1
|
Chitoran E, Rotaru V, Stefan DC, Gullo G, Simion L. Blocking Tumoral Angiogenesis VEGF/VEGFR Pathway: Bevacizumab-20 Years of Therapeutic Success and Controversy. Cancers (Basel) 2025; 17:1126. [PMID: 40227654 PMCID: PMC11988089 DOI: 10.3390/cancers17071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
The "angiogenesis switch"-defined as the active process by which solid tumors develop their own circulation-plays an important role in both tumoral growth and propagation. As the malignant tumor grows and reaches a critical size, the metabolic needs as a function of an ever-increasing distance to the nearest emergent blood vessel, can no longer be covered by the microenvironment of the peritumoral tissue. Although a relatively discrete process, the "angiogenic switch" acts as a limiting stage of tumoral development present from the avascular hyperplasia phase to the vascularized neoplastic phase, providing support for tumor expansion and metastasis. Over time, research has focused on blocking the angiogenetic pathways (such as VEGF/VEGFR signaling axis) leading to the development of targeted therapeutic agents such as Bevacizumab. Objectives: We conducted a review of the molecular principles of tumoral angiogenesis and we tried to follow the history of Bevacizumab from its first approval for human usage 20 years ago to current days, focusing on the impact this agent had in solid tumor therapy. A comprehensive review of clinical trials pertaining to Bevacizumab (from the era of the preclinic trials leading to approval for human usage, to the more recent randomized trial focusing on combination targeted therapy) further details the role of this drug. We aimed to establish if this ancient drug continues to have a place in modern oncology. Conclusions: Bevacizumab, one of the first drugs targeting tumoral microenvironment, remains one of the most important oncologic agents blocking the VEGF/VEGFR angiogenic pathway. otherwise, history of 20 years marked by numerous controversies (ranging from methodological errors of clinical trials to withdrawal of approval for human usage in breast cancer patients, from discussions about severe side effects to resistance to therapy and limited efficacity), Bevacizumab continues to provide an optimal therapeutic option for many solid tumors that previously had little to no means of treatment, improving otherwise bleak outcomes. Even in the era of personalized precision oncology, Bevacizumab continues to be a key element in many therapeutic regimens both as monotherapy and in combination with newer targeted agents.
Collapse
Affiliation(s)
- Elena Chitoran
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Vlad Rotaru
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Daniela-Cristina Stefan
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Laurentiu Simion
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
2
|
Ribatti D. Tryptase and tumor angiogenesis. Front Oncol 2024; 14:1500482. [PMID: 39749033 PMCID: PMC11693740 DOI: 10.3389/fonc.2024.1500482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Tryptases represent the most abundant constituent of human mast cells, involved in extracellular matrix degradation, contributing to wound healing and metastasis. Moreover, most recently, it has been demonstrated that tryptase is angiogenic both in vitro and in vivo. Tryptase-positive mast cell number increases parallelly with increased microvascular density in both solid and hematological tumors. The objective and the scope of this review article are to emphasize the important role of tryptase as one of the principal effectors of tumor angiogenesis mediated by mast cells. In this context, tryptase inhibitors may be considered a novel therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| |
Collapse
|
3
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Chitoran E, Rotaru V, Ionescu SO, Gelal A, Capsa CM, Bohiltea RE, Mitroiu MN, Serban D, Gullo G, Stefan DC, Simion L. Bevacizumab-Based Therapies in Malignant Tumors-Real-World Data on Effectiveness, Safety, and Cost. Cancers (Basel) 2024; 16:2590. [PMID: 39061228 PMCID: PMC11274419 DOI: 10.3390/cancers16142590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Overall, it is estimated that more than 3,500,000 patients have received Bevacizumab as part of systemic oncologic treatment. Bevacizumab and its biosimilars are currently marketed in over 130 countries. Given the wide usage of Bevacizumab in current oncological practice, it is very important to compare the "real-world" results to those obtained in controlled clinical trials. This study aims to describe the clinical experience of using Bevacizumab in a large cohort of cancer patients in "non-controlled real-world" conditions with regard to effectiveness, safety, and cost of therapy. METHODS For this purpose, we conducted an open, observational, retrospective study involving all patients treated for solid malignant tumors in the Bucharest Institute of Oncology with "Prof. Dr. Al. Trestioreanu" with Bevacizumab-based systemic therapy, between 2017 and 2021. RESULTS The study consisted of 657 treatment episodes in 625 patients (F/B = 1.62/1, with a median age of 57.6 years) which were treated for malignant tumors (majority colorectal, non-small cell lung, ovarian, and breast cancer). First-line treatment was administered in 229 patients, and the rest received Bevacizumab as second or subsequent lines of treatment. The overall response rate to Bevacizumab-based therapies was around 60-65% across all indication except for subsequent treatment lines in colorectal and ovarian cancers, where lower values were recorded (27.1%, and 31.5% respectively). Median PFS for the entire cohort was 8.2 months (95% CI 6.8-9.6), and the median OS was 13.2 months (95% CI 11.5-14.9). Usual bevacizumab-related toxicities were observed, including bleeding, hypertension, wound-healing complications, gastrointestinal perforation, other types of fistulas, septic complications, and thromboembolic events. Although the clinical benefits are undeniable, the addition of Bevacizumab to standard chemotherapy increased the overall treatment cost by 213%. CONCLUSIONS Bevacizumab remains a high-cost therapy, but it can add to clinical benefits (like overall survival, progression-free survival, and response rate) when used in conjunction with standard chemotherapy. Similar results as those presented in various controlled trials are observable even on unselected cohorts of patients in the uncontrolled conditions of "real-world" oncological practice. Off-label usage is encountered in clinical practice, and this aspect should be monitored given the potential adverse effects of the therapy.
Collapse
Affiliation(s)
- Elena Chitoran
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Vlad Rotaru
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Sinziana-Octavia Ionescu
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Aisa Gelal
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Cristina-Mirela Capsa
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Radiology Department, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Roxana-Elena Bohiltea
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Obstetrics and Gynecology Department, “Filantropia” Clinical Hospital, 011132 Bucharest, Romania
| | - Madalina-Nicoleta Mitroiu
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Obstetrics and Gynecology Department, “Filantropia” Clinical Hospital, 011132 Bucharest, Romania
| | - Dragos Serban
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Department 4, Bucharest University Emergency Hospital, 050098 Bucharest, Romania
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Daniela-Cristina Stefan
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laurentiu Simion
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
5
|
Uziel O, Lipshtein L, Sarsor Z, Beery E, Bogen S, Lahav M, Regev A, Kliminski V, Sharan R, Gervits A, Signorini LF, Shimony S, Raanani P, Rozovski U. Chronic Lymphocytic Leukemia (CLL)-Derived Extracellular Vesicles Educate Endothelial Cells to Become IL-6-Producing, CLL-Supportive Cells. Biomedicines 2024; 12:1381. [PMID: 39061955 PMCID: PMC11273944 DOI: 10.3390/biomedicines12071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
We hypothesized that via extracellular vesicles (EVs), chronic lymphocytic leukemia (CLL) cells turn endothelial cells into CLL-supportive cells. To test this, we treated vein-derived (HUVECs) and artery-derived (HAOECs) endothelial cells with EVs isolated from the peripheral blood of 45 treatment-naïve patients. Endothelial cells took up CLL-EVs in a dose- and time-dependent manner. To test whether CLL-EVs turn endothelial cells into IL-6-producing cells, we exposed them to CLL-EVs and found a 50% increase in IL-6 levels. Subsequently, we filtered out the endothelial cells and added CLL cells to this IL-6-enriched medium. After 15 min, STAT3 became phosphorylated, and there was a 40% decrease in apoptosis rate, indicating that IL-6 activated the STAT3-dependent anti-apoptotic pathway. Phospho-proteomics analysis of CLL-EV-exposed endothelial cells revealed 23 phospho-proteins that were upregulated, and network analysis unraveled the central role of phospho-β-catenin. We transfected HUVECs with a β-catenin-containing plasmid and found by ELISA a 30% increase in the levels of IL-6 in the culture medium. By chromatin immunoprecipitation assay, we observed an increased binding of three transcription factors to the IL-6 promoter. Importantly, patients with CLL possess significantly higher levels of peripheral blood IL-6 compared to normal individuals, suggesting that the inducers of endothelial IL-6 are the neoplastic EVs derived from the CLL cells versus those of healthy people. Taken together, we found that CLL cells communicate with endothelial cells through EVs that they release. Once they are taken up by endothelial cells, they turn them into IL-6-producing cells.
Collapse
Affiliation(s)
- Orit Uziel
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| | - Lian Lipshtein
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| | - Zinab Sarsor
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
| | - Einat Beery
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
| | - Shaked Bogen
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
| | - Meir Lahav
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| | - Alon Regev
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
| | - Vitali Kliminski
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (R.S.); (A.G.); (L.F.S.)
| | - Asia Gervits
- Blavatnik School of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (R.S.); (A.G.); (L.F.S.)
| | - Lorenzo Federico Signorini
- Blavatnik School of Computer Science, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (R.S.); (A.G.); (L.F.S.)
| | - Shai Shimony
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| | - Pia Raanani
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| | - Uri Rozovski
- The Felsenstein Medical Research Center, Rabin Medical Center Petah-Tikva, Petah Tikva 49100, Israel; (L.L.); (Z.S.); (E.B.); (M.L.); (A.R.); (V.K.); (S.S.); (P.R.); (U.R.)
- Institute of Hematology, Davidoff Cancer Center, Petah Tikva 49100, Israel;
- Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Yan W, Huang C, Yan Y, Wang P, Yuwen W, Zhu C, Fu R, Duan Z, Fan D. Expression, characterization and antivascular activity of amino acid sequence repeating collagen hexadecapeptide. Int J Biol Macromol 2024; 270:131886. [PMID: 38677696 DOI: 10.1016/j.ijbiomac.2024.131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Type V collagen is an essential component of the extracellular matrix (ECM), and its remodeling releases specific protein fragments that can specifically inhibit endothelial cell responses such as proliferation, migration, and invasion. In this study, we have successfully constructed two engineered strains of Pichia pastoris capable of producing recombinant collagen through a new genetic engineering approach. Through high-density fermentation, the expression of 1605 protein and 1610 protein could reach 2.72 g/L and 4.36 g/L. With the increase of repetition times, the yield also increased. Bioactivity analysis showed that recombinant collagen could block the angiogenic effect of FGF-2 on endothelial cells by eliminating FGF-2-induced endothelial cell migration and invasion. Collectively, the recombinant proteins we successfully expressed have a wide range of potential for inhibiting angiogenesis in the biomaterials and biomedical fields.
