1
|
Szanda G, Wisniewski É, Barna L, Turu G, Mackie K. A 2D cell segmentation protocol for monitoring multiple STAT signaling pathways by fluorescence microscopy. STAR Protoc 2025; 6:103588. [PMID: 39862428 PMCID: PMC11969409 DOI: 10.1016/j.xpro.2024.103588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Microscopic cell segmentation typically requires complex imaging, staining, and computational steps to achieve acceptable consistency. Here, we describe a protocol for the high-fidelity segmentation of the nucleus and cytoplasm in cell culture and apply it to monitor interferon-induced signal transducer and activator of transcription (STAT) signaling. We provide guidelines for sample preparation, image acquisition, and segmentation. The approach performs indistinguishably from neural-network-based segmentation while requiring only conventional and cost-effective techniques. The protocol can be adapted to other signaling molecules undergoing nucleo-cytoplasmic shuttling and to high-throughput applications. This protocol enables simultaneous monitoring of two STAT isoforms using only conventional techniques and equipment and improves upon the assay published in Szanda et al.1.
Collapse
Affiliation(s)
- Gergő Szanda
- Gill Institute for Neuroscience, Program in Neuroscience, Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405, USA; Department of Physiology, Semmelweis University Medical School, Budapest 1094, Hungary.
| | - Éva Wisniewski
- Gill Institute for Neuroscience, Program in Neuroscience, Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405, USA; Department of Physiology, Semmelweis University Medical School, Budapest 1094, Hungary
| | - László Barna
- Addiction and Neuroplasticity Lab, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Gábor Turu
- Department of Physiology, Semmelweis University Medical School, Budapest 1094, Hungary; Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok krt. 2., Budapest 1117, Hungary
| | - Ken Mackie
- Gill Institute for Neuroscience, Program in Neuroscience, Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
2
|
Li L, Hammerlindl H, Shen SQ, Bao F, Hammerlindl S, Altschuler SJ, Wu LF. A phenopushing platform to identify compounds that alleviate acute hypoxic stress by fast-tracking cellular adaptation. Nat Commun 2025; 16:2684. [PMID: 40102413 PMCID: PMC11920246 DOI: 10.1038/s41467-025-57754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Severe acute hypoxic stress is a major contributor to the pathology of human diseases, including ischemic disorders. Current treatments focus on managing consequences of hypoxia, with few addressing cellular adaptation to low-oxygen environments. Here, we investigate whether accelerating hypoxia adaptation could provide a strategy to alleviate acute hypoxic stress. We develop a high-content phenotypic screening platform to identify compounds that fast-track adaptation to hypoxic stress. Our platform captures a high-dimensional phenotypic hypoxia response trajectory consisting of normoxic, acutely stressed, and chronically adapted cell states. Leveraging this trajectory, we identify compounds that phenotypically shift cells from the acutely stressed state towards the adapted state, revealing mTOR/PI3K or BET inhibition as strategies to induce this phenotypic shift. Importantly, our compound hits promote the survival of liver cells exposed to ischemia-like stress, and rescue cardiomyocytes from hypoxic stress. Our "phenopushing" platform offers a general, target-agnostic approach to identify compounds and targets that accelerate cellular adaptation, applicable across various stress conditions.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Susan Q Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Feng Bao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Bogdanov A, Salib MN, Chase AB, Hammerlindl H, Muskat MN, Luedtke S, da Silva EB, O'Donoghue AJ, Wu LF, Altschuler SJ, Molinski TF, Jensen PR. Small molecule in situ resin capture provides a compound first approach to natural product discovery. Nat Commun 2024; 15:5230. [PMID: 38898025 PMCID: PMC11187115 DOI: 10.1038/s41467-024-49367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Culture-based microbial natural product discovery strategies fail to realize the extraordinary biosynthetic potential detected across earth's microbiomes. Here we introduce Small Molecule In situ Resin Capture (SMIRC), a culture-independent method to obtain natural products directly from the environments in which they are produced. We use SMIRC to capture numerous compounds including two new carbon skeletons that were characterized using NMR and contain structural features that are, to the best of our knowledge, unprecedented among natural products. Applications across diverse marine habitats reveal biome-specific metabolomic signatures and levels of chemical diversity in concordance with sequence-based predictions. Expanded deployments, in situ cultivation, and metagenomics facilitate compound discovery, enhance yields, and link compounds to candidate producing organisms, although microbial community complexity creates challenges for the later. This compound-first approach to natural product discovery provides access to poorly explored chemical space and has implications for drug discovery and the detection of chemically mediated biotic interactions.
Collapse
Affiliation(s)
- Alexander Bogdanov
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mariam N Salib
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alexander B Chase
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Earth Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Mitchell N Muskat
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stephanie Luedtke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Tadeusz F Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Paul R Jensen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Barrett AK, Shingare MR, Rechtsteiner A, Rodriguez KM, Le QN, Wijeratne TU, Mitchell CE, Membreno MW, Rubin SM, Müller GA. HDAC activity is dispensable for repression of cell-cycle genes by DREAM and E2F:RB complexes. Nat Commun 2024; 15:4450. [PMID: 38789411 PMCID: PMC11126580 DOI: 10.1038/s41467-024-48724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) play a crucial role in transcriptional regulation and are implicated in various diseases, including cancer. They are involved in histone tail deacetylation and canonically linked to transcriptional repression. Previous studies suggested that HDAC recruitment to cell-cycle gene promoters via the retinoblastoma (RB) protein or the DREAM complex through SIN3B is essential for G1/S and G2/M gene repression during cell-cycle arrest and exit. Here we investigate the interplay among DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. Knockout of SIN3B does not globally derepress cell-cycle genes in non-proliferating HCT116 and C2C12 cells. Loss of SIN3A/B moderately upregulates several cell-cycle genes in HCT116 cells but does so independently of DREAM/RB. HDAC inhibition does not induce general upregulation of RB/DREAM target genes in arrested transformed or non-transformed cells. Our findings suggest that E2F:RB and DREAM complexes can repress cell-cycle genes without relying on HDAC activity.
Collapse
Affiliation(s)
- Alison K Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Manisha R Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Kelsie M Rodriguez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Quynh N Le
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Corbin E Mitchell
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Miles W Membreno
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
5
|
Barrett A, Shingare MR, Rechtsteiner A, Wijeratne TU, Rodriguez KM, Rubin SM, Müller GA. HDAC activity is dispensable for repression of cell-cycle genes by DREAM and E2F:RB complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564489. [PMID: 37961464 PMCID: PMC10634886 DOI: 10.1101/2023.10.28.564489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Histone deacetylases (HDACs) are pivotal in transcriptional regulation, and their dysregulation has been associated with various diseases including cancer. One of the critical roles of HDAC-containing complexes is the deacetylation of histone tails, which is canonically linked to transcriptional repression. Previous research has indicated that HDACs are recruited to cell-cycle gene promoters through the RB protein or the DREAM complex via SIN3B and that HDAC activity is essential for repressing G1/S and G2/M cell-cycle genes during cell-cycle arrest and exit. In this study, we sought to explore the interdependence of DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. We found that genetic knockout of SIN3B did not lead to derepression of cell-cycle genes in non-proliferating HCT116 and C2C12 cells. A combined loss of SIN3A and SIN3B resulted in a moderate upregulation in mRNA expression of several cell-cycle genes in arrested HCT116 cells, however, these effects appeared to be independent of DREAM or RB. Furthermore, HDAC inhibition did not induce a general upregulation of RB and DREAM target gene expression in arrested transformed or non-transformed cells. Our findings provide evidence that E2F:RB and DREAM complexes can repress cell-cycle genes without reliance on HDAC activity.
Collapse
Affiliation(s)
- Alison Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Current Affiliation: Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Manisha R. Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Tilini U. Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Current Affiliation: Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Kelsie M. Rodriguez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Seth M. Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Gerd A. Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
6
|
Galyamina MA, Pobeguts OV, Gorbachev AY. The role of mycoplasmas as an infectious agent in carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2023; 10:36-49. [DOI: 10.17650/2313-805x-2023-10-3-36-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review presents data on studies of the role of mycoplasmas as infectious agents in carcinogenesis, as well as their participation in cancer drug therapy and the impact on the outcome of treatment. Mycoplasmas are of particular interest because they have unique abilities to readily attach to and enter eukaryotic cells, modulate their functional state, and induce chronic inflammation while evading the host’s immune system. The review will highlight the data confirming the increased colonization of tumor tissue by mycoplasmas compared to healthy ones, describe the molecular mechanisms by which mycoplasmas activate the expression of oncogenes and growth factors, inactivate tumor suppressors, promote NF-κB-dependent migration of cancer cells and modulate apoptosis, which results in abnormal growth and transformation of host cells. The review also presents data on the effectiveness of anticancer drugs in mycoplasmal infections.
Collapse
Affiliation(s)
- M. A. Galyamina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| | - O. V. Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| | - A. Yu. Gorbachev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency
| |
Collapse
|
7
|
Wilde BR, Chakraborty N, Matulionis N, Hernandez S, Ueno D, Gee ME, Esplin ED, Ouyang K, Nykamp K, Shuch B, Christofk HR. FH Variant Pathogenicity Promotes Purine Salvage Pathway Dependence in Kidney Cancer. Cancer Discov 2023; 13:2072-2089. [PMID: 37255402 PMCID: PMC10527600 DOI: 10.1158/2159-8290.cd-22-0874] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
Fumarate accumulation due to loss of fumarate hydratase (FH) drives cellular transformation. Germline FH alterations lead to hereditary leiomyomatosis and renal cell cancer (HLRCC) where patients are predisposed to an aggressive form of kidney cancer. There is an unmet need to classify FH variants by cancer-associated risk. We quantified catalytic efficiencies of 74 variants of uncertain significance. Over half were enzymatically inactive, which is strong evidence of pathogenicity. We next generated a panel of HLRCC cell lines expressing FH variants with a range of catalytic activities, then correlated fumarate levels with metabolic features. We found that fumarate accumulation blocks de novo purine biosynthesis, rendering FH-deficient cells reliant on purine salvage for proliferation. Genetic or pharmacologic inhibition of the purine salvage pathway reduced HLRCC tumor growth in vivo. These findings suggest the pathogenicity of patient-associated FH variants and reveal purine salvage as a targetable vulnerability in FH-deficient tumors. SIGNIFICANCE This study functionally characterizes patient-associated FH variants with unknown significance for pathogenicity. This study also reveals nucleotide salvage pathways as a targetable feature of FH-deficient cancers, which are shown to be sensitive to the purine salvage pathway inhibitor 6-mercaptopurine. This presents a new rapidly translatable treatment strategy for FH-deficient cancers. This article is featured in Selected Articles from This Issue, p. 1949.
