1
|
Kroh K, Barton J, Fehling H, Lotter H, Volkmer B, Greinert R, Mhamdi-Ghodbani M, Vanegas Ramirez A, Jacobs T, Gálvez RI. Antimicrobial activity of NK cells to Trypanosoma cruzi infected human primary Keratinocytes. PLoS Negl Trop Dis 2024; 18:e0012255. [PMID: 39038032 PMCID: PMC11262665 DOI: 10.1371/journal.pntd.0012255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
Infection with the protozoan parasite Trypanosoma cruzi is causative for Chagas disease, which is a highly neglected tropical disease prevalent in Latin America. Humans are primary infected through vectorial transmission by blood-sucking triatomine bugs. The parasite enters the human host through mucous membranes or small skin lesions. Since keratinocytes are the predominant cell type in the epidermis, they play a critical role in detecting disruptions in homeostasis and aiding in pathogen elimination by the immune system in the human skin as alternative antigen-presenting cells. Interestingly, keratinocytes also act as a reservoir for T. cruzi, as the skin has been identified as a major site of persistent infection in mice with chronic Chagas disease. Moreover, there are reports of the emergence of T. cruzi amastigote nests in the skin of immunocompromised individuals who are experiencing reactivation of Chagas disease. This observation implies that the skin may serve as a site for persistent parasite presence during chronic human infection too and underscores the significance of investigating the interactions between T. cruzi and skin cells. Consequently, the primary objective of this study was to establish and characterize the infection kinetics in human primary epidermal keratinocytes (hPEK). Our investigation focused on surface molecules that either facilitated or hindered the activation of natural killer (NK) cells, which play a crucial role in controlling the infection. To simulate the in vivo situation in humans, an autologous co-culture model was developed to examine the interactions between T. cruzi infected keratinocytes and NK cells. We evaluated the degranulation, cytokine production, and cytotoxicity of NK cells in response to the infected keratinocytes. We observed a strong activation of NK cells by infected keratinocytes, despite minimal alterations in the expression of activating or inhibitory ligands on NK cell receptors. However, stimulation with recombinant interferon-gamma (IFN-γ), a cytokine known to be present in significant quantities during chronic T. cruzi infections in the host, resulted in a substantial upregulation of these ligands on primary keratinocytes. Overall, our findings suggest the crucial role of NK cells in controlling acute T. cruzi infection in the upper layer of the skin and shed light on keratinocytes as potential initial targets of infection.
Collapse
Affiliation(s)
- Keshia Kroh
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Barton
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Helena Fehling
- Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Molecular Infection Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Beate Volkmer
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, Buxtehude, Germany
| | - Rüdiger Greinert
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, Buxtehude, Germany
| | - Mouna Mhamdi-Ghodbani
- Skin Cancer Center, Division of Molecular Cell Biology, Elbe Klinikum Buxtehude, Buxtehude, Germany
| | - Andrea Vanegas Ramirez
- Department of Dermatology, Bundeswehr Hospital Hamburg & Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Rosa Isela Gálvez
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
2
|
Razmara AM, Farley LE, Harris RM, Judge SJ, Lammers M, Iranpur KR, Johnson EG, Dunai C, Murphy WJ, Brown CT, Rebhun RB, Kent MS, Canter RJ. Preclinical evaluation and first-in-dog clinical trials of PBMC-expanded natural killer cells for adoptive immunotherapy in dogs with cancer. J Immunother Cancer 2024; 12:e007963. [PMID: 38631708 PMCID: PMC11029326 DOI: 10.1136/jitc-2023-007963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are cytotoxic cells capable of recognizing heterogeneous cancer targets without prior sensitization, making them promising prospects for use in cellular immunotherapy. Companion dogs develop spontaneous cancers in the context of an intact immune system, representing a valid cancer immunotherapy model. Previously, CD5 depletion of peripheral blood mononuclear cells (PBMCs) was used in dogs to isolate a CD5dim-expressing NK subset prior to co-culture with an irradiated feeder line, but this can limit the yield of the final NK product. This study aimed to assess NK activation, expansion, and preliminary clinical activity in first-in-dog clinical trials using a novel system with unmanipulated PBMCs to generate our NK cell product. METHODS Starting populations of CD5-depleted cells and PBMCs from healthy beagle donors were co-cultured for 14 days, phenotype, cytotoxicity, and cytokine secretion were measured, and samples were sequenced using the 3'-Tag-RNA-Seq protocol. Co-cultured human PBMCs and NK-isolated cells were also sequenced for comparative analysis. In addition, two first-in-dog clinical trials were performed in dogs with melanoma and osteosarcoma using autologous and allogeneic NK cells, respectively, to establish safety and proof-of-concept of this manufacturing approach. RESULTS Calculated cell counts, viability, killing, and cytokine secretion were equivalent or higher in expanded NK cells from canine PBMCs versus CD5-depleted cells, and immune phenotyping confirmed a CD3-NKp46+ product from PBMC-expanded cells at day 14. Transcriptomic analysis of expanded cell populations confirmed upregulation of NK activation genes and related pathways, and human NK cells using well-characterized NK markers closely mirrored canine gene expression patterns. Autologous and allogeneic PBMC-derived NK cells were successfully expanded for use in first-in-dog clinical trials, resulting in no serious adverse events and preliminary efficacy data. RNA sequencing of PBMCs from dogs receiving allogeneic NK transfer showed patient-unique gene signatures with NK gene expression trends in response to treatment. CONCLUSIONS Overall, the use of unmanipulated PBMCs appears safe and potentially effective for canine NK immunotherapy with equivalent to superior results to CD5 depletion in NK expansion, activation, and cytotoxicity. Our preclinical and clinical data support further evaluation of this technique as a novel platform for optimizing NK immunotherapy in dogs.
Collapse
Affiliation(s)
- Aryana M Razmara
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Lauren E Farley
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Rayna M Harris
- Department Population Health and Reproduction, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Sean J Judge
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Marshall Lammers
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Khurshid R Iranpur
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Cordelia Dunai
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
| | - C Titus Brown
- Department Population Health and Reproduction, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Robert J Canter
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
3
|
Pitman MC, Meagher N, Price DJ, Rhodes A, Chang JJ, Scher B, Allan B, Street A, McMahon JH, Rasmussen TA, Cameron PU, Hoy JF, Kent SJ, Lewin SR. Effect of high dose vitamin D 3 on the HIV-1 reservoir: A pilot randomised controlled trial. J Virus Erad 2023; 9:100345. [PMID: 37753336 PMCID: PMC10518338 DOI: 10.1016/j.jve.2023.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/27/2023] [Indexed: 09/28/2023] Open
Abstract
Introduction Antiretroviral therapy for people living with HIV-1 must be taken lifelong due to the persistence of latent virus in long-lived and proliferating CD4+ T cells. Vitamin D3 is a steroidal gene transcription regulator which exerts diverse effects on immune and epithelial cells including reductions in CD4+ T cell proliferation and improvement in gut barrier integrity. We hypothesised that a high dose of vitamin D3 would reduce the size of the HIV-1 reservoir by reducing CD4+ T cell proliferation. Methods We performed a randomised placebo-controlled trial evaluating the effect of 24 weeks of vitamin D3 (10,000 international units per day) on the HIV-1 reservoir and immunologic parameters in 30 adults on antiretroviral therapy; participants were followed for 12 weeks post-treatment. The primary endpoint was the effect on total HIV-1 DNA at week 24. Parameters were assessed using mixed-effects models. Results We found no effect of vitamin D3 on the change in total HIV-1 DNA from week 0 to week 24 relative to placebo. There were also no changes in integrated HIV-1 DNA, 2-long-terminal repeat (2-LTR) circles or cell-associated HIV-1 RNA. Vitamin D3 induced a significant increase in the proportion of central memory CD4+ and CD8+ T cells, a reduction in the proportion of senescent CD8+ T cells and a reduction in the natural killer cell frequency at all time points including week 36, 12 weeks after the study drug cessation. At week 36, there was a significant reduction in total HIV-1 DNA relative to placebo and persistently elevated 25-hydroxyvitamin D levels. No significant safety issues were identified. Conclusions Vitamin D3 administration had a significant impact on the T cell differentiation but overall effects on the HIV-1 reservoir were limited and a reduction in HIV-1 DNA was only seen following cessation of the study drug. Additional studies are required to determine whether the dose and duration of vitamin D3 can be optimised to promote a continued depletion of the HIV-1 reservoir over time. Trial registration ClinicalTrials.gov NCT03426592.