Collapse
Affiliation(s)
- Wenjing Yan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Changjin Huang
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yumiao Yan
- Xi'an Gaoxin No.1 High School, Xi'an, China
| | - Pan Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Weigang Yuwen
- Shaanxi Giant Biotechnology Co., Ltd., Xi'an 710065, Shaanxi, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
7
|
Zhang S, Xia Y, Chen W, Dong H, Cui B, Liu C, Liu Z, Wang F, Du J. Regulation and Therapeutic Application of Long non-Coding RNA in Tumor Angiogenesis. Technol Cancer Res Treat 2024; 23:15330338241273239. [PMID: 39110070 PMCID: PMC11307360 DOI: 10.1177/15330338241273239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Tumor growth and metastasis rely on angiogenesis. In recent years, long non-coding RNAs have been shown to play an important role in regulating tumor angiogenesis. Here, we review the multidimensional modes and relevant molecular mechanisms of long non-coding RNAs in regulating tumor angiogenesis. In addition, we summarize new strategies for tumor anti-angiogenesis therapies by targeting long non-coding RNAs. The aim of this study is to provide new diagnostic targets and treatment strategies for anti-angiogenic tumor therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Yunxiu Xia
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Zhiqiang Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Medical Integration and Practice Center, Shandong University, Jinan, P.R. China
- Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
| |
Collapse
|
8
|
Tuncel T, Metintas M, Güntülü AK, Güneş HV. Whole-Genome Comparative Copy Number Alteration Profiling between Malignant Pleural Mesothelioma and Asbestos-Induced Chronic Pleuritis. J Environ Pathol Toxicol Oncol 2024; 43:31-44. [PMID: 37824368 DOI: 10.1615/jenvironpatholtoxicoloncol.2023047755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is rare and aggressive cancer. The most important risk factor for MPM is exposure to asbestos. In this study, we scanned the genomes of individuals MPM and asbestos-induced chronic pleuritis (AICP) to compare and determine copy number alterations (CNAs) between two asbestos-related diseases. We used high-resolution SNP arrays to compare CNA profiles between MPM (n = 55) and AICP (n = 18). DNAs extracted from pleural tissues in both groups. SNP array analysis revealed common losses at 1p, 3p, 6q, 9p, 13q, 14q, 15q, 16q, 22q and frequent gains at chromosomes 1, 3, 5, 7, 8, and 6p, 12q, 15q, 17p, 20q in MPMs (frequencies max 67%-min 30%; these alterations were not detected in AICPs. Besides detecting well-known MPM-associated CNAs, our high -resolution copy number profiling also detected comparatively rare CNAs for MPMs including losses like 9q33.3, 16q and gains of 1p, 1q, 3p, 3q, 6p, 7q, 15q, 12q, 17p, 20q at significant frequencies in the MPM cohort. We also observed Copy Number gains clustered on the NF2 locus in AICPs, whereas this region was commonly deleted in MPMs. According to this distinct genomic profiles between the two groups, AICPs genomes can be clearly distinguished from highly altered MPM genomes. Hence, we can suggest that SNP arrays can be used as a supporting diagnostic tool in terms of discriminating asbestos-related malignant disease such as MPM and benign pleural lesions, which can be challenging in most instances.
Collapse
Affiliation(s)
- Tunç Tuncel
- Health Institutes of Turkey, Turkish Biotechnology Institute, Ankara, Turkey
| | - Muzaffer Metintas
- Eskisehir Osmangazi University Medical Faculty, Department of Chest Diseases, Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
| | - A K Güntülü
- Eskisehir Osmangazi University Medical Faculty, Department of Chest Diseases, Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
| | - Hasan Veysi Güneş
- Eskisehir Osmangazi University Medical Faculty, Department of Medical Biology, Eskisehir, Turkey
| |
Collapse
|
9
|
Monzeglio O, Melissa VM, Rodolfi S, Valentini E, Carriero A. Exploring the potential of contrast agents in breast cancer echography: current state and future directions. J Ultrasound 2023; 26:749-756. [PMID: 37566194 PMCID: PMC10632334 DOI: 10.1007/s40477-023-00809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
Breast cancer stands as the most frequent malignancy and leading cause of death among women. Early and accurate detection of this pathology represents a crucial factor in enhancing both incidence and mortality rates. Ultrasound (US) examination has been extensively adopted in clinical practice due to its non-invasiveness, affordability, ease of implementation, and wide accessibility, thus representing a valuable first-line diagnostic tool for the study of the mammary gland. In this scenario, recent developments in nanomedicine are paving the way for new interpretations and applications of US diagnostics, which are becoming increasingly personalized based on the molecular phenotype of each tumor, allowing for more precise and accurate evaluations. This review highlights the current state-of-the-art of US diagnosis of breast cancer, as well as the recent advancements related to the application of US contrast agents to the field of molecular diagnostics, still under preclinical study.
Collapse
Affiliation(s)
- Oriana Monzeglio
- Department of Diagnosis and Treatment Services, Radiodiagnostics and Interventional Radiology, AOU Maggiore Della Carità, Corso Mazzini 18, 28100, Novara, Italy.
| | - Vittoria Maria Melissa
- Department of Diagnosis and Treatment Services, Radiodiagnostics and Interventional Radiology, AOU Maggiore Della Carità, Corso Mazzini 18, 28100, Novara, Italy
| | - Sara Rodolfi
- Department of Diagnosis and Treatment Services, Radiodiagnostics and Interventional Radiology, AOU Maggiore Della Carità, Corso Mazzini 18, 28100, Novara, Italy
| | - Eleonora Valentini
- Department of Diagnosis and Treatment Services, Radiodiagnostics and Interventional Radiology, AOU Maggiore Della Carità, Corso Mazzini 18, 28100, Novara, Italy
| | - Alessandro Carriero
- Department of Translation Medicine, University of Eastern Piemonte UPO, Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
10
|
Yu P, Wang Y, Yuan D, Sun Y, Qin S, Li T. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer. Front Immunol 2023; 14:1276694. [PMID: 37936692 PMCID: PMC10626545 DOI: 10.3389/fimmu.2023.1276694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Ovarian cancer remains a challenging disease with limited treatment options and poor prognosis. The tumor microenvironment (TME) plays a crucial role in tumor growth, progression, and therapy response. One characteristic feature of the TME is the abnormal tumor vasculature, which is associated with inadequate blood perfusion, hypoxia, and immune evasion. Vascular normalization, a therapeutic strategy aiming to rectify the abnormal tumor vasculature, has emerged as a promising approach to reshape the TME, enhance antitumor immunity, and synergize with immunotherapy in ovarian cancer. This review paper provides a comprehensive overview of vascular normalization and its potential implications in ovarian cancer. In this review, we summarize the intricate interplay between anti-angiogenesis and immune modulation, as well as ICI combined with anti-angiogenesis therapy in ovarian cancer. The compelling evidence discussed in this review contributes to the growing body of knowledge supporting the utilization of combination therapy as a promising treatment paradigm for ovarian cancer, paving the way for further clinical development and optimization of this therapeutic approach.
Collapse
Affiliation(s)
- Ping Yu
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yaru Wang
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Dahai Yuan
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yunqin Sun
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Kaçmaz M, Oğuzman H. The Leucine-Rich α2-Glycoprotein-1 Levels in Patients with Multiple Myeloma. Oncol Res Treat 2023; 46:415-423. [PMID: 37527638 DOI: 10.1159/000532042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
INTRODUCTION Angiogenesis is considered important in the pathogenesis of multiple myeloma (MM), as well as in the targeted treatment of the disease. Leucine-rich α2-glycoprotein 1 (LRG1) is a protein that participates in angiogenesis and its effect on solid organ tumors has been investigated recently. This study aimed to investigate the relationship between MM and LRG1. METHODS The MM patients who admitted to Hatay Mustafa Kemal University Hematology Clinic between September 2021 and October 2022 were included in the study. The study consists of a total of 4 groups: newly diagnosed MM (NDMM), relapsed refractory MM (RRMM), MM in remission (Rem-MM), and control group. Demographic data were retrieved from hospital records. Blood samples of our study groups were centrifuged at 1,500 × g for 10 min and serum was collected. LRG1, IL-6, IL-8, TGF-β1, HIF-1α, FGF-2, and VEGF levels were analyzed in all groups by ELISA method, and statistical analysis was performed. RESULTS A total of 112 individuals, including NDMM (n: 27), RRMM (n: 18), Rem-MM (n: 42), and control group (n: 25), were enrolled in the study. Based on the analyses, the NDMM group exhibited significantly elevated levels of LRG1 (p < 0.001), TGF-1 (p < 0.001), and HIF-1α (p = 0.046, p < 0.001, and p = 0.003 compared to the RRMM, Rem-MM, and control groups, respectively) compared to the other groups. LRG1 levels were positively correlated with creatinine (r: 0.363, p = 0.001), calcium (r: 0.344, p = 0.001), total protein (r: 0.473, p < 0.001), erythrocyte sedimentation rate (r: 0.547, p < 0.001), lactate dehydrogenase (r: 0.321, p = 0.003), beta-2-microglobulin (r: 0.312, p = 0.017), IL-6 (r: 0.478, p < 0.001), IL-8 (r: 0.240, p = 0.03), TGF-β1 (r: 0.521, p < 0.001), and HIF-1α (r: 0.321, p = 0.003) levels and were negatively correlated with hemoglobin (r: -0.512, p < 0.001) and albumin (r: -0.549, p < 0.001) levels. Receiver operating characteristics (ROC) analysis revealed the association of LRG1 with the highest AUC value of 0.959 (95% CI: 0.904-1, p < 0.001) and the optimal cut-off value of 534.95 ng/mL (sensitivity: 93% and specificity: 99%) in the NDMM group compared to the control group. CONCLUSION In this study, providing data for the first time on LRG1 levels in the setting of MM. LRG1 levels were found to be significantly higher in NDMM patients and in our study discriminate this patient population from RRMM, Rem-MM, and normal controls. Therefore, LRG1 seems to a potential biomarker that should be evaluated in future studies addressing the diagnosis, staging, follow-up, prognosis, and treatment target of MM.
Collapse
Affiliation(s)
- Murat Kaçmaz
- Department of Hematology, Faculty of Medicine, Hatay Mustafa Kemal University, Antakya, Turkey
| | - Hamdi Oğuzman
- Department of Medical Biochemistry, Faculty of Medicine, Hatay Mustafa Kemal University, Antakya, Turkey
| |
Collapse
|
12
|
Turbatu A, Dobrea C, Stoian M, Barta CT, Halcu G, Birceanu A, Bordea AM, Ghimici CG, Oprea MM, Neacșu LD, Lupu AR, Coliță A. Tumor microenvironment in Hodgkin lymphoma: novel prognostic factors for assessing disease evolution. J Med Life 2023; 16:1201-1210. [PMID: 38024830 PMCID: PMC10652678 DOI: 10.25122/jml-2023-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 12/01/2023] Open
Abstract
Hodgkin lymphoma (HL) has become one of the most curable hematological neoplasia. Clinical and biological factors remain the main pillars guiding therapeutic strategies in HL. Recent studies have improved our understanding of the phenotype, the characteristics of histogenesis, and other possible mechanisms of lymphomagenesis, including the role of Epstein-Barr virus (EBV) infection. Tumor cells manipulate the microenvironment, allowing them to develop their malignant phenotype and evade the attack of the host's immune response so that the interaction between tumor cells and the reactive microenvironment determines not only the histological features but also the clinical-pathological characteristics and prognosis of these patients - essential for the development of future therapies targeting various other cellular components of the tumor microenvironment. This article aimed to evaluate the characteristics of the tumor microenvironment and malignant cells using histopathology and immunohistochemistry (IHC) techniques to highlight the association of EBV and to study the expression of characteristic antigens in malignant and non-malignant cells within the tumor mass (overexpression of BCL2 (B-cell lymphoma 2) in malignant cells, presence of PD1 (Programmed cell death Protein 1) on T lymphocytes, CD68+ macrophages in the tumor microenvironment, and presence of EGFR (epidermal growth factor receptor). The analysis of the data collected in this paper highlights several key parameters with prognostic value and statistical significance: the EBV infection at diagnosis, its association with low-intensity BCL2(+), the presence of CD68 with rosette formation, and the identification of specific vascularization patterns. The development of prognostic systems that take into account the integration of biological prognostic markers seems essential for a better risk stratification.