Collapse
Affiliation(s)
- Blake R. Wilde
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
| | - Nishma Chakraborty
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Equal contribution
| | - Nedas Matulionis
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Equal contribution
| | - Stephanie Hernandez
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Equal contribution
| | - Daiki Ueno
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, California
- Currently: Department of Urology, Yokosuka Kyosai Hospital
| | - Michayla E. Gee
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
| | | | | | | | - Brian Shuch
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Heather R. Christofk
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
8
|
Winkle M, Tayari MM, Kok K, Duns G, Grot N, Kazimierska M, Seitz A, de Jong D, Koerts J, Diepstra A, Dzikiewicz-Krawczyk A, Steidl C, Kluiver J, van den Berg A. The lncRNA KTN1-AS1 co-regulates a variety of Myc-target genes and enhances proliferation of Burkitt lymphoma cells. Hum Mol Genet 2022; 31:4193-4206. [PMID: 35866590 DOI: 10.1093/hmg/ddac159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in many normal and oncogenic pathways through a diverse repertoire of transcriptional and posttranscriptional regulatory mechanisms. LncRNAs that are under tight regulation of well-known oncogenic transcription factors such as c-Myc (Myc) are likely to be functionally involved in their disease-promoting mechanisms. Myc is a major driver of many subsets of B cell lymphoma and to date remains an undruggable target. We identified three Myc-induced and four Myc-repressed lncRNAs by use of multiple in vitro models of Myc-driven Burkitt lymphoma and detailed analysis of Myc binding profiles. We show that the top Myc-induced lncRNA KTN1-AS1 is strongly upregulated in different types of B cell lymphoma compared with their normal counterparts. We used CRISPR-mediated genome editing to confirm that the direct induction of KTN1-AS1 by Myc is dependent on the presence of a Myc E-box-binding motif. Knockdown of KTN1-AS1 revealed a strong negative effect on the growth of three BL cell lines. Global gene expression analysis upon KTN1-AS1 depletion shows a strong enrichment of key genes in the cholesterol biosynthesis pathway as well as co-regulation of many Myc-target genes, including a moderate negative effect on the levels of Myc itself. Our study suggests a critical role for KTN1-AS1 in supporting BL cell growth by mediating co-regulation of a variety of Myc-target genes and co-activating key genes involved in cholesterol biosynthesis. Therefore, KTN1-AS1 may represent a putative novel therapeutic target in lymphoma.
Collapse
Affiliation(s)
- Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.,Department of Translational Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mina M Tayari
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.,Department of Human Genetics, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Gerben Duns
- Department of Lymphoid Cancer Research, BC Cancer Center, Vancouver, BC, Canada
| | - Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marta Kazimierska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | | | - Christian Steidl
- Department of Lymphoid Cancer Research, BC Cancer Center, Vancouver, BC, Canada
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| |
Collapse
|
9
|
Blokland KEC, Nizamoglu M, Habibie H, Borghuis T, Schuliga M, Melgert BN, Knight DA, Brandsma CA, Pouwels SD, Burgess JK. Substrate stiffness engineered to replicate disease conditions influence senescence and fibrotic responses in primary lung fibroblasts. Front Pharmacol 2022; 13:989169. [PMID: 36408252 PMCID: PMC9673045 DOI: 10.3389/fphar.2022.989169] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
In fibrosis remodelling of ECM leads to changes in composition and stiffness. Such changes can have a major impact on cell functions including proliferation, secretory profile and differentiation. Several studies have reported that fibrosis is characterised by increased senescence and accumulating evidence suggests that changes to the ECM including altered composition and increased stiffness may contribute to premature cellular senescence. This study investigated if increased stiffness could modulate markers of senescence and/or fibrosis in primary human lung fibroblasts. Using hydrogels representing stiffnesses that fall within healthy and fibrotic ranges, we cultured primary fibroblasts from non-diseased lung tissue on top of these hydrogels for up to 7 days before assessing senescence and fibrosis markers. Fibroblasts cultured on stiffer (±15 kPa) hydrogels showed higher Yes-associated protein-1 (YAP) nuclear translocation compared to soft hydrogels. When looking at senescence-associated proteins we also found higher secretion of receptor activator of nuclear factor kappa-B ligand (RANKL) but no change in transforming growth factor-β1 (TGF-β1) or connective tissue growth factor (CTGF) expression and higher decorin protein deposition on stiffer matrices. With respect to genes associated with fibrosis, fibroblasts on stiffer hydrogels compared to soft had higher expression of smooth muscle alpha (α)-2 actin (ACTA2), collagen (COL) 1A1 and fibulin-1 (Fbln1) and higher Fbln1 protein deposition after 7 days. Our results show that exposure of lung fibroblasts to fibrotic stiffness activates genes and secreted factors that are part of fibrotic responses and part of the Senescence-associated secretory phenotype (SASP). This overlap may contribute to the creation of a feedback loop whereby fibroblasts create a perpetuating cycle reinforcing progression of a fibrotic response.
Collapse
Affiliation(s)
- Kaj E. C. Blokland
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Habibie Habibie
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen, Netherlands
- Hasanuddin University, Faculty of Pharmacy, Makassar, Indonesia
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Michael Schuliga
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
| | - Barbro N. Melgert
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen, Netherlands
| | - Darryl A. Knight
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
- Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Simon D. Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
- *Correspondence: Janette K. Burgess,
| |
Collapse
|
10
|
Dankó T, Petővári G, Raffay R, Sztankovics D, Moldvai D, Vetlényi E, Krencz I, Rókusz A, Sipos K, Visnovitz T, Pápay J, Sebestyén A. Characterisation of 3D Bioprinted Human Breast Cancer Model for In Vitro Drug and Metabolic Targeting. Int J Mol Sci 2022; 23:ijms23137444. [PMID: 35806452 PMCID: PMC9267600 DOI: 10.3390/ijms23137444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Monolayer cultures, the less standard three-dimensional (3D) culturing systems, and xenografts are the main tools used in current basic and drug development studies of cancer research. The aim of biofabrication is to design and construct a more representative in vivo 3D environment, replacing two-dimensional (2D) cell cultures. Here, we aim to provide a complex comparative analysis of 2D and 3D spheroid culturing, and 3D bioprinted and xenografted breast cancer models. We established a protocol to produce alginate-based hydrogel bioink for 3D bioprinting and the long-term culturing of tumour cells in vitro. Cell proliferation and tumourigenicity were assessed with various tests. Additionally, the results of rapamycin, doxycycline and doxorubicin monotreatments and combinations were also compared. The sensitivity and protein expression profile of 3D bioprinted tissue-mimetic scaffolds showed the highest similarity to the less drug-sensitive xenograft models. Several metabolic protein expressions were examined, and the in situ tissue heterogeneity representing the characteristics of human breast cancers was also verified in 3D bioprinted and cultured tissue-mimetic structures. Our results provide additional steps in the direction of representing in vivo 3D situations in in vitro studies. Future use of these models could help to reduce the number of animal experiments and increase the success rate of clinical phase trials.
Collapse
Affiliation(s)
- Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Regina Raffay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Enikő Vetlényi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - András Rókusz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Krisztina Sipos
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
- Correspondence: or
| |
Collapse
|
11
|
Kiss E, Forika G, Dank M, Krenacs T, Nemeth Z. Methyl Donors Reduce Cell Proliferation by Diminishing Erk-Signaling and NFkB Levels, While Increasing E-Cadherin Expression in Panc-1 Cell Line. Int J Mol Sci 2022; 23:2546. [PMID: 35269689 PMCID: PMC8910410 DOI: 10.3390/ijms23052546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an aggressive malignancy with high metastatic potential. There are several lifestyle-related determinants in its etiology, including diet. Methyl donors are dietary micronutrients which play an important role in fueling vital metabolic pathways, and as bioactive food components provide methyl groups as substrates and cofactors. The imbalanced nutritional status of methyl donors has recently been linked to pathological conditions. Therefore, we hypothesized that dietary methyl donors may improve the physiology of cancer patients, including those with pancreatic cancer, and could be used for intervention therapy. In this study, methyl-donor treatment (L-methionine, choline chloride, folic acid and vitamin B12) of an aggressive pancreatic adenocarcinoma cell line (Panc-1) resulted in significantly increased p21WAF1/Cip1 cyclin-dependent kinase inhibitor levels, along with apoptotic SubG1 fractions. At the same time, phospho-Erk1/2 levels and proliferation rate were significantly reduced. Though methyl-donor treatments also increased the pro-apoptotic protein Bak, Puma and Caspase-9, it failed to elevate cleaved Caspase-3 levels. In addition, the treatment significantly reduced the production of the pro-inflammatory cytokine IL-17a and the transcription factor NFkB. Similarly, a significant decrease in VEGF and SDF-1a levels were detected, which may indicate reduced metastatic potential. As expected, E-cadherin expression was inversely associated with these changes, showing elevated expression after methyl-donor treatment. In summary, we found that methyl donors may have the potential to reduce aggressive and proliferative phenotype of Panc-1 cells. This suggests a promising role of dietary methyl donors for complementing relevant cancer therapies, even in treatment-resistant pancreatic adenocarcinomas.
