1
|
Shao D, Liu C, Wang Y, Lin J, Cheng X, Han P, Li Z, Jian D, Nie J, Jiang M, Wei Y, Xing J, Guo Z, Wang W, Yi X, Tang H. DNMT1 determines osteosarcoma cell resistance to apoptosis by associatively modulating DNA and mRNA cytosine-5 methylation. FASEB J 2023; 37:e23284. [PMID: 37905981 DOI: 10.1096/fj.202301306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Cellular apoptosis is a central mechanism leveraged by chemotherapy to treat human cancers. 5-Methylcytosine (m5C) modifications installed on both DNA and mRNA are documented to regulate apoptosis independently. However, the interplay or crosstalk between them in cellular apoptosis has not yet been explored. Here, we reported that promoter methylation by DNMT1 coordinated with mRNA methylation by NSun2 to regulate osteosarcoma cell apoptosis. DNMT1 was induced during osteosarcoma cell apoptosis triggered by chemotherapeutic drugs, whereas NSun2 expression was suppressed. DNMT1 was found to repress NSun2 expression by methylating the NSun2 promoter. Moreover, DNMT1 and NSun2 regulate the anti-apoptotic genes AXL, NOTCH2, and YAP1 through DNA and mRNA methylation, respectively. Upon exposure to cisplatin or doxorubicin, DNMT1 elevation drastically reduced the expression of these anti-apoptotic genes via enhanced promoter methylation coupled with NSun2 ablation-mediated attenuation of mRNA methylation, thus rendering osteosarcoma cells to apoptosis. Collectively, our findings establish crosstalk of importance between DNA and RNA cytosine methylations in determining osteosarcoma resistance to apoptosis during chemotherapy, shedding new light on future treatment of osteosarcoma, and adding additional layers to the control of gene expression at different epigenetic levels.
Collapse
Affiliation(s)
- Dongxing Shao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Cihang Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jing Lin
- Department of Laboratory Medicine, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaolei Cheng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Pei Han
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Dongdong Jian
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junwei Nie
- R&D Department, Vazyme Biotech Co., Ltd, Nanjing, China
| | | | - Yuanzhi Wei
- R&D Department, Vazyme Biotech Co., Ltd, Nanjing, China
| | - Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiping Guo
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xia Yi
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Deshotels L, Safa FM, Saba NS. NOTCH Signaling in Mantle Cell Lymphoma: Biological and Clinical Implications. Int J Mol Sci 2023; 24:10280. [PMID: 37373427 DOI: 10.3390/ijms241210280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite major progress in mantle cell lymphoma (MCL) therapeutics, MCL remains a deadly disease with a median survival not exceeding four years. No single driver genetic lesion has been described to solely give rise to MCL. The hallmark translocation t(11;14)(q13;q32) requires additional genetic alterations for the malignant transformation. A short list of recurrently mutated genes including ATM, CCND1, UBR5, TP53, BIRC3, NOTCH1, NOTCH2, and TRAF2 recently emerged as contributors to the pathogenesis of MCL. Notably, NOTCH1 and NOTCH2 were found to be mutated in multiple B cell lymphomas, including 5-10% of MCL, with most of these mutations occurring within the PEST domain of the protein. The NOTCH genes play a critical role in the early and late phases of normal B cell differentiation. In MCL, mutations in the PEST domain stabilize NOTCH proteins, rendering them resistant to degradation, which subsequently results in the upregulation of genes involved in angiogenesis, cell cycle progression, and cell migration and adhesion. At the clinical level, mutated NOTCH genes are associated with aggressive features in MCL, such as the blastoid and pleomorphic variants, a shorter response to treatment, and inferior survival. In this article, we explore in detail the role of NOTCH signaling in MCL biology and the ongoing efforts toward targeted therapeutic interventions.
Collapse
Affiliation(s)
- Leigh Deshotels
- Section of Hematology and Medical Oncology, Deming Department of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Firas M Safa
- Service d'hématologie, Centre Hospitalier du Mans, 72037 Le Mans, France
| | - Nakhle S Saba
- Section of Hematology and Medical Oncology, Deming Department of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
4
|
Fiorcari S, Maffei R, Atene CG, Mesini N, Maccaferri M, Leonardi G, Martinelli S, Paolini A, Nasillo V, Debbia G, Potenza L, Luppi M, Marasca R. Notch2 Increases the Resistance to Venetoclax-Induced Apoptosis in Chronic Lymphocytic Leukemia B Cells by Inducing Mcl-1. Front Oncol 2022; 11:777587. [PMID: 35070982 PMCID: PMC8770925 DOI: 10.3389/fonc.2021.777587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) has experienced a clinical revolution—thanks to the discovery of crucial pathogenic mechanisms. CLL is still an incurable disease due to intrinsic or acquired resistance of the leukemic clone. Venetoclax is a Bcl-2 inhibitor with a marked activity in CLL, but emerging patterns of resistance are being described. We hypothesize that intrinsic features of CLL cells may contribute to drive mechanisms of resistance to venetoclax. We analyzed the expression of Interferon Regulatory Factor 4 (IRF4), Notch2, and Mcl-1 in a cohort of CLL patients. We evaluated CLL cell viability after genetic and pharmaceutical modulation of Notch2 expression in patients harboring trisomy 12. We tested venetoclax in trisomy 12 CLL cells either silenced or not for Notch2 expression or in combination with an inhibitor of Mcl-1, AMG-176. Trisomy 12 CLL cells were characterized by low expression of IRF4 associated with high levels of Notch2 and Mcl-1. Notch2 and Mcl-1 expression determined protection of CLL cells from spontaneous and drug-induced apoptosis. Considering the involvement of Mcl-1 in venetoclax resistance, our data demonstrated a contribution of high levels of Notch2 and Mcl-1 in a reduced response to venetoclax in CLL cells carrying trisomy 12. Furthermore, reduction of Mcl-1 expression by silencing Notch2 or by treatment with AMG-176 was able to restore the response of CLL cells to venetoclax. The expression of Notch2 identifies a subset of CLL patients, mainly harboring trisomy 12, characterized by high levels of Mcl-1. This biological mechanism may compromise an effective response to venetoclax.
Collapse
Affiliation(s)
- Stefania Fiorcari
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Maffei
- Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Claudio Giacinto Atene
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicolò Mesini
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Maccaferri
- Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Giovanna Leonardi
- Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Silvia Martinelli
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Ambra Paolini
- Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Vincenzo Nasillo
- Diagnostic Hematology and Clinical Genomics Laboratory, Department of Laboratory Medicine and Pathology, Azienda Unità Sanitaria Locale di Modena (AUSL)/Azienda Ospedaliero-Universitaria di Modena (AOU) Policlinico, Policlinico, Modena, Italy
| | - Giulia Debbia
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy.,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy.,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy.,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Policlinico, Modena, Italy
| |
Collapse
|
5
|
Ciardullo C, Szoltysek K, Zhou P, Pietrowska M, Marczak L, Willmore E, Enshaei A, Walaszczyk A, Ho JY, Rand V, Marshall S, Hall AG, Harrison CJ, Soundararajan M, Eswaran J. Low BACH2 Expression Predicts Adverse Outcome in Chronic Lymphocytic Leukaemia. Cancers (Basel) 2021; 14:23. [PMID: 35008187 PMCID: PMC8750551 DOI: 10.3390/cancers14010023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogeneous disease with a highly variable clinical outcome. There are well-established CLL prognostic biomarkers that have transformed treatment and improved the understanding of CLL biology. Here, we have studied the clinical significance of two crucial B cell regulators, BACH2 (BTB and CNC homology 1, basic leucine zipper transcription factor 2) and BCL6 (B-cell CLL/lymphoma 6), in a cohort of 102 CLL patients and determined the protein interaction networks that they participate in using MEC-1 CLL cells. We observed that CLL patients expressing low levels of BCL6 and BACH2 RNA had significantly shorter overall survival (OS) than high BCL6- and BACH2-expressing cases. Notably, their low expression specifically decreased the OS of immunoglobulin heavy chain variable region-mutated (IGHV-M) CLL patients, as well as those with 11q and 13q deletions. Similar to the RNA data, a low BACH2 protein expression was associated with a significantly shorter OS than a high expression. There was no direct interaction observed between BACH2 and BCL6 in MEC-1 CLL cells, but they shared protein networks that included fifty different proteins. Interestingly, a prognostic index (PI) model that we generated, using integrative risk score values of BACH2 RNA expression, age, and 17p deletion status, predicted patient outcomes in our cohort. Taken together, these data have shown for the first time a possible prognostic role for BACH2 in CLL and have revealed protein interaction networks shared by BCL6 and BACH2, indicating a significant role for BACH2 and BCL6 in key cellular processes, including ubiquitination mediated B-cell receptor functions, nucleic acid metabolism, protein degradation, and homeostasis in CLL biology.
Collapse
Affiliation(s)
- Carmela Ciardullo
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.); (M.S.)
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Katarzyna Szoltysek
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, 02-034 Warszawa, Poland;
| | - Peixun Zhou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3JN, UK; (P.Z.); (V.R.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Monika Pietrowska
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, 02-034 Warszawa, Poland;
| | - Lukasz Marczak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Elaine Willmore
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Amir Enshaei
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Anna Walaszczyk
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Jia Yee Ho
- Newcastle University Medicine Malaysia, EduCity Iskandar, Johor 79200, Malaysia;
| | - Vikki Rand
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3JN, UK; (P.Z.); (V.R.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Scott Marshall
- Department of Haematology, City Hospitals Sunderland NHS Trust, Sunderland SR4 7TP, UK;
| | - Andrew G. Hall
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Christine J. Harrison
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
| | - Meera Soundararajan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.); (M.S.)
| | - Jeyanthy Eswaran
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (E.W.); (A.E.); (A.G.H.); (C.J.H.)