Collapse
Affiliation(s)
- Andrei Turbatu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Clinic of Hematology, Colțea Clinical Hospital, Bucharest, Romania
| | - Camelia Dobrea
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- OncoTeam Diagnostic Laboratory, Royal Hospital Clinic, Bucharest, Romania
| | - Marilena Stoian
- Clinic of Internal Medicine, Dr. I. Cantacuzino Clinical Hospital, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Cristian Tudor Barta
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Georgian Halcu
- Clinic of Pathology, Colțea Clinical Hospital, Bucharest, Romania
- PathoTeam Diagnostic Laboratory, Bucharest, Romania
| | | | - Ana-Maria Bordea
- Clinic of Hematology, Colțea Clinical Hospital, Bucharest, Romania
| | | | | | - Livia Doria Neacșu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Clinic of Hematology, Colțea Clinical Hospital, Bucharest, Romania
| | - Anca-Roxana Lupu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Clinic of Hematology, Colțea Clinical Hospital, Bucharest, Romania
| | - Andrei Coliță
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Clinic of Hematology, Colțea Clinical Hospital, Bucharest, Romania
| |
Collapse
|
13
|
Goesmann L, Refaian N, Bosch JJ, Heindl LM. Characterization and Quantitation of the Tumor Microenvironment of Uveal Melanoma. BIOLOGY 2023; 12:738. [PMID: 37237550 PMCID: PMC10215936 DOI: 10.3390/biology12050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Uveal melanoma (UM) is a highly malignant tumor of the eye. Metastatic spread of UM occurs almost exclusively via blood vessels and is of tremendous interest, as half of the patients with uveal melanoma die of metastasis in the long run. The tumor microenvironment consists of all cellular and non-cellular compounds of a solid tumor, except for the tumor cells. This study aims to provide a more detailed understanding of the tumor microenvironment of UM to build the foundation for new therapeutic targets. Fluorescence immunohistochemistry was performed to examine the localization of various cell types in the tumor microenvironment in UM. Furthermore, the presence of LAG-3 and its ligands Galectine-3 and LSECtin was examined to evaluate the potential efficacy of immune checkpoint inhibitor-based therapies. The main findings are that blood vessels are mainly located in the middle of the tumor, and that immune cells are mostly found in the outer section of the tumor. LAG-3 and Galectine-3 were found to be highly represented, whereas LSECtin barely occurred in UM. Both the predominant location of tumor-associated macrophages in the outer section of the tumor and the high presence of LAG-3 and Galectine-3 in the UM serve as attainable therapeutic targets.
Collapse
Affiliation(s)
- Lara Goesmann
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.G.); (J.J.B.); (L.M.H.)
| | - Nasrin Refaian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.G.); (J.J.B.); (L.M.H.)
| | - Jacobus J. Bosch
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.G.); (J.J.B.); (L.M.H.)
- Center for Integrated Oncology (CIO) Aachen Bonn Cologne Duesseldorf, 50937 Cologne, Germany
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ludwig M. Heindl
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.G.); (J.J.B.); (L.M.H.)
- Center for Integrated Oncology (CIO) Aachen Bonn Cologne Duesseldorf, 50937 Cologne, Germany
| |
Collapse
|
14
|
Vidal I, Torres-Vargas JA, Sánchez JM, Trigal M, García-Caballero M, Medina MÁ, Quesada AR. Danthron, an Anthraquinone Isolated from a Marine Fungus, Is a New Inhibitor of Angiogenesis Exhibiting Interesting Antitumor and Antioxidant Properties. Antioxidants (Basel) 2023; 12:antiox12051101. [PMID: 37237967 DOI: 10.3390/antiox12051101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The role played by a sustained angiogenesis in cancer and other diseases stimulates the interest in the search for new antiangiogenic drugs. In this manuscript, we provide evidence that 1,8- dihydroxy-9,10-anthraquinone (danthron), isolated from the fermentation broth of the marine fungus Chromolaenicola sp. (HL-114-33-R04), is a new inhibitor of angiogenesis. The results obtained with the in vivo CAM assay indicate that danthron is a potent antiangiogenic compound. In vitro studies with human umbilical endothelial cells (HUVEC) reveal that this anthraquinone inhibits certain key functions of activated endothelial cells, including proliferation, proteolytic and invasive capabilities and tube formation. In vitro studies with human breast carcinoma MDA-MB231 and fibrosarcoma HT1080 cell lines suggest a moderate antitumor and antimetastatic activity of this compound. Antioxidant properties of danthron are evidenced by the observation that it reduces the intracellular reactive oxygen species production and increases the amount of intracellular sulfhydryl groups in endothelial and tumor cells. These results support a putative role of danthron as a new antiangiogenic drug with potential application in the treatment and angioprevention of cancer and other angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Isabel Vidal
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, and IBIMA Plataforma BIONAND, E-29071 Málaga, Spain
| | - José Antonio Torres-Vargas
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, and IBIMA Plataforma BIONAND, E-29071 Málaga, Spain
| | - José María Sánchez
- Biomar Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4, Armunia, 24009 León, Spain
| | - Mónica Trigal
- Biomar Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4, Armunia, 24009 León, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, and IBIMA Plataforma BIONAND, E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, and IBIMA Plataforma BIONAND, E-29071 Málaga, Spain
- Unidad 741 de CIBER "de Enfermedades Raras", E-29071 Málaga, Spain
| | - Ana R Quesada
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, and IBIMA Plataforma BIONAND, E-29071 Málaga, Spain
- Unidad 741 de CIBER "de Enfermedades Raras", E-29071 Málaga, Spain
| |
Collapse
|
15
|
Bhardwaj V, Zhang X, Pandey V, Garg M. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188888. [PMID: 37001618 DOI: 10.1016/j.bbcan.2023.188888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
The process of angiogenesis is well described for its potential role in the development of normal ovaries, and physiological functions as well as in the initiation, progression, and metastasis of ovarian cancer (OC). In advanced stages of OC, cancer cells spread outside the ovary to the pelvic, abdomen, lung, or multiple secondary sites. This seriously limits the efficacy of therapeutic options contributing to fatal clinical outcomes. Notably, a variety of angiogenic effectors are produced by the tumor cells to initiate angiogenic processes leading to the development of new blood vessels, which provide essential resources for tumor survival, dissemination, and dormant micro-metastasis of tumor cells. Multiple proangiogenic effectors and their signaling axis have been discovered and functionally characterized for potential clinical utility in OC. In this review, we have provided the current updates on classical and emerging proangiogenic effectors, their signaling axis, and the immune microenvironment contributing to the pathogenesis of OC. Moreover, we have comprehensively reviewed and discussed the significance of the preclinical strategies, drug repurposing, and clinical trials targeting the angiogenic processes that hold promising perspectives for the better management of patients with OC.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, PR China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India.
| |
Collapse
|
16
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
17
|
Harris A, Andl T. Precancerous Lesions of the Head and Neck Region and Their Stromal Aberrations: Piecemeal Data. Cancers (Basel) 2023; 15:cancers15082192. [PMID: 37190121 DOI: 10.3390/cancers15082192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) develop through a series of precancerous stages from a pool of potentially malignant disorders (PMDs). Although we understand the genetic changes that lead to HNSCC, our understanding of the role of the stroma in the progression from precancer to cancer is limited. The stroma is the primary battleground between the forces that prevent and promote cancer growth. Targeting the stroma has yielded promising cancer therapies. However, the stroma at the precancerous stage of HNSCCs is poorly defined, and we may miss opportunities for chemopreventive interventions. PMDs already exhibit many features of the HNSCC stroma, such as inflammation, neovascularization, and immune suppression. Still, they do not induce cancer-associated fibroblasts or destroy the basal lamina, the stroma's initial structure. Our review aims to summarize the current understanding of the transition from precancer to cancer stroma and how this knowledge can reveal opportunities and limitations for diagnostic, prognostic, and therapeutic decisions to benefit patients. We will discuss what may be needed to fulfill the promise of the precancerous stroma as a target to prevent progression to cancer.
Collapse
Affiliation(s)
- Ashlee Harris
- Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Pkwy, Orlando, FL 32826, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Pkwy, Orlando, FL 32826, USA
| |
Collapse
|
18
|
Franco PIR, Pereira JX, Ferreira HH, de Menezes LB, Miguel MP. Low-grade mammary gland tumours in dogs have greater VEGF-A and BMP2 immunostaining and higher CD31 blood vessel density. Top Companion Anim Med 2023; 53-54:100778. [PMID: 37011834 DOI: 10.1016/j.tcam.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Tumor angiogenesis is an important process in tumor growth, and different molecules are involved in its regulation including VEGF-A, BMP2, and CD31, which can be considered possible prognostic markers. The aim of this study was to verify whether the VEGF-A and BMP2 immunostaining area, and microvascular density (MVD) might be associated with the degree of malignancy in malignant mammary neoplasms of dogs. For this purpose, samples of mammary malignancies from female dogs embedded in wax were used and separated into four main histomorphological types: tubulopapillary carcinomas, solid, complex, and carcinosarcoma, which were separated based on high and low degrees of malignancy. Immunohistochemical analysis was performed on tissue microarray blocks using anti-CD31 antibodies for evaluation of MVD and vascular lumen area, and with anti-VEGF-A and anti-BMP2 to determine the immunostaining area using the DAKO EnVision™ FLEX+ kit. MVD and vascular lumen area were higher in tubulopapillary carcinomas as were the areas stained by VEGF-A and BMP2. Immunostaining for CD31 was higher in low-grade carcinomas as well as in areas immunostained by VEGF-A and BMP2. There was a positive correlation between VEGF and BMP2 in high (r = 0.556, p < 0.0001) and low-grade (r = 0.287, p<0.0001) carcinomas and between MVD and VEGF-A in low-grade carcinomas (r = 0.267, p = 0.0064). Thus, the markers evaluated showed greater immunostaining in canine mammary tumors with a lower degree of malignancy.