Collapse
Affiliation(s)
- Eva Kiss
- 1st Department of Internal Medicine and Oncology, Oncology Profile, Semmelweis University, 1083 Budapest, Hungary; (E.K.); (M.D.)
| | - Gertrud Forika
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (G.F.); (T.K.)
| | - Magdolna Dank
- 1st Department of Internal Medicine and Oncology, Oncology Profile, Semmelweis University, 1083 Budapest, Hungary; (E.K.); (M.D.)
| | - Tibor Krenacs
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (G.F.); (T.K.)
| | - Zsuzsanna Nemeth
- 1st Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
12
|
Tian H, Chen Y, Zhang R, Liu J. The Role of COL22A1 in the Pathophysiology of Hepatocellular Carcinoma: Evidence from Bioinformatics Exploration. Cancer Manag Res 2022. [DOI: 10.2147/cmar.s349991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Regulation of Cellular Senescence Is Independent from Profibrotic Fibroblast-Deposited ECM. Cells 2021; 10:cells10071628. [PMID: 34209854 PMCID: PMC8307656 DOI: 10.3390/cells10071628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor survival. Age is a major risk factor, and both alveolar epithelial cells and lung fibroblasts in this disease exhibit features of cellular senescence, a hallmark of ageing. Accumulation of fibrotic extracellular matrix (ECM) is a core feature of IPF and is likely to affect cell function. We hypothesize that aberrant ECM deposition augments fibroblast senescence, creating a perpetuating cycle favouring disease progression. In this study, primary lung fibroblasts were cultured on control and IPF-derived ECM from fibroblasts pretreated with or without profibrotic and prosenescent stimuli, and markers of senescence, fibrosis-associated gene expression and secretion of cytokines were measured. Untreated ECM derived from control or IPF fibroblasts had no effect on the main marker of senescence p16Ink4a and p21Waf1/Cip1. However, the expression of alpha smooth muscle actin (ACTA2) and proteoglycan decorin (DCN) increased in response to IPF-derived ECM. Production of the proinflammatory cytokines C-X-C Motif Chemokine Ligand 8 (CXCL8) by lung fibroblasts was upregulated in response to senescent and profibrotic-derived ECM. Finally, the profibrotic cytokines transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) were upregulated in response to both senescent- and profibrotic-derived ECM. In summary, ECM deposited by IPF fibroblasts does not induce cellular senescence, while there is upregulation of proinflammatory and profibrotic cytokines and differentiation into a myofibroblast phenotype in response to senescent- and profibrotic-derived ECM, which may contribute to progression of fibrosis in IPF.
Collapse
|
14
|
Kiss E, Forika G, Mohacsi R, Nemeth Z, Krenacs T, Dank M. Methyl-Donors Can Induce Apoptosis and Attenuate Both the Akt and the Erk1/2 Mediated Proliferation Pathways in Breast and Lung Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms22073598. [PMID: 33808426 PMCID: PMC8036837 DOI: 10.3390/ijms22073598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/04/2023] Open
Abstract
Dietary methyl-donors play important roles in physiological processes catalyzed by B vitamins as coenzymes, and are used for complementary support in oncotherapy. Our hypothesis was that methyl-donors can not only assist in tolerating cancer treatment but may also directly interfere with tumor growth and proliferation. Therefore, we investigated the proposed cancer inhibitory effects of methyl-donors (in a mixture of L-methionine, choline chloride, folic acid, and vitamin B12) on MCF7 and T47D breast cancer as well as A549 and H1650 lung cancer cell lines. Indeed, methyl-donor treatment significantly reduced the proliferation in all cell lines, possibly through the downregulation of MAPK/ERK and AKT signaling. These were accompanied by the upregulation of the pro-apoptotic Bak and Bax, both in MCF7 and H1650 cells, at reduced anti-apoptotic Mcl-1 and Bcl-2 levels in MCF7 and H1650 cells, respectively. The treatment-induced downregulation of p-p53(Thr55) was likely to contribute to protecting the nuclear localization and apoptosis inducing functions of p53. The presented features are known to improve the sensitivity of cancer therapy. Therefore, these data support the hypothesis, i.e., that methyl-donors may promote apoptotic signaling by protecting p53 functions through downregulating both the MAPK/ERK and the AKT pathways both in breast and lung adenocarcinoma cell lines. Our results can emphasize the importance and benefits of the appropriate dietary supports in cancer treatments. However, further studies are required to confirm these effects without any adverse outcome in clinical settings.
Collapse
Affiliation(s)
- Eva Kiss
- 1st Department of Internal Medicine and Oncology, Oncology Profile, Semmelweis University, 1085 Budapest, Hungary; (E.K.); (R.M.); (M.D.)
| | - Gertrud Forika
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (G.F.); (T.K.)
| | - Reka Mohacsi
- 1st Department of Internal Medicine and Oncology, Oncology Profile, Semmelweis University, 1085 Budapest, Hungary; (E.K.); (R.M.); (M.D.)
| | - Zsuzsanna Nemeth
- 1st Department of Internal Medicine and Oncology, Oncology Profile, Semmelweis University, 1085 Budapest, Hungary; (E.K.); (R.M.); (M.D.)
- Correspondence: ; Tel.: +36-20-670-1025
| | - Tibor Krenacs
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary; (G.F.); (T.K.)
| | - Magdolna Dank
- 1st Department of Internal Medicine and Oncology, Oncology Profile, Semmelweis University, 1085 Budapest, Hungary; (E.K.); (R.M.); (M.D.)
| |
Collapse
|
15
|
Mansour NM, Balas EA, Yang FM, Vernon MM. Prevalence and Prevention of Reproducibility Deficiencies in Life Sciences Research: Large-Scale Meta-Analyses. Med Sci Monit 2020; 26:e922016. [PMID: 32960878 PMCID: PMC7519945 DOI: 10.12659/msm.922016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/18/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Studies have found that many published life sciences research results are irreproducible. Our goal was to provide comprehensive risk estimates of familiar reproducibility deficiencies to support quality improvement in research. MATERIAL AND METHODS Reports included were peer-reviewed, published between 1980 and 2016, and presented frequency data of basic biomedical research deficiencies. Manual and electronic literature searches were performed in seven bibliographic databases. For deficiency concepts with at least four frequency studies and with a sample size of at least 15 units in each, a meta-analysis was performed. RESULTS Overall, 68 publications met our inclusion criteria. The study identified several major groups of research quality defects: study design, cell lines, statistical analysis, and reporting. In the study design group of 3 deficiencies, missing power calculation was the most frequent (82.3% [95% Confidence Interval (CI): 69.9-94.6]). Among the 6 cell line deficiencies, mixed contamination was the most frequent (22.4% [95% CI: 10.4-34.3]). Among the 3 statistical analysis deficiencies, the use of chi-square test when expected cells frequency was <5 was the most prevalent (15.7% [95% CI: -3.2-34.7]). In the reporting group of 12 deficiencies, failure to state the number of tails was the most frequent (65% [95% CI: 39.3-90.8]). CONCLUSIONS The results of this study could serve as a general reference when consistently measurable sources of deficiencies need to be identified in research quality improvement.
Collapse
Affiliation(s)
- Nadine M. Mansour
- Biomedical Research Innovation Laboratory, Augusta University, Augusta, GA, U.S.A
- Department of Public Health, Cairo University, Cairo, Egypt
| | - E. Andrew Balas
- Biomedical Research Innovation Laboratory, Augusta University, Augusta, GA, U.S.A
| | | | - Marlo M. Vernon
- Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| |
Collapse
|
16
|
Uxa S, Bernhart SH, Mages CFS, Fischer M, Kohler R, Hoffmann S, Stadler PF, Engeland K, Müller GA. DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Res 2019; 47:9087-9103. [PMID: 31400114 PMCID: PMC6753476 DOI: 10.1093/nar/gkz635] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/07/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Most human cancers acquire mutations causing defects in the p53 signaling pathway. The tumor suppressor p53 becomes activated in response to genotoxic stress and is essential for arresting the cell cycle to facilitate DNA repair or to initiate apoptosis. p53-induced cell cycle-arrest is mediated by expression of the CDK inhibitor p21WAF1/Cip1, which prevents phosphorylation and inactivation of the pocket proteins RB, p130, and p107. In a hypophosphorylated state, pocket proteins bind to E2F factors forming RB-E2F and DREAM transcriptional repressor complexes. Here, we analyze the influence of RB and DREAM on p53-induced gene repression and cell-cycle arrest. We show that abrogation of DREAM function by knockout of the DREAM component LIN37 results in a reduced repression of cell-cycle genes. We identify the genes repressed by the p53-DREAM pathway and describe a set of genes that is downregulated by p53 independent of LIN37/DREAM. Most strikingly, p53-dependent repression of cell-cycle genes is completely abrogated in LIN37-/-;RB-/- cells leading to a loss of the G1/S checkpoint. Taken together, we show that DREAM and RB are key factors in the p53 signaling pathway to downregulate a large number of cell-cycle genes and to arrest the cell cycle at the G1/S transition.
Collapse
Affiliation(s)
- Sigrid Uxa
- Molecular Oncology, Department of Gynaecology, Medical School, Leipzig University, 04103 Leipzig, Germany
| | - Stephan H Bernhart
- Transcriptome Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
| | - Christina F S Mages
- Molecular Oncology, Department of Gynaecology, Medical School, Leipzig University, 04103 Leipzig, Germany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Robin Kohler
- Molecular Oncology, Department of Gynaecology, Medical School, Leipzig University, 04103 Leipzig, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Peter F Stadler
- Transcriptome Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig Research Center for Civilization Diseases; and Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Leipzig University, 04107 Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany.,Institute for Theoretical Chemistry, University of Vienna, A-1090 Wien, Austria.,Facultad de Ciencias, Universidad National de Colombia, Sede Bogota, Colombia.,Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Kurt Engeland
- Molecular Oncology, Department of Gynaecology, Medical School, Leipzig University, 04103 Leipzig, Germany
| | - Gerd A Müller
- Molecular Oncology, Department of Gynaecology, Medical School, Leipzig University, 04103 Leipzig, Germany.,Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
17
|
Liu Y, Jiang W, Yang S, Hu J, Lu H, Han W, Wen J, Zeng Z, Qi J, Xu L, Zhou H, Sun H, Zu Y. Rapid Detection of Mycoplasma-Infected Cells by an ssDNA Aptamer Probe. ACS Sens 2019; 4:2028-2038. [PMID: 31403764 DOI: 10.1021/acssensors.9b00582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycoplasmas are unique cell wall-free bacteria. Because they lack a cell wall and have resistance to β-lactam antibiotics, mycoplasma is the major pathogen that infects cultured cells in research laboratories. For rapid detection of mycoplasma-infected cells, we developed an ssDNA aptamer sequence composed of 40 nucleotides. Flow cytometry analysis showed that the synthetic aptamer probe selectively targeted mycoplasma-infected culture cells with high specificity identical to commercially available PCR-based assays. Additionally, fluorescent microscopy studies revealed that the aptamer probe rapidly stained mycoplasma-infected cells with higher sensitivity compared to Hoechst dye-mediated cellular DNA content stains. Moreover, confocal microscopy studies of trypsin-treated cells validated that the aptamer probes selectively targeted mycoplasma components on the surface of infected cells. Finally, preclinical studies of peripheral blood cells demonstrated that the aptamer probe was able to detect in vitro mycoplasma infection of primary lymphocytes. Taken together, these findings indicate that the aptamer probe will not only allow rapid detection of mycoplasma-infected culture cells for research purposes but also provide a simple method to monitor mycoplasma infection in primary cell products for clinical use.