Collapse
Affiliation(s)
- Matthew C. Pitman
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - Niamh Meagher
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Level 3, 207 Bouverie St, Parkville, Victoria, 3010, Australia
| | - David J. Price
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Level 3, 207 Bouverie St, Parkville, Victoria, 3010, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - J. Judy Chang
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - Barbara Scher
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - Brent Allan
- Living Positive Victoria, Ground Floor, 95 Coventry St, Southbank, Victoria, 3006, Australia
| | - Alan Street
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - James H. McMahon
- Department of Infectious Diseases, The Alfred and Monash University, 55 Commercial Rd, Melbourne, Victoria, 3004, Australia
| | - Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - Paul U. Cameron
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
| | - Jennifer F. Hoy
- Department of Infectious Diseases, The Alfred and Monash University, 55 Commercial Rd, Melbourne, Victoria, 3004, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Department of Infectious Diseases, The Alfred and Monash University, 55 Commercial Rd, Melbourne, Victoria, 3004, Australia
- Melbourne Sexual Health Centre, The Alfred, 580 Swanston St, Carlton, Victoria, 3053, Australia
| | - Sharon R. Lewin
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, Victoria, 3000, Australia
- Department of Infectious Diseases, The Alfred and Monash University, 55 Commercial Rd, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
4
|
Collier-Bain HD, Brown FF, Causer AJ, Emery A, Oliver R, Moore S, Murray J, Turner JE, Campbell JP. Harnessing the immunomodulatory effects of exercise to enhance the efficacy of monoclonal antibody therapies against B-cell haematological cancers: a narrative review. Front Oncol 2023; 13:1244090. [PMID: 37681023 PMCID: PMC10482436 DOI: 10.3389/fonc.2023.1244090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are standard care for many B-cell haematological cancers. The modes of action for these mAbs include: induction of cancer cell lysis by activating Fcγ-receptors on innate immune cells; opsonising target cells for antibody-dependent cellular cytotoxicity or phagocytosis, and/or triggering the classical complement pathway; the simultaneous binding of cancer cells with T-cells to create an immune synapse and activate perforin-mediated T-cell cytotoxicity against cancer cells; blockade of immune checkpoints to facilitate T-cell cytotoxicity against immunogenic cancer cell clones; and direct delivery of cytotoxic agents via internalisation of mAbs by target cells. While treatment regimens comprising mAb therapy can lead to durable anti-cancer responses, disease relapse is common due to failure of mAb therapy to eradicate minimal residual disease. Factors that limit mAb efficacy include: suboptimal effector cell frequencies, overt immune exhaustion and/or immune anergy, and survival of diffusely spread tumour cells in different stromal niches. In this review, we discuss how immunomodulatory changes arising from exposure to structured bouts of acute exercise might improve mAb treatment efficacy by augmenting (i) antibody-dependent cellular cytotoxicity, (ii) antibody-dependent cellular phagocytosis, (iii) complement-dependent cytotoxicity, (iv) T-cell cytotoxicity, and (v) direct delivery of cytotoxic agents.
Collapse
Affiliation(s)
| | - Frankie F. Brown
- Department for Health, University of Bath, Bath, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Adam J. Causer
- Department for Health, University of Bath, Bath, United Kingdom
| | - Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Rebecca Oliver
- Department for Health, University of Bath, Bath, United Kingdom
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James Murray
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
5
|
Zhang M, Lam KP, Xu S. Natural Killer Cell Engagers (NKCEs): a new frontier in cancer immunotherapy. Front Immunol 2023; 14:1207276. [PMID: 37638058 PMCID: PMC10450036 DOI: 10.3389/fimmu.2023.1207276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Natural Killer (NK) cells are a type of innate lymphoid cells that play a crucial role in immunity by killing virally infected or tumor cells and secreting cytokines and chemokines. NK cell-mediated immunotherapy has emerged as a promising approach for cancer treatment due to its safety and effectiveness. NK cell engagers (NKCEs), such as BiKE (bispecific killer cell engager) or TriKE (trispecific killer cell engager), are a novel class of antibody-based therapeutics that exhibit several advantages over other cancer immunotherapies harnessing NK cells. By bridging NK and tumor cells, NKCEs activate NK cells and lead to tumor cell lysis. A growing number of NKCEs are currently undergoing development, with some already in clinical trials. However, there is a need for more comprehensive studies to determine how the molecular design of NKCEs affects their functionality and manufacturability, which are crucial for their development as off-the-shelf drugs for cancer treatment. In this review, we summarize current knowledge on NKCE development and discuss critical factors required for the production of effective NKCEs.
Collapse
Affiliation(s)
- Minchuan Zhang
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Ghazvinian Z, Abdolahi S, Tokhanbigli S, Tarzemani S, Piccin A, Reza Zali M, Verdi J, Baghaei K. Contribution of natural killer cells in innate immunity against colorectal cancer. Front Oncol 2023; 12:1077053. [PMID: 36686835 PMCID: PMC9846259 DOI: 10.3389/fonc.2022.1077053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Natural killer cells are members of the innate immune system and promote cytotoxic activity against tumor or infected cells independently from MHC recognition. NK cells are modulated by the expression of activator/inhibitory receptors. The ratio of this activator/inhibitory receptors is responsible for the cytotoxic activity of NK cells toward the target cells. Owing to the potent anti-tumor properties of NK cells, they are considered as interesting approach in tumor treatment. Colorectal cancer (CRC) is the second most common cause of death in the world and the incidence is about 2 million new cases per year. Metastatic CRC is accompanied by a poor prognosis with less than three years of overall survival. Chemotherapy and surgery are the most adopted treatments. Besides, targeted therapy and immune checkpoint blockade are novel approach to CRC treatment. In these patients, circulating NK cells are a prognostic marker. The main target of CRC immune cell therapy is to improve the tumor cell's recognition and elimination by immune cells. Adaptive NK cell therapy is the milestone to achieve the purpose. Allogeneic NK cell therapy has been widely investigated within clinical trials. In this review, we focus on the NK related approaches including CAR NK cells, cell-based vaccines, monoclonal antibodies and immunomodulatory drugs against CRC tumoral cells.
Collapse
Affiliation(s)
- Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast, United Kingdom
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Liang C, Li S, Yuan J, Song Y, Ren W, Wang W, Shang Y, Tang S, Pang Y. Attenuated Cytokine-Induced Memory-Like Natural Killer Cell Responses to Mycobacterium tuberculosis in Tuberculosis Patients. Infect Drug Resist 2023; 16:2349-2364. [PMID: 37101462 PMCID: PMC10124624 DOI: 10.2147/idr.s407742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
Purpose This study aimed to investigate the phenotype, proliferation and functional alterations of cytokine-induced memory-like natural killer (CIML NK) cells from healthy subjects and TB patients, and assessed the efficacy of CIML NK cells in response to H37Rv-infected U937 cells in vitro. Methods Fresh peripheral blood mononuclear cells (PBMCs) were isolated from healthy people and tuberculosis patients and activated for 16h using low-dose IL-15, or IL-12, IL-15, IL-18 combination or IL-12, IL-15, IL-18 and MTB H37Rv lysates, respectively, followed by low-dose IL-15 maintenance for another 7 days. Then, the PBMCs were co-cultured with K562 and H37Rv-infected U937, and the purified NK cells were co-cultured with H37Rv infected U937. The phenotype, proliferation and response function of CIML NK cells were assessed using flow cytometry. Finally, colony forming units were enumerated to confirm the survival of intracellular MTB. Results CIML NK phenotypes from TB patients were similar to healthy controls. CIML NK cells undergo higher rates of proliferation after IL-12/15/18 pre-activation. Moreover, the poor expansion potential of CIML NK cells co-stimulated with MTB lysates. CIML NK cells from healthy individuals showed enhanced IFN-γ functional to H37Rv infected U937 cells, along with significantly enhanced killing of H37Rv. However, the CIML NK cells from TB patients show attenuated IFN-γ production and now enhanced the ability of killing intracellular MTB compared to those from healthy donors after co-cultured with H37Rv infected U937. Conclusion CIML NK cells from healthy individuals exist the increased ability of IFN-γ secretion and boosted anti-MTB activity in vitro, which from TB patients show impaired IFN-γ production and no enhanced anti-MTB activity compared to those from healthy donors. Additionally, we observe the poor expansion potential of CIML NK cells co-stimulated with antigens from MTB. These results open up new possibilities for NK cell-based anti-tuberculosis immunotherapeutic strategies.