- Newcastle University Medicine Malaysia, EduCity Iskandar, Johor 79200, Malaysia;
| |
Collapse
|
6
|
Alderuccio JP, Lossos IS. NOTCH signaling in the pathogenesis of splenic marginal zone lymphoma-opportunities for therapy. Leuk Lymphoma 2021; 63:279-290. [PMID: 34586000 DOI: 10.1080/10428194.2021.1984452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
NOTCH signaling is a highly conserved pathway mediated by four receptors (NOTCH 1-4) playing critical functions in proliferation, differentiation, and cell death. Under physiologic circumstances, NOTCH2 is a key regulator in marginal zone differentiation and development. Over the last decade, growing data demonstrated frequent NOTCH2 mutations in splenic marginal zone lymphoma (SMZL) underscoring its critical role in the pathogenesis of this disease. Moreover, NOTCH2 specificity across studies supports the rationale to assess its value as a diagnosis biomarker in a disease without pathognomonic features. These data make NOTCH signaling an appealing target for drug discovery in SMZL; however, prior efforts attempting to manipulate this pathway failed to demonstrate meaningful clinical benefit, or their safety profile prevented further development. In this review, we discuss the current knowledge of NOTCH implications in the pathogenesis and as a potential druggable target in SMZL.
Collapse
Affiliation(s)
- Juan Pablo Alderuccio
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Izidore S Lossos
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Donzel M, Baseggio L, Fontaine J, Pesce F, Ghesquières H, Bachy E, Verney A, Traverse-Glehen A. New Insights into the Biology and Diagnosis of Splenic Marginal Zone Lymphomas. ACTA ACUST UNITED AC 2021; 28:3430-3447. [PMID: 34590593 PMCID: PMC8482189 DOI: 10.3390/curroncol28050297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Splenic marginal zone lymphoma (SMZL) is a small B-cell lymphoma, which has been recognized as a distinct pathological entity since the WHO 2008 classification. It classically presents an indolent evolution, but a third of patients progress rapidly and require aggressive treatments, such as immuno-chemotherapy or splenectomy, with all associated side effects. In recent years, advances in the comprehension of SMZL physiopathology have multiplied, thanks to the arrival of new devices in the panel of available molecular biology techniques, allowing the discovery of new molecular findings. In the era of targeted therapies, an update of current knowledge is needed to guide future researches, such as those on epigenetic modifications or the microenvironment of these lymphomas.
Collapse
Affiliation(s)
- Marie Donzel
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Lucile Baseggio
- Laboratoire d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France;
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
| | - Juliette Fontaine
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Florian Pesce
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Hervé Ghesquières
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Service d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Emmanuel Bachy
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Service d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Aurélie Verney
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
| | - Alexandra Traverse-Glehen
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Correspondence: ; Tel.: +33-4-7876-1186
| |
Collapse
|
8
|
Sottoriva K, Pajcini KV. Notch Signaling in the Bone Marrow Lymphopoietic Niche. Front Immunol 2021; 12:723055. [PMID: 34394130 PMCID: PMC8355626 DOI: 10.3389/fimmu.2021.723055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive studies have been devoted to identifying the niche that maintains HSPC homeostasis and supports hematopoietic potential. The Notch signaling pathway is required for the emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic development, but its role in BM HSC homeostasis is convoluted. Recent work has begun to explore novel roles for the Notch signaling pathway in downstream progenitor populations. In this review, we will focus an important role for Notch signaling in the establishment of a T cell primed sub-population of Common Lymphoid Progenitors (CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact, Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific role for Notch activation in early T cell development and what this means to the paradigm of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream lymphoid signals in the pathological BM niche.
Collapse
Affiliation(s)
- Kilian Sottoriva
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
9
|
Bagacean C, Iuga CA, Bordron A, Tempescul A, Pralea IE, Bernard D, Cornen M, Bergot T, Le Dantec C, Brooks W, Saad H, Ianotto JC, Pers JO, Zdrenghea M, Berthou C, Renaudineau Y. Identification of altered cell signaling pathways using proteomic profiling in stable and progressive chronic lymphocytic leukemia. J Leukoc Biol 2021; 111:313-325. [PMID: 34288092 DOI: 10.1002/jlb.4hi0620-392r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by significant biologic and clinical heterogeneity. This study was designed to explore CLL B-cells' proteomic profile in order to identify biologic processes affected at an early stage and during disease evolution as stable or progressive. Purified B cells from 11 untreated CLL patients were tested at two time points by liquid chromatography-tandem mass spectrometry. Patients included in the study evolved to either progressive (n = 6) or stable disease (n = 5). First, at an early stage of the disease (Binet stage A), based on the relative abundance levels of 389 differentially expressed proteins (DEPs), samples were separated into stable and progressive clusters with the main differentiating factor being the RNA splicing pathway. Next, in order to test how the DEPs affect RNA splicing, a RNA-Seq study was conducted showing 4217 differentially spliced genes between the two clusters. Distinct longitudinal evolutions were observed with predominantly proteomic modifications in the stable CLL group and spliced genes in the progressive CLL group. Splicing events were shown to be six times more frequent in the progressive CLL group. The main aberrant biologic processes controlled by DEPs and spliced genes in the progressive group were cytoskeletal organization, Wnt/β-catenin signaling, and mitochondrial and inositol phosphate metabolism with a downstream impact on CLL B-cell survival and migration. This study suggests that proteomic profiles at the early stage of CLL can discriminate progressive from stable disease and that RNA splicing dysregulation underlies CLL evolution, which opens new perspectives in terms of biomarkers and therapy.
Collapse
Affiliation(s)
- Cristina Bagacean
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Department of Hematology, University Hospital of Brest, Brest, France
| | - Cristina Adela Iuga
- Department of Drug Analysis, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine-MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anne Bordron
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France
| | - Adrian Tempescul
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Department of Hematology, University Hospital of Brest, Brest, France
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine-MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Melanie Cornen
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France
| | | | | | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Hussam Saad
- Department of Hematology, University Hospital of Brest, Brest, France
| | | | | | - Mihnea Zdrenghea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Christian Berthou
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Department of Hematology, University Hospital of Brest, Brest, France
| | - Yves Renaudineau
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Laboratory of Immunology and Immunotherapy, University Hospital of Brest, Brest, France
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Mantle cell lymphoma (MCL) is a heterogenous disease with a variety of morphologic and genetic features, some of which are associated with high risk disease. Here we critically analyze the current state of the understanding of MCL's biology and its implications in therapy, with a focus on chemotherapy-free and targeted therapy regimens. RECENT FINDINGS Mantle cell lymphoma (MCL) is a rare subtype of non-Hodgkin's lymphoma, defined by a hallmark chromosomal translocation t(11;14) which leads to constitutive expression of cyclin D1. Recent discoveries in the biology of MCL have identified a number of factors, including TP53 mutations and complex karyotype, that lead to unresponsiveness to traditional chemoimmunotherapy and poor outcomes. Bruton tyrosine kinase inhibitors, BH3-mimetics and other novel agents thwart survival of the neoplastic B-cells in a manner independent of high-risk mutations and have shown promising activity in relapsed/refractory MCL. These therapies are being investigated in the frontline setting, while optimal responses to chemotherapy-free regimens, particularly in high-risk disease, might require combination approaches. High-risk MCL does not respond well to chemoimmunotherapy. Targeted agents are highly active in the relapsed refractory setting and show promise in high-risk disease. Novel approaches may soon replace the current standard of care in both relapsed and frontline settings.
Collapse
|
11
|
Meisel CT, Porcheri C, Mitsiadis TA. Cancer Stem Cells, Quo Vadis? The Notch Signaling Pathway in Tumor Initiation and Progression. Cells 2020; 9:cells9081879. [PMID: 32796631 PMCID: PMC7463613 DOI: 10.3390/cells9081879] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.
Collapse
|
12
|
Therapeutic Targeting of Notch Signaling Pathway in Hematological Malignancies. Mediterr J Hematol Infect Dis 2019; 11:e2019037. [PMID: 31308913 PMCID: PMC6613627 DOI: 10.4084/mjhid.2019.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022] Open
Abstract
The Notch pathway plays a key role in several processes, including stem-cell self-renewal, proliferation, and cell differentiation. Several studies identified recurrent mutations in hematological malignancies making Notch one of the most desirable targets in leukemia and lymphoma. The Notch signaling mediates resistance to therapy and controls cancer stem cells supporting the development of on-target therapeutic strategies to improve patients’ outcome. In this brief review, we outline the therapeutic potential of targeting Notch pathway in T-cell acute jlymphoblastic leukemia, chronic lymphocytic leukemia, and mantle cell lymphoma.
Collapse
|
13
|
Rosati E, Baldoni S, De Falco F, Del Papa B, Dorillo E, Rompietti C, Albi E, Falzetti F, Di Ianni M, Sportoletti P. NOTCH1 Aberrations in Chronic Lymphocytic Leukemia. Front Oncol 2018; 8:229. [PMID: 29998084 PMCID: PMC6030253 DOI: 10.3389/fonc.2018.00229] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/05/2018] [Indexed: 01/13/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable B-cell neoplasm characterized by highly variable clinical outcomes. In recent years, genomic and molecular studies revealed a remarkable heterogeneity in CLL, which mirrored the clinical diversity of this disease. These studies profoundly enhanced our understanding of leukemia cell biology and led to the identification of new biomarkers with potential prognostic and therapeutic significance. Accumulating evidence indicates a key role of deregulated NOTCH1 signaling and NOTCH1 mutations in CLL. This review highlights recent discoveries that improve our understanding of the pathophysiological NOTCH1 signaling in CLL and the clinical impact of NOTCH1 mutations in retrospective and prospective trials. In addition, we discuss the rationale for a therapeutic strategy aiming at inhibiting NOTCH1 signaling in CLL, along with an overview on the currently available NOTCH1-directed approaches.
Collapse
Affiliation(s)
- Emanuela Rosati
- Department of Experimental Medicine, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- Department of Life, Hematology Section, Health and Environmental Sciences, University of L'Aquila, Perugia, Italy
| | - Filomena De Falco
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Beatrice Del Papa
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Erica Dorillo
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Chiara Rompietti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Elisa Albi
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Franca Falzetti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, University of Chieti Pescara, Chieti, Italy.,Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| |
Collapse
|
14
|
Cloos J, Roeten MS, Franke NE, van Meerloo J, Zweegman S, Kaspers GJ, Jansen G. (Immuno)proteasomes as therapeutic target in acute leukemia. Cancer Metastasis Rev 2018; 36:599-615. [PMID: 29071527 PMCID: PMC5721123 DOI: 10.1007/s10555-017-9699-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The clinical efficacy of proteasome inhibitors in the treatment of multiple myeloma has encouraged application of proteasome inhibitor containing therapeutic interventions in (pediatric) acute leukemia. Here, we summarize the positioning of bortezomib, as first-generation proteasome inhibitor, and second-generation proteasome inhibitors in leukemia treatment from a preclinical and clinical perspective. Potential markers for proteasome inhibitor sensitivity and/or resistance emerging from leukemia cell line models and clinical sample studies will be discussed focusing on the role of immunoproteasome and constitutive proteasome (subunit) expression, PSMB5 mutations, and alternative mechanisms of overcoming proteolytic stress.
Collapse
Affiliation(s)
- Jacqueline Cloos
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Margot Sf Roeten
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels E Franke
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Johan van Meerloo
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan Jl Kaspers
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Princess Màxima Center, Utrecht, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Fang Y, Zhang L, Feng J, Lin W, Cai Q, Peng J. Spica Prunellae extract suppresses the growth of human colon carcinoma cells by targeting multiple oncogenes via activating miR-34a. Oncol Rep 2017; 38:1895-1901. [PMID: 28713966 DOI: 10.3892/or.2017.5792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/19/2017] [Indexed: 11/05/2022] Open
Abstract
Spica Prunellae is the spike of the herb Prunella vulgaris L. in traditional Chinese medicine which is often used for the treatment of various cancers including colorectal cancer. In the present study, we found that a key tumor suppressor, microRNA-34a (miR-34a) is involved in the antitumor activity for Spica Prunellae. Human colon carcinoma HCT-8 cells treated with an ethanol extract of Spica Prunellae (EESP) had significantly decreased cell proliferation and viability, in a dose-dependent manner. Flow cytometry analysis with Annexin V/PI staining analysis revealed that EESP treatment could induce apoptosis of HCT-8 cells. The level of miR-34a was upregulated in HCT-8 cells following EESP treatment, whereas expression levels of its target genes Notch1, Notch2 and Bcl-2 were downregulated. Inhibition of miR-34a rescued the expression of these target genes. These results revealed that Spica Prunellae can suppress the growth of HCT-8 cells by targeting Notch1, Notch2 and Bcl-2 via activation of miR-34a.
Collapse
Affiliation(s)
- Yi Fang
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Ling Zhang
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jianyu Feng
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Wei Lin
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Qiaoyan Cai
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
16
|
Combined antitumor effect of γ-secretase inhibitor and ABT-737 in Notch-expressing non-small cell lung cancer. Int J Clin Oncol 2016; 22:257-268. [PMID: 27816990 DOI: 10.1007/s10147-016-1060-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inhibition of Notch by γ-secretase inhibitor (GSI) has been shown to have an antitumor effect in Notch-expressing non-small cell lung cancer (NSCLC) and to induce apoptosis through modulation of Bcl-2 family proteins. In particular, Bim, a BH3-only member of the Bcl-2 family of proteins, has an important role in the induction of apoptosis in NSCLC when cells are treated with GSI. ABT-737, a BH3-only mimetic, targets the pro-survival Bcl-2 family and also induces apoptosis. METHODS The Notch-expressing NSCLC cell lines H460, A549, H1793, and HCC2429 were used. The combined antitumor effect of GSI and ABT-737 was evaluated using the MTT proliferation assay in vitro and in xenograft mouse models. The expression of the Notch pathway and Bcl-2 family was analyzed using Western blotting analysis when cells were treated with a single drug treatment or a combination treatment. RESULTS GSI XX or ABT-737 alone inhibited cell proliferation in a dose-dependent manner, and combination drug treatment showed a synergistic antitumor effect in vitro. In vivo, this drug combination significantly suppressed tumor proliferation compared to the single drug treatment. Phospho-Bcl-2 was downregulated and Bax was upregulated by both the single and combination drug treatments. Bim was induced by a single drug treatment and was enhanced by combination treatment. Combination treatment-induced apoptosis was decreased by Bim inhibition, suggesting that the antitumor effect of the drug combination was dependent on Bim. CONCLUSION Based on our data, we propose that the combination treatment is a promising strategy for NSCLC therapy.
Collapse
|
17
|
Inhibition of Notch and HIF enhances the antitumor effect of radiation in Notch expressing lung cancer. Int J Clin Oncol 2016; 22:59-69. [DOI: 10.1007/s10147-016-1031-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
18
|
Liu J, Shen JX, Wen XF, Guo YX, Zhang GJ. Targeting Notch degradation system provides promise for breast cancer therapeutics. Crit Rev Oncol Hematol 2016; 104:21-29. [PMID: 27263934 DOI: 10.1016/j.critrevonc.2016.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/18/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023] Open
Abstract
Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs.
Collapse
Affiliation(s)
- Jing Liu
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Jia-Xin Shen
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Xiao-Fen Wen
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Yu-Xian Guo
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Guo-Jun Zhang
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| |
Collapse
|
19
|
Ahmadzadeh V, Tofigh R, Farajnia S, Pouladi N. The Central Role for Microenvironment in B-Cell Malignancies: Recent Insights into Synergistic Effects of its Therapeutic Targeting and Anti-CD20 Antibodies. Int Rev Immunol 2015; 35:136-55. [DOI: 10.3109/08830185.2015.1077830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Giunco S, Celeghin A, Gianesin K, Dolcetti R, Indraccolo S, De Rossi A. Cross talk between EBV and telomerase: the role of TERT and NOTCH2 in the switch of latent/lytic cycle of the virus. Cell Death Dis 2015; 6:e1774. [PMID: 26018735 PMCID: PMC4669716 DOI: 10.1038/cddis.2015.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Epstein–Barr virus (EBV)-associated malignancies, as well as lymphoblastoid cell lines (LCLs), obtained in vitro by EBV infection of B cells, express latent viral proteins and maintain their ability to grow indefinitely through inappropriate activation of telomere-specific reverse transcriptase (TERT), the catalytic component of telomerase. Our previous studies demonstrated that high levels of TERT expression in LCLs prevent the activation of EBV lytic cycle, which is instead triggered by TERT silencing. As lytic infection promotes the death of EBV-positive tumor cells, understanding the mechanism(s) by which TERT affects the latent/lytic status of EBV may be important for setting new therapeutic strategies. BATF, a transcription factor activated by NOTCH2, the major NOTCH family member in B cells, negatively affects the expression of BZLF1, the master regulator of viral lytic cycle. We therefore analyzed the interplay between TERT, NOTCH and BATF in LCLs and found that high levels of endogenous TERT are associated with high NOTCH2 and BATF expression levels. In addition, ectopic expression of TERT in LCLs with low levels of endogenous telomerase was associated with upregulation of NOTCH2 and BATF at both mRNA and protein levels. By contrast, infection of LCLs with retroviral vectors expressing functional NOTCH2 did not alter TERT transcript levels. Luciferase reporter assays, demonstrated that TERT significantly activated NOTCH2 promoter in a dose-dependent manner. We also found that NF-κB pathway is involved in TERT-induced NOTCH2 activation. Lastly, pharmacologic inhibition of NOTCH signaling triggers the EBV lytic cycle, leading to the death of EBV-infected cells. Overall, these results indicate that TERT contributes to preserve EBV latency in B cells mainly through the NOTCH2/BAFT pathway, and suggest that NOTCH2 inhibition may represent an appealing therapeutic strategy against EBV-associated malignancies.
Collapse
Affiliation(s)
- S Giunco
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - A Celeghin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - K Gianesin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - R Dolcetti
- Cancer Bio-Immunotherapy Unit, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - S Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy
| | - A De Rossi
- 1] Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy [2] Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padova, Italy
| |
Collapse
|
21
|
Abstract
Maternal undernutrition (MUN) results in growth-restricted newborns with reduced nephron numbers that is associated with increased risk of hypertension and renal disease. The total adult complement of nephrons is set during nephrogenesis suggesting that MUN affects the staged development of nephrons in as yet unknown manner. A possible cause may be the increased renal apoptosis; therefore, we investigated whether apoptotic signaling and cell death were increased in MUN rat kidneys. Pregnant rat dams were fed an ad libitum diet [control] or were 50% food restricted (MUN) starting at embryonic day (E) 10. Male offspring kidneys (n = 5 each, MUN and control) were analyzed for mRNA using quantitative PCR (E20) and for protein expression using Western blotting and immunohistochemistry (E20 and postnatal day 1, P1). Apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Upregulation of pro-apoptotic protein expression was detected at E20 (Fas receptor, caspase 9) and at P1 (caspase 3, Bax). The anti-apoptotic factor Bcl2 was significantly decreased in P1 kidneys. Kidney TUNEL showed apoptotic nuclei significantly increased in the P1 nephrogenic zone (MUN 3.3 + 0.3 v. C 1.6 + 0.5, P = 0.002). The majority of apoptotic nuclei co-localized to mesenchyme and pretubular aggregates in the nephrogenic zone. Differential regulation of apoptosis in mesenchyme and pretubular aggregates following parturition suggests a mechanism for nephropenia in gestational programming of the kidney.
Collapse
|
22
|
Chen G, Zhang Z, Cheng Y, Xiao W, Qiu Y, Yu M, Sun L, Wang W, Du G, Gu Y, Peng K, Xu C, Yang H. The canonical Notch signaling was involved in the regulation of intestinal epithelial cells apoptosis after intestinal ischemia/reperfusion injury. Int J Mol Sci 2014; 15:7883-96. [PMID: 24806344 PMCID: PMC4057709 DOI: 10.3390/ijms15057883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 11/23/2022] Open
Abstract
Notch signaling plays a critical role in the maintenance of intestinal homeostasis. The aim of the present study was to investigate the role of Notch signaling in the apoptosis of intestinal epithelial cells after intestinal ischemia reperfusion (I/R) injury. Male C57BL/6 mice were subjected to sham operation or I/R injury. Intestinal tissue samples were collected at 12 h after reperfusion. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling) staining showed that intestinal I/R injury induced significantly increased apoptosis of intestinal epithelial cells. Meanwhile, the mRNA expression of Jagged1, DLL1, Notch2, and Hes5, and protein expression of NICD2 and Hes5 were increased significantly after I/R injury in intestinal epithelial cells. In an in vitro IEC-6 culture model, flow cytometry analyses showed that inhibition of Notch signaling by γ-secretase inhibitor DAPT and the suppression of Hes5 expression using siRNA both significantly increased the apoptosis of IEC-6 cells under the condition of hypoxia/reoxygenation (H/R). In conclusion, the Notch2/Hes5 signaling pathway was activated and involved in the regulation of intestinal epithelial cells apoptosis in intestinal I/R injury.
Collapse
Affiliation(s)
- Guoqing Chen
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Zhicao Zhang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Yingdong Cheng
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Min Yu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Guangsheng Du
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Yingchao Gu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Ke Peng
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Chao Xu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
23
|
Hill RJ, Lou Y, Tan SL. B-cell antigen receptor signaling in chronic lymphocytic leukemia: therapeutic targets and translational opportunities. Int Rev Immunol 2014; 32:377-96. [PMID: 23886341 DOI: 10.3109/08830185.2013.818141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell chronic lymphocytic leukemia (CLL) is characterized by clonally expanded and molecularly heterogeneous populations of B lymphocytes with impaired apoptotic mechanisms. This occurs as a result of multiple genetic and epigenetic abnormalities, including chromosomal aberrations and enhancer region hypomethylation, often impinging on intracellular signaling pathways that are essential to normal B-cell activation, proliferation, and survival. The B-cell antigen receptor (BCR) signaling is one such pathway usurped by malignant B cells, as exemplified by the early phase clinical success achieved by small-molecule agents targeting key players involved in the pathway. Such new targeted agents, including those that inhibit the function of Spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK), phosphatidylinositol 3-kinases (PI3K), and B-cell lymphoma 2 (BCL-2), along with the current standard therapy comprising chemo-immunotherapies with or without B-cell depleting biologic agent rituximab (anti-CD20 monoclonal antibody), should expand the armamentarium for CLL therapy. We review the therapeutic agents currently in clinical development which target different effectors of the malignant BCR signaling, and discuss their overlapping and discriminating translational opportunities in the context of CLL treatment.
Collapse
Affiliation(s)
- Ronald J Hill
- Principia Biopharma, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
24
|
Liu N, Zhang J, Ji C. The emerging roles of Notch signaling in leukemia and stem cells. Biomark Res 2013; 1:23. [PMID: 24252593 PMCID: PMC4177577 DOI: 10.1186/2050-7771-1-23] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 07/15/2013] [Indexed: 12/16/2022] Open
Abstract
The Notch signaling pathway plays a critical role in maintaining the balance between cell proliferation, differentiation and apoptosis, and is a highly conserved signaling pathway that regulates normal development in a context- and dose-dependent manner. Dysregulation of Notch signaling has been suggested to be key events in a variety of hematological malignancies. Notch1 signaling appears to be the central oncogenic trigger in T cell acute lymphoblastic leukemia (T-ALL), in which the majority of human malignancies have acquired mutations that lead to constitutive activation of Notch1 signaling. However, emerging evidence unexpectedly demonstrates that Notch signaling can function as a potent tumor suppressor in other forms of leukemia. This minireview will summarize recent advances related to the roles of activated Notch signaling in human lymphocytic leukemia, myeloid leukemia, stem cells and stromal microenvironment, and we will discuss the perspectives of Notch signaling as a potential therapeutic target as well.
Collapse
Affiliation(s)
- Na Liu
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong 250012, P, R, China.
| | | | | |
Collapse
|
25
|
Hubmann R, Hilgarth M, Schnabl S, Ponath E, Reiter M, Demirtas D, Sieghart W, Valent P, Zielinski C, Jäger U, Shehata M. Gliotoxin is a potent NOTCH2 transactivation inhibitor and efficiently induces apoptosis in chronic lymphocytic leukaemia (CLL) cells. Br J Haematol 2012; 160:618-29. [PMID: 23278106 DOI: 10.1111/bjh.12183] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/09/2012] [Indexed: 01/21/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) cells express constitutively activated NOTCH2 in a protein kinase C (PKC)- dependent manner. The transcriptional activity of NOTCH2 correlates not only with the expression of its target gene FCER2 (CD23) but is also functionally linked with CLL cell viability. In the majority of CLL cases, DNA-bound NOTCH2 complexes are less sensitive to the γ-secretase inhibitor (GSI) DAPT. Therefore, we searched for compounds that interfere with NOTCH2 signalling at the transcription factor level. Using electrophoretic mobility shift assays (EMSA), we identified the Aspergillum-derived secondary metabolite gliotoxin as a potent NOTCH2 transactivation inhibitor. Gliotoxin completely blocked the formation of DNA-bound NOTCH2 complexes in CLL cells independent of their sensitivity to DAPT. The inhibition of NOTCH2 signalling by gliotoxin was associated with down regulation of CD23 (FCER) expression and induction of apoptosis. Short time exposure of CLL cells indicated that the early apoptotic effect of gliotoxin is independent of proteasome regulated nuclear factor κB activity, and is associated with up regulation of NOTCH3 and NR4A1 expression. Gliotoxin could overcome the supportive effect of primary bone marrow stromal cells in an ex vivo CLL microenvironment model. In conclusion, we identified gliotoxin as a potent NOTCH2 inhibitor with a promising therapeutic potential in CLL.
Collapse
Affiliation(s)
- Rainer Hubmann
- Clinic of Internal Medicine I, Division of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mizugaki H, Sakakibara-Konishi J, Ikezawa Y, Kikuchi J, Kikuchi E, Oizumi S, Dang TP, Nishimura M. γ-Secretase inhibitor enhances antitumour effect of radiation in Notch-expressing lung cancer. Br J Cancer 2012; 106:1953-9. [PMID: 22596234 PMCID: PMC3388558 DOI: 10.1038/bjc.2012.178] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Notch receptor has an important role in both development and cancer. We previously reported that inhibition of the Notch3 by γ-secretase inhibitor (GSI) induces apoptosis and suppresses tumour proliferation in non-small-cell lung cancer. Although radiation is reported to induce Notch activation, little is known about the relationship between radiation and Notch pathway. Methods: We examined the effect of combining GSI and radiation at different dosing in three Notch expressing lung cancer cell lines. The cytotoxic effect of GSI and radiation was evaluated using MTT assay and clonogenic assay in vitro and xenograft models. Expressions of Notch pathway, mitogen-activated protein kinase (MAPK) pathway and Bcl-2 family proteins were investigated using western blot analysis. Results: We discovered that the antitumour effect of combining GSI and radiation was dependent on treatment schedule. γ-Secretase inhibitor administration after radiation had the greatest growth inhibition of lung cancer in vitro and in vivo. We showed that the combination induced apoptosis of lung cancer cell lines through the regulation of MAPK and Bcl-2 family proteins. Furthermore, activation of Notch after radiation was ameliorated by GSI administration, suggesting that treatment with GSI prevents Notch-induced radiation resistance. Conclusion: Notch has an important role in lung cancer. Treatment with GSI after radiation can significantly enhance radiation-mediated tumour cytotoxicity.
Collapse
Affiliation(s)
- H Mizugaki
- First Department of Medicine, Hokkaido University School of Medicine, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Proper embryonic development and normal tissue homeostasis require a series of molecular processes, regulating cell growth, differentiation and apoptosis. Perturbation in any of these processes invariably contributes to the development of cancer. In particular, defects in apoptosis are seen in virtually all types of human cancers. The Notch pathway plays an important role in cell fate determination in both embryonic development and organ homeostasis. Not surprisingly, Notch also plays a role in cancer when it is dysregulated. In this chapter, we will explore how Notch signaling interacts with key pathways that regulate apoptosis in cancer. Particularly, we will focus on the relationship between Notch and proteins responsible for activation of the caspase pathway. Notch regulates apoptosis through extensive networks, involving cell cycle, growth and survival pathways. Thus, we will also examine how apoptosis is modulated by the crosstalk between Notch and other signaling pathways such as p53, NF-κB and PI3K-Akt pathways.
Collapse
|
28
|
Notch-ing from T-cell to B-cell lymphoid malignancies. Cancer Lett 2011; 308:1-13. [PMID: 21652011 DOI: 10.1016/j.canlet.2011.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/08/2011] [Accepted: 05/12/2011] [Indexed: 01/09/2023]
Abstract
Notch receptors are transmembrane proteins critically determining cell fate and maintenance of progenitor cells in many developmental systems. Notch signaling is involved in stem cell self-renewal and regulates the main functions of cell life at different levels of development: cell proliferation, differentiation and apoptosis. By virtue of its involvement in the regulation of cell physiology, it is not surprising that a deregulation of the Notch pathway leads to the development of different tumors. In this review, we critically discuss the latest findings concerning Notch roles in hematologic oncology, with a special focus on T-cell acute lymphoblastic leukemia and B-cell malignancies. We also describe the molecular mediators of Notch-driven oncogenic effects and the current pharmacological approaches targeting Notch signaling.
Collapse
|
29
|
Wickremasinghe RG, Prentice AG, Steele AJ. p53 and Notch signaling in chronic lymphocytic leukemia: clues to identifying novel therapeutic strategies. Leukemia 2011; 25:1400-7. [PMID: 21566651 DOI: 10.1038/leu.2011.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The p53 tumor suppressor protein has a key role in the induction of apoptosis of chronic lymphocytic leukemia (CLL) cells. Abnormalities within the p53 pathway identify a subset of patients with a poor prognosis. This review describes recent advances in understanding the mechanisms that regulate p53 levels and the role of p53 in the control of the cell cycle and of apoptosis. The classical model of p53-mediated apoptosis emphasizes the transcriptional activation of proapoptotic genes. In contrast, a novel model emphasizes p53's non-transcriptional actions as the major route of apoptosis induction, whereas its transcriptional arm predominantly upregulates antiapoptotic genes, thus providing a negative feedback mechanism that limits apoptosis. Further studies have identified the Notch pathway as a candidate p53-induced antiapoptotic mechanism. In contrast to the classical model, the novel model predicts that pharmacological inhibition of p53's transcriptional function or of the Notch signaling pathway will augment apoptosis induction by cytotoxic agents. Therapeutic strategies based on the novel model, which we review here for the first time, may significantly augment the antitumor actions of cytotoxic agents in CLL and in other malignancies.
Collapse
Affiliation(s)
- R G Wickremasinghe
- Department of Haematology, Cancer Institute, University College Hospital Medical School, London, UK.
| | | | | |
Collapse
|
30
|
Amrein PC, Attar EC, Takvorian T, Hochberg EP, Ballen KK, Leahy KM, Fisher DC, LaCasce AS, Jacobsen ED, Armand P, Hasserjian RP, Werner L, Neuberg D, Brown JR. Phase II study of dasatinib in relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res 2011; 17:2977-86. [PMID: 21402714 PMCID: PMC3108904 DOI: 10.1158/1078-0432.ccr-10-2879] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Chronic lymphocytic leukemia (CLL) cells treated with dasatinib in vitro undergo apoptosis via inhibition of Lyn kinase. Thus, in this study we tested the activity of dasatinib in patients with relapsed CLL. EXPERIMENTAL DESIGN Patients were eligible for this phase II trial if they had documented CLL/SLL and had failed at least 1 prior therapy with a fludarabine-containing regimen and if they required therapy according to NCI-WG criteria. The starting dose of dasatinib was 140 mg daily. RESULTS Fifteen patients were enrolled, with a median age of 59 and a median of 3 prior regimens. All patients had received fludarabine, and 5 were fludarabine-refractory. Eleven of the 15 (73%) had high risk del(11q) or del(17p) cytogenetics. The primary toxicity was myelosuppression, with grade 3 or 4 neutropenia and thrombocytopenia in 10 and 6 patients, respectively. Partial responses by NCI-WG criteria were achieved in 3 of the 15 patients (20%; 90% CI: 6-44). Among the remaining 12 patients, 5 had nodal responses by physical exam, and 1 patient had a nodal and lymphocyte response but with severe myelosuppression. Pharmacodynamic studies indicated apoptosis in peripheral blood CLL cells within 3 to 6 hours after dasatinib administration, associated with downregulation of Syk (spleen tyrosine kinase) mRNA. CONCLUSIONS Dasatinib as a single agent has activity in relapsed and refractory CLL.
Collapse
MESH Headings
- Adult
- Aged
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/blood
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/therapeutic use
- Dasatinib
- Drug Resistance, Neoplasm/drug effects
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnostic imaging
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Middle Aged
- Pyrimidines/adverse effects
- Pyrimidines/blood
- Pyrimidines/pharmacokinetics
- Pyrimidines/therapeutic use
- Radiography, Abdominal
- Recurrence
- Thiazoles/adverse effects
- Thiazoles/blood
- Thiazoles/pharmacokinetics
- Thiazoles/therapeutic use
- Tomography, X-Ray Computed
Collapse
Affiliation(s)
- Philip C. Amrein
- Massachusetts General Hospital Cancer Center, Boston, MA
- Medicine, Harvard Medical School, Boston, MA
| | - Eyal C. Attar
- Massachusetts General Hospital Cancer Center, Boston, MA
- Medicine, Harvard Medical School, Boston, MA
| | - Tak Takvorian
- Massachusetts General Hospital Cancer Center, Boston, MA
- Medicine, Harvard Medical School, Boston, MA
| | - Ephraim P. Hochberg
- Massachusetts General Hospital Cancer Center, Boston, MA
- Medicine, Harvard Medical School, Boston, MA
| | - Karen K. Ballen
- Massachusetts General Hospital Cancer Center, Boston, MA
- Medicine, Harvard Medical School, Boston, MA
| | | | - David C. Fisher
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medicine, Harvard Medical School, Boston, MA
| | - Ann S. LaCasce
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medicine, Harvard Medical School, Boston, MA
| | - Eric D. Jacobsen
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medicine, Harvard Medical School, Boston, MA
| | - Philippe Armand
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medicine, Harvard Medical School, Boston, MA
| | | | - Lillian Werner
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, MA
| | - Donna Neuberg
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer R. Brown
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Aster JC, Blacklow SC, Pear WS. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J Pathol 2011; 223:262-73. [PMID: 20967796 PMCID: PMC2996483 DOI: 10.1002/path.2789] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 12/21/2022]
Abstract
Notch receptors participate in a highly conserved signalling pathway that regulates normal development and tissue homeostasis in a context- and dose-dependent manner. Deregulated Notch signalling has been implicated in many diseases, but the clearest example of a pathogenic role is found in T-cell lymphoblastic leukaemia/lymphoma (T-LL), in which the majority of human and murine tumours have acquired mutations that lead to aberrant increases in Notch1 signalling. Remarkably, it appears that the selective pressure for Notch mutations is virtually unique among cancers to T-LL, presumably reflecting a special context-dependent role for Notch in normal T-cell progenitors. Nevertheless, there are some recent reports suggesting that Notch signalling has subtle, yet important roles in other forms of haematological malignancy as well. Here, we review the role of Notch signalling in various blood cancers, focusing on T-LL with an eye towards targeted therapeutics.
Collapse
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | |
Collapse
|
32
|
Barosi G, Gattoni E, Guglielmelli P, Campanelli R, Facchetti F, Fisogni S, Goldberg J, Marchioli R, Hoffman R, Vannucchi AM. Phase I/II study of single-agent bortezomib for the treatment of patients with myelofibrosis. Clinical and biological effects of proteasome inhibition. Am J Hematol 2010; 85:616-9. [PMID: 20540156 PMCID: PMC2947025 DOI: 10.1002/ajh.21754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A phase I/II trial was undertaken to determine maximum tolerated dose (MTD), toxicity, clinical efficacy and biological activity of bortezomib in patients with advanced stage primary or post-polycythemia vera/post-essential thrombocythemia myelofibrosis (MF). Bortezomib (0.8, 1.0, or 1.3 mg/m2) was administered on days 1, 4, 8, and 11 by intravenous push to patients previously resistant to at least one line of therapy, or with an intermediate/high risk IWG’s score [1 ]. Therapy was repeated every 28 days for 6 cycles. At 1.3 mg/m2 dose, one of six patients experienced a dose limiting toxicity, and this was determined to be the MTD. Neither remissions or clinical improvements were recorded in 16 patients treated at this dose level, fulfilling the early stopping rule in the Simon two-stage study design. Major toxicity was on thrombocytopenia. In 9 out of 15 patients bortezomib proved able to reduce bone marrow vessel density. However, the agent was associated with worsening of markers of disease activity, like enhancement of hematopoietic CD34-positive progenitor cell mobilization, WT-1 gene expression in mononuclear cells, and down-regulation of CXCR4 expression on CD34-positive cells. Occurrence of both beneficial and detrimental biological effects claims further investigation on the mechanisms of the drug in MF.
Collapse
Affiliation(s)
- Giovanni Barosi
- Unit of Clinical Epidemiology and Center for the Study of Myelofibrosis, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Elisabetta Gattoni
- Unit of Clinical Epidemiology and Center for the Study of Myelofibrosis, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Paola Guglielmelli
- Unit of Hematology, Dept. Critical Care, University of Florence, and Istituto Toscano Tumori, Florence, Italy
| | - Rita Campanelli
- Unit of Clinical Epidemiology and Center for the Study of Myelofibrosis, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Fabio Facchetti
- Institute of Pathology, Spedali Civili, University of Brescia, Brescia, Italy
| | - Simona Fisogni
- Institute of Pathology, Spedali Civili, University of Brescia, Brescia, Italy
| | - Judith Goldberg
- Division of Biostatistics, Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | | | - Ronald Hoffman
- Tisch Cancer Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Alessandro M. Vannucchi
- Unit of Hematology, Dept. Critical Care, University of Florence, and Istituto Toscano Tumori, Florence, Italy
| |
Collapse
|
33
|
Medinger M, Mross K. Clinical trials with anti-angiogenic agents in hematological malignancies. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:10. [PMID: 20569499 PMCID: PMC2902424 DOI: 10.1186/2040-2384-2-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/22/2010] [Indexed: 12/15/2022]
Abstract
New blood vessel formation (angiogenesis) is not only essential for the growth of solid tumors but there is also emerging evidence that progression of hematological malignancies like multiple myeloma, acute leukemias, and myeloproliferative neoplasms, also depends on new blood vessel formation. Anti-angiogenic strategies have become an important therapeutic modality for solid tumors. Several anti-angiogenic agents targeting angiogenesis-related pathways like monoclonal antibodies, receptor tyrosine kinase inhibitors, immunomodulatory drugs, and proteasome inhibitors have been entered clinical trials or have been already approved for the treatment of hematological malignancies as well and in some instances these pathways have emerged as promising therapeutic targets. This review summarizes recent advances in the basic understanding of the role of angiogenesis in hematological malignancies and clinical trials with novel therapeutic approaches targeting angiogenesis.
Collapse
Affiliation(s)
- Michael Medinger
- Department of Medical Oncology, Tumor Biology Center at the Albert-Ludwigs-University, Breisacherstrasse 117, D-79106 Freiburg, Germany.
| | | |
Collapse
|
34
|
Tahir SK, Wass J, Joseph MK, Devanarayan V, Hessler P, Zhang H, Elmore SW, Kroeger PE, Tse C, Rosenberg SH, Anderson MG. Identification of expression signatures predictive of sensitivity to the Bcl-2 family member inhibitor ABT-263 in small cell lung carcinoma and leukemia/lymphoma cell lines. Mol Cancer Ther 2010; 9:545-57. [PMID: 20179162 DOI: 10.1158/1535-7163.mct-09-0651] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABT-263 inhibits the antiapoptotic proteins Bcl-2, Bcl-x(L), and Bcl-w and has single-agent efficacy in numerous small cell lung carcinoma (SCLC) and leukemia/lymphoma cell lines in vitro and in vivo. It is currently in clinical trials for treating patients with SCLC and various leukemia/lymphomas. Identification of predictive markers for response will benefit the clinical development of ABT-263. We identified the expression of Bcl-2 family genes that correlated best with sensitivity to ABT-263 in a panel of 36 SCLC and 31 leukemia/lymphoma cell lines. In cells sensitive to ABT-263, expression of Bcl-2 and Noxa is elevated, whereas expression of Mcl-1 is higher in resistant cells. We also examined global expression differences to identify gene signature sets that correlated with sensitivity to ABT-263 to generate optimal signature sets predictive of sensitivity to ABT-263. Independent cell lines were used to verify the predictive power of the gene sets and to refine the optimal gene signatures. When comparing normal lung tissue and SCLC primary tumors, the expression pattern of these genes in the tumor tissue is most similar to sensitive SCLC lines, whereas normal tissue is most similar to resistant SCLC lines. Most of the genes identified using global expression patterns are related to the apoptotic pathway; however, all but Bcl-rambo are distinct from the Bcl-2 family. This study leverages global expression data to identify key gene expression patterns for sensitivity to ABT-263 in SCLC and leukemia/lymphoma and may provide guidance in the selection of patients in future clinical trials.
Collapse
Affiliation(s)
- Stephen K Tahir
- Global Pharmaceutical Product Research Division, Abbott Laboratories, Abbott Park, Illinois 60064-6099, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hajdu M, Kopper L, Sebestyén A. Notch-regulation upon Dll4-stimulation of TGFb-induced apoptosis and gene expression in human B-cell non-Hodgkin lymphomas. Scand J Immunol 2010; 71:29-37. [PMID: 20017807 DOI: 10.1111/j.1365-3083.2009.02346.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Notch-signalling has been implicated as a pathogenetic factor and a therapeutical target in T-cell leukaemias and in some lymphomas of B-cell origin. Our aim was to investigate the role of Notch-signalling in apoptosis regulation in human non-Hodgkin B-cell lymphoma (B-NHL) cell lines and in primary chronic lymhocytic leukaemia (CLL) cells using Delta-like 4 (Dll4) ligand mediated Notch activation and gamma-secretase inhibitor (GSI) mediated Notch inhibition in vitro. The potential cross-talk of Notch with the transforming growth factor-beta (TGFb) pathway in apoptosis induction was also explored, and the effect of GSI on drug-induced apoptosis was assessed. Modulation of Notch-signalling by itself did not change the rate of apoptosis in B-NHL cell lines and in CLL cells. TGFb-induced apoptosis was decreased - but not completely abolished - by GSI in TGFb-sensitive cell lines, but resistance to the apoptotic effects of TGFb were not reversed by Notch activation or inhibition. Drug-induced apoptosis was not modified by GSI. We identified Hairy/Enhancer of Split (HES)-1 as a TGFb target gene in selected - TGFb-sensitive - B-NHL cell lines. TGFb-induced HES-1 was only partially Notch-dependent in later phases. Apoptosis regulation by TGFb and GSI was not dependent on the transcriptional regulation of c-myc. In conclusion, our data does not support a unifying role of Notch in regulating apoptosis in B-NHL, but warns that gamma-secretase inhibitors may actually counteract apoptosis in some cases.
Collapse
Affiliation(s)
- M Hajdu
- I. Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | | | | |
Collapse
|
36
|
Hubmann R, Düchler M, Schnabl S, Hilgarth M, Demirtas D, Mitteregger D, Hölbl A, Vanura K, Le T, Look T, Schwarzmeier JD, Valent P, Jäger U, Shehata M. NOTCH2 links protein kinase C delta to the expression of CD23 in chronic lymphocytic leukaemia (CLL) cells. Br J Haematol 2009; 148:868-78. [PMID: 19995395 DOI: 10.1111/j.1365-2141.2009.08024.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One characteristic of chronic lymphocytic leukaemia (CLL) lymphocytes is high expression of CD23, which has previously been identified as a downstream target for NOTCH2 signalling. The mechanisms regulating NOTCH2-dependent CD23 expression, however, are largely unknown. This study showed that peripheral CLL cells overexpressed transcriptionally active NOTCH2 (N2(IC)), irrespective of their prognostic marker profile. When placed in culture, NOTCH2 activity was spontaneously decreased in 25 out of 31 CLL cases (81%) within 24 h. DNA-bound N2(IC) complexes could be maintained by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) or by gamma-interferon (IFN-gamma), two CLL characteristic inducers of CD23 expression. Inhibition of PKC-delta by RNA interference or by rottlerin antagonised PMA-induced NOTCH2 activation and also suppressed NOTCH2 activity in CLL cases with constitutively activated NOTCH2 signalling. In 23 out of 29 CLL cases tested (79%), DNA-bound N2(IC) complexes were found to be resistant to the gamma-secretase inhibitor (GSI) DAPT, suggesting that GSIs will be only effective in a subset of CLL cases. These data suggest that deregulation of NOTCH2 signalling is critically involved in maintaining the malignant phenotype of CLL lymphocytes and point to a link between PKC-delta and NOTCH2 signalling in the leukemic cells.
Collapse
Affiliation(s)
- Rainer Hubmann
- Clinic of Internal Medicine I, Department of Haematology and Haemostaseology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Konishi J, Yi F, Chen X, Vo H, Carbone DP, Dang TP. Notch3 cooperates with the EGFR pathway to modulate apoptosis through the induction of bim. Oncogene 2009; 29:589-96. [PMID: 19881544 PMCID: PMC2813325 DOI: 10.1038/onc.2009.366] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Notch signaling is a highly conserved pathway important for normal embryonic development and cancer. We previously demonstrated a role for Notch3 in lung cancer pathogenesis. Notch3 inhibition resulted in tumor apoptosis and growth suppression. In vitro, these effects were enhanced when the epidermal growth factor receptor (EGFR) pathway was also inhibited, suggesting significant cross-talk between the two pathways. How Notch3 and epidermal growth factor receptor-mitogen-activated protein kinase (EGFR-MAPK) pathways cooperate in modulating apoptosis is not yet known. In this study, we provide evidence that Notch3 regulates Bim, a BH-3-only protein, via MAPK signaling. Furthermore, loss of Bim expression prevents tumor apoptosis induced by Notch3 inhibition. Using gamma-secretase inhibitor and erlotinib in a xenograft model, Bim induction and tumor inhibition were observed to be enhanced compared with either agent alone, consistent with our previous observation of significant synergism between Notch and EGFR-ras-MAPK signaling. Thus, our data support the hypothesis that Notch3 not only has a crucial role in lung cancer through regulating apoptosis, but also cooperates with the EGFR-MAPK pathway in modulating Bim.
Collapse
Affiliation(s)
- J Konishi
- Division of Hematology and Medical Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
38
|
Pawlowski TL, Heringer-Walther S, Cheng CH, Archie JG, Chen CF, Walther T, Srivastava AK. Candidate Agtr2 influenced genes and pathways identified by expression profiling in the developing brain of Agtr2(-/y) mice. Genomics 2009; 94:188-95. [PMID: 19501643 PMCID: PMC3164574 DOI: 10.1016/j.ygeno.2009.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 11/19/2022]
Abstract
Intellectual disability (ID) is a common developmental disability observed in 1 to 3% of the human population. A possible role for the Angiotensin II type 2 receptor (AGTR2) in brain function, affecting learning, memory, and behavior, has been suggested in humans and rodents. Mice lacking the Agtr2 gene (Agtr2(-/y)) showed significant impairment in their spatial memory and exhibited abnormal dendritic spine morphology. To identify Agtr2 influenced genes and pathways, we performed whole genome microarray analysis on RNA isolated from brains of Agtr2(-/y) and control male mice at embryonic day 15 (E15) and postnatal day one (P1). The gene expression profiles of the Agtr2(-/y) brain samples were significantly different when compared to profiles of the age-matched control brains. We identified 62 differently expressed genes (p< or =0.005) at E15 and in P1 brains of the Agtr2(-/y) mice. We verified the differential expression of several of these genes in brain samples using quantitative RT-PCR. Differentially expressed genes encode molecules involved in multiple cellular processes including microtubule functions associated with dendritic spine morphology. This study provides insight into Agtr2 influenced candidate genes and suggests that expression dysregulation of these genes may modulate Agtr2 actions in the brain that influences learning and memory.
Collapse
Affiliation(s)
- Traci L. Pawlowski
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina
| | | | - Chun-Huai Cheng
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina
| | - John G. Archie
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Chin-Fu Chen
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina
| | - Thomas Walther
- Department of Cardiology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Anand K. Srivastava
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina
| |
Collapse
|
39
|
Nutlin-3 up-regulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feedback antiapoptotic mechanism. Blood 2009; 113:4300-8. [DOI: 10.1182/blood-2008-11-187708] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
The small molecule inhibitor of the MDM2/p53 interaction Nutlin-3 significantly up-regulated the steady-state mRNA and protein levels of Notch1 in TP53wild-type (OCI, SKW6.4) but not in TP53deleted (HL-60) or TP53mutated (BJAB) leukemic cell lines. A direct demonstration that NOTCH1 was a transcriptional target of p53 in leukemic cells was obtained in experiments carried out with siRNA for p53. Moreover, inhibition of Notch1 expression using Notch1-specific siRNA significantly increased cytotoxicity in TP53wild-type leukemic cells. Of note, Nutlin-3 up-regulated Notch1 expression also in primary TP53wild-type B-chronic lymphocytic leukemia (B-CLL) cells and the combined use of Nutlin-3 plus pharmacological γ-secretase inhibitors of the Notch signaling showed a synergistic cytotoxicity in both TP53wild-type leukemic cell lines and primary B-CLL cells. A potential drawback of γ-secretase inhibitors was their ability to enhance osteoclastic maturation of normal circulating preosteoclasts induced by RANKL + M-CSF. Notwithstanding, Nutlin-3 completely suppressed osteoclastogenesis irrespective of the presence of γ-secretase inhibitors. Taken together, these data indicate that the p53-dependent up-regulation of Notch1 in response to Nutlin-3 represents an antiapoptotic feedback mechanism able to restrain the potential therapeutic efficacy of Nutlin-3 in hematologic malignancies. Therefore, therapeutic combinations of Nutlin-3 + γ-secretase inhibitors might potentiate the cytotoxicity of Nutlin-3 in p53wild-type leukemic cells.
Collapse
|
40
|
Abstract
Notch signaling plays crucial roles in many developmental pathways, with Notch mutations linked to several developmental disorders. Because many pediatric malignancies arise from dysregulated development, roles for Notch signaling in these cancers are to be expected. Evidence to support this is now emerging as the Notch pathway is being explored in more pediatric cancers. Not surprisingly, Notch appears to play diverse roles in different malignancies, effecting differentiation, metastasis, cancer "stem cells," and angiogenesis. As examples, although activating mutations of Notch1 are found in the majority of T-cell acute lymphoblastic leukemia (ALL) cases, Notch/HES1 signaling appears to play a tumor suppressor role in precursor B-cell ALL; although Notch/HES1 signaling appears to contribute to osteosarcoma metastasis, Notch signaling also promotes medulloblastoma "stem cell" survival and contributes to angiogenesis in neuroblastoma. Further understanding of the roles of Notch signaling in specific pediatric cancers will provide a rationale for Notch-based therapeutic strategies.
Collapse
|
41
|
Ayala G, Yan J, Li R, Ding Y, Thompson TC, Mims MP, Hayes TG, MacDonnell V, Lynch RG, Frolov A, Miles BJ, Wheeler TM, Harper JW, Tsai MJ, Ittmann MM, Kadmon D. Bortezomib-mediated inhibition of steroid receptor coactivator-3 degradation leads to activated Akt. Clin Cancer Res 2008; 14:7511-8. [PMID: 19010869 PMCID: PMC2820291 DOI: 10.1158/1078-0432.ccr-08-0839] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To assess the safety of administering bortezomib to patients undergoing a radical prostatectomy, to assess pathologic changes induced by bortezomib in prostate cancer specimen, and to verify alterations by the drug in proteasome protein targets. EXPERIMENTAL DESIGN Bortezomib is a proteasome inhibitor that has shown activity in vitro and in vivo in prostate cancer. We performed a neoadjuvant clinical trial of bortezomib in men with prostate cancer at high risk of recurrence. The primary endpoints were to evaluate safety and biological activity. RESULTS Bortezomib is generally safe in the preoperative setting. Antitumor activity was manifested by tumor cytopathic effect, drops in serum prostate-specific antigen in some patients, and increases in tumor apoptosis. This was associated with cytoplasmic entrapment of nuclear factor-kappaB. We found an unexpected increase in proliferation in treated tissues and in vitro. Bortezomib also increased SRC-3 levels and phosphorylated Akt, both in vitro and in treated prostate cancer tissues. Knockdown of SRC-3 blocked the increase in activated Akt in vitro. Combined treatment with bortezomib and the Akt inhibitor perifosine was more effective than either agent alone in vitro. CONCLUSION These data suggest that combined therapies targeting the proteasome and the Akt pathway may have increased efficacy.
Collapse
Affiliation(s)
- Gustavo Ayala
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hatano K, Kikuchi J, Takatoku M, Shimizu R, Wada T, Ueda M, Nobuyoshi M, Oh I, Sato K, Suzuki T, Ozaki K, Mori M, Nagai T, Muroi K, Kano Y, Furukawa Y, Ozawa K. Bortezomib overcomes cell adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene 2008; 28:231-42. [DOI: 10.1038/onc.2008.385] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 2008; 113:856-65. [PMID: 18796623 DOI: 10.1182/blood-2008-02-139725] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Notch signaling is involved in tumorigenesis, but its role in B-chronic lymphocytic leukemia (B-CLL) pathogenesis is not completely defined. This study examined the expression and activation of Notch receptors in B-CLL cells and the role of Notch signaling in sustaining the survival of these cells. Our results show that B-CLL cells but not normal B cells constitutively express Notch1 and Notch2 proteins as well as their ligands Jagged1 and Jagged2. Notch signaling is constitutively activated in B-CLL cells, and its activation is further increased in B-CLL cells, which resist spontaneous apoptosis after 24-hour ex vivo culture. Notch stimulation by a soluble Jagged1 ligand increases B-CLL cell survival and is accompanied by increased nuclear factor-kappa B (NF-kappaB) activity and cellular inhibitor of apoptosis protein 2 (c-IAP2) and X-linked inhibitor of apoptosis protein (XIAP) expression. In contrast, Notch-signaling inhibition by the gamma-secretase inhibitor I (GSI; z-Leu-Leu-Nle-CHO) and the specific Notch2 down-regulation by small-interfering RNA accelerate spontaneous B-CLL cell apoptosis. Apoptotic activity of GSI is accompanied by reduction of NF-kappaB activity and c-IAP2 and XIAP expression. Overall, our findings show that Notch signaling plays a critical role in B-CLL cell survival and apoptosis resistance and suggest that it could be a novel potential therapeutic target.
Collapse
|
44
|
Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib. Blood 2008; 112:3835-46. [PMID: 18633129 DOI: 10.1182/blood-2008-04-150227] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dietary flavonoids have many health-promoting actions, including anticancer activity via proteasome inhibition. Bor-tezomib is a dipeptide boronate proteasome inhibitor that has activity in the treatment of multiple myeloma but is not effective in chronic lymphocytic leukemia (CLL). Although CLL cells are sensitive in vitro to bortezomib-induced apoptosis when cultured in medium, the killing activity was blocked when cultured in 50% fresh autologous plasma. Dietary flavonoids, quercetin and myricetin, which are abundant in plasma, inhibited bortezomib-induced apoptosis of primary CLL and malignant B-cell lines in a dose-dependent manner. This inhibitory effect was associated with chemical reactions between quercetin and the boronic acid group, -RB(OH)2, in bortezomib. The addition of boric acid diminished the inhibitory effect of both quercetin and plasma on bortezomib-induced apoptosis. The protective effect was also reduced when myeloma cell lines, but not B-cell lines, were preincubated with quercetin, indicating a direct effect of quercetin on myeloma cells. At high doses, quercetin itself induced tumor cell death. These data indicate that dietary flavonoids limit the efficacy of bortezomib, whereas supplemental inorganic boric acid is able to reverse this. The complex interactions between quercetin, tumor cells, and bortezomib mean caution is required when giving dietary advice to patients.
Collapse
|
45
|
LeBrun D, Baetz T, Foster C, Farmer P, Sidhu R, Guo H, Harrison K, Somogyi R, Greller LD, Feilotter H. Predicting outcome in follicular lymphoma by using interactive gene pairs. Clin Cancer Res 2008; 14:478-87. [PMID: 18223222 DOI: 10.1158/1078-0432.ccr-07-1720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Follicular lymphoma is a common lymphoma of adults. Although its course is often indolent, a substantial proportion of patients have a poor prognosis, often due to rapid progression or transformation to a more aggressive lymphoma. Currently available clinical prognostic scores, such as the follicular lymphoma international prognostic index, are not able to optimally predict transformation or poor outcome. EXPERIMENTAL DESIGN Gene expression profiling was done on primary lymphoma biopsy samples. RESULTS Using a statistically conservative approach, predictive interaction analysis, we have identified pairs of interacting genes that predict poor outcome, measured as death within 5 years of diagnosis. The best gene pair performs >1,000-fold better than any single gene or the follicular lymphoma international prognostic index in our data set. Many gene pairs achieve outcome prediction accuracies exceeding 85% in extensive cross-validation and noise sensitivity computational analyses. Many genes repeatedly appear in top-ranking pairs, suggesting that they reproducibly provide predictive capability. CONCLUSIONS The evidence reported here may provide the basis for an expression-based, multi-gene test for predicting poor follicular lymphoma outcomes.
Collapse
Affiliation(s)
- David LeBrun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ma W, Kantarjian H, O'Brien S, Jilani I, Zhang X, Estrov Z, Ferrajoli A, Keating M, Giles F, Albitar M. Enzymatic activity of circulating proteasomes correlates with clinical behavior in patients with chronic lymphocytic leukemia. Cancer 2008; 112:1306-12. [DOI: 10.1002/cncr.23301] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Srimatkandada P, Loomis R, Carbone R, Srimatkandada S, Lacy J. Combined proteasome and Bcl-2 inhibition stimulates apoptosis and inhibits growth in EBV-transformed lymphocytes: a potential therapeutic approach to EBV-associated lymphoproliferative diseases. Eur J Haematol 2008; 80:407-18. [PMID: 18221384 DOI: 10.1111/j.1600-0609.2008.01044.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Epstein-Barr virus (EBV) transforms B-cells into immortalized lymphoblastoid cells (LCLs) by triggering signaling pathways that lead to activation of multiple transcription factors and anti-apoptotic proteins, including NF-kappaB and Bcl-2, respectively. Since proteasome inhibition suppresses NF-kappaB activity, we sought to determine whether the proteasome inhibitor, bortezomib, alone or in combination with Bcl-2 inhibition, has potential as a therapeutic strategy in EBV-driven B-cell neoplasms. METHODS We evaluated the effects of bortezomib in LCLs in vitro, in the presence and absence of the small molecular inhibitor of Bcl-2, HA14-1, on proliferation, apoptosis, caspase activation, and expression of Bcl-2 family members, and in vivo in the severe combined immunodeficiency (SCID) model of EBV+ lymphoproliferative disease. RESULTS Bortezomib inhibited proliferation, stimulated apoptosis, and activated caspases-3 and -9 in a dose-dependent manner in LCLs. In vivo, bortezomib completely abrogated development of EBV+ lymphoproliferative disease in LCL-bearing SCID mice. When HA14-1 was added to bortezomib in vitro, we observed a synergistic anti-proliferative effect and enhancement of apoptosis and caspase activation, including activation of caspase-8, in LCLs. These events were associated with modulation of expression of Bcl-2 family members towards a pro-apoptotic profile with translocation of cytochrome C from mitochondria to cytoplasm. CONCLUSIONS These studies demonstrated that bortezomib mediates anti-tumor effects in EBV-associated lymphoproliferations both in vitro and in vivo, and that its anti-proliferative and apoptotic effects are synergistically enhanced in the presence of a Bcl-2 inhibitor. These findings support further investigation of bortezomib in EBV+ lymphoproliferative diseases, and suggest that bortezomib in combination with Bcl-2 antagonists represents a potential therapeutic strategy for EBV-driven B-cell neoplasms.
Collapse
|
48
|
Hajdu M, Sebestyén A, Barna G, Reiniger L, Jánosi J, Sréter L, Várkonyi J, Demeter J, Kopper L. Activity of the notch-signalling pathway in circulating human chronic lymphocytic leukaemia cells. Scand J Immunol 2007; 65:271-5. [PMID: 17309782 DOI: 10.1111/j.1365-3083.2006.01897.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysregulation of the Notch-pathway has been implicated in the pathogenesis of chronic lymphocytic leukaemia (B-CLL). We characterized the mRNA expression of Notch pathway elements in circulating normal B- and B-CLL cells, and compared expression profiles with clinical and prognostic data. Similar expression profiles were found in normal B-cells and B-CLL cells, however, most B-CLL samples showed lower Hairy/Enhancer of Split-1 expression than normal B-cells, which suggests that the pathway is not over-activated in B-CLL. The expression of Notch-pathway genes did not correlate with other prognostic factors of B-CLL. The importance of Notch-signalling in CLL cells in lymphatic tissue microenvironments remains to be determined.
Collapse
Affiliation(s)
- M Hajdu
- I Department of Pathology and Experimental Cancer Research, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lewis HD, Leveridge M, Strack PR, Haldon CD, O'neil J, Kim H, Madin A, Hannam JC, Look AT, Kohl N, Draetta G, Harrison T, Kerby JA, Shearman MS, Beher D. Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. ACTA ACUST UNITED AC 2007; 14:209-19. [PMID: 17317574 DOI: 10.1016/j.chembiol.2006.12.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 12/12/2006] [Accepted: 12/20/2006] [Indexed: 12/31/2022]
Abstract
In this report, inhibitors of the gamma-secretase enzyme have been exploited to characterize the antiproliferative relationship between target inhibition and cellular responses in Notch-dependent human T cell acute lymphoblastic leukemia (T-ALL) cell lines. Inhibition of gamma-secretase led to decreased Notch signaling, measured by endogenous NOTCH intracellular domain (NICD) formation, and was associated with decreased cell viability. Flow cytometry revealed that decreased cell viability resulted from a G(0)/G(1) cell cycle block, which correlated strongly to the induction of apoptosis. These effects associated with inhibitor treatment were rescued by exogenous expression of NICD and were not mirrored when a markedly less active enantiomer was used, demonstrating the gamma-secretase dependency and specificity of these responses. Together, these data strengthen the rationale for using gamma-secretase inhibitors therapeutically and suggest that programmed cell death may contribute to reduction of tumor burden in the clinic.
Collapse
Affiliation(s)
- Huw D Lewis
- Department of Molecular and Cellular Neuroscience, Merck Sharp and Dohme Research Laboratories, Terlings Park, Harlow, Essex, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jantus-Lewintre E, Sarsotti E, Terol MJ, Benet I, García-Conde J. Bortezomib induces different apoptotic rates in B-CLL cells according to IgVH and BCL-6 mutations. Clin Transl Oncol 2007; 8:805-11. [PMID: 17134969 DOI: 10.1007/s12094-006-0136-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND B-cell chronic lymphocytic leukemia (B-CLL) is a remarkably heterogeneous disorder. Some patients have an indolent disease whereas others undergo a more agressive presentation needing treatment. New therapeutics approaches are necessary for the treatment of B-CLL. Bortezomib (Btz), is a proteasome inhibitor, currently undergoing clinical trials whose function, at least in part, by stabilizing the IkappaBalpha protein and inhibiting NFkappaB activation. OBJECTIVE The objective of this work was to study the effects of Btz on isolated human B-CLL cells, in vitro, and to correlate the differential rates of apoptosis induction with biological variables. MATERIAL AND METHODS 31 B-CLL samples, from patients in stage A of Binet were used for this study, and the apoptotic effect of Btz on these cells was measured. RESULTS Our data show that Btz treatment of B-CLL cells induces apoptosis in a time and dose-dependent manner. The apoptosis induction is mediated in part by inhibition of NFkappaB and is dependent on caspases activation. Interesting, in IgVH mutated cells, Btz have statistically significant differences in their in vitro activity on B-CLL cells according to their BCL-6 mutational status. CONCLUSIONS Btz is a promising pharmacologic agent for the treatment of B-CLL, but its efficacy seems to be related to IgVH and BCL-6 mutational status, therefore, it could be interesting to further investigate the mechanisms involved in the different behavior of the cells in response to apoptosis induction by this drug.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/biosynthesis
- ADP-ribosyl Cyclase 1/genetics
- Adult
- Aged
- Aged, 80 and over
- Amino Acid Chloromethyl Ketones/pharmacology
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Boronic Acids/administration & dosage
- Boronic Acids/pharmacology
- Bortezomib
- Caspase Inhibitors
- Caspases/physiology
- Cysteine Proteinase Inhibitors/pharmacology
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Female
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genes, Immunoglobulin
- Humans
- I-kappa B Kinase/antagonists & inhibitors
- I-kappa B Proteins/metabolism
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- NF-kappa B/antagonists & inhibitors
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/physiology
- Nitriles/pharmacology
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational/drug effects
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins c-bcl-6/genetics
- Pyrazines/administration & dosage
- Pyrazines/pharmacology
- Sulfones/pharmacology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- ZAP-70 Protein-Tyrosine Kinase/biosynthesis
- ZAP-70 Protein-Tyrosine Kinase/genetics
Collapse
|