Collapse
Affiliation(s)
- Yanting Liu
- Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, Texas 77030, United States
| | - Wenqi Jiang
- Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, Texas 77030, United States
| | - Shuanghui Yang
- Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, Texas 77030, United States
| | - Jianzhong Hu
- Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hongbin Lu
- Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Han
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, Texas 77030, United States
| | - Jianguo Wen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, Texas 77030, United States
| | - Zihua Zeng
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, Texas 77030, United States
| | - Jianjun Qi
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, Texas 77030, United States
| | - Ling Xu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, Texas 77030, United States
| | - Haijun Zhou
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, Texas 77030, United States
| | - Hongguang Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, Texas 77030, United States
| |
Collapse
|
18
|
Moráň L, Pivetta T, Masuri S, Vašíčková K, Walter F, Prehn J, Elkalaf M, Trnka J, Havel J, Vaňhara P. Mixed copper(ii)–phenanthroline complexes induce cell death of ovarian cancer cells by evoking the unfolded protein response. Metallomics 2019; 11:1481-1489. [DOI: 10.1039/c9mt00055k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is an ongoing need for development of new therapeutics that override acquired resistance to cancer therapy. Targeting endoplasmic reticulum by Cu(ii)–phenanthroline complexes may represent such alternative strategy to current cytotoxic drugs.
Collapse
|
19
|
Meng YM, Liang J, Wu C, Xu J, Zeng DN, Yu XJ, Ning H, Xu L, Zheng L. Monocytes/Macrophages promote vascular CXCR4 expression via the ERK pathway in hepatocellular carcinoma. Oncoimmunology 2017; 7:e1408745. [PMID: 29399411 DOI: 10.1080/2162402x.2017.1408745] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022] Open
Abstract
We recently identified CXCR4 as a novel vascular marker for vessel sprouting in hepatocellular carcinoma (HCC) tissues. Thus, CXCR4+ endothelial cells (ECs) could serve as a potential predictor for patients who may benefit from sorafenib treatment; however, the mechanism that regulates vascular CXCR4 expression in HCC remains largely unknown. Here, we revealed a large number of monocytes/macrophages (Mo/Mϕ) to be selectively enriched in the perivascular areas of CXCR4+ vessels in HCC samples. The depletion of Mo/Mϕ with gadolinium chloride (GdCl3) or zoledronic acid (ZA) treatment significantly reduced vascular CXCR4 expression in HCC tumors. This phenomenon was also confirmed in CCR2-KO mice, which exhibited reduced infiltration of inflammatory Mo/Mϕ in tumor tissues. Mechanistic studies revealed that inflammatory cytokines derived from tumor conditioned Mo/Mϕ, especially TNF-α, could up-regulate CXCR4 expression on ECs. TNF-α-induced activation of the Raf-ERK pathway, but not Notch signaling, was responsible for the expression of CXCR4. Moreover, the combination treatment of sorafenib with ZA was associated with improved anti-tumor efficacy by significantly reducing vascular CXCR4 expression. These findings revealed that Mo/Mϕ could regulate CXCR4 expression in the tumor vasculature. Thus, the inhibition of Mo/Mϕ inflammation might enhance the treatment efficacy of sorafenib in HCC.
Collapse
Affiliation(s)
- Ya-Ming Meng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jing Liang
- Department of Pathology, The Third Affiliated Hospital, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Guangzhou, P. R. China
| | - Chong Wu
- Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jing Xu
- Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Dan-Ni Zeng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xing-Juan Yu
- Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Huiheng Ning
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Li Xu
- Department of Hepatobiliary Oncology, Cancer Center; Sun Yat-sen University, Guangzhou, P. R. China
| | - Limin Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
20
|
Mages CF, Wintsche A, Bernhart SH, Müller GA. The DREAM complex through its subunit Lin37 cooperates with Rb to initiate quiescence. eLife 2017; 6. [PMID: 28920576 PMCID: PMC5602299 DOI: 10.7554/elife.26876] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
The retinoblastoma Rb protein is an important factor controlling the cell cycle. Yet, mammalian cells carrying Rb deletions are still able to arrest under growth-limiting conditions. The Rb-related proteins p107 and p130, which are components of the DREAM complex, had been suggested to be responsible for a continued ability to arrest by inhibiting E2f activity and by recruiting chromatin-modifying enzymes. Here, we show that p130 and p107 are not sufficient for DREAM-dependent repression. We identify the MuvB protein Lin37 as an essential factor for DREAM function. Cells not expressing Lin37 proliferate normally, but DREAM completely loses its ability to repress genes in G0/G1 while all remaining subunits, including p130/p107, still bind to target gene promoters. Furthermore, cells lacking both Rb and Lin37 are incapable of exiting the cell cycle. Thus, Lin37 is an essential component of DREAM that cooperates with Rb to induce quiescence.
Collapse
Affiliation(s)
- Christina Fs Mages
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Axel Wintsche
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany.,Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Stephan H Bernhart
- Transcriptome Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Gerd A Müller
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Hamilton MJ, Huang QX, Li CL, Ellem KAO. The Development and Characterization of an HEK293-Derived Cell Line for Use in an Intratumoral Cytokine Delivery System. Cell Transplant 2017; 15:343-350. [DOI: 10.3727/000000006783981891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As part of ongoing work to develop a method of cytokine delivery for use as an intratumoral depot, we noted that HEK293 cells, encapsulated in alginate, died within 24–48 h after in vivo, intratumoral implantation. We hypothesized that the highly hypoxic and acidic conditions found inside the tumor was the cause of the cells' premature demise. Therefore, we set out to develop a cell line, derived from HEK293, that would survive these hostile conditions. The HEK293 line was selected in 0.3–0.5% oxygen conditions over several weeks, followed by a further 6-week period of culture in alternating hypoxic and normoxic conditions. The most rapidly growing clones were selected and grown in normoxic conditions for several weeks to ensure their stability. The clones were then compared to the original line in terms of cell proliferation in normoxia and hypoxia, colony-forming efficiency, and morphological characteristics. The resulting line was able to proliferate in the harshest of conditions and continues to release its biological payload after alginate microencapsulation.
Collapse
Affiliation(s)
- M. J. Hamilton
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Q. X. Huang
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - C. L. Li
- Stem Cell Program, Institute of Zoology/Genomics Research Center, Academia Sinica, 129 Academia Rd Sec 2, Nankang, Taipei 11529, Taiwan
| | - K. A. O. Ellem
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
A systems study reveals concurrent activation of AMPK and mTOR by amino acids. Nat Commun 2016; 7:13254. [PMID: 27869123 PMCID: PMC5121333 DOI: 10.1038/ncomms13254] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022] Open
Abstract
Amino acids (aa) are not only building blocks for proteins, but also signalling molecules, with the mammalian target of rapamycin complex 1 (mTORC1) acting as a key mediator. However, little is known about whether aa, independently of mTORC1, activate other kinases of the mTOR signalling network. To delineate aa-stimulated mTOR network dynamics, we here combine a computational–experimental approach with text mining-enhanced quantitative proteomics. We report that AMP-activated protein kinase (AMPK), phosphatidylinositide 3-kinase (PI3K) and mTOR complex 2 (mTORC2) are acutely activated by aa-readdition in an mTORC1-independent manner. AMPK activation by aa is mediated by Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). In response, AMPK impinges on the autophagy regulators Unc-51-like kinase-1 (ULK1) and c-Jun. AMPK is widely recognized as an mTORC1 antagonist that is activated by starvation. We find that aa acutely activate AMPK concurrently with mTOR. We show that AMPK under aa sufficiency acts to sustain autophagy. This may be required to maintain protein homoeostasis and deliver metabolite intermediates for biosynthetic processes. mTORC1 is known to mediate the signalling activity of amino acids. Here, the authors combine modelling with experiments and find that amino acids acutely stimulate mTORC2, IRS/PI3K and AMPK, independently of mTORC1. AMPK activation through CaMKKβ sustains autophagy under non-starvation conditions.
Collapse
|
23
|
He M, Peng A, Huang XZ, Shi DC, Wang JC, Zhao Q, Lin H, Kuang DM, Ke PF, Lao XM. Peritumoral stromal neutrophils are essential for c-Met-elicited metastasis in human hepatocellular carcinoma. Oncoimmunology 2016; 5:e1219828. [PMID: 27853643 DOI: 10.1080/2162402x.2016.1219828] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a component of tumor progression mechanisms. Neutrophils are a common inflammatory infiltrate in many tumors, but their regulation and functions in neoplasia are not understood. Here, we showed, in detailed studies of c-Met molecule in 225 untreated patients with hepatocellular carcinoma (HCC), that high infiltration of neutrophils in HCC tissues determined malignant cell c-Met-associated clinical outcome of patients. High infiltration of neutrophils in HCCs determined malignant cell c-Met-associated clinical outcome of patients. Neutrophils were enriched predominantly in invading tumor edge of HCCs; the accumulated neutrophils were the major source of c-Met ligand HGF in HCCs. Exposure to HCC environments resulted in neutrophil activation and the following HGF production. Inhibiting the activities of Erk1/2, p38, and NF-κB, but not the phosphorylation of AKT or JNK, successfully attenuated the neutrophil HGF production induced by HCC environments. Further investigation revealed that GM-CSF was an important determinant in malignant cell-elicited neutrophil HGF production in vitro and in vivo. Moreover, we demonstrated that tumor neutrophils, via HGF/c-Met interaction, actively enhanced the metastasis of malignant cells in vitro and in vivo. These data provide direct evidence supporting the critical role of neutrophils in human tumor progression and reveal a fine-tuned collaborative action between cancer cells and immune cells in tumor milieu, which reroutes the immune activation into a tumor-promoting direction.