Collapse
Affiliation(s)
- Chen Liang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University /Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
- Tuberculosis Clinical Medical Center, Beijing Chest Hospital, Capital Medical University /Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University /Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| | - Jinfeng Yuan
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University /Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| | - Yanhua Song
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University /Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University /Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University /Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| | - Shenjie Tang
- Tuberculosis Clinical Medical Center, Beijing Chest Hospital, Capital Medical University /Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
- Correspondence: Shenjie Tang; Yu Pang, Beijing Chest Hospital, Capital Medical University, No. 97, Machang, Tongzhou District, Beijing, 101149, People’s Republic of China, Tel/Fax +86 010 8950 9367; +86 010 8950 9359, Email ;
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University /Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| |
Collapse
|
8
|
Ghaedrahmati F, Esmaeil N, Abbaspour M. Targeting immune checkpoints: how to use natural killer cells for fighting against solid tumors. Cancer Commun (Lond) 2022; 43:177-213. [PMID: 36585761 PMCID: PMC9926962 DOI: 10.1002/cac2.12394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/08/2022] [Accepted: 11/15/2022] [Indexed: 01/01/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells that mediate anti-viral and anti-tumor responses. Thus, they might hold great potential for cancer immunotherapy. NK cell adoptive immunotherapy in humans has shown modest efficacy. In particular, it has failed to demonstrate therapeutic efficiency in the treatment of solid tumors, possibly due in part to the immunosuppressive tumor microenvironment (TME), which reduces NK cell immunotherapy's efficiencies. It is known that immune checkpoints play a prominent role in creating an immunosuppressive TME, leading to NK cell exhaustion and tumor immune escape. Therefore, NK cells must be reversed from their dysfunctional status and increased in their effector roles in order to improve the efficiency of cancer immunotherapy. Blockade of immune checkpoints can not only rescue NK cells from exhaustion but also augment their robust anti-tumor activity. In this review, we discussed immune checkpoint blockade strategies with a focus on chimeric antigen receptor (CAR)-NK cells to redirect NK cells to cancer cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Nafiseh Esmaeil
- Department of ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran,Research Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| | - Maryam Abbaspour
- Department of Pharmaceutical BiotechnologyFaculty of PharmacyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
9
|
Klausz K, Pekar L, Boje AS, Gehlert CL, Krohn S, Gupta T, Xiao Y, Krah S, Zaynagetdinov R, Lipinski B, Toleikis L, Poetzsch S, Rabinovich B, Peipp M, Zielonka S. Multifunctional NK Cell–Engaging Antibodies Targeting EGFR and NKp30 Elicit Efficient Tumor Cell Killing and Proinflammatory Cytokine Release. THE JOURNAL OF IMMUNOLOGY 2022; 209:1724-1735. [DOI: 10.4049/jimmunol.2100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/23/2022] [Indexed: 01/04/2023]
Abstract
Abstract
In this work, we have generated novel Fc-comprising NK cell engagers (NKCEs) that bridge human NKp30 on NK cells to human epidermal growth factor receptor (EGFR) on tumor cells. Camelid-derived VHH single-domain Abs specific for human NKp30 and a humanized Fab derived from the EGFR-specific therapeutic Ab cetuximab were used as binding arms. By combining camelid immunization with yeast surface display, we were able to isolate a diverse panel of NKp30-specific VHHs against different epitopes on NKp30. Intriguingly, NKCEs built with VHHs that compete for binding to NKp30 with B7-H6, the natural ligand of NKp30, were significantly more potent in eliciting tumor cell lysis of EGFR-positive tumor cells than NKCEs harboring VHHs that target different epitopes on NKp30 from B7-H6. We demonstrate that the NKCEs can be further improved with respect to killing capabilities by concomitant engagement of FcγRIIIa and that soluble B7-H6 does not impede cytolytic capacities of all scrutinized NKCEs at significantly higher B7-H6 concentrations than observed in cancer patients. Moreover, we show that physiological processes requiring interactions between membrane-bound B7-H6 and NKp30 on NK cells are unaffected by noncompeting NKCEs still eliciting tumor cell killing at low picomolar concentrations. Ultimately, the NKCEs generated in this study were significantly more potent in eliciting NK cell–mediated tumor cell lysis than cetuximab and elicited a robust release of proinflammatory cytokines, both features which might be beneficial for antitumor therapy.
Collapse
Affiliation(s)
- Katja Klausz
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Lukas Pekar
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Ammelie Svea Boje
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Carina Lynn Gehlert
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Steffen Krohn
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Tushar Gupta
- ‡Protein Engineering and Antibody Technologies, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Yanping Xiao
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Simon Krah
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rinat Zaynagetdinov
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Britta Lipinski
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- ¶Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; and
| | - Lars Toleikis
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Sven Poetzsch
- ‖Strategic Innovation, Merck Healthcare KGaA, Darmstadt, Germany
| | - Brian Rabinovich
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Matthias Peipp
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Stefan Zielonka
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- ¶Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; and
| |
Collapse
|
10
|
Di Vito C, Calcaterra F, Coianiz N, Terzoli S, Voza A, Mikulak J, Della Bella S, Mavilio D. Natural Killer Cells in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications. Front Immunol 2022; 13:888248. [PMID: 35844604 PMCID: PMC9279859 DOI: 10.3389/fimmu.2022.888248] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022] Open
Abstract
Natural Killer (NK) cells are lymphocytes of the innate immunity that play a crucial role in the control of viral infections in the absence of a prior antigen sensitization. Indeed, they display rapid effector functions against target cells with the capability of direct cell killing and antibody-dependent cell-mediated cytotoxicity. Furthermore, NK cells are endowed with immune-modulatory functions innate and adaptive immune responses via the secretion of chemokines/cytokines and by undertaking synergic crosstalks with other innate immune cells, including monocyte/macrophages, dendritic cells and neutrophils. Recently, the Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Although the specific role of NK cells in COVID-19 pathophysiology still need to be explored, mounting evidence indicates that NK cell tissue distribution and effector functions could be affected by SARS-CoV-2 infection and that a prompt NK cell response could determine a good clinical outcome in COVID-19 patients. In this review, we give a comprehensive overview of how SARS-CoV-2 infection interferes with NK cell antiviral effectiveness and their crosstalk with other innate immune cells. We also provide a detailed characterization of the specific NK cell subsets in relation to COVID-19 patient severity generated from publicly available single cell RNA sequencing datasets. Finally, we summarize the possible NK cell-based therapeutic approaches against SARS-CoV-2 infection and the ongoing clinical trials updated at the time of submission of this review. We will also discuss how a deep understanding of NK cell responses could open new possibilities for the treatment and prevention of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- *Correspondence: Domenico Mavilio, ; Clara Di Vito,
| | - Francesca Calcaterra
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
| | - Nicolò Coianiz
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Terzoli
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Emergency Medicine Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvia Della Bella
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
- *Correspondence: Domenico Mavilio, ; Clara Di Vito,
| |
Collapse
|
11
|
Demel I, Koristek Z, Motais B, Hajek R, Jelinek T. Natural killer cells: Innate immune system as a part of adaptive immunotherapy in hematological malignancies. Am J Hematol 2022; 97:802-817. [PMID: 35285978 DOI: 10.1002/ajh.26529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/06/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
Natural killer (NK) cells are part of a phylogenetically old defense system, which is characterized by its strong cytolytic function against physiologically stressed cells such as tumor cells and virus-infected cells. Their use in the treatment of hematological malignancies may be more advantageous in several ways when compared with the already established T lymphocyte-based immunotherapy. Given the different mechanisms of action, allogeneic NK cell products can be produced in a non-personal based manner without the risk of the formidable graft-versus-host disease. Advanced manufacturing processes are capable of producing NK cells relatively easily in large and clinically sufficient numbers, useable without subsequent manipulations or after genetic modifications, which can solve the lack of specificity and improve clinical efficacy of NK cell products. This review summarizes the basic characteristics of NK cells and provides a quick overview of their sources. Results of clinical trials in hematological malignancies are presented, and strategies on how to improve the clinical outcome of NK cell therapy are discussed.
Collapse
Affiliation(s)
- Ivo Demel
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
| | - Zdenek Koristek
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
| | - Benjamin Motais
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | - Roman Hajek
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
| | - Tomas Jelinek
- Department of Hematooncology University Hospital Ostrava Ostrava Czech Republic
- Faculty of Medicine University of Ostrava Ostrava Czech Republic
| |
Collapse
|
12
|
Chen RP, Shinoda K, Rampuria P, Jin F, Bartholomew T, Zhao C, Yang F, Chaparro-Riggers J. Bispecific antibodies for immune cell retargeting against cancer. Expert Opin Biol Ther 2022; 22:965-982. [PMID: 35485219 DOI: 10.1080/14712598.2022.2072209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Following the approval of the T-cell engaging bispecific antibody blinatumomab, immune cell retargeting with bispecific or multispecific antibodies has emerged as a promising cancer immunotherapy strategy, offering alternative mechanisms compared to immune checkpoint blockade. As we gain more understanding of the complex tumor microenvironment, rules and design principles have started to take shape on how to best harness the immune system to achieve optimal anti-tumor activities. AREAS COVERED In the present review, we aim to summarize the most recent advances and challenges in using bispecific antibodies for immune cell retargeting and to provide insights into various aspects of antibody engineering. Discussed herein are studies that highlight the importance of considering antibody engineering parameters, such as binding epitope, affinity, valency, and geometry to maximize the potency and mitigate the toxicity of T cell engagers. Beyond T cell engaging bispecifics, other bispecifics designed to recruit the innate immune system are also covered. EXPERT OPINION Diverse and innovative molecular designs of bispecific/multispecific antibodies have the potential to enhance the efficacy and safety of immune cell retargeting for the treatment of cancer. Whether or not clinical data support these different hypotheses, especially in solid tumor settings, remains to be seen.