Collapse
|
19
|
Fonta CM, Loustau T, Li C, Poilil Surendran S, Hansen U, Murdamoothoo D, Benn MC, Velazquez-Quesada I, Carapito R, Orend G, Vogel V. Infiltrating CD8+ T cells and M2 macrophages are retained in tumor matrix tracks enriched in low tension fibronectin fibers. Matrix Biol 2023; 116:1-27. [PMID: 36669744 DOI: 10.1016/j.matbio.2023.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Tracks rich in matrix and cells, as described in several cancer types, have immunosuppressive functions and separate tumor nests and stroma, yet their origin is unknown. Immunostainings of cryosections from mouse breast tumors show that these tracks are bordered by an endothelial-like basement membrane, filled with fibers of collagen adjacent to tenascin-C (TNC) and low-tension fibronectin (Fn) fibers. While present in early-stage tumors and maturing with time, tracks still form under TNC KO conditions, however, host (not tumor cell)-derived TNC is important for track maturation. Tumor infiltrating leukocytes (mostly M2 macrophages and CD8+ T cells) are retained in tracks of early-stage tumors. Following track maturation, retained tumor infiltrating leukocyte (TIL) numbers get reduced and more CD8+ TIL enter the tumor nests in the absence of TNC. As these tracks are enriched with platelets and fibrinogen and have a demarcating endothelial-like basement membrane often adjacent to endothelial cells, this suggests a role of blood vessels in the formation of these tracks. The Fn fiber tension probe FnBPA5 colocalizes with TNC and immune cells in the tracks and shows decreased binding in tracks lacking TNC. Consequently, FnBPA5 can serve as probe for tumor matrix tracks that have immune suppressive properties.
Collapse
Affiliation(s)
- Charlotte M Fonta
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Vladimir Prelog Weg, Zurich CH-8093, Switzerland
| | - Thomas Loustau
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d' Hématologie et d'Immunologie, 1 Place de l'Hôpital, Strasbourg 67091, France; Université Strasbourg, Strasbourg 67000, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Chengbei Li
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d' Hématologie et d'Immunologie, 1 Place de l'Hôpital, Strasbourg 67091, France; Université Strasbourg, Strasbourg 67000, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Suchithra Poilil Surendran
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d' Hématologie et d'Immunologie, 1 Place de l'Hôpital, Strasbourg 67091, France; Université Strasbourg, Strasbourg 67000, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine (IMM), University Hospital Muenster, Muenster, Federal Republic of Germany
| | - Devadarssen Murdamoothoo
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d' Hématologie et d'Immunologie, 1 Place de l'Hôpital, Strasbourg 67091, France; MN3T (The Microenvironmental Niche in Tumorigenesis and Targeted Therapy), INSERM U1109, 3 avenue Molière, Strasbourg, Hautepierre, France; Université Strasbourg, Strasbourg 67000, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Mario C Benn
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Vladimir Prelog Weg, Zurich CH-8093, Switzerland
| | - Ines Velazquez-Quesada
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d' Hématologie et d'Immunologie, 1 Place de l'Hôpital, Strasbourg 67091, France; MN3T (The Microenvironmental Niche in Tumorigenesis and Targeted Therapy), INSERM U1109, 3 avenue Molière, Strasbourg, Hautepierre, France; Université Strasbourg, Strasbourg 67000, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Raphael Carapito
- Université Strasbourg, Strasbourg 67000, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France; Platform GENOMAX, INSERM UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, LabEx TRANSPLANTEX, Strasbourg 67091, France
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d' Hématologie et d'Immunologie, 1 Place de l'Hôpital, Strasbourg 67091, France; MN3T (The Microenvironmental Niche in Tumorigenesis and Targeted Therapy), INSERM U1109, 3 avenue Molière, Strasbourg, Hautepierre, France; Université Strasbourg, Strasbourg 67000, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France.
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Vladimir Prelog Weg, Zurich CH-8093, Switzerland.
| |
Collapse
|
20
|
Polverini PJ, Nör F, Nör JE. Crosstalk between cancer stem cells and the tumor microenvironment drives progression of premalignant oral epithelium. FRONTIERS IN ORAL HEALTH 2023; 3:1095842. [PMID: 36704239 PMCID: PMC9872128 DOI: 10.3389/froh.2022.1095842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Cancer stem cells (CSC) are a subpopulation of cancer cells that exhibit properties of self-renewal and differentiation and have been implicated in metastasis and treatment failures. There is mounting evidence that carcinogen-initiated mucosal epithelial stem cells acquire the CSC phenotype following exposure to environmental or infectious mutagens and are responsible for promoting the malignant transformation of premalignant (dysplastic) epithelium. CSC further contribute to the progression of dysplasia by activating signaling pathways through crosstalk with various cell populations in the tumor microenvironment. Two cell types, tumor-associated macrophages (TAM) and vascular endothelial cells (EC) nurture CSC development, support CSC stemness, and contribute to tumor progression. Despite mounting evidence implicating CSC in the initiation and progression of dysplastic oral epithelium to squamous cell carcinoma (SCC), the molecular mechanisms underlying these synergistic biological processes remain unclear. This review will examine the mechanisms that underlie the transformation of normal epithelial stem cells into CSC and the mechanistic link between CSC, TAM, and EC in the growth and the malignant conversation of dysplastic oral epithelium.
Collapse
Affiliation(s)
- Peter J. Polverini
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States,Correspondence: Peter J. Polverini
| | - Felipe Nör
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Molecular Crosstalk between Chromatin Remodeling and Tumor Microenvironment in Multiple Myeloma. Curr Oncol 2022; 29:9535-9549. [PMID: 36547163 PMCID: PMC9777166 DOI: 10.3390/curroncol29120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a complex disease driven by numerous genetic and epigenetic alterations that are acquired over time. Despite recent progress in the understanding of MM pathobiology and the availability of innovative drugs, which have pronounced clinical outcome, this malignancy eventually progresses to a drug-resistant lethal stage and, thus, novel therapeutic drugs/models always play an important role in effective management of MM. Modulation of tumor microenvironment is one of the hallmarks of cancer biology, including MM, which affects the myeloma genomic architecture and disease progression subtly through chromatin modifications. The bone marrow niche has a prime role in progression, survival, and drug resistance of multiple myeloma cells. Therefore, it is important to develop means for targeting the ecosystem between multiple myeloma bone marrow microenvironment and chromatin remodeling. Extensive gene expression profile analysis has indeed provided the framework for new risk stratification of MM patients and identifying novel molecular targets and therapeutics. However, key tumor microenvironment factors/immune cells and their interactions with chromatin remodeling complex proteins that drive MM cell growth and progression remain grossly undefined.
Collapse
|
22
|
The inhibition of protein translation promotes tumor angiogenic switch. MOLECULAR BIOMEDICINE 2022; 3:18. [PMID: 35695994 PMCID: PMC9192909 DOI: 10.1186/s43556-022-00081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
The ‘angiogenic switch’ is critical for tumor progression. However, the pathological details and molecular mechanisms remain incompletely characterized. In this study, we established mammal xenografts in zebrafish to visually investigate the first vessel growth (angiogenic switch) in real-time, by inoculating tumor cells into the perivitelline space of live optically transparent Transgenic (flk1:EGFP) zebrafish larvae. Using this model, we found that hypoxia and hypoxia-inducible factor (HIF) signaling were unnecessary for the angiogenic switch, whereas vascular endothelial growth factor A gene (Vegfa) played a crucial role. Mechanistically, transcriptome analysis showed that the angiogenic switch was characterized by inhibition of translation, but not hypoxia. Phosphorylation of eukaryotic translation initiation factor 2 alpha (Eif2α) and the expression of Vegfa were increased in the angiogenic switch microtumors, and 3D tumor spheroids, and puromycin-treated tumor cells. Vegfa overexpression promoted early onset of the angiogenic switch, whereas Vegfa knockout prevented the first tumor vessel from sprouting. Pretreatment of tumor cells with puromycin promoted the angiogenic switch in vivo similarly to Vegfa overexpression, whereas Vegfa knockdown suppressed the increase. This study provides direc and dynamic in vivo evidences that inhibition of translation, but not hypoxia or HIF signaling promotes the angiogenic switch in tumor by increasing Vegfa transcription.
Collapse
|
23
|
Xiao M, Shi Y, Jiang S, Cao M, Chen W, Xu Y, Xu Z, Wang K. Recent advances of nanomaterial-based anti-angiogenic therapy in tumor vascular normalization and immunotherapy. Front Oncol 2022; 12:1039378. [PMID: 36523993 PMCID: PMC9745116 DOI: 10.3389/fonc.2022.1039378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2025] Open
Abstract
Anti-angiogenesis therapy and immunotherapy are the first-line therapeutic strategies for various tumor treatments in the clinic, bringing significant advantages for tumor patients. Recent studies have shown that anti-angiogenic therapy can potentiate immunotherapy, with many clinical trials conducted based on the combination of anti-angiogenic agents and immune checkpoint inhibitors (ICIs). However, currently available clinical dosing strategies and tools are limited, emphasizing the need for more improvements. Although significant progress has been achieved, several big questions remained, such as how to achieve cell-specific targeting in the tumor microenvironment? How to improve drug delivery efficiency in tumors? Can nanotechnology be used to potentiate existing clinical drugs and achieve synergistic sensitization effects? Over the recent few years, nanomedicines have shown unique advantages in antitumor research, including cell-specific targeting, improved delivery potentiation, and photothermal effects. Given that the applications of nanomaterials in tumor immunotherapy have been widely reported, this review provides a comprehensive overview of research advances on nanomaterials in anti-angiogenesis therapy, mainly focusing on the immunosuppressive effects of abnormal tumor vessels in the tumor immune microenvironment, the targets and strategies of anti-angiogenesis nanomedicines, and the potential synergistic effects and molecular mechanisms of anti-angiogenic nanomedicines in combination with immunotherapy, ultimately providing new perspectives on the nanomedicine-based synergy between anti-angiogenic and immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
24
|
Torres-Vargas JA, Cheng-Sánchez I, Martínez-Poveda B, Medina MÁ, Sarabia F, García-Caballero M, Quesada AR. Characterization of the activity and the mechanism of action of a new toluquinol derivative with improved potential as an antiangiogenic drug. Biomed Pharmacother 2022; 155:113759. [DOI: 10.1016/j.biopha.2022.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
|
25
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
26
|
Burgers LD, Li Y, Michalakis S, Ciurus S, Zahler S, Müller R, Fürst R. The protein biosynthesis inhibitor vioprolide A evokes anti-angiogenic and pro-survival actions by targeting NOP14 and decreasing VEGF receptor 2- and TAZ-signaling. Biomed Pharmacother 2022; 152:113174. [PMID: 35665668 DOI: 10.1016/j.biopha.2022.113174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis contributes to the progression of several diseases including cancer or age-related macular degeneration and is crucially driven by pathologically hyperactive endothelial cells (ECs). Targeting angiogenic processes in ECs thus represents a promising strategy to treat these conditions. Vioprolide A (vioA) is a myxobacterial cyclic depsipeptide that targets the nucleolar protein 14 (NOP14) and possesses strong anti-cancer and anti-inflammatory actions. Here, we present evidence that vioA promotes anti-angiogenic actions in vivo and in ECs in vitro. VioA reduced the choroidal neovascularization after laser-induced photocoagulation in mice in vivo, the sprouting of choroidal explant cultures ex vivo and key angiogenic features of ECs in vitro. Mechanistically, vioA decreased VEGFR2 protein levels and phosphorylation leading to impaired downstream pro-angiogenic signaling. Concurrently, vioA influenced TAZ signaling by diminishing its nuclear translocation and protein level, resulting in a reduced expression of pro-angiogenic target genes and dynamic cytoskeletal remodeling. Surprisingly, vioA induced pro-survival signaling in ECs by activating Akt and inhibiting p53-dependent apoptosis. Knockdown of the cellular target NOP14 further revealed a partial involvement in the anti-angiogenic and pro-survival actions of vioA. Taken together, our study introduces vioA as an interesting anti-angiogenic compound that warrants further investigations in preclinical studies.