Collapse
Affiliation(s)
- Min He
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, P.R. China
| | - Anping Peng
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, P.R. China
| | - Xian-Zhang Huang
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, P.R. China
| | - Dai-Chao Shi
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center , Guangzhou, P.R. China
| | - Jun-Cheng Wang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center , Guangzhou, P.R. China
| | - Qiyi Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University , Guangzhou, P.R. China
| | - Haibiao Lin
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, P.R. China
| | - Dong-Ming Kuang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center , Guangzhou, P.R. China
| | - Pei-Feng Ke
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine , Guangzhou, P.R. China
| | - Xiang-Ming Lao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center , Guangzhou, P.R. China
| |
Collapse
|
24
|
Sullivan KD, Lewis HC, Hill AA, Pandey A, Jackson LP, Cabral JM, Smith KP, Liggett LA, Gomez EB, Galbraith MD, DeGregori J, Espinosa JM. Trisomy 21 consistently activates the interferon response. eLife 2016; 5:e16220. [PMID: 27472900 PMCID: PMC5012864 DOI: 10.7554/elife.16220] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Although it is clear that trisomy 21 causes Down syndrome, the molecular events acting downstream of the trisomy remain ill defined. Using complementary genomics analyses, we identified the interferon pathway as the major signaling cascade consistently activated by trisomy 21 in human cells. Transcriptome analysis revealed that trisomy 21 activates the interferon transcriptional response in fibroblast and lymphoblastoid cell lines, as well as circulating monocytes and T cells. Trisomy 21 cells show increased induction of interferon-stimulated genes and decreased expression of ribosomal proteins and translation factors. An shRNA screen determined that the interferon-activated kinases JAK1 and TYK2 suppress proliferation of trisomy 21 fibroblasts, and this defect is rescued by pharmacological JAK inhibition. Therefore, we propose that interferon activation, likely via increased gene dosage of the four interferon receptors encoded on chromosome 21, contributes to many of the clinical impacts of trisomy 21, and that interferon antagonists could have therapeutic benefits.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Hannah C Lewis
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
| | - Amanda A Hill
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
| | - Ahwan Pandey
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Leisa P Jackson
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Joseph M Cabral
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
| | - L Alexander Liggett
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
| | - Eliana B Gomez
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - James DeGregori
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, United States
- Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, United States
- Section of Hematology, University of Colorado School of Medicine, Aurora, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, United States
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
25
|
Li T, Zhang Q, Jiang Y, Yu J, Hu Y, Mou T, Chen G, Li G. Gastric cancer cells inhibit natural killer cell proliferation and induce apoptosis via prostaglandin E2. Oncoimmunology 2016; 5:e1069936. [PMID: 27057432 PMCID: PMC4801461 DOI: 10.1080/2162402x.2015.1069936] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/12/2022] Open
Abstract
Defects in natural killer (NK) cell functions are necessary for tumor immune escape, but their underlying regulatory mechanisms in human cancers remain largely unknown. Here we showed, in detailed studies of NK cells from 235 untreated patients with gastric cancer (GC), the NK cell density in GC tissues could predict improved survival of patients. However, NK cells were significantly decreased in number with advanced-stage GC. A multivariate Cox analysis revealed that the intratumoral NK cell density was an independent prognostic factor for overall survival and disease-free survival in the GC patients. Most of the intratumoral NK cells exhibited a normal phenotype and secreted normal levels of cytokines, but the expression of Ki67 was decreased compared with NK cells from nontumoral regions. Moreover, the levels of intratumoral NK cells were negatively correlated with the intratumoral expression of cyclooxygenase-2. Furthermore, we found that PGE2 derived from GC cells suppressed NK cell proliferation and increased apoptosis in vitro. These data reveal that tumor-derived PGE2 is critical for inducing NK cell dysfunction in GC and demonstrate that an extensive infiltration of NK cells predicts a good prognosis in patients with GC. Our findings suggest that immunosuppressive barriers erected by tumors greatly hamper the antitumor activity of human NK cells, thereby favoring tumor outgrowth and progression.
Collapse
Affiliation(s)
- Tuanjie Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guihua Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
- Department of Hepatic Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Kratochvílová K, Horak P, Ešner M, Souček K, Pils D, Anees M, Tomasich E, Dráfi F, Jurtíková V, Hampl A, Krainer M, Vaňhara P. Tumor suppressor candidate 3 (TUSC3) prevents the epithelial-to-mesenchymal transition and inhibits tumor growth by modulating the endoplasmic reticulum stress response in ovarian cancer cells. Int J Cancer 2015; 137:1330-40. [PMID: 25735931 DOI: 10.1002/ijc.29502] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/28/2015] [Accepted: 02/18/2015] [Indexed: 01/17/2023]
Abstract
Ovarian cancer is one of the most common malignancies in women and contributes greatly to cancer-related deaths. Tumor suppressor candidate 3 (TUSC3) is a putative tumor suppressor gene located at chromosomal region 8p22, which is often lost in epithelial cancers. Epigenetic silencing of TUSC3 has been associated with poor prognosis, and hypermethylation of its promoter provides an independent biomarker of overall and disease-free survival in ovarian cancer patients. TUSC3 is localized to the endoplasmic reticulum in an oligosaccharyl tranferase complex responsible for the N-glycosylation of proteins. However, the precise molecular role of TUSC3 in ovarian cancer remains unclear. In this study, we establish TUSC3 as a novel ovarian cancer tumor suppressor using a xenograft mouse model and demonstrate that loss of TUSC3 alters the molecular response to endoplasmic reticulum stress and induces hallmarks of the epithelial-to-mesenchymal transition in ovarian cancer cells. In summary, we have confirmed the tumor-suppressive function of TUSC3 and identified the possible mechanism driving TUSC3-deficient ovarian cancer cells toward a malignant phenotype.
Collapse
Affiliation(s)
- Kateřina Kratochvílová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Peter Horak
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Milan Ešner
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Dietmar Pils
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Medical University of Vienna, Vienna, Austria
| | - Mariam Anees
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Erwin Tomasich
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - František Dráfi
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Jurtíková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michael Krainer
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
27
|
O'Brien NA, McDonald K, Tong L, von Euw E, Kalous O, Conklin D, Hurvitz SA, di Tomaso E, Schnell C, Linnartz R, Finn RS, Hirawat S, Slamon DJ. Targeting PI3K/mTOR Overcomes Resistance to HER2-Targeted Therapy Independent of Feedback Activation of AKT. Clin Cancer Res 2014; 20:3507-20. [DOI: 10.1158/1078-0432.ccr-13-2769] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Dacomitinib, an irreversible Pan-ErbB inhibitor significantly abrogates growth in head and neck cancer models that exhibit low response to cetuximab. PLoS One 2013; 8:e56112. [PMID: 23405260 PMCID: PMC3566064 DOI: 10.1371/journal.pone.0056112] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 01/08/2013] [Indexed: 12/28/2022] Open
Abstract
Aberrant epidermal growth factor (EGF) signaling is associated with tumor growth in squamous cell carcinoma of the head and neck in humans (HNSCC), and is a major focus of targeted therapy. Cetuximab, a monoclonal antibody against EGFR, has been successful at prolonging survival but has only a 10% tumor shrinkage response rate in a clinical setting. The goal of this study was to compare dacomitinib (PF-00299804), a next generation small molecule tyrosine kinase inhibitor that irreversibly blocks multiple HER family receptors (HER-1 (EGFR), HER-2 and HER-4 tyrosine kinases), to cetuximab, the current FDA approved anti-EGFR medication for HNSCC and erlotinib, an EGFR specific small molecule tyrosine kinase inhibitor. Dacomitinib, erlotinib and cetuximab were tested in a panel of 27 HNSCC cell lines. Treatment with 100 ug/ml of cetuximab or 1 uM of erlotinib inhibited growth by at least 50% in 7/27 cell lines, while treatment with 1 uM of dacomitinib had similar growth inhibition in 17/27 lines. Cell lines representing three levels of sensitivity to dacomitinib were further examined using Western blots, cell cycle and apoptosis analysis. Treatment with 100 nM of dacomitinib reduced EGFR activity and downstream AKT and ERK pathways more effectively than treatment with 100 ug/ml of cetuximab in all ten tested lines. Although both compounds induced apoptosis at similar levels, dacomitinib caused greater G0/G1 arrest. Sensitivity to EGFR blockade was associated with levels of EGFR and ERK and was not associated with common oncogenic mutations and copy number variations. Phosphorylated and total EGFR and ERK levels correlate with sensitivity to both cetuximab and dacomitinib. Three of the four lines in the exquisitely sensitive group had the highest levels of phosphorylated and total EGFR and ERK among the ten lines selected, while the three resistant lines collectively had the lowest levels. Neither pAKT nor tAKT was associated with sensitivity.
Collapse
|
29
|
Drexler HG, Uphoff CC. Mycoplasma contamination of cell cultures: Incidence, sources, effects, detection, elimination, prevention. Cytotechnology 2012; 39:75-90. [PMID: 19003295 DOI: 10.1023/a:1022913015916] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The contamination of cell cultures by mycoplasmas remains a major problem in cell culture. Mycoplasmas can produce a virtually unlimited variety of effects in the cultures they infect. These organisms are resistant to most antibiotics commonly employed in cell cultures. Here we provide a concise overview of the current knowledge on: (1) the incidence and sources of mycoplasma contamination in cell cultures, the mycoplasma species most commonly detected in cell cultures, and the effects of mycoplasmas on the function and activities of infected cell cultures; (2) the various techniques available for the detection of mycoplasmas with particular emphasis on the most reliable detection methods; (3) the various methods available for the elimination of mycoplasmas highlighting antibiotic treatment; and (4) the recommended procedures and working protocols for the detection, elimination and prevention of mycoplasma contamination. The availability of accurate, sensitive and reliable detection methods and the application of robust and successful elimination methods provide powerful means for overcoming the problem of mycoplasma contamination in cell cultures.