Collapse
Affiliation(s)
- Rebecca P Chen
- Pfizer BioMedicine Design, Pfizer Inc, San Diego, CA, USA
| | - Kenta Shinoda
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | | | - Fang Jin
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | | | - Chunxia Zhao
- Pfizer BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | - Fan Yang
- Pfizer BioMedicine Design, Pfizer Inc, San Diego, CA, USA
| | | |
Collapse
|
13
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
14
|
Herrera L, Martin‐Inaraja M, Santos S, Inglés‐Ferrándiz M, Azkarate A, Perez‐Vaquero MA, Vesga MA, Vicario JL, Soria B, Solano C, De Paz R, Marcos A, Ferreras C, Perez‐Martinez A, Eguizabal C. Identifying SARS-CoV-2 'memory' NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology 2022; 165:234-249. [PMID: 34775592 PMCID: PMC8652867 DOI: 10.1111/imm.13432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 disease is the manifestation of syndrome coronavirus 2 (SARS-CoV-2) infection, which is causing a worldwide pandemic. This disease can lead to multiple and different symptoms, being lymphopenia associated with severity one of the most persistent. Natural killer cells (NK cells) are part of the innate immune system, being fighting against virus-infected cells one of their key roles. In this study, we determined the phenotype of NK cells after COVID-19 and the main characteristic of SARS-CoV-2-specific-like NK population in the blood of convalescent donors. CD57+ NKG2C+ phenotype in SARS-CoV-2 convalescent donors indicates the presence of 'memory'/activated NK cells as it has been shown for cytomegalovirus infections. Although the existence of this population is donor dependent, its expression may be crucial for the specific response against SARS-CoV-2, so that, it gives us a tool for selecting the best donors to produce off-the-shelf living drug for cell therapy to treat COVID-19 patients under the RELEASE clinical trial (NCT04578210).
Collapse
Affiliation(s)
- Lara Herrera
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Myriam Martin‐Inaraja
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Silvia Santos
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Marta Inglés‐Ferrándiz
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Aida Azkarate
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Perez‐Vaquero
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Vesga
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Jose L. Vicario
- HistocompatibilityCentro de Transfusión de MadridMadridSpain
| | - Bernat Soria
- Instituto de BioingenieríaUniversidad Miguel Hernández de ElcheAlicanteSpain
- Instituto de Investigación Sanitaria Hospital General y Universitario de Alicante (ISABIAL)AlicanteSpain
| | - Carlos Solano
- Hospital Clínico Universitario de Valencia/Instituto de Investigación Sanitaria INCLIVAValenciaSpain
- School of MedicineUniversity of ValenciaSpain
| | - Raquel De Paz
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Antonio Marcos
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Cristina Ferreras
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
| | - Antonio Perez‐Martinez
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
- Pediatric Hemato‐Oncology DepartmentUniversity Hospital La PazMadridSpain
- Faculty of MedicineUniversidad Autónoma de MadridMadridSpain
| | - Cristina Eguizabal
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| |
Collapse
|
15
|
Vanikova S, Koladiya A, Musil J. OMIP-080: 29-Color flow cytometry panel for comprehensive evaluation of NK and T cells reconstitution after hematopoietic stem cells transplantation. Cytometry A 2021; 101:21-26. [PMID: 34693626 PMCID: PMC9298022 DOI: 10.1002/cyto.a.24510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
This 29-color panel was developed and optimized for the monitoring of NK cell and T cell reconstitution in peripheral blood of patients after HSCT. We considered major post-HSCT complications during the design, such as relapses, viral infections, and GvHD and identification of lymphocyte populations relevant to their resolution. The panel includes markers for all major NK cell and T cell subsets and analysis of their development and qualitative properties. In the NK cell compartment, we focus mainly on CD57 + NKG2C+ cells and the expression of activating (NKG2D, DNAM-1) and inhibitory receptors (NKG2A, TIGIT). Another priority is the characterization of T cell reconstitution; therefore, we included detection of CD4+ RTEs based on CD45RA, CD62L, CD95, and CD31 as a marker of thymus function. Besides that, we also analyze the emergence and properties of major T cell populations with a particular interest in CD8, Th1, ThCTL, and Treg subsets. Overall, the panel allows for comprehensive analysis of the reconstituting immune system and identification of potential markers of immune cell dysfunction.
Collapse
Affiliation(s)
- Sarka Vanikova
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Abhishek Koladiya
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jan Musil
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
16
|
Roma S, Carpen L, Raveane A, Bertolini F. The Dual Role of Innate Lymphoid and Natural Killer Cells in Cancer. from Phenotype to Single-Cell Transcriptomics, Functions and Clinical Uses. Cancers (Basel) 2021; 13:cancers13205042. [PMID: 34680190 PMCID: PMC8533946 DOI: 10.3390/cancers13205042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs), a family of innate immune cells including natural killers (NKs), play a multitude of roles in first-line cancer control, in escape from immunity and in cancer progression. In this review, we summarize preclinical and clinical data on ILCs and NK cells concerning their phenotype, function and clinical applications in cellular therapy trials. We also describe how single-cell transcriptome sequencing has been used and forecast how it will be used to better understand ILC and NK involvement in cancer control and progression as well as their therapeutic potential. Abstract The role of innate lymphoid cells (ILCs), including natural killer (NK) cells, is pivotal in inflammatory modulation and cancer. Natural killer cell activity and count have been demonstrated to be regulated by the expression of activating and inhibitory receptors together with and as a consequence of different stimuli. The great majority of NK cell populations have an anti-tumor activity due to their cytotoxicity, and for this reason have been used for cellular therapies in cancer patients. On the other hand, the recently classified helper ILCs are fundamentally involved in inflammation and they can be either helpful or harmful in cancer development and progression. Tissue niche seems to play an important role in modulating ILC function and conversion, as observed at the transcriptional level. In the past, these cell populations have been classified by the presence of specific cellular receptor markers; more recently, due to the advent of single-cell RNA sequencing (scRNA-seq), it has been possible to also explore them at the transcriptomic level. In this article we review studies on ILC (and NK cell) classification, function and their involvement in cancer. We also summarize the potential application of NK cells in cancer therapy and give an overview of the most recent studies involving ILCs and NKs at scRNA-seq, focusing on cancer. Finally, we provide a resource for those who wish to start single-cell transcriptomic analysis on the context of these innate lymphoid cell populations.
Collapse
|
17
|
Potential Utility of Natural Killer Cells for Eliminating Cells Harboring Reactivated Latent HIV-1 Following the Removal of CD8 + T Cell-Mediated Pro-Latency Effect(s). Viruses 2021; 13:v13081451. [PMID: 34452317 PMCID: PMC8402732 DOI: 10.3390/v13081451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
An impediment to curing HIV-1 infection is the persistence of latently infected cells in ART-treated people living with HIV (PLWH). A key strategy for curing HIV-1 infection is to activate transcription and translation of latent virus using latency reversing agents (LRAs) and eliminate cells harboring reactivated virus via viral cytopathic effect or immune clearance. In this review, we provide an overview of available LRAs and their use in clinical trials. Furthermore, we describe recent data suggesting that CD8+ T cells promote HIV-1 latency in the context of ART, even in the presence of LRAs, which might at least partially explain the clinical inefficiency of previous “shock and kill” trials. Here, we propose a novel cure strategy called “unlock, shock, disarm, and kill”. The general premise of this strategy is to shut down the pro-latency function(s) of CD8+ T cells, use LRAs to reverse HIV-1 latency, counteract anti-apoptotic molecules, and engage natural killer (NK) cells to mediate the killing of cells harboring reactivated latent HIV-1.
Collapse
|
18
|
SenGupta D, Brinson C, DeJesus E, Mills A, Shalit P, Guo S, Cai Y, Wallin JJ, Zhang L, Humeniuk R, Begley R, Geleziunas R, Mellors J, Wrin T, Jones N, Milush J, Ferre AL, Shacklett BL, Laird GM, Moldt B, Vendrame E, Brainard DM, Ramgopal M, Deeks SG. The TLR7 agonist vesatolimod induced a modest delay in viral rebound in HIV controllers after cessation of antiretroviral therapy. Sci Transl Med 2021; 13:13/599/eabg3071. [PMID: 34162752 DOI: 10.1126/scitranslmed.abg3071] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Toll-like receptor 7 (TLR7) agonists, in combination with other therapies, can induce sustained control of simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) in nonhuman primates. Here, we report the results of a randomized, double-blind, placebo-controlled phase 1b clinical trial of an oral TLR7 agonist, vesatolimod, in HIV-1-infected controllers on antiretroviral therapy (ART). We randomized participants 2:1 to receive vesatolimod (n = 17) or placebo (n = 8) once every other week for a total of 10 doses while continuing on ART. ART was then interrupted, and the time to viral rebound was analyzed using the Kaplan-Meier method. Vesatolimod was associated with induction of immune cell activation, decreases in intact proviral DNA during ART, and a modest increase in time to rebound after ART was interrupted. The delayed viral rebound was predicted by the lower intact proviral DNA at the end of vesatolimod treatment (13 days after the final dose). Inferred pathway analysis suggested increased dendritic cell and natural killer cell cross-talk and an increase in cytotoxicity potential after vesatolimod dosing. Larger clinical studies will be necessary to assess the efficacy of vesatolimod-based combination therapies aimed at long-term control of HIV infection.
