
- Nephrological Center, Medical Policlinic, University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW To summarize the recent advances in the role of Toll-like receptors (TLRs) in innate immunity, with a special focus on recent studies addressing the expression and function of TLRs in kidney disease. RECENT FINDINGS Pathogen-recognition receptors including TLRs mediate immune activation upon pathogen recognition in different extracellular and intracellular compartments. In contrast to professional antigen-presenting cells, renal cells express a limited pattern of TLR (i.e. express TLR1-TLR6 but lack expression of the endosomal TLR7-TLR9). TLRs on renal cells contribute to the innate immune response in renal infection. Furthermore, recent studies provide experimental evidence for the functional role of TLRs in immune complex disease and autoimmunity. Furthermore, the recognition of endogenous molecules released from injured cells such as biglycan or heat-shock proteins may contribute to acute tubular injury and seem to provide adjuvant activity for renal inflammation. Furthermore, TLR7 and TLR9 are involved in the pathogenesis of lupus nephritis. SUMMARY The field of TLR research elucidates the molecular mechanisms of infection-associated kidney diseases but may also further support the concept that innate immunity significantly contributes to the so-called types of nonimmune kidney diseases.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrological Center, Medical Policlinic, University of Munich, Munich, Germany
| | | |
Collapse
|
29
|
Tian YC, Chen YC, Hung CC, Chang CT, Wu MS, Phillips AO, Yang CW. Leptospiral Outer Membrane Protein Induces Extracellular Matrix Accumulation through a TGF-β1/Smad-Dependent Pathway. J Am Soc Nephrol 2006; 17:2792-8. [PMID: 16928805 DOI: 10.1681/asn.2006020159] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Leptospirosis is an underestimated cause of renal failure in Taiwan and elsewhere. The consequence of leptospira-induced acute tubulointerstitial nephritis is tubulointerstitial fibrosis if left untreated. The aim of the study was to examine the effect of an outer membrane protein (OMP) of Leptospira santarosai serovar Shermani on extracellular matrix (ECM) accumulation in proximal tubular cells, HK-2 cells. The addition of Leptospira santarosai serovar Shermani OMP for 72 h led to an increase of type I and type IV collagens, measured by real-time PCR and Western blot analysis in a dose-response manner. After addition of Leptospira santarosai serovar Shermani OMP, active TGF-beta1 secretion was increased by nearly two-fold. The addition of anti-TGF-beta1-neutralizing antibodies attenuated the Leptospira santarosai serovar Shermani OMP-induced type I and type IV collagen production, implicating TGF-beta1 in this process. Overexpression of the dominant negative Smad3 prevented the Leptospira santarosai serovar Shermani OMP-induced increase of type I or type IV collagen production. In conclusion, this study clearly demonstrated the stimulatory effect of Leptospira santarosai serovar Shermani OMP on ECM production by enhancing ECM synthesis, which was mediated by a TGF-beta1/Smad-dependent pathway.
Collapse
Affiliation(s)
- Ya-Chung Tian
- Kidney Institute, Department of Nephrology, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei 105, Taiwan
| | | | | | | | | | | | | |
Collapse
|