Collapse
Affiliation(s)
- Hans G Drexler
- Department of Human and Animal Cell Cultures, DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany (Author for correspondence; E-mail,
| | | |
Collapse
|
30
|
Dacomitinib (PF-00299804), an Irreversible Pan-HER Inhibitor, Inhibits Proliferation of HER2-Amplified Breast Cancer Cell Lines Resistant to Trastuzumab and Lapatinib. Mol Cancer Ther 2012; 11:1978-87. [DOI: 10.1158/1535-7163.mct-11-0730] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Péterfia B, Füle T, Baghy K, Szabadkai K, Fullár A, Dobos K, Zong F, Dobra K, Hollósi P, Jeney A, Paku S, Kovalszky I. Syndecan-1 enhances proliferation, migration and metastasis of HT-1080 cells in cooperation with syndecan-2. PLoS One 2012; 7:e39474. [PMID: 22745764 PMCID: PMC3383727 DOI: 10.1371/journal.pone.0039474] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/21/2012] [Indexed: 11/18/2022] Open
Abstract
Syndecans are transmembrane heparan sulphate proteoglycans. Their role in the development of the malignant phenotype is ambiguous and depends upon the particular type of cancer. Nevertheless, syndecans are promising targets in cancer therapy, and it is important to elucidate the mechanisms controlling their various cellular effects. According to earlier studies, both syndecan-1 and syndecan-2 promote malignancy of HT-1080 human fibrosarcoma cells, by increasing the proliferation rate and the metastatic potential and migratory ability, respectively. To better understand their tumour promoter role in this cell line, syndecan expression levels were modulated in HT-1080 cells and the growth rate, chemotaxis and invasion capacity were studied. For in vivo testing, syndecan-1 overexpressing cells were also inoculated into mice. Overexpression of full length or truncated syndecan-1 lacking the entire ectodomain but containing the four juxtamembrane amino acids promoted proliferation and chemotaxis. These effects were accompanied by a marked increase in syndecan-2 protein expression. The pro-migratory and pro-proliferative effects of truncated syndecan-1 were not observable when syndecan-2 was silenced. Antisense silencing of syndecan-2, but not that of syndecan-1, inhibited cell migration. In vivo, both full length and truncated syndecan-1 increased tumour growth and metastatic rate. Based on our in vitro results, we conclude that the tumour promoter role of syndecan-1 observed in HT-1080 cells is independent of its ectodomain; however, in vivo the presence of the ectodomain further increases tumour proliferation. The enhanced migratory ability induced by syndecan-1 overexpression is mediated by syndecan-2. Overexpression of syndecan-1 also leads to activation of IGF1R and increased expression of Ets-1. These changes were not evident when syndecan-2 was overexpressed. These findings suggest the involvement of IGF1R and Ets-1 in the induction of syndecan-2 synthesis and stimulation of proliferation by syndecan-1. This is the first report demonstrating that syndecan-1 enhances malignancy of a mesenchymal tumour cell line, via induction of syndecan-2 expression.
Collapse
Affiliation(s)
- Bálint Péterfia
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tibor Füle
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Krisztina Szabadkai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Alexandra Fullár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Dobos
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Fang Zong
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Katalin Dobra
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Péter Hollósi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
32
|
Degeling MH, Maguire CA, Bovenberg MSS, Tannous BA. Sensitive assay for mycoplasma detection in mammalian cell culture. Anal Chem 2012; 84:4227-32. [PMID: 22506739 DOI: 10.1021/ac2033112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycoplasma contamination in mammalian cell cultures is often overlooked yet is a serious issue which can induce a myriad of cellular changes leading to false interpretation of experimental results. Here, we present a simple and sensitive assay to monitor mycoplasma contamination (mycosensor) based on degradation of the Gaussia luciferase reporter in the conditioned medium of cells. This assay proved to be more sensitive as compared to a commercially available bioluminescent assay in detecting mycoplasma contamination in seven different cell lines. The Gaussia luciferase mycosensor assay provides an easy tool to monitor mammalian cell contaminants in a high-throughput fashion.
Collapse
Affiliation(s)
- M Hannah Degeling
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
33
|
Hwang JM, Lee JH, Yeh JY. A multi-laboratory profile of Mycoplasma contamination in Lawsonia intracellularis cultures. BMC Res Notes 2012; 5:78. [PMID: 22284165 PMCID: PMC3284386 DOI: 10.1186/1756-0500-5-78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/27/2012] [Indexed: 11/15/2022] Open
Abstract
Background During the routine laboratory cultivation of Lawsonia intracellularis, Mycoplasma contamination has been a frequent problem. When Mycoplasma contamination occurs in laboratories that study L. intracellularis, the cultures must be discarded for 4 reasons: 1) Mycoplasma is inevitably concentrated along with L. intracellularis during the passage of L. intracellularis; 2) Mycoplasma inhibits the growth of L. intracellularis; and 3) it is impossible to selectively eliminate Mycoplasma in L. intracellularis cultures. In this study, we observed the contamination of Mycoplasma species during L. intracellularis cultivation among multiple laboratories. Results The presence of a Mycoplasma infection in the L. intracellularis cultures was verified using polymerase chain reaction (PCR), and a sequence analysis of the partial 16S rRNA and 23S rRNA genes was performed. A PCR-based assay using genus-specific universal primers revealed that 29 (85.3%) of the 34 cultures were contaminated with Mycoplasma, including 26 with M. hyorhinis (89.2%), 2 with M. orale (6.9%), and 1 with M. fermentans (3.4%). The Mycoplasma contamination was not the result of infection with material of pig origin. McCoy cells, which are required for the cultivation of L. intracellularis, were also ruled out as the source of the Mycoplasma contamination. Conclusions In this study, M. hyorhinis was identified as the most common mollicute that contaminated L. intracellularis cultures. Whether L. intracellularis enhances the biological properties of Mycoplasma to promote infection in McCoy cells is not known. Because the McCoy cell line stocks that were used simultaneously were all negative for Mycoplasma, and the same worker handled both the McCoy cells to maintain the bacteria and the L. intracellularis cultures, it is possible that the L. intracellularis cultures are more vulnerable to Mycoplasma contamination. Taken together, these results suggest that continuous cultures of L. intracellularis must be tested for Mycoplasma contamination at regular intervals. The GenBank accession numbers for the sequences reported in this paper are JN689375 to JN689377.
Collapse
Affiliation(s)
- Jeong-Min Hwang
- Foreign Animal Diseases Division, Animal, Plant, and Fisheries Quarantine and Inspection Agency, Anyang-ro 175, Manan-gu, Anyang-si, Gyeonggi-do 430-824, Republic of Korea.
| | | | | |
Collapse
|
34
|
Wu Y, Zhao Q, Peng C, Sun L, Li XF, Kuang DM. Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. J Pathol 2011; 225:438-47. [PMID: 21826665 DOI: 10.1002/path.2947] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/25/2011] [Accepted: 05/25/2011] [Indexed: 01/06/2023]
Abstract
Inflammation is a component of tumour progression mechanisms. Neutrophils are a common inflammatory infiltrate in many tumours, but their regulation and functions in neoplasia are not understood. We recently demonstrated that pro-inflammatory IL-17-producing cells recruited blood neutrophils into the peritumoural stroma of hepatocellular carcinoma by epithelium-derived CXC chemokines. Here we show that a substantial population of neutrophils accumulates in the peritumoural stroma of hepatocellular, cervical, colorectal, and gastric carcinomas, and that this correlates with metastases in hepatocellular and gastric carcinomas. Exposure of neutrophils to culture supernatants from several types of solid tumour cells (TSN) resulted in sustained survival and pro-tumourigenic effects of cells. Kinetic experiments reveal that, shortly after exposure to TSN, neutrophils began to provoke activation and then produced significant inflammatory cytokines and expressed more anti-apoptotic Mcl-1 but less pro-apoptotic Bax. These long-lived neutrophils effectively enhanced the cancer cell motility via a contact-dependent mechanism; this effect, together with early activation and subsequent longevity of TSN-exposed neutrophils, could be reversed by blocking the activation of PI3K/Akt signalling in neutrophils. Moreover, we found that hyaluronan (HA) fragments constitute a common factor produced by various tumours that mimics the effect of TSN to induce long-lived neutrophils and subsequent malignant cell migration. The effects of TSN were inhibited by function blocking interactions between HA and its receptor TLR4 on neutrophils, suggesting that this is a key signalling pathway involved. These results indicate that HA derived from malignant cells educates neutrophils to adopt an activated phenotype, and in that way stimulates the metastasis of malignant cells, which represents a positive regulatory loop between tumours and their stroma during neoplastic progression.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Cryopreservation and quality control of mouse embryonic feeder cells. Cryobiology 2011; 63:104-10. [PMID: 21810414 DOI: 10.1016/j.cryobiol.2011.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/23/2022]
Abstract
Stem cell research is a highly promising and rapidly progressing field inside regenerative medicine. Embryonic stem cells (ESCs), reprogrammed "induced pluripotent" cells (iPS), or lately protein induced pluripotent cells (piPS) share one inevitable factor: mouse embryonic feeder cells (MEFs), which are commonly used for ESC long term culture procedures and colony regeneration. These MEFs originate from different mouse strains, are inactivated by different methods and are differently cryopreserved. Incomprehensibly, there are to date no established quality control parameters for MEFs to insure consistency of ESC experiments and culture. Hence, in this work, we developed a bench-top quality control for embryonic feeder cells. According to our findings, MEFs should be inactivated by irradiation (30Gy) and cryopreserved with optimal 10% DMSO at 1K/min freezing velocity. Thawed cells should be free of mycoplasma and should have above 85 ± 13.1% viability. Values for the metabolic activity should be above 150 ± 10.5% and for the combined gene expression of selected marker genes above 225 ± 43.8% compared to non-irradiated, cryopreserved controls. Cells matching these criteria can be utilized for at least 12 days for ESC culture without detaching from the culture dish or disruption of the cell layer.
Collapse
|
36
|
Uphoff CC, Drexler HG. Detecting mycoplasma contamination in cell cultures by polymerase chain reaction. Methods Mol Biol 2011; 731:93-103. [PMID: 21516400 DOI: 10.1007/978-1-61779-080-5_8] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The detection of mycoplasmas in human and animal cell cultures is mandatory for every cell culture laboratory, because these bacteria are common contaminants, persist unrecognized in cell cultures for many years, and affect research results as well as the purity of cell culture products. The reliability of the mycoplasma detection depends on the sensitivity and specificity of the method and should also be convenient to be included in the basic routine of cell culture quality assessment. Polymerase chain reaction (PCR) detection is one of the acknowledged methodologies to detect mycoplasmas in cell cultures and cell culture products. Although the PCR offers a fast and simple technique to detect mycoplasmas, the method is also susceptible to errors and can produce false positive as well as false-negative results. Thus, the establishment and the routine application of the PCR assay require optimization and the inclusion of the appropriate control reactions. The presented protocol describes sample preparation, DNA extraction, PCR run, the analysis of the PCR products, and speciation of the contaminant. It also provides detailed information on how to avoid artifacts produced by the method. Established properly, PCR is a reliable, fast, and sensitive method and should be applied regularly to monitor the contamination status of cell cultures.