Collapse
Affiliation(s)
| | | | | | | | - Peter Shalit
- Peter Shalit MD and Associates, Seattle, WA, USA
| | - Susan Guo
- Gilead Sciences Inc., Foster City, CA, USA
| | - Yanhui Cai
- Gilead Sciences Inc., Foster City, CA, USA
| | | | - Liao Zhang
- Gilead Sciences Inc., Foster City, CA, USA
| | | | | | | | | | - Terri Wrin
- Monogram Biosciences, South San Francisco, CA, USA
| | - Norman Jones
- University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey Milush
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Steven G Deeks
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Dysregulated CD38 Expression on Peripheral Blood Immune Cell Subsets in SLE. Int J Mol Sci 2021; 22:ijms22052424. [PMID: 33670902 PMCID: PMC7957821 DOI: 10.3390/ijms22052424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
Given its uniformly high expression on plasma cells, CD38 has been considered as a therapeutic target in patients with systemic lupus erythematosus (SLE). Herein, we investigate the distribution of CD38 expression by peripheral blood leukocyte lineages to evaluate the potential therapeutic effect of CD38-targeting antibodies on these immune cell subsets and to delineate the use of CD38 as a biomarker in SLE. We analyzed the expression of CD38 on peripheral blood leukocyte subsets by flow and mass cytometry in two different cohorts, comprising a total of 56 SLE patients. The CD38 expression levels were subsequently correlated across immune cell lineages and subsets, and with clinical and serologic disease parameters of SLE. Compared to healthy controls (HC), CD38 expression levels in SLE were significantly increased on circulating plasmacytoid dendritic cells, CD14++CD16+ monocytes, CD56+ CD16dim natural killer cells, marginal zone-like IgD+CD27+ B cells, and on CD4+ and CD8+ memory T cells. Correlation analyses revealed coordinated CD38 expression between individual innate and memory T cell subsets in SLE but not HC. However, CD38 expression levels were heterogeneous across patients, and no correlation was found between CD38 expression on immune cell subsets and the disease activity index SLEDAI-2K or established serologic and immunological markers of disease activity. In conclusion, we identified widespread changes in CD38 expression on SLE immune cells that highly correlated over different leukocyte subsets within individual patients, but was heterogenous within the population of SLE patients, regardless of disease severity or clinical manifestations. As anti-CD38 treatment is being investigated in SLE, our results may have important implications for the personalized targeting of pathogenic leukocytes by anti-CD38 monoclonal antibodies.
Collapse
|
20
|
Eltahir M, Fletcher E, Dynesius L, Jarblad JL, Lord M, Laurén I, Zekarias M, Yu X, Cragg MS, Hammarström C, Levedahl KH, Höglund M, Ullenhag G, Mattsson M, Mangsbo SM. Profiling of donor-specific immune effector signatures in response to rituximab in a human whole blood loop assay using blood from CLL patients. Int Immunopharmacol 2021; 90:107226. [PMID: 33316742 DOI: 10.1016/j.intimp.2020.107226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/04/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
Abstract
Rituximab is widely used in the treatment of haematological malignancies, including chronic lymphocytic leukaemia (CLL), the most common leukaemia in adults. However, some patients, especially those with high tumour burden, develop cytokine release syndrome (CRS). It is likely that more patients will develop therapy-linked CRS in the future due to the implementation of other immunotherapies, such as CAR T-cell, for many malignancies. Current methods for CRS risk assessment are limited, hence there is a need to develop new methods. To better recapitulate an in vivo setting, we implemented a unique human whole blood "loop" system to study patient-specific immune responses to rituximab in blood derived from CLL patients. Upon rituximab infusion, both complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) profiles were evident in CLL patient blood, coincident with CLL cell depletion. Whereas B cell depletion is induced in healthy persons in the blood loop, only patients display B cell depletion coupled with CRS. With the exception of one donor who lacked NK cells, all other five patients displayed variable B cell depletion along with CRS profile. Additionally, inhibition of CDC or ADCC via either inhibitors or antibody Fc modification resulted in skewing of the immune killing mechanism consistent with published literature. Herein we have shown that the human whole blood loop model can be applied using blood from a specific indication to build a disease-specific CRS and immune activation profiling ex vivo system. Other therapeutic antibodies used for other indications may benefit from antibody characterization in a similar setting.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Agents, Immunological/therapeutic use
- Antirheumatic Agents
- B-Lymphocytes/immunology
- Blood Cell Count
- Complement Activation
- Cytokine Release Syndrome/etiology
- Cytokine Release Syndrome/immunology
- Cytokines/blood
- Cytotoxicity, Immunologic
- Female
- Humans
- Immunoglobulin Fc Fragments/immunology
- Killer Cells, Natural
- Leukemia, Lymphocytic, Chronic, B-Cell/complications
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukocyte Count
- Male
- Rituximab/therapeutic use
Collapse
Affiliation(s)
- M Eltahir
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | - M Lord
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - I Laurén
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - M Zekarias
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - X Yu
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton, Faculty of Medicine, Southampton, UK
| | - M S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton, Faculty of Medicine, Southampton, UK
| | | | - K H Levedahl
- Department of Haematology, Uppsala University Hospital; Department of Public Health and Caring Sciences, Uppsala University, Sweden
| | - M Höglund
- Department of Haematology, Uppsala University Hospital
| | - G Ullenhag
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - M Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Department of Haematology, Uppsala University Hospital
| | - S M Mangsbo
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Mantesso S, Geerts D, Spanholtz J, Kučerová L. Genetic Engineering of Natural Killer Cells for Enhanced Antitumor Function. Front Immunol 2020; 11:607131. [PMID: 33391277 PMCID: PMC7772419 DOI: 10.3389/fimmu.2020.607131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are unique immune cells capable of efficient killing of infected and transformed cells. Indeed, NK cell-based therapies induced response against hematological malignancies in the absence of adverse toxicity in clinical trials. Nevertheless, adoptive NK cell therapies are reported to have exhibited poor outcome against many solid tumors. This can be mainly attributed to limited infiltration of NK cells into solid tumors, downregulation of target antigens on the tumor cells, or suppression by the chemokines and secreted factors present within the tumor microenvironment. Several methods for genetic engineering of NK cells were established and consistently improved over the last decade, leading to the generation of novel NK cell products with enhanced anti-tumor activity and improved tumor homing. New generations of engineered NK cells are developed to better target refractory tumors and/or to overcome inhibitory tumor microenvironment. This review summarizes recent improvements in approaches to NK cell genetic engineering and strategies implemented to enhance NK cell effector functions.
Collapse
Affiliation(s)
- Simone Mantesso
- Research and Development, Glycostem Therapeutics, Oss, Netherlands
| | - Dirk Geerts
- Research and Development, Glycostem Therapeutics, Oss, Netherlands
| | - Jan Spanholtz
- Research and Development, Glycostem Therapeutics, Oss, Netherlands
| | - Lucia Kučerová
- Research and Development, Glycostem Therapeutics, Oss, Netherlands
| |
Collapse
|
22
|
Current Immunotherapy Approaches in Non-Hodgkin Lymphomas. Vaccines (Basel) 2020; 8:vaccines8040708. [PMID: 33260966 PMCID: PMC7768428 DOI: 10.3390/vaccines8040708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Non-Hodgkin lymphomas (NHLs) are lymphoid malignancies of B- or T-cell origin. Despite great advances in treatment options and significant improvement of survival parameters, a large part of NHL patients either present with a chemotherapy-refractory disease or experience lymphoma relapse. Chemotherapy-based salvage therapy of relapsed/refractory NHL is, however, capable of re-inducing long-term remissions only in a minority of patients. Immunotherapy-based approaches, including bispecific antibodies, immune checkpoint inhibitors and genetically engineered T-cells carrying chimeric antigen receptors, single-agent or in combination with therapeutic monoclonal antibodies, immunomodulatory agents, chemotherapy or targeted agents demonstrated unprecedented clinical activity in heavily-pretreated patients with NHL, including chemotherapy-refractory cases with complex karyotype changes and other adverse prognostic factors. In this review, we recapitulate currently used immunotherapy modalities in NHL and discuss future perspectives of combinatorial immunotherapy strategies, including patient-tailored approaches.