Collapse
Affiliation(s)
- Luisa D Burgers
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Yanfen Li
- Department of Ophthalmology, University Hospital, LMU Munich, Germany
| | | | - Sarah Ciurus
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Stefan Zahler
- Department of Pharmacy - Center for Drug Research, Pharmaceutical Biology, LMU Munich, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Saarland University, Saarbrücken, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany; LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany.
| |
Collapse
|
27
|
Vibhute A, Nille O, Kolekar G, Rohiwal S, Patil S, Lee S, Tiwari AP. Fluorescent Carbon Quantum Dots Functionalized by Poly L-Lysine: Efficient Material for Antibacterial, Bioimaging and Antiangiogenesis Applications. J Fluoresc 2022; 32:1789-1800. [PMID: 35689742 DOI: 10.1007/s10895-022-02977-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
This study illustrates the synthesis of functionalized carbon quantum dots (CQDs) by the one-pot pyrolysis method. The functionalization agent used in CQD synthesis was poly l- lysine (PLL). Various physicochemical techniques were employed to confirm the successful formation of PLLCQD including High resolution transmission electron microscopy (HR-TEM), UV-Vis spectroscopy, fluorescence spectroscopy; Atomic force microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The size of PLLCQD was confirmed by HRTEM and AFM. The synthesized PLLCQD shows bright blue fluorescence and has a quantum yield of 19.35%. The highest emission band was observed at 471nm when excited to 370nm. The prepared PLLCQD exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus with inhibition zone 7-20 mm. The concentrations of 0.9 to 0.1gmL-1 were studied to determine minimum inhibitory concentration (MIC) by the agar well diffusion assay method. MIC of 0.2gml -1 concentration of PLLCQD is achieved. The anti-angiogenic activity of PLLCQD was determined using (Chick Chorioallantoic Membrane) CAM assay. CAM assay is a reliable in -vivo model to study angiogenesis also; many stimulators and inhibitors have been examined by this method. This study proves higher antibacterial efficiency of PLLCQD over non functionalized CQD. PLLCQD was successfully employed in bio-imaging of the bacterial cell through fluorescence microscopy. Further, PLLCQD displayed cytotoxic effect on endothelial cells and inhibited blood vessel formation in the CAM model.
Collapse
Affiliation(s)
- Anuja Vibhute
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, D. Y. Patil Education Society(Deemed to Be University), Kolhapur, 416 006, Maharashtra, India
| | - Omkar Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Govind Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Sonali Rohiwal
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics AS CR, v.v.i. Rumburska 89, Libechov, 277 21, Czech Republic
| | - Shubham Patil
- Department of Electronics and Information Convergence Engineering, Kyung Hee University (Global Campus), 1732, Deogyoung Road, Giheung, Gyeonggi, Yongin, 17104, South Korea
| | - Seunghyun Lee
- Department of Electronics and Information Convergence Engineering, Kyung Hee University (Global Campus), 1732, Deogyoung Road, Giheung, Gyeonggi, Yongin, 17104, South Korea
| | - Arpita Pandey Tiwari
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, D. Y. Patil Education Society(Deemed to Be University), Kolhapur, 416 006, Maharashtra, India.
| |
Collapse
|
28
|
Abou Khouzam R, Zaarour RF, Brodaczewska K, Azakir B, Venkatesh GH, Thiery J, Terry S, Chouaib S. The Effect of Hypoxia and Hypoxia-Associated Pathways in the Regulation of Antitumor Response: Friends or Foes? Front Immunol 2022; 13:828875. [PMID: 35211123 PMCID: PMC8861358 DOI: 10.3389/fimmu.2022.828875] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME), adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions that act to dampen immune cell function. Through its impact on key cancer hallmarks and by creating a physical barrier conducive to tumor survival, hypoxia modulates tumor cell escape from the mounted immune response. The tumor cell-immune cell crosstalk in the context of a hypoxic TME tips the balance towards a cold and immunosuppressed microenvironment that is resistant to immune checkpoint inhibitors (ICI). Nonetheless, evidence is emerging that could make hypoxia an asset for improving response to ICI. Tackling the tumor immune contexture has taken on an in silico, digitalized approach with an increasing number of studies applying bioinformatics to deconvolute the cellular and non-cellular elements of the TME. Such approaches have additionally been combined with signature-based proxies of hypoxia to further dissect the turbulent hypoxia-immune relationship. In this review we will be highlighting the mechanisms by which hypoxia impacts immune cell functions and how that could translate to predicting response to immunotherapy in an era of machine learning and computational biology.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Bilal Azakir
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jerome Thiery
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Stéphane Terry
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France.,Research Department, Inovarion, Paris, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
29
|
Souza JCD, Bastos VC, Pereira NB, Dias AAM, Avelar GFD, Gomez RS, Gomes CC. Angiogenesis in patient-derived xenografts of odontogenic myxoma. Int J Exp Pathol 2022; 103:65-69. [PMID: 35225401 PMCID: PMC8961500 DOI: 10.1111/iep.12431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/26/2022] [Accepted: 02/05/2022] [Indexed: 12/01/2022] Open
Abstract
Previously, by employing 3D organotypic tissue culture and patient-derived xenograft (PDX) model, oral myxoma response to a MAPK/MEK inhibitor was observed. Gross examination of the tumour fragments obtained after 55 days of PDX grafting revealed increased capsule vascularization. Microscopic analyses showed blood capillaries intermixed with myxoma cells, but the origin of these capillaries, from mice or humans, was not established. This study aimed to investigate whether the endothelial cells observed in the myxoma PDX model are derived from the mouse or from the primary human tumour. Immunohistochemistry was performed on five tumour fragments from the PDX of myxoma after 55 days of implantation in mice. Immunopositivity for antibodies against human (HLA-ABC) and mouse (H2 Db/H2-D1) major histocompatibility complex class I (MHCI) was assessed in the endothelial cells. The endothelial cells in the PDX fragments revealed a membrane staining for the human MHCI protein in the PDX tumour and adjacent connective tissue capsule, indicating that capillaries were derived from the human tumour fragment. Considering the probable human origin of the endothelial cells from capillary blood vessels in the myxoma PDX, we conclude that this PDX model is an interesting model to study myxoma angiogenesis.
Collapse
Affiliation(s)
- Juliana Cristina de Souza
- Department of Pathology, Biological Science Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Victor Coutinho Bastos
- Department of Pathology, Biological Science Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Núbia Braga Pereira
- Department of Pathology, Biological Science Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Adriana Abalen Martins Dias
- Department of General Biology, Biological Science Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gleide Fernandes de Avelar
- Department of Morphology, Biological Science Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Science Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
30
|
High Output Heart Failure in Multiple Myeloma: Pathogenetic Considerations. Cancers (Basel) 2022; 14:cancers14030610. [PMID: 35158878 PMCID: PMC8833382 DOI: 10.3390/cancers14030610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multiple myeloma is a plasma cell disorder that accounts for around 10% of all haematological malignancies. This neoplasia is often associated with a significant prevalence of cardiovascular complications resulting from several factors, unrelated and/or related to the disease. Among cardiovascular complications, the high output heart failure is of great importance as it is related to a worse prognosis for patients. It is important to point out that, despite the availability of more and more numerous and effective drugs, myeloma remains an incurable disease, with frequent relapses and several treatment lines, with the need, therefore, for a careful evaluation of patients, especially from a cardiological point of view. For this reason, we are proposing a comprehensive overview of different pathogenetic mechanisms responsible for high output heart failure in multiple myeloma, including artero-venous shunts, enhanced angiogenesis, glutamminolysis, hyperammonemia and hemorheological alterations, with the belief that a multidisciplinary approach, in clinical evaluation is critical for the optimal management of the patient. Abstract The high output heart failure is a clinical condition in which the systemic congestion is associated to a high output state, and it can be observed in a non-negligible percentage of hematological diseases, particularly in multiple myeloma, a condition in which the risk of adverse cardiovascular events may increase, with a worse prognosis for patients. For this reason, though an accurate literature search, we provided in this review a complete overview of different pathogenetic mechanisms responsible for high output heart failure in multiple myeloma. Indeed, this clinical finding is present in the 8% of multiple myeloma patients, and it may be caused by artero-venous shunts, enhanced angiogenesis, glutamminolysis, hyperammonemia and hemorheological alterations with increase in plasma viscosity. The high output heart failure in multiple myeloma is associated with significant morbidity and mortality, emphasizing the need for a multidisciplinary approach.
Collapse
|
31
|
Dai S, Liu T, Liu YY, He Y, Liu T, Xu Z, Wang ZW, Luo F. Long Non-Coding RNAs in Lung Cancer: The Role in Tumor Microenvironment. Front Cell Dev Biol 2022; 9:795874. [PMID: 35047506 PMCID: PMC8762058 DOI: 10.3389/fcell.2021.795874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
The development of various therapeutic interventions, particularly immune checkpoint inhibitor therapy, have effectively induced tumor remission for patients with advanced lung cancer. However, few cancer patients can obtain significant and long-lasting therapeutic effects for the limitation of immunological nonresponse and resistance. For this case, it’s urgent to identify new biomarkers and develop therapeutic targets for future immunotherapy. Over the past decades, tumor microenvironment (TME)-related long non-coding RNAs (lncRNAs) have gradually become well known to us. A large number of existing studies have indicated that TME-related lncRNAs are one of the major factors to realize precise diagnosis and treatment of lung cancer. Herein, this paper discusses the roles of lncRNAs in TME, and the potential application of lncRNAs as biomarkers or therapeutic targets for immunotherapy in lung cancer.
Collapse
Affiliation(s)
- Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Yang Liu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingying He
- Oncology Department, People's Hospital of Deyang City, Deyang, China
| | - Tao Liu
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Wu Wang
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Yang Z, Deng W, Zhang X, An Y, Liu Y, Yao H, Zhang Z. Opportunities and Challenges of Nanoparticles in Digestive Tumours as Anti-Angiogenic Therapies. Front Oncol 2022; 11:789330. [PMID: 35083147 PMCID: PMC8784389 DOI: 10.3389/fonc.2021.789330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023] Open
Abstract
Digestive tumours, a common kind of malignancy worldwide, have recently led to the most tumour-related deaths. Angiogenesis, the process of forming novel blood vessels from pre-existing vessels, is involved in various physiological and pathological processes in the body. Many studies suggest that abnormal angiogenesis plays an important role in the growth, progression, and metastasis of digestive tumours. Therefore, anti-angiogenic therapy is considered a promising target for improving therapeutic efficacy. Traditional strategies such as bevacizumab and regorafenib can target and block the activity of proangiogenic factors to treat digestive tumours. However, due to resistance and some limitations, such as poor pharmacokinetics, their efficacy is not always satisfactory. In recent years, nanotechnology-based anti-angiogenic therapies have emerged as a new way to treat digestive tumours. Compared with commonly used drugs, nanoparticles show great potential in tumour targeted delivery, controlled drug release, prolonged cycle time, and increased drug bioavailability. Therefore, anti-angiogenic nanoparticles may be an effective complementary therapy to treat digestive tumours. In this review, we outline the different mechanisms of angiogenesis, the effects of nanoparticles on angiogenesis, and their biomedical applications in various kinds of digestive tumours. In addition, the opportunities and challenges are briefly discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
33
|
Mukherjee S, Madamsetty VS. Nanomedicine: An Alternative Approach Towards Anti-angiogenic Cancer Therapy. SYNTHESIS LECTURES ON BIOMEDICAL ENGINEERING 2022:21-31. [DOI: 10.1007/978-3-031-11284-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Rampino A, Annese T, Margari A, Tamma R, Ribatti D. Nutraceuticals and their role in tumor angiogenesis. Exp Cell Res 2021; 408:112859. [PMID: 34637764 DOI: 10.1016/j.yexcr.2021.112859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 01/15/2023]
Abstract
Angiogenesis plays a pivotal role in cancer initiation, maintenance, and progression. Diet may inhibit, retard or reverse these processes affecting angiogenesis (angioprevention). Nutraceuticals, such as omega-3 fatty acids, amino acids, proteins, vitamins, minerals, fibers, and phenolic compounds, improve health benefits as they are a source of bioactive compounds that, among other effects, can regulate angiogenesis. The literature concerning the pro-angiogenic and/or anti-angiogenic nutraceuticals and the possible activated pathways in cancer and other non-neoplastic diseases by in vivo and in vitro experiments are reviewed.
Collapse
Affiliation(s)
- Antonio Rampino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Anna Margari
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
35
|
Kniebs C, Luengen AE, Guenther D, Cornelissen CG, Schmitz-Rode T, Jockenhoevel S, Thiebes AL. Establishment of a Pre-vascularized 3D Lung Cancer Model in Fibrin Gel-Influence of Hypoxia and Cancer-Specific Therapeutics. Front Bioeng Biotechnol 2021; 9:761846. [PMID: 34722481 PMCID: PMC8551668 DOI: 10.3389/fbioe.2021.761846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the most frequently diagnosed cancer worldwide and the one that causes the highest mortality. In order to understand the disease and to develop new treatments, in vitro human lung cancer model systems which imitate the physiological conditions is of high significance. In this study, a human 3D lung cancer model was established that features the organization of a tumor with focus on tumor angiogenesis. Vascular networks were formed by co-culture of human umbilical vein endothelial cells and adipose tissue-derived mesenchymal stem cells (ASC) for 14 days in fibrin. A part of the pre-vascularized fibrin gel was replaced by fibrin gel containing lung cancer cells (A549) to form tri-cultures. This 3D cancer model system was cultured under different culture conditions and its behaviour after treatment with different concentrations of tumor-specific therapeutics was evaluated. The evaluation was performed by measurement of metabolic activity, viability, quantification of two-photon laser scanning microscopy and measurement of the proangiogenic factor vascular endothelial growth factor in the supernatant. Hypoxic conditions promoted vascularization compared to normoxic cultured controls in co- and tri-cultures as shown by significantly increased vascular structures, longer structures with a higher area and volume, and secretion of vascular endothelial growth factor. Cancer cells also promoted vascularization. Treatment with 50 µM gefitinib or 50 nM paclitaxel decreased the vascularization significantly. VEGF secretion was only reduced after treatment with gefitinib, while in contrast secretion remained constant during medication with paclitaxel. The findings suggest that the herein described 3D lung cancer model provides a novel platform to investigate the angiogenic potential of cancer cells and its responses to therapeutics. Thus, it can serve as a promising approach for the development and patient-specific pre-selection of anticancer treatment.
Collapse
Affiliation(s)
- Caroline Kniebs
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, Netherlands
| | - Anja Elisabeth Luengen
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, Netherlands
| | - Daniel Guenther
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Christian Gabriel Cornelissen
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Clinic for Pneumology and Internal Intensive Care Medicine (Medical Clinic V), RWTH Aachen University Hospital, Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, Netherlands
| | - Anja Lena Thiebes
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, Netherlands
| |
Collapse
|
36
|
Zhao L, Zhang K, He H, Yang Y, Li W, Liu T, Li J. The Relationship Between Mesenchymal Stem Cells and Tumor Dormancy. Front Cell Dev Biol 2021; 9:731393. [PMID: 34712663 PMCID: PMC8545891 DOI: 10.3389/fcell.2021.731393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor dormancy, a state of tumor, is clinically undetectable and the outgrowth of dormant tumor cells into overt metastases is responsible for cancer-associated deaths. However, the dormancy-related molecular mechanism has not been clearly described. Some researchers have proposed that cancer stem cells (CSCs) and disseminated tumor cells (DTCs) can be seen as progenitor cells of tumor dormancy, both of which can remain dormant in a non-permissive soil/niche. Nowadays, research interest in the cancer biology field is skyrocketing as mesenchymal stem cells (MSCs) are capable of regulating tumor dormancy, which will provide a unique therapeutic window to cure cancer. Although the influence of MSCs on tumor dormancy has been investigated in previous studies, there is no thorough review on the relationship between MSCs and tumor dormancy. In this paper, the root of tumor dormancy is analyzed and dormancy-related molecular mechanisms are summarized. With an emphasis on the role of the MSCs during tumor dormancy, new therapeutic strategies to prevent metastatic disease are proposed, whose clinical application potentials are discussed, and some challenges and prospects of the studies of tumor dormancy are also described.
Collapse
Affiliation(s)
- Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu He
- Operating Theater and Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yongping Yang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
Kwong GA, Ghosh S, Gamboa L, Patriotis C, Srivastava S, Bhatia SN. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat Rev Cancer 2021; 21:655-668. [PMID: 34489588 PMCID: PMC8791024 DOI: 10.1038/s41568-021-00389-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Detection of cancer at an early stage when it is still localized improves patient response to medical interventions for most cancer types. The success of screening tools such as cervical cytology to reduce mortality has spurred significant interest in new methods for early detection (for example, using non-invasive blood-based or biofluid-based biomarkers). Yet biomarkers shed from early lesions are limited by fundamental biological and mass transport barriers - such as short circulation times and blood dilution - that limit early detection. To address this issue, synthetic biomarkers are being developed. These represent an emerging class of diagnostics that deploy bioengineered sensors inside the body to query early-stage tumours and amplify disease signals to levels that could potentially exceed those of shed biomarkers. These strategies leverage design principles and advances from chemistry, synthetic biology and cell engineering. In this Review, we discuss the rationale for development of biofluid-based synthetic biomarkers. We examine how these strategies harness dysregulated features of tumours to amplify detection signals, use tumour-selective activation to increase specificity and leverage natural processing of bodily fluids (for example, blood, urine and proximal fluids) for easy detection. Finally, we highlight the challenges that exist for preclinical development and clinical translation of synthetic biomarker diagnostics.
Collapse
Affiliation(s)
- Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Sharmistha Ghosh
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lena Gamboa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Christos Patriotis
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
38
|
Dou B, Chen T, Chu Q, Zhang G, Meng Z. The roles of metastasis-related proteins in the development of giant cell tumor of bone, osteosarcoma and Ewing's sarcoma. Technol Health Care 2021; 29:91-101. [PMID: 33682749 PMCID: PMC8150547 DOI: 10.3233/thc-218010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND: Giant cell tumor of bone (GC), osteosarcoma (OS) and Ewing’s sarcoma (ES) are three different types of bone cancer with common and specific pathology features. OBJECTIVE: The purpose of the study was to examine the relationship and differences of the three bone tumors using clinical samples. METHODS: Through screening the profiles of clinical samples from GC, OS and ES patients using a humanoncology array, we found 26, 25 and 15 tumorigenesis factors significantly increased in GS, OS and ES tissues compared to normal individuals. eNOS, endostatin, HIF-1α, IL-6, CCL2/MCP-1, CCL8/MCP-2, CCL7/MCP-3, Tie and VEGF directly or indirectly involve in the metastasis Therefore, expression levels of the 6 factors were further determined by Western blot. RESULTS: The results showed levels of MCP1, MCP2, MCP3 or IL-6 in the GS, OS and ES significantly increased, and the expression levels of angiogenesis and anti-angiogenesis factors containing eNOS, endostatin, HIF-1α, Tie or VEGF were enhanced. CONCLUSIONS: Our results suggest that eNOS, endostatin, HIF-1α, IL-6, CCL2/MCP-1, CCL8/MCP-2, CCL7/MCP-3, Tie and VEGF may play important roles in tumorigenesis, reveal the expression differences of tumor-associated cytokines and angiogenesis related factors, and provide clinical evidence for studying the mechanisms on the metastasis in GC, OS and ES.
Collapse
Affiliation(s)
- Bo Dou
- Department of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130061, China.,School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.,Department of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130061, China
| | - Tianrui Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130061, China
| | - Qiubo Chu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Guirong Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Zhaoli Meng
- Department of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130061, China
| |
Collapse
|
39
|
Bukkuri A, Adler FR. Viewing Cancer Through the Lens of Corruption: Using Behavioral Ecology to Understand Cancer. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.678533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
All biological systems depend on signals for coordination: signals which pass information among agents that run the gamut from cells to organisms. However, their very importance makes signals vulnerable to subversion. How can a receiver know whether a signal is honest or deceptive? In other words, are signals necessarily a reliable indicator of agent quality or need? By drawing parallels to ecological phenomena ranging from begging by nestlings to social insects, we investigate the role of signal degradation in cancer. We thus think of cancer as a form of corruption, in which cells command huge resource investment through relatively cheap signals, just as relatively small bribes can leverage large profits. We discuss various mechanisms which prevent deceptive signaling in the natural world and within tissues. We show how cancers evolve ways to escape these controls and relate these back to evasion mechanisms in ecology. We next introduce two related concepts, co-option and collusion, and show how they play critical roles in ecology and cancer. Drawing on public policy, we propose new approaches to view treatment based on taxation, changing the incentive structure, and the recognition of corrupted signaling networks.
Collapse
|
40
|
Balberova OV, Bykov EV, Shnayder NA, Petrova MM, Gavrilyuk OA, Kaskaeva DS, Soloveva IA, Petrov KV, Mozheyko EY, Medvedev GV, Nasyrova RF. The "Angiogenic Switch" and Functional Resources in Cyclic Sports Athletes. Int J Mol Sci 2021; 22:ijms22126496. [PMID: 34204341 PMCID: PMC8234968 DOI: 10.3390/ijms22126496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Regular physical activity in cyclic sports can influence the so-called “angiogenic switch”, which is considered as an imbalance between proangiogenic and anti-angiogenic molecules. Disruption of the synthesis of angiogenic molecules can be caused by local changes in tissues under the influence of excessive physical exertion and its consequences, such as chronic oxidative stress and associated hypoxia, metabolic acidosis, sports injuries, etc. A review of publications on signaling pathways that activate and inhibit angiogenesis in skeletal muscles, myocardium, lung, and nervous tissue under the influence of intense physical activity in cyclic sports. Materials: We searched PubMed, SCOPUS, Web of Science, Google Scholar, Clinical keys, and e-LIBRARY databases for full-text articles published from 2000 to 2020, using keywords and their combinations. Results: An important aspect of adaptation to training loads in cyclic sports is an increase in the number of capillaries in muscle fibers, which improves the metabolism of skeletal muscles and myocardium, as well as nervous and lung tissue. Recent studies have shown that myocardial endothelial cells not only respond to hemodynamic forces and paracrine signals from neighboring cells, but also take an active part in heart remodeling processes, stimulating the growth and contractility of cardiomyocytes or the production of extracellular matrix proteins in myofibroblasts. As myocardial vascularization plays a central role in the transition from adaptive heart hypertrophy to heart failure, further study of the signaling mechanisms involved in the regulation of angiogenesis in the myocardium is important in sports practice. The study of the “angiogenic switch” problem in the cerebrovascular and cardiovascular systems allows us to claim that the formation of new vessels is mediated by a complex interaction of all growth factors. Although the lungs are one of the limiting systems of the body in cyclic sports, their response to high-intensity loads and other environmental stresses is often overlooked. Airway epithelial cells are the predominant source of several growth factors throughout lung organogenesis and appear to be critical for normal alveolarization, rapid alveolar proliferation, and normal vascular development. There are many controversial questions about the role of growth factors in the physiology and pathology of the lungs. The presented review has demonstrated that when doing sports, it is necessary to give a careful consideration to the possible positive and negative effects of growth factors on muscles, myocardium, lung tissue, and brain. Primarily, the “angiogenic switch” is important in aerobic sports (long distance running). Conclusions: Angiogenesis is a physiological process of the formation of new blood capillaries, which play an important role in the functioning of skeletal muscles, myocardium, lung, and nervous tissue in athletes. Violation of the “angiogenic switch” as a balance between proangiogenic and anti-angiogenic molecules can lead to a decrease in the functional resources of the nervous, musculoskeletal, cardiovascular, and respiratory systems in athletes and, as a consequence, to a decrease in sports performance.
Collapse
Affiliation(s)
- Olga V. Balberova
- Research Institute of Olympic Sports, Ural State University of Physical Culture, 454091 Chelyabinsk, Russia;
- Correspondence: (O.V.B.); (N.A.S.); (R.F.N.)
| | - Evgeny V. Bykov
- Research Institute of Olympic Sports, Ural State University of Physical Culture, 454091 Chelyabinsk, Russia;
| | - Natalia A. Shnayder
- V.M. Bekhterev National Medical Research Center for Neurology and Psychiatry, Department of Personalized Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Outpatient Therapy and Family Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (D.S.K.)
- Correspondence: (O.V.B.); (N.A.S.); (R.F.N.)
| | - Marina M. Petrova
- Department of Outpatient Therapy and Family Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (D.S.K.)
| | - Oksana A. Gavrilyuk
- The Department of Polyclinic Therapy and Family Medicine and Healthy Lifesttyle with a Course of PE, V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia;
| | - Daria S. Kaskaeva
- Department of Outpatient Therapy and Family Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (D.S.K.)
| | - Irina A. Soloveva
- Department of Hospital Therapy and Immunology with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia;
| | - Kirill V. Petrov
- Department of Physical and Rehabilitation Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (K.V.P.); (E.Y.M.)
| | - Elena Y. Mozheyko
- Department of Physical and Rehabilitation Medicine with a Postgraduate Course, Shared Core Facilities Molecular and Cell Technologies, Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (K.V.P.); (E.Y.M.)
| | - German V. Medvedev
- R. R. Vreden National Medical Research Center for Traumatology and Orthopedics, Department of Hand Surgery with Microsurgical Equipment, 195427 Saint-Petersburg, Russia;
| | - Regina F. Nasyrova
- V.M. Bekhterev National Medical Research Center for Neurology and Psychiatry, Department of Personalized Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (O.V.B.); (N.A.S.); (R.F.N.)
| |
Collapse
|
41
|
Melaccio A, Sgaramella LI, Pasculli A, Di Meo G, Gurrado A, Prete FP, Vacca A, Ria R, Testini M. Prognostic and Therapeutic Role of Angiogenic Microenvironment in Thyroid Cancer. Cancers (Basel) 2021; 13:2775. [PMID: 34204889 PMCID: PMC8199761 DOI: 10.3390/cancers13112775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy, with a typically favorable prognosis following standard treatments, such as surgical resection and radioiodine therapy. A subset of thyroid cancers progress to refractory/metastatic disease. Understanding how the tumor microenvironment is transformed into an angiogenic microenvironment has a role of primary importance in the aggressive behavior of these neoplasms. During tumor growth and progression, angiogenesis represents a deregulated biological process, and the angiogenic switch, characterized by the formation of new vessels, induces tumor cell proliferation, local invasion, and hematogenous metastases. This evidence has propelled the scientific community's effort to study a number of molecular pathways (proliferation, cell cycle control, and angiogenic processes), identifying mediators that may represent viable targets for new anticancer treatments. Herein, we sought to review angiogenesis in thyroid cancer and the potential role of proangiogenic cytokines for risk stratification of patients. We also present the current status of treatment of advanced differentiated, medullary, and poorly differentiated thyroid cancers with multiple tyrosine kinase inhibitors, based on the rationale of angiogenesis as a potential therapeutic target.
Collapse
Affiliation(s)
- Assunta Melaccio
- Operative Unit of Internal Medicine “G. Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy; (A.M.); (A.V.); (R.R.)
| | - Lucia Ilaria Sgaramella
- Academic General Surgery Unit “V. Bonomo”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy; (L.I.S.); (A.P.); (G.D.M.); (A.G.); (F.P.P.)
| | - Alessandro Pasculli
- Academic General Surgery Unit “V. Bonomo”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy; (L.I.S.); (A.P.); (G.D.M.); (A.G.); (F.P.P.)
| | - Giovanna Di Meo
- Academic General Surgery Unit “V. Bonomo”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy; (L.I.S.); (A.P.); (G.D.M.); (A.G.); (F.P.P.)
| | - Angela Gurrado
- Academic General Surgery Unit “V. Bonomo”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy; (L.I.S.); (A.P.); (G.D.M.); (A.G.); (F.P.P.)
| | - Francesco Paolo Prete
- Academic General Surgery Unit “V. Bonomo”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy; (L.I.S.); (A.P.); (G.D.M.); (A.G.); (F.P.P.)
| | - Angelo Vacca
- Operative Unit of Internal Medicine “G. Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy; (A.M.); (A.V.); (R.R.)
| | - Roberto Ria
- Operative Unit of Internal Medicine “G. Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy; (A.M.); (A.V.); (R.R.)
| | - Mario Testini
- Academic General Surgery Unit “V. Bonomo”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy; (L.I.S.); (A.P.); (G.D.M.); (A.G.); (F.P.P.)
| |
Collapse
|
42
|
Filipiak J, Boinska J, Ziołkowska K, Zduńska M, Zarychta E, Rość D. Assessment of endothelial progenitor cells, VEGF-A and SDF-1α in Hodgkin's lymphoma. Blood Coagul Fibrinolysis 2021; 32:266-272. [PMID: 33955861 DOI: 10.1097/mbc.0000000000001031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recently, there is great interest in vasculogenesis, a process of the formation of new blood vessels from progenitor cells or angioblasts, in the pathogenesis of cancer. To the best of our knowledge, the evaluation of endothelial progenitor cells (EPCs) in Hodgkin's lymphoma has not yet been reported. The aim of the present study was to assess the number of EPCs and selected cytokines, such as vascular endothelial growth factor (VEGF-A) and stromal cell-derived factor (SDF-1α) involved in vasculogenesis in Hodgkin's lymphoma patients. The study was conducted in a group of 42 patients with Hodgkin's lymphoma (eight patients with relapsed Hodgkin's lymphoma and 34 patients before the first treatment) and 30 healthy controls. The number of EPCs defined as CD31(+), CD34(+), CD45(-), CD133(+) was analysed on FacsCalibur flow cytometer and the concentration of VEGF-A and SDF-1α was assessed by ELISA. The study showed that there was a significantly higher EPCs number and VEGF-A concentration in the blood of Hodgkin's lymphoma patients compared to healthy individuals (8.20 vs. 0.55 cells/μl; P < 0.000001; 85.10 vs. 25.33 pg/ml, P = 0.000017; respectively). Detailed analysis revealed that there was elevated EPCs number in both study subgroups as compared to the control group. However, there was no difference in VEGF concentration between recurrent Hodgkin's lymphoma patients and the control group. A significant positive correlation was found between the number of EPCs and VEGF-A concentration (R = 0.31, P = 0.047). Significantly higher EPCs number combined with increased VEGF-A concentration, found in Hodgkin's lymphoma patients before the first treatment, suggest stimulation of new blood vessels formation, which may in turn contribute to tumour growth and metastasis in these patients.
Collapse
Affiliation(s)
- Jan Filipiak
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun
- Department of Chemotherapy, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Joanna Boinska
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun
| | - Katarzyna Ziołkowska
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun
| | - Magdalena Zduńska
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun
| | - Elżbieta Zarychta
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun
| | - Danuta Rość
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun
| |
Collapse
|
43
|
Xia H, Huang Z, Liu S, Zhao X, He R, Wang Z, Shi W, Chen W, Li Z, Yu L, Huang P, Kang P, Su Z, Xu Y, Yam JWP, Cui Y. Exosomal Non-Coding RNAs: Regulatory and Therapeutic Target of Hepatocellular Carcinoma. Front Oncol 2021; 11:653846. [PMID: 33869059 PMCID: PMC8044750 DOI: 10.3389/fonc.2021.653846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small extracellular vesicles secreted by most somatic cells, which can carry a variety of biologically active substances to participate in intercellular communication and regulate the pathophysiological process of recipient cells. Recent studies have confirmed that non-coding RNAs (ncRNAs) carried by tumor cell/non-tumor cell-derived exosomes have the function of regulating the cancerous derivation of target cells and remodeling the tumor microenvironment (TME). In addition, due to the unique low immunogenicity and high stability, exosomes can be used as natural vehicles for the delivery of therapeutic ncRNAs in vivo. This article aims to review the potential regulatory mechanism and the therapeutic value of exosomal ncRNAs in hepatocellular carcinoma (HCC), in order to provide promising targets for early diagnosis and precise therapy of HCC.
Collapse
Affiliation(s)
- Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongrui Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenguang Shi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhizhou Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Peng Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
44
|
Uloza V, Kuzminienė A, Palubinskienė J, Balnytė I, Ulozienė I, Valančiūtė A. Laryngeal carcinoma experimental model suggests the possibility of tumor seeding to gastrostomy site. Med Hypotheses 2021; 150:110573. [PMID: 33799159 DOI: 10.1016/j.mehy.2021.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 03/13/2021] [Indexed: 11/15/2022]
Abstract
Some studies state that laryngeal squamous cell carcinoma (LSCC) is associated with possible direct tumor cell seeding to percutaneous endoscopic gastrostomy (PEG) site. However, there is a lack of experimental proof that LSCC tumor tissue can adhere and grow in distant sites. Therefore, we aimed to investigate the growth pattern of LSCC implants on chicken embryo chorioallantoic membrane (CAM) and evaluate possible associations between clinical course of the disease and behavior of experimentally implanted LSCC tumors. Our results show that implanted LSCC tissue survives on CAMs in 95% of cases while retaining essential morphologic characteristics and proliferative capacity of the original tumor. We identified the increased CAM vascularization, an infiltrative growth pattern of the implant and formation of distant isolated metastatic nodes on the CAMs. LSCC tumors with worse differentiation degree (G2 or G3) adhered to the experimental CAMs significantly better than G1. These results facilitate the understanding of tumor biology and allow hypothetisezing that dissemination and direct implantation of LSCC cells into the stomal wall during the pull PEG procedure might be possible.
Collapse
Affiliation(s)
- Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Eiveniu 2, Kaunas, LT 50009, Lithuania.
| | - Alina Kuzminienė
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Eiveniu 2, Kaunas, LT 50009, Lithuania.
| | - Jolita Palubinskienė
- Department of Histology and Embryology, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, Kaunas, LT 44307, Lithuania.
| | - Ingrida Balnytė
- Department of Histology and Embryology, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, Kaunas, LT 44307, Lithuania.
| | - Ingrida Ulozienė
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Eiveniu 2, Kaunas, LT 50009, Lithuania.
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, Kaunas, LT 44307, Lithuania.
| |
Collapse
|
45
|
Esteves M, Monteiro MP, Duarte JA. The effects of vascularization on tumor development: A systematic review and meta-analysis of pre-clinical studies. Crit Rev Oncol Hematol 2021; 159:103245. [PMID: 33508446 DOI: 10.1016/j.critrevonc.2021.103245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE This review aimed to systematize and quantify the existing evidence about the effect of tumor vascularization on its growth, in preclinical studies. METHODOLOGY A computerized research on databases PubMed, Scopus and EBSCO was performed to identify studies that evaluate both the vascularization parameters and the development of the tumors in animal models and the mean differences were calculated through a random effects model. RESULTS Thirteen studies met the inclusion criteria and were included in the systematic review, of which, 6 studies were included in the meta-analysis. Besides tumor vascular density that all studies evaluated, 3 studies analysed the tumor perfusion, 2 studies the tumor hypoxia and 3 studies assessed the grade of vessel maturation. Most of the studies (11) related decreased tumor vascularization and a concomitant inhibition of tumor growth or metastasis development. Quantitatively, the decrease in tumor vascularization contributed to a significant decrease in the tumor growing rate of 5.23 (-9.20, -1.26). CONCLUSION A reduced level of tumor vascularization seems to be able to inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Mário Esteves
- Department of Physical Medicine and Rehabilitation, Hospital-Escola, Fernando Pessoa University, Avenida Fernando Pessoa 150, 4420-096 Gondomar, Portugal; Laboratory of Biochemistry and Experimental Morphology, CIAFEL, R. Dr. Plácido Costa 91, 4200-450 Porto, Portugal.
| | - Mariana P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - José Alberto Duarte
- CIAFEL, Faculty of Sports, University of Porto, R. Dr. Plácido Costa 91, 4200-450 Porto, Portugal; Instituto Universitário de Ciências da Saúde, R. Central da Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
46
|
Vascular Endothelial Growth Factor: A Translational View in Oral Non-Communicable Diseases. Biomolecules 2021; 11:biom11010085. [PMID: 33445558 PMCID: PMC7826734 DOI: 10.3390/biom11010085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are vital regulators of angiogenesis that are expressed in response to soluble mediators, such as cytokines and growth factors. Their physiologic functions include blood vessel formation, regulation of vascular permeability, stem cell and monocyte/macrophage recruitment and maintenance of bone homeostasis and repair. In addition, angiogenesis plays a pivotal role in chronic pathologic conditions, such as tumorigenesis, inflammatory immune diseases and bone loss. According to their prevalence, morbidity and mortality, inflammatory diseases affecting periodontal tissues and oral cancer are relevant non-communicable diseases. Whereas oral squamous cell carcinoma (OSCC) is considered one of the most common cancers worldwide, destructive inflammatory periodontal diseases, on the other hand, are amongst the most prevalent chronic inflammatory conditions affecting humans and also represent the main cause of tooth loss in adults. In the recent years, while knowledge regarding the role of VEGF signaling in common oral diseases is expanding, new potential translational applications emerge. In the present narrative review we aim to explore the role of VEGF signaling in oral cancer and destructive periodontal inflammatory diseases, with emphasis in its translational applications as potential biomarkers and therapeutic targets.
Collapse
|
47
|
Virumbrales-Muñoz M, Chen J, Ayuso J, Lee M, Abel EJ, Beebe DJ. Organotypic primary blood vessel models of clear cell renal cell carcinoma for single-patient clinical trials. LAB ON A CHIP 2020; 20:4420-4432. [PMID: 33103699 PMCID: PMC8743028 DOI: 10.1039/d0lc00252f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common genitourinary cancer associated with the development of abnormal tumor angiogenesis. Although multiple anti-angiogenic therapies have been developed, responses to individual treatment are highly variable between patients. Thus, the use of one-patient clinical trials has been suggested as an alternative to standard trials. We used a microfluidic device to generate organotypic primary patient-specific blood vessel models using normal (NEnC) and tumor-associated primary CD31+ selected cells (TEnC). Our model was able to recapitulate differences in angiogenic sprouting and vessel permeability that characterize normal and tumor-associated vessels. We analyzed the expression profile of vessel models to define vascular normalization in a patient-specific manner. Using this data, we identified actionable targets to normalize TEnC vessel function to a more NEnC-like phenotype. Finally, we tested two of these drugs in our patient-specific models to determine the efficiency in restoring vessel function showing the potential of the model for single-patient clinical trials.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Solimando AG, Summa SD, Vacca A, Ribatti D. Cancer-Associated Angiogenesis: The Endothelial Cell as a Checkpoint for Immunological Patrolling. Cancers (Basel) 2020; 12:cancers12113380. [PMID: 33203154 PMCID: PMC7696032 DOI: 10.3390/cancers12113380] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary A clinical decision and study design investigating the level and extent of angiogenesis modulation aimed at vascular normalization without rendering tissues hypoxic is key and represents an unmet medical need. Specifically, determining the active concentration and optimal times of the administration of antiangiogenetic drugs is crucial to inhibit the growth of any microscopic residual tumor after surgical resection and in the pre-malignant and smolder neoplastic state. This review uncovers the pre-clinical translational insights crucial to overcome the caveats faced so far while employing anti-angiogenesis. This literature revision also explores how abnormalities in the tumor endothelium harm the crosstalk with an effective immune cell response, envisioning a novel combination with other anti-cancer drugs and immunomodulatory agents. These insights hold vast potential to both repress tumorigenesis and unleash an effective immune response. Abstract Cancer-associated neo vessels’ formation acts as a gatekeeper that orchestrates the entrance and egress of patrolling immune cells within the tumor milieu. This is achieved, in part, via the directed chemokines’ expression and cell adhesion molecules on the endothelial cell surface that attract and retain circulating leukocytes. The crosstalk between adaptive immune cells and the cancer endothelium is thus essential for tumor immune surveillance and the success of immune-based therapies that harness immune cells to kill tumor cells. This review will focus on the biology of the endothelium and will explore the vascular-specific molecular mediators that control the recruitment, retention, and trafficking of immune cells that are essential for effective antitumor immunity. The literature revision will also explore how abnormalities in the tumor endothelium impair crosstalk with adaptive immune cells and how targeting these abnormalities can improve the success of immune-based therapies for different malignancies, with a particular focus on the paradigmatic example represented by multiple myeloma. We also generated and provide two original bio-informatic analyses, in order to sketch the physiopathology underlying the endothelial–neoplastic interactions in an easier manner, feeding into a vicious cycle propagating disease progression and highlighting novel pathways that might be exploited therapeutically.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico-IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| |
Collapse
|
49
|
de Mendonça RP, Balbinot KM, Martins BV, da Silva Kataoka MS, Mesquita RA, de Jesus Viana Pinheiro J, de Melo Alves Júnior S. Hypoxia and proangiogenic proteins in human ameloblastoma. Sci Rep 2020; 10:17567. [PMID: 33067558 PMCID: PMC7568536 DOI: 10.1038/s41598-020-74693-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022] Open
Abstract
Ameloblastomas are epithelial odontogenic tumours that, although benign, are locally invasive and may exhibit aggressive behaviour. In the tumour microenvironment, the concentration of oxygen is reduced, which leads to intratumoral hypoxia. Under hypoxia, the crosstalk between the HIF-1α, MMP-2, VEGF, and VEGFR-2 proteins has been associated with hypoxia-induced angiogenesis, leading to tumour progression and increased invasiveness. This work showcases 24 ameloblastoma cases, 10 calcifying odontogenic cysts, and 9 dental follicles, used to investigate the expression of these proteins by immunohistochemistry. The anti-HIF-1α, anti-MMP-2, anti-VEGF, and anti-VEGFR-2 primary antibodies are used in this work. The results have been expressed by the mean grey value after immunostaining in images acquired with an objective of 40×. The ameloblastoma samples showed higher immunoexpression of HIF-1α, MMP-2, VEGF, and VEGFR-2 when compared to the dental follicles and calcifying odontogenic cysts. Ameloblastomas show a higher degree of expression of proteins associated with intratumoral hypoxia and proangiogenic proteins, which indicates the possible role of these proteins in the biological behaviour of this tumour.
Collapse
Affiliation(s)
- Raíssa Pinheiro de Mendonça
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Karolyny Martins Balbinot
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Beatriz Voss Martins
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Maria Sueli da Silva Kataoka
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - João de Jesus Viana Pinheiro
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil.
| | - Sérgio de Melo Alves Júnior
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belém, Pará, 66075-110, Brazil
| |
Collapse
|
50
|
Cho S, Choi HS, Yang JE, Suh SB. Variable Tumor Microenvironment-on-a-chip with Temporal Angiogenic Switching System by Diffusion Control .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2227-2230. [PMID: 33018450 DOI: 10.1109/embc44109.2020.9176552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Organ-on-a-chip has the potential to replace preclinical trials which have been problematic for decades due to unaffordable cost and time. The performance of in vitro tumor-on-a-chip depends on how accurately the system represents analogous tumor-microenvironment (TME) and TME associated phenomena. In this study, we have focused on angiogenesis, one of the most significant features of TME for tumor growth and metastasis. Angiogenesis in TME is triggered through cascaded interactions among TME associated neighboring cells including immune cells, tumor cells, and fibroblast cells [1]. Therefore, temporally-controlled TME-on-a-chip is desired for an accurate representation of angiogenesis. However, conventional microfluidic devices cannot temporarily manipulate the condition of interacting cells and secreted signal molecules. Here, we proposed a hydrogel-based variable TME-on-a-chip with diffusion switch channels. The channels between hydrogel walls enable temporal diffusion control by controlling inflow. The diffusion control was observed in diffusion experiment with a fluorescent dye. Furthermore, experiment of HUVEC's migration toward diffused VEGF also confirmed that TME-on-a-chip is capable of reproducing an angiogenic switch triggering through temporal diffusion control. Due to a simple fabrication procedure, the design of the microfluidic device can be easily modified to represent more complex variable TME models.
Collapse
|