Collapse
Affiliation(s)
- Cord C Uphoff
- DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.
| | | |
Collapse
|
37
|
Cheong KA, Agrawal SR, Lee AY. Validation of nested PCR and a selective biochemical method as alternatives for mycoplasma detection. J Basic Microbiol 2010; 51:215-9. [PMID: 20806253 DOI: 10.1002/jobm.201000066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/09/2010] [Indexed: 11/05/2022]
Abstract
Direct culture is the most common way to reliably detect mycoplasma, but it is not practical for the qualitative control of cell therapeutics because of the elaborate culture medium, the prolonged incubation time, and the large sample volumes. Here, we chose two alternative methods using commercial detection kits, the PCR mycoplasma detection kit with nested PCR and the selective biochemical method, MycoAlert(®), and validated them with the direct culture method as a reference. We tested eight mycoplasma species and five validation parameters: specificity, detection limit, robustness, repeatability, and ruggedness, based on the regulatory guidelines in the US Pharmacopoeia. All experiments were performed using fibroblasts spiked with mycoplasma. Specificity tests for both methods included all mycoplasma species, except Mycoplasma pneumonia and M. genitalium for the nested PCR and Ureaplasma urealyticum for the MycoAlert(®) assay. Regarding the detection limit, the nested PCR proved to be as sensitive as the direct culture method and more sensitive than the MycoAlert(®) assay. The predicted median for probit = 0.9 was 54 (44-76) CFU/ml for M. hyorhinis and 16 (13-23) CFU/ml for M. hominis by the nested PCR, but 431 (346-593) CFU/ml and 105 (87-142) CFU/ml, respectively, with MycoAlert(®). Changes in the concentration of reagents, reagent lot, or individual analysts did not influence the results of the examined methods. The results of this study support nested PCR as a valuable alternative for mycoplasma detection.
Collapse
Affiliation(s)
- Kyung Ah Cheong
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Korea
| | | | | |
Collapse
|
38
|
Kuang DM, Peng C, Zhao Q, Wu Y, Zhu LY, Wang J, Yin XY, Li L, Zheng L. Tumor-Activated Monocytes Promote Expansion of IL-17–Producing CD8+ T Cells in Hepatocellular Carcinoma Patients. THE JOURNAL OF IMMUNOLOGY 2010; 185:1544-9. [DOI: 10.4049/jimmunol.0904094] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
O'Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J, Duffy MJ, Crown J, O'Donovan N, Slamon DJ. Activated Phosphoinositide 3-Kinase/AKT Signaling Confers Resistance to Trastuzumab but not Lapatinib. Mol Cancer Ther 2010; 9:1489-502. [DOI: 10.1158/1535-7163.mct-09-1171] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Tan JKH, Quah BJC, Griffiths KL, Periasamy P, Hey YY, O'Neill HC. Identification of a novel antigen cross-presenting cell type in spleen. J Cell Mol Med 2010; 15:1189-99. [PMID: 20477902 PMCID: PMC3822631 DOI: 10.1111/j.1582-4934.2010.01089.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Antigen-presenting cells (APC), like dendritic cells (DC), are essential for T-cell activation, leading to immunity or tolerance. Multiple DC subsets each play a unique role in the immune response. Here, a novel splenic dendritic-like APC has been characterized in mice that has immune function and cell surface phenotype distinct from other, described DC subsets. These were identified as a cell type continuously produced in spleen long-term cultures (LTC) and have an in vivo equivalent cell type in mice, namely 'L-DC'. This study characterizes LTC-DC in terms of marker phenotype and function, and compares them with L-DC and other known splenic DC and myeloid subsets. L-DC display a myeloid dendritic-like phenotype equivalent to LTC-DC as CD11c(lo) CD11b(hi) MHC-II(-) CD8α(-) cells, distinct by high accessibility and endocytic capacity for blood-borne antigen. Both LTC-DC and L-DC have strong antigen cross-presentation ability leading to strong activation of CD8(+) T cells, particularly after exposure to lipopolysaccharide. However, they have weak ability to stimulate CD4(+) T cells in antigen-specific responses. Evidence is presented here for a novel DC type produced by in vitro haematopoiesis which has distinct antigen-presenting potential and reflects a DC subset present also in vivo in spleen.
Collapse
Affiliation(s)
- Jonathan K H Tan
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Mariotti E, Gemei M, Mirabelli P, D'Alessio F, Di Noto R, Fortunato G, Del Vecchio L. The percentage of CD133+ cells in human colorectal cancer cell lines is influenced by Mycoplasma hyorhinis infection. BMC Cancer 2010; 10:120. [PMID: 20353562 PMCID: PMC2854114 DOI: 10.1186/1471-2407-10-120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Mollicutes contamination is recognized to be a critical issue for the cultivation of continuous cell lines. In this work we characterized the effect of Mycoplasma hyorhinis contamination on CD133 expression in human colon cancer cell lines. Methods MycoAlert® and mycoplasma agar culture were used to detect mycoplasma contamination on GEO, SW480 and HT-29 cell lines. Restriction fragment length polymorphism assay was used to determine mycoplasma species. All cellular models were decontaminated by the use of a specific antibiotic panel (Enrofloxacin, Ciprofloxacin, BM Cyclin 1 and 2, Mycoplasma Removal Agent and MycoZap®). The percentage of CD133 positive cells was analyzed by flow cytometry on GEO, SW480 and HT-29 cell lines, before and after Mycoplasma hyorhinis eradication. Results Mycoplasma hyorhinis infected colon cancer cell lines showed an increased percentage of CD133+ cells as compared to the same cell lines rendered mycoplasma-free by effective exposure to antibiotic treatment. The percentage of CD133 positive cells increased again when mycoplasma negative cells were re-infected by Mycoplasma hyorhinis. Conclusions Mycoplasma hyorhinis infection has an important role on the quality of cultured human colon cancer cell lines giving a false positive increase of cancer stem cells fraction characterized by CD133 expression. Possible explanations are (i) the direct involvement of Mycoplasma on CD133 expression or (ii) the selective pressure on a subpopulation of cells characterized by constitutive CD133 expression. In keeping with United Kingdom Coordinating Committee on Cancer Research (UKCCCR) guidelines, the present data indicate the mandatory prerequisite, for investigators involved in human colon cancer research area, of employing mycoplasma-free cell lines in order to avoid the production of non-reproducible or even false data.
Collapse
Affiliation(s)
- Elisabetta Mariotti
- CEINGE - Biotecnologie Avanzate, via Comunale Margherita 482, Napoli 80145, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Kim MJ, Romero R, Gervasi MT, Kim JS, Yoo W, Lee DC, Mittal P, Erez O, Kusanovic JP, Hassan SS, Kim CJ. Widespread microbial invasion of the chorioamniotic membranes is a consequence and not a cause of intra-amniotic infection. J Transl Med 2009; 89:924-36. [PMID: 19506551 PMCID: PMC2743483 DOI: 10.1038/labinvest.2009.49] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Acute chorioamnionitis is a response to amniotic fluid (AF) infection. However, it remains unclear whether substantial bacterial propagation in the chorioamniotic membranes (CAMs) precedes microbial invasion of the amniotic cavity (MIAC), which is inconsistent with characteristic 'amniotropic neutrophil migration' in acute chorioamnionitis. This study was performed to determine whether CAMs have widespread bacterial infection during MIAC and whether bacteria normally colonize CAMs. AF pellets and CAMs from the following groups were studied: group 1, patients with positive (n=18) or negative (n=22) AF cultures; group 2, patients with or without acute chorioamnionitis in which the amnion and chorion were studied separately (n=60); and group 3, patients at term who underwent a cesarean delivery (n=30). SYTO 9/propidium iodide fluorescent staining and fluorescent in situ hybridization for 16S rRNA were performed. Real-time quantitative PCR for 16S rDNA and PCR for genital mycoplasmas were also conducted. Bacteria were more frequently detected in AF than in CAMs of patients with positive AF culture (100 vs. 33%; P<0.0001). Bacteria were detected more frequently in CAMs as the severity of chorioamnionitis increased (P<0.01). The median 16S rRNA gene copy number in the amnion was significantly greater than in the chorion (group 2; P<0.0001). Bacteria were not detected in CAMs or AF in women at term before labor (group 3). A fraction of patients with chorioamnionitis or MIAC did not have bacteria in CAMs. Collectively, the findings herein indicate that MIAC does not follow widespread infection of CAMs, but precedes it. We propose a model of MIAC: the initial stage is intra-amniotic bacterial invasion through a discrete region of the CAMs, followed by intra-amniotic proliferation, and bacterial invasion of CAMs primarily extends from the amniotic fluid. This study emphasizes the importance of assessing the intra-amniotic compartment for diagnosis and treatment of preterm birth.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - Jung-Sun Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Wonsuk Yoo
- Translational Research and Clinical Epidemiology, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Deug-Chan Lee
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, USA
| | - Pooja Mittal
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
43
|
Schmitt M, Pawlita M. High-throughput detection and multiplex identification of cell contaminations. Nucleic Acids Res 2009; 37:e119. [PMID: 19589807 PMCID: PMC2764421 DOI: 10.1093/nar/gkp581] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Unnoticed cell culture contamination by viruses, Mycoplasma, or other cell lines is not uncommon and a threat to laboratory safety and the quality of scientific results. We developed and validated a novel high-throughput Multiplex cell Contamination Test (McCT), which is currently able to detect 37 contamination markers in a single reaction. The assay is based on multiplex PCR with target-specific primers and subsequent hybridization of amplimers to specific oligonucleotide probes. McCT proved to be highly specific, sensitive and robust, and allows to analyze more than 1000 cell lysates per week. In conclusion, the novel McCT assay is a powerful high-throughput tool in assessing cell line purity.
Collapse
Affiliation(s)
- Markus Schmitt
- Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, Heidelberg 69120, Germany.
| | | |
Collapse
|
44
|
Zhang JP, Zheng L, Wang JH, Magnusson KE, Liu X. Lipid extract from completely sporoderm-broken germinating Ganoderma sinensis spores elicits potent antitumor immune responses in human macrophages. Phytother Res 2009; 23:844-50. [PMID: 19117333 DOI: 10.1002/ptr.2707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ganoderma sinensis has been used widely in Oriental countries for the prevention and treatment of various diseases including cancer. Previous studies have shown that the lipid extract from Ganoderma exhibits direct cytotoxicity against tumor cells. Here, it is reported that the lipid extract from germinating G. sinensis spores, at lower concentrations that have no direct tumoricidal activity, induce potent antitumor immune responses in human monocytes/macrophages. Upon stimulation with the lipid extract, monocytes/macrophages exhibited markedly increased production of proinflammatory cytokines and surface expression of costimulatory molecules. Conditioned medium from stimulated cells effectively suppressed the growth of tumor cells. Apparently, the lipid extract triggered macrophage activation via a mechanism different from that associated with LPS. Moreover, it was observed that the lipid extract could partially re-establish the antitumor activity of the immunosuppressive tumor-associated macrophages. These results indicated that in addition to its direct tumoricidal activity, the lipid extract from G. sinensis spores could exert antitumor activity by stimulating the activation of human monocytes/macrophages.