Collapse
|
23
|
Maas RJ, Hoogstad-van Evert JS, Van der Meer JM, Mekers V, Rezaeifard S, Korman AJ, de Jonge PK, Cany J, Woestenenk R, Schaap NP, Massuger LF, Jansen JH, Hobo W, Dolstra H. TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer. Oncoimmunology 2020; 9:1843247. [PMID: 33224630 PMCID: PMC7657585 DOI: 10.1080/2162402x.2020.1843247] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Advanced ovarian cancer (OC) patients have a poor 5-year survival of only 28%, emphasizing the medical need for improved therapies. Adjuvant immunotherapy could be an attractive approach since OC is an immunogenic disease and the presence of tumor-infiltrating lymphocytes has shown to positively correlate with patient survival. Among these infiltrating lymphocytes are natural killer (NK) cells, key players involved in tumor targeting, initiated by signaling via activating and inhibitory receptors. Here, we investigated the role of the DNAM-1/TIGIT/CD96 axis in the anti-tumor response of NK cells toward OC. Ascites-derived NK cells from advanced OC patients showed lower expression of activating receptor DNAM-1 compared to healthy donor peripheral blood NK cells, while inhibitory receptor TIGIT and CD96 expression was equal or higher, respectively. This shift to a more inhibitory phenotype could also be induced in vitro by co-culturing healthy donor NK cells with OC tumor spheroids, and in vivo on intraperitoneally infused NK cells in SKOV-3 OC bearing NOD/SCID-IL2Rγnull (NSG) mice. Interestingly, TIGIT blockade enhanced degranulation and interferon gamma (IFNγ) production of healthy donor CD56dim NK cells in response to OC tumor cells, especially when DNAM-1/CD155 interactions were in place. Importantly, TIGIT blockade boosted functional responsiveness of CD56dim NK cells of OC patients with a baseline reactivity against SKOV-3 cells. Overall, our data show for the first time that checkpoint molecules TIGIT/DNAM-1/CD96 play an important role in NK cell responsiveness against OC, and provides rationale for incorporating TIGIT interference in NK cell-based immunotherapy in OC patients.
Collapse
Affiliation(s)
- Ralph Ja Maas
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janneke S Hoogstad-van Evert
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jolien Mr Van der Meer
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vera Mekers
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Somayeh Rezaeifard
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alan J Korman
- Bristol-Myers Squibb, Redwood City, CA, USA.,AK Vir Biotechnology, San Francisco, CA, USA
| | - Paul Kjd de Jonge
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeannette Cany
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob Woestenenk
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicolaas Pm Schaap
- Department of Hematology, Radboud University Medical Center/Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Leon F Massuger
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Mark C, Czerwinski T, Roessner S, Mainka A, Hörsch F, Heublein L, Winterl A, Sanokowski S, Richter S, Bauer N, Angelini TE, Schuler G, Fabry B, Voskens CJ. Cryopreservation impairs 3-D migration and cytotoxicity of natural killer cells. Nat Commun 2020; 11:5224. [PMID: 33067467 PMCID: PMC7568558 DOI: 10.1038/s41467-020-19094-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/24/2020] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells are important effector cells in the immune response to cancer. Clinical trials on adoptively transferred NK cells in patients with solid tumors, however, have thus far been unsuccessful. As NK cells need to pass stringent safety evaluation tests before clinical use, the cells are cryopreserved to bridge the necessary evaluation time. Standard degranulation and chromium release cytotoxicity assays confirm the ability of cryopreserved NK cells to kill target cells. Here, we report that tumor cells embedded in a 3-dimensional collagen gel, however, are killed by cryopreserved NK cells at a 5.6-fold lower rate compared to fresh NK cells. This difference is mainly caused by a 6-fold decrease in the fraction of motile NK cells after cryopreservation. These findings may explain the persistent failure of NK cell therapy in patients with solid tumors and highlight the crucial role of a 3-D environment for testing NK cell function.
Collapse
Affiliation(s)
- Christoph Mark
- Friedrich-Alexander University Erlangen-Nürnberg, Department of Physics, Erlangen, Germany
| | - Tina Czerwinski
- Friedrich-Alexander University Erlangen-Nürnberg, Department of Physics, Erlangen, Germany
| | - Susanne Roessner
- Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Department of Dermatology, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Astrid Mainka
- Friedrich-Alexander University Erlangen-Nürnberg, Department of Physics, Erlangen, Germany
| | - Franziska Hörsch
- Friedrich-Alexander University Erlangen-Nürnberg, Department of Physics, Erlangen, Germany
| | - Lucas Heublein
- Friedrich-Alexander University Erlangen-Nürnberg, Department of Physics, Erlangen, Germany
| | - Alexander Winterl
- Friedrich-Alexander University Erlangen-Nürnberg, Department of Physics, Erlangen, Germany
| | - Sebastian Sanokowski
- Friedrich-Alexander University Erlangen-Nürnberg, Department of Physics, Erlangen, Germany
| | - Sebastian Richter
- Friedrich-Alexander University Erlangen-Nürnberg, Department of Physics, Erlangen, Germany
| | - Nina Bauer
- Friedrich-Alexander University Erlangen-Nürnberg, Department of Physics, Erlangen, Germany
| | - Thomas E Angelini
- University of Florida, Department of Mechanical and Aerospace Engineering, Gainesville, FL, USA
| | - Gerold Schuler
- Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Department of Dermatology, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Ben Fabry
- Friedrich-Alexander University Erlangen-Nürnberg, Department of Physics, Erlangen, Germany.
| | - Caroline J Voskens
- Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Department of Dermatology, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
25
|
Zhao NQ, Vendrame E, Ferreira AM, Seiler C, Ranganath T, Alary M, Labbé AC, Guédou F, Poudrier J, Holmes S, Roger M, Blish CA. Natural killer cell phenotype is altered in HIV-exposed seronegative women. PLoS One 2020; 15:e0238347. [PMID: 32870938 PMCID: PMC7462289 DOI: 10.1371/journal.pone.0238347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Highly exposed seronegative (HESN) individuals present a unique setting to study mechanisms of protection against HIV acquisition. As natural killer (NK) cell activation and function have been implicated as a correlate of protection in HESN individuals, we sought to better understand the features of NK cells that may confer protection. We used mass cytometry to phenotypically profile NK cells from a cohort of Beninese sex workers and healthy controls. We found that NK cells from HESN women had increased expression of NKG2A, NKp30 and LILRB1, as well as the Fc receptor CD16, and decreased expression of DNAM-1, CD94, Siglec-7, and NKp44. Using functional assessments of NK cells from healthy donors against autologous HIV-infected CD4+ T cells, we observed that NKp30+ and Siglec-7+ cells had improved functional activity. Further, we found that NK cells from HESN women trended towards increased antibody-dependent cellular cytotoxicity (ADCC) activity; this activity correlated with increased CD16 expression. Overall, we identify features of NK cells in HESN women that may contribute to protection from HIV infection. Follow up studies with larger cohorts are warranted to confirm these findings.
Collapse
Affiliation(s)
- Nancy Q. Zhao
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
- Immunology Program, Stanford University, Stanford, CA, United States of America
| | - Elena Vendrame
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
| | - Anne-Maud Ferreira
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| | - Christof Seiler
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| | - Thanmayi Ranganath
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
| | - Michel Alary
- Centre de Recherche du CHU de Québec–Université Laval, Québec, Canada, Département de Médecine Sociale et Préventive, Université Laval, Québec, Canada, Institut National de Santé Publique du Québec, Québec, Canada
| | - Annie-Claude Labbé
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada, Service de maladies infectieuses et microbiologie, Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | | | - Johanne Poudrier
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada, Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| | - Michel Roger
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada, Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- * E-mail: (CAB); (MR)
| | - Catherine A. Blish
- Department of Medicine, Division of Infection Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States of America
- Immunology Program, Stanford University, Stanford, CA, United States of America
- Chan Zuckerberg Biohub, San Francisco, CA, United States of America
- * E-mail: (CAB); (MR)
| |
Collapse
|
26
|
Activation status of CD56 dim natural killer cells is associated with disease activity of patients with systemic lupus erythematosus. Clin Rheumatol 2020; 40:1103-1112. [PMID: 32797360 DOI: 10.1007/s10067-020-05306-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Decreased natural killer (NK) cells have been reported in systemic lupus erythematosus (SLE) patients. However, the role of NK cells in the pathogenesis of SLE is not well understood. In this study, we aimed to characterize NK cell subsets, phenotypes, and cytokine-secreting functions and investigate the clinical relevance of NK cells in SLE patients. METHODS Peripheral blood samples from 81 SLE patients and 59 healthy donors (HDs) were collected. The frequency and phenotype of NK cells were measured by flow cytometry. Intracellular interferon-γ (IFN-γ) production by NK cells was evaluated by flow cytometry after stimulation with interleukin-12 (IL-12) and IL-18. RESULTS The percentages of NK cells in the peripheral blood of SLE patients were significantly lower than those in HDs, and the percentages of CD56dim NK cells among total NK cells showed a trend toward decrease. The CD56dim NK cells in SLE patients showed increased production of IFN-γ and displayed relatively activated phenotypic characteristics, including significant increases in NKp44, NKp46, and CD69 and decreased expression of CD16 and CD158a/h/g. Furthermore, CD56dim NK cells in active SLE patients had higher percentages of NKp44+ cells and lower percentages of CD158a/h/g+ cells than those in inactive SLE patients. The percentages of CD158a/h/g+ cells among CD56dim NK cells were negatively correlated with the systemic lupus erythematosus disease activity index (SLEDAI) and positively correlated with C3 and C4 levels. CONCLUSION CD56dim NK cells in SLE patients show a reduced proportion tendency among total NK cells and are activated, which partially reflects the disease activity. CD158a/h/g expression on CD56dim NK cells may be considered an index of disease activity. Key Points • In patients with SLE, the proportion of CD56dim NK cells showed a decreased trend and CD56dim NK cells were phenotypically activated which partially reflects the disease activity. • CD158a/h/g expression on CD56dim NK cells were decreased which may be used as an indicator for evaluating disease activity in SLE patients.
Collapse
|
27
|
Orrantia A, Terrén I, Izquierdo-Lafuente A, Alonso-Cabrera JA, Sandá V, Vitallé J, Moreno S, Tasias M, Uranga A, González C, Mateos JJ, García-Ruiz JC, Zenarruzabeitia O, Borrego F. A NKp80-Based Identification Strategy Reveals that CD56 neg NK Cells Are Not Completely Dysfunctional in Health and Disease. iScience 2020; 23:101298. [PMID: 32622268 PMCID: PMC7334412 DOI: 10.1016/j.isci.2020.101298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are usually identified by the absence of other lineage markers, due to the lack of cell-surface-specific receptors. CD56neg NK cells, classically identified as CD56negCD16+, are very scarce in the peripheral blood of healthy people but they expand in some pathological conditions. However, studies on CD56neg NK cells had revealed different results regarding the phenotype and functionality. This could be due to, among others, the unstable expression of CD16, which hinders CD56neg NK cells' proper identification. Hence, we aim to determine an alternative surface marker to CD16 to better identify CD56neg NK cells. We have found that NKp80 is superior to CD16. Furthermore, we found differences between the functionality of CD56negNKp80+ and CD56negCD16+, suggesting that the effector functions of CD56neg NK cells are not as diminished as previously thought. We proposed NKp80 as a noteworthy marker to identify and accurately re-characterize human CD56neg NK cells.
Collapse
Affiliation(s)
- Ane Orrantia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Iñigo Terrén
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | | | | | - Victor Sandá
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Joana Vitallé
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Santiago Moreno
- Ramón y Cajal Health Research Institute (IRYCIS), Ramón y Cajal University Hospital, Madrid 28034, Spain
| | - María Tasias
- Hospital Universitari i Politecnic La Fe, Valencia 46026, Spain
| | - Alasne Uranga
- Biodonostia Health Research Institute, Donostia University Hospital, Donostia-San Sebastián 20014, Spain
| | - Carmen González
- Biodonostia Health Research Institute, Donostia University Hospital, Donostia-San Sebastián 20014, Spain
| | - Juan J Mateos
- Biocruces Bizkaia Health Research Institute, Hematological Cancer Group, Cruces University Hospital, Barakaldo 48903, Spain
| | - Juan C García-Ruiz
- Biocruces Bizkaia Health Research Institute, Hematological Cancer Group, Cruces University Hospital, Barakaldo 48903, Spain
| | - Olatz Zenarruzabeitia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain.
| |
Collapse
|
28
|
Human peripheral blood DNAM-1 neg NK cells are a terminally differentiated subset with limited effector functions. Blood Adv 2020; 3:1681-1694. [PMID: 31167820 DOI: 10.1182/bloodadvances.2018030676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/25/2019] [Indexed: 01/03/2023] Open
Abstract
Natural killer (NK) cells are a heterogeneous population of innate lymphocytes whose potent anticancer properties make them ideal candidates for cellular therapeutic application. However, our lack of understanding of the role of NK cell diversity in antitumor responses has hindered advances in this area. In this study, we describe a new CD56dim NK cell subset characterized by the lack of expression of DNAX accessory molecule-1 (DNAM-1). Compared with CD56bright and CD56dimDNAM-1pos NK cell subsets, CD56dimDNAM-1neg NK cells displayed reduced motility, poor proliferation, lower production of interferon-γ, and limited killing capacities. Soluble factors secreted by CD56dimDNAM-1neg NK cells impaired CD56dimDNAM-1pos NK cell-mediated killing, indicating a potential inhibitory role for the CD56dimDNAM-1neg NK cell subset. Transcriptome analysis revealed that CD56dimDNAM-1neg NK cells constitute a new mature NK cell subset with a specific gene signature. Upon in vitro cytokine stimulation, CD56dimDNAM-1neg NK cells were found to differentiate from CD56dimDNAM-1pos NK cells. Finally, we report a dysregulation of NK cell subsets in the blood of patients diagnosed with Hodgkin lymphoma and diffuse large B-cell lymphoma, characterized by decreased CD56dimDNAM-1pos/CD56dimDNAM-1neg NK cell ratios and reduced cytotoxic activity of CD56dimDNAM-1pos NK cells. Altogether, our data offer a better understanding of human peripheral blood NK cell populations and have important clinical implications for the design of NK cell-targeting therapies.
Collapse
|
29
|
Zhao NQ, Ferreira AM, Grant PM, Holmes S, Blish CA. Treated HIV Infection Alters Phenotype but Not HIV-Specific Function of Peripheral Blood Natural Killer Cells. Front Immunol 2020; 11:829. [PMID: 32477342 PMCID: PMC7235409 DOI: 10.3389/fimmu.2020.00829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are the predominant antiviral cells of the innate immune system, and may play an important role in acquisition and disease progression of HIV. While untreated HIV infection is associated with distinct alterations in the peripheral blood NK cell repertoire, less is known about how NK phenotype is altered in the setting of long-term viral suppression with antiretroviral therapy (ART), as well as how NK memory can impact functional responses. As such, we sought to identify changes in NK cell phenotype and function using high-dimensional mass cytometry to simultaneously analyze both surface and functional marker expression of peripheral blood NK cells in a cohort of ART-suppressed, HIV+ patients and HIV- healthy controls. We found that the NK cell repertoire following IL-2 treatment was altered in individuals with treated HIV infection compared to healthy controls, with increased expression of markers including NKG2C and CD2, and decreased expression of CD244 and NKp30. Using co-culture assays with autologous, in vitro HIV-infected CD4 T cells, we identified a subset of NK cells with enhanced responsiveness to HIV-1-infected cells, but no differences in the magnitude of anti-HIV NK cell responses between the HIV+ and HIV− groups. In addition, by profiling of NK cell receptors on responding cells, we found similar phenotypes of HIV-responsive NK cell subsets in both groups. Lastly, we identified clusters of NK cells that are altered in individuals with treated HIV infection compared to healthy controls, but found that these clusters are distinct from those that respond to HIV in vitro. As such, we conclude that while chronic, treated HIV infection induces a reshaping of the IL-2-stimulated peripheral blood NK cell repertoire, it does so in a way that does not make the repertoire more HIV-specific.
Collapse
Affiliation(s)
- Nancy Q Zhao
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Anne-Maud Ferreira
- Department of Statistics, Stanford University School of Medicine, Stanford, CA, United States
| | - Philip M Grant
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Susan Holmes
- Department of Statistics, Stanford University School of Medicine, Stanford, CA, United States
| | - Catherine A Blish
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
30
|
Lejeune M, Köse MC, Duray E, Einsele H, Beguin Y, Caers J. Bispecific, T-Cell-Recruiting Antibodies in B-Cell Malignancies. Front Immunol 2020; 11:762. [PMID: 32457743 PMCID: PMC7221185 DOI: 10.3389/fimmu.2020.00762] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies (BsAbs) are designed to recognize and bind to two different antigens or epitopes. In the last few decades, BsAbs have been developed within the context of cancer therapies and in particular for the treatment of hematologic B-cell malignancies. To date, more than one hundred different BsAb formats exist, including bispecific T-cell engagers (BiTEs), and new constructs are constantly emerging. Advances in protein engineering have enabled the creation of BsAbs with specific mechanisms of action and clinical applications. Moreover, a better understanding of resistance and evasion mechanisms, as well as advances in the protein engineering and in immunology, will help generating a greater variety of BsAbs to treat various cancer types. This review focuses on T-cell-engaging BsAbs and more precisely on the various BsAb formats currently being studied in the context of B-cell malignancies, on ongoing clinical trials and on the clinical concerns to be taken into account in the development of new BsAbs.
Collapse
Affiliation(s)
- Margaux Lejeune
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
| | - Murat Cem Köse
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
| | - Elodie Duray
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
| | - Hermann Einsele
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Yves Beguin
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium.,Department of Hematology, CHU de Liège, Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium.,Department of Hematology, CHU de Liège, Liège, Belgium
| |
Collapse
|
31
|
Wu Y, Li J, Jabbarzadeh Kaboli P, Shen J, Wu X, Zhao Y, Ji H, Du F, Zhou Y, Wang Y, Zhang H, Yin J, Wen Q, Cho CH, Li M, Xiao Z. Natural killer cells as a double-edged sword in cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacol Res 2020; 155:104691. [DOI: 10.1016/j.phrs.2020.104691] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023]
|
32
|
Bähr I, Spielmann J, Quandt D, Kielstein H. Obesity-Associated Alterations of Natural Killer Cells and Immunosurveillance of Cancer. Front Immunol 2020; 11:245. [PMID: 32231659 PMCID: PMC7082404 DOI: 10.3389/fimmu.2020.00245] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is accompanied by a systemic chronic low-grade inflammation as well as dysfunctions of several innate and adaptive immune cells. Recent findings emphasize an impaired functionality and phenotype of natural killer (NK) cells under obese conditions. This review provides a detailed overview on research related to overweight and obesity with a particular focus on NK cells. We discuss obesity-associated alterations in subsets, distribution, phenotype, cytotoxicity, cytokine secretion, and signaling cascades of NK cells investigated in vitro as well as in animal and human studies. In addition, we provide recent insights into the effects of physical activity and obesity-associated nutritional factors as well as the reduction of body weight and fat mass on NK cell functions of obese individuals. Finally, we highlight the impact of impaired NK cell physiology on obesity-associated diseases, focusing on the elevated susceptibility for viral infections and increased risk for cancer development and impaired treatment response.
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
33
|
Manukyan G, Martirosyan A, Slavik L, Margaryan S, Ulehlova J, Mikulkova Z, Hlusi A, Papajik T, Kriegova E. Anti-domain 1 β2 glycoprotein antibodies increase expression of tissue factor on monocytes and activate NK Cells and CD8+ cells in vitro. AUTOIMMUNITY HIGHLIGHTS 2020; 11:5. [PMID: 32127041 PMCID: PMC7065342 DOI: 10.1186/s13317-020-00128-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
Abstract
Background β2-Glycoprotein I (β2GPI) represents the major antigenic target for antiphospholipid antibodies (aPL), with domain 1 (D1) being identified as a risk factor for thrombosis and pregnancy complications in APS. We aimed to analyse the ability of aPL, and particularly anti-D1 β2GPI, to stimulate prothrombotic and proinflammatory activity of immune cells in vitro. Methods Peripheral blood mononuclear cells (PBMCs) from 11 healthy individuals were incubated with: (1) “anti-D1(+)”—pooled plasma derived from patients suspected of having APS contained anticardiolipin antibodies (aCL), lupus anticoagulant (LA), anti-β2GPI and anti-D1 β2GPI; (2) “anti-D1(−)”—pooled plasma from patients suspected of having APS contained aCL, LA, anti-β2GPI, and negative for anti-D1 β2GPI; (3) “seronegative”—negative for aPL. Results The presence of anti-D1(+) and anti-D1(−) plasma resulted in increased HLA-DR and CD11b on monocytes. While only anti-D1(+) plasma markedly increased the percentage and median fluorescence intensity (MFI) of CD142 (tissue factor, TF) on monocytes in comparison with those cultured with anti-D1(−) and seronegative plasma. Anti-D1(+) plasma resulted in increased percentage and MFI of activation marker CD69 on NK and T cytotoxic cells. Expression of IgG receptor FcγRIII(CD16) on monocytes and NK cells was down-regulated by the anti-D1(+) plasma. Conclusions Taking together, our study shows the ability of patient-derived aPL to induce immune cell activation and TF expression on monocytes. For the first time, we demonstrated the influence of anti-D1 β2GPI on the activation status of monocytes, NK and cytotoxic T cells. Our findings further support a crucial role of D1 epitope in the promotion of thrombosis and obstetrical complications in APS.
Collapse
Affiliation(s)
- Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan St., 0014, Yerevan, Armenia. .,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic.
| | - Anush Martirosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan St., 0014, Yerevan, Armenia
| | - Ludek Slavik
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Sona Margaryan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan St., 0014, Yerevan, Armenia.,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Jana Ulehlova
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Zuzana Mikulkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Antonin Hlusi
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Tomas Papajik
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| |
Collapse
|
34
|
Choo QWW, Koean RAG, Chang SC, Chng WJ, Chan MC, Wang W, Er JZ, Ding JL. Macrophages protect mycoplasma-infected chronic myeloid leukemia cells from natural killer cell killing. Immunol Cell Biol 2020; 98:138-151. [PMID: 31837284 PMCID: PMC7027758 DOI: 10.1111/imcb.12309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/20/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
Macrophages (Mϕ) have been reported to downmodulate the cytotoxicity of natural killer (NK) cell against solid tumor cells. However, the collaborative role between NK cells and Mϕ remains underappreciated, especially in hematological cancers, such as chronic myeloid leukemia (CML). We observed a higher ratio of innate immune cells (Mϕ and NK) to adaptive immune cells (T and B cells) in CML bone marrow aspirates, prompting us to investigate the roles of NK and Mϕ in CML. Using coculture models simulating the tumor inflammatory environment, we observed that Mϕ protects CML from NK attack only when CML was itself mycoplasma-infected and under chronic infection-inflammation condition. We found that the Mϕ-protective effect on CML was associated with the maintenance of CD16 level on the NK cell membrane. Although the NK membrane CD16 (mCD16) was actively shed in Mϕ + NK + CML trioculture, the NK mCD16 level was maintained, and this was independent of the modulation of sheddase by tissue inhibitor of metalloproteinase 1 or inhibitory cytokine transforming growth factor beta. Instead, we found that this process of NK mCD16 maintenance was conferred by Mϕ in a contact-dependent manner. We propose a new perspective on anti-CML strategy through abrogating Mϕ-mediated retention of NK surface CD16.
Collapse
Affiliation(s)
- Qing Wei Winnie Choo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Ricky Abdi Gunawan Koean
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Shu-Chun Chang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore.,Cancer Science Institute Singapore, National University of Singapore, Singapore
| | - Ming Chun Chan
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wilson Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jun Zhi Er
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jeak Ling Ding
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
35
|
Molfetta R, Zingoni A, Santoni A, Paolini R. Post-translational Mechanisms Regulating NK Cell Activating Receptors and Their Ligands in Cancer: Potential Targets for Therapeutic Intervention. Front Immunol 2019; 10:2557. [PMID: 31736972 PMCID: PMC6836727 DOI: 10.3389/fimmu.2019.02557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Efficient clearance of transformed cells by Natural Killer (NK) cells is regulated by several activating receptors, including NKG2D, NCRs, and DNAM-1. Expression of these receptors as well as their specific “induced self” ligands is finely regulated during malignant transformation through the integration of different mechanisms acting on transcriptional, post-transcriptional, and post-translational levels. Among post-translational mechanisms, the release of activating ligands in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle secretion represents some relevant cancer immune escape processes. Moreover, covalent modifications including ubiquitination and SUMOylation also contribute to negative regulation of NKG2D and DNAM-1 ligand surface expression resulting either in ligand intracellular retention and/or ligand degradation. All these mechanisms greatly impact on NK cell mediated recognition and killing of cancer cells and may be targeted to potentiate NK cell surveillance against tumors. Our mini review summarizes the main post-translational mechanisms regulating the expression of activating receptors and their ligands with particular emphasis on the contribution of ligand shedding and of ubiquitin and ubiquitin-like modifications in reducing target cell susceptibility to NK cell-mediated killing. Strategies aimed at inhibiting shedding of activating ligands and their modifications in order to preserve ligand expression on cancer cells will be also discussed.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
36
|
Sabry M, Zubiak A, Hood SP, Simmonds P, Arellano-Ballestero H, Cournoyer E, Mashar M, Pockley AG, Lowdell MW. Tumor- and cytokine-primed human natural killer cells exhibit distinct phenotypic and transcriptional signatures. PLoS One 2019; 14:e0218674. [PMID: 31242243 PMCID: PMC6594622 DOI: 10.1371/journal.pone.0218674] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 11/19/2022] Open
Abstract
An emerging cellular immunotherapy for cancer is based on the cytolytic activity of natural killer (NK) cells against a wide range of tumors. Although in vitro activation, or “priming,” of NK cells by exposure to pro-inflammatory cytokines, such as interleukin (IL)-2, has been extensively studied