Collapse
Affiliation(s)
- Jing-Ping Zhang
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | | | | | | | | |
Collapse
|
45
|
Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, Zheng L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. ACTA ACUST UNITED AC 2009; 206:1327-37. [PMID: 19451266 PMCID: PMC2715058 DOI: 10.1084/jem.20082173] [Citation(s) in RCA: 722] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Macrophages (Mφ) are prominent components of solid tumors and exhibit distinct phenotypes in different microenvironments. We have recently found that tumors can alter the normal developmental process of Mφ to trigger transient activation of monocytes in peritumoral stroma. We showed that a fraction of monocytes/Mφ in peritumoral stroma, but not in cancer nests, expresses surface PD-L1 (also termed B7-H1) molecules in tumors from patients with hepatocellular carcinoma (HCC). Monocytes activated by tumors strongly express PD-L1 proteins with kinetics similar to their activation status, and significant correlations were found between the levels of PD-L1+ and HLA-DRhigh on tumor-infiltrating monocytes. Autocrine tumor necrosis factor α and interleukin 10 released from activated monocytes stimulated monocyte expression of PD-L1. The PD-L1+ monocytes effectively suppressed tumor-specific T cell immunity and contributed to the growth of human tumors in vivo; the effect could be reversed by blocking PD-L1 on those monocytes. Moreover, we found that PD-L1 expression on tumor-infiltrating monocytes increased with disease progression, and the intensity of the protein was associated with high mortality and reduced survival in the HCC patients. Thus, expression of PD-L1 on activated monocytes/Mφ may represent a novel mechanism that links the proinflammatory response to immune tolerance in the tumor milieu.
Collapse
Affiliation(s)
- Dong-Ming Kuang
- State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510 275, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Kumar A, Yerneni LK. Semi-automated relative quantification of cell culture contamination with mycoplasma by Photoshop-based image analysis on immunofluorescence preparations. Biologicals 2008; 37:55-60. [PMID: 19081267 DOI: 10.1016/j.biologicals.2008.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/08/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022] Open
Abstract
Mycoplasma contamination in cell culture is a serious setback for the cell-culturist. The experiments undertaken using contaminated cell cultures are known to yield unreliable or false results due to various morphological, biochemical and genetic effects. Earlier surveys revealed incidences of mycoplasma contamination in cell cultures to range from 15 to 80%. Out of a vast array of methods for detecting mycoplasma in cell culture, the cytological methods directly demonstrate the contaminating organism present in association with the cultured cells. In this investigation, we report the adoption of a cytological immunofluorescence assay (IFA), in an attempt to obtain a semi-automated relative quantification of contamination by employing the user-friendly Photoshop-based image analysis. The study performed on 77 cell cultures randomly collected from various laboratories revealed mycoplasma contamination in 18 cell cultures simultaneously by IFA and Hoechst DNA fluorochrome staining methods. It was observed that the Photoshop-based image analysis on IFA stained slides was very valuable as a sensitive tool in providing quantitative assessment on the extent of contamination both per se and in comparison to cellularity of cell cultures. The technique could be useful in estimating the efficacy of anti-mycoplasma agents during decontaminating measures.
Collapse
Affiliation(s)
- Ashok Kumar
- Cell Biology Laboratory, Institute of Pathology (ICMR), P.O. Box 4909, Safdarjung Hospital Campus, New Delhi 110029, India
| | | |
Collapse
|
47
|
Kuang DM, Zhao Q, Xu J, Yun JP, Wu C, Zheng L. Tumor-educated tolerogenic dendritic cells induce CD3epsilon down-regulation and apoptosis of T cells through oxygen-dependent pathways. THE JOURNAL OF IMMUNOLOGY 2008; 181:3089-98. [PMID: 18713979 DOI: 10.4049/jimmunol.181.5.3089] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Defects in the CD3/TCR complex and impairment of T cell function are necessary for tumor evasion, but the underlying mechanisms are incompletely understood. We found that culture supernatants from several types of solid tumor cell lines drove human monocytes to become tolerogenic semimature dendritic cells (TDCs). Upon encountering T cells, the TDCs triggered rapid down-regulation of CD3epsilon and TCR-alpha/beta and subsequent apoptosis in autologous T cells. Consistent with these results, accumulation of immunosuppressive DCs coincided with CD3epsilon down-regulation and T cell deletion in cancer nests of human tumors. The impaired T cell function was mediated by factor(s) released by live TDCs after direct interaction with lymphocytes. Also, the TDC-induced effect on T cells was markedly reduced by blocking of NADPH oxidase but not by inhibition of arginase, inducible NO synthase (iNOS), IDO, or IFN-gamma. Moreover, we found that hyaluronan fragments constituted a common factor produced by a variety of human tumor cell lines to induce formation of TDCs. These observations indicate that tumor microenvironments, including hyaluronan fragments derived from cancer cells, educate DCs to adopt a semimature phenotype, which in turn aids tumor immune escape by causing defects in the CD3/TCR complex and deletion of T cells.
Collapse
Affiliation(s)
- Dong-Ming Kuang
- State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
48
|
Biological enrichment of Mycoplasma agents by cocultivation with permissive cell cultures. Appl Environ Microbiol 2008; 74:5383-91. [PMID: 18606798 DOI: 10.1128/aem.00720-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we describe our results on the evaluation of the ability of different permissive mammalian cell lines to support the biological enrichment of mycoplasma species known to be bacterial contaminants of cell substrates. The study showed that this approach is able to significantly improve the efficiency of mycoplasma detection based on nucleic acid testing or biochemical technologies (e.g., MycoAlert mycoplasma detection). Of 10 different cell lines (Vero, MDBK, HEK-293, Hep-G2, CV-1, EBTr, WI-38, R9ab, MDCK, and High Five) used in the study, only MDCK cell culture was found to support the efficient growth of all the tested mycoplasmas (Mycoplasma arginini, M. bovis, M. fermentans, M. gallinaceum, M. gallisepticum, M. synoviae, M. hominis, M. hyorhinis, M. orale, M. salivarium, and Acholeplasma laidlawii) known to be most frequently associated with contamination of cell substrates and cell lines in research laboratories or manufacturing facilities. The infection of MDCK cells with serial dilutions of each mycoplasma species demonstrated that these common cell line contaminants can be detected reliably after 7-day enrichment in MDCK cell culture at contamination levels of 0.05 to 0.25 CFU/ml. The High Five insect cell line was also found to be able to support the efficient growth of most mycoplasma species tested, except for M. hyorhinis strain DBS1050. However, mycoplasma growth in insect cell culture was demonstrated to be temperature dependent, and the most efficient growth was observed when the incubation temperature was increased from 28 degrees C to between 35 and 37 degrees C. We believe that this type of mycoplasma enrichment is one of the most promising approaches for improving the purity and safety testing of cell substrates and other cell-derived biologics and pharmaceuticals.
Collapse
|
49
|
Kumar A, Ali A, Yerneni LK. Tandem use of immunofluorescent and DNA staining assays to validate nested PCR detection of mycoplasma. In Vitro Cell Dev Biol Anim 2008; 44:189-92. [PMID: 18528736 DOI: 10.1007/s11626-008-9081-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/17/2007] [Indexed: 11/26/2022]
Abstract
Mycoplasma contamination in cell culture is a serious setback to cell culturists across the world with a very high rate of reported occurrence particularly because of difficult early detection. Out of a variety of detection methods known, the double-step nested polymerase chain reaction (PCR)-based detection of mycoplasma in cell culture has been critically viewed upon because of chances of producing reliable results. A nested PCR technique, described to detect a large range of cell-culture-contaminating mycoplasma species, with greater sensitivity to detect as low a contamination as a few organisms, was compared with the results from two cytological techniques employed in tandem. These are DNA staining using Hoechst, the gold standard, and an immunofluorescent assay using a highly specific monoclonal antibody. The study undertaken on randomly collected cell cultures revealed a false-negative and several false-positive results in comparison to the cytological methods employed. The observations were particularly more unambiguous with the immunofluorescent assay employed in the study while simultaneously employed Hoechst staining serving as an indicator of bacterial contamination. There is a general apprehension that genus-specific PCR approaches could be associated with inaccurate outcome and only species-specific PCRs may be satisfactory in routine screening for mycoplasma contamination in cell cultures. At this juncture, it may be suggested that caution must be exercised while adopting the two-step nested PCR-based detection approaches, and the simultaneous employment of cytological methods used in this investigation could prove to be practicable in the proper interpretation of results.
Collapse
Affiliation(s)
- Ashok Kumar
- Cell Biology, Institute of Pathology (ICMR), P. B. No. 4909, Safdarjang Hospital Campus, New Delhi, Delhi 110029, India
| | | | | |
Collapse
|
50
|
Kong H, Volokhov DV, George J, Ikonomi P, Chandler D, Anderson C, Chizhikov V. Application of cell culture enrichment for improving the sensitivity of mycoplasma detection methods based on nucleic acid amplification technology (NAT). Appl Microbiol Biotechnol 2007; 77:223-32. [PMID: 17717660 DOI: 10.1007/s00253-007-1135-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/18/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
Herein, we present data demonstrating that the application of initial cell culture enrichment could significantly improve mycoplasma testing methods based on the nucleic acid amplification technology (NAT) including a polymerase chain reaction (PCR)/microarray method. The results of the study using Vero cells demonstrated that this cell culture is able (1) to support efficient growth of mycoplasmas of primary interest, i.e., species found to be cell line contaminants, (2) to increase the sensitivity of NAT assay to the detection limits of the conventional broth/agar culture methods, and (3) to reduce the time required for mycoplasma testing fourfold in comparison with the conventional methods. Detection and identification of mycoplasmal agents were conducted using a modified PCR/microarray assay based on genetic differences among Mollicutes in the 16S-23S rRNA intergenic transcribed spacer (ITS). The application of nano-gold/silver enhancement technology instead of previously used fluorescent dyes significantly simplified the readout of microarray results and allowed us to avoid using expensive scanning equipment. This modification has the potential to expand the implementation of microarray techniques into laboratories involved in diagnostic testing of mycoplasma contamination in cell substrates and potentially in other biological and pharmaceutical products.
Collapse
Affiliation(s)
- Hyesuk Kong
- Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, HFM-470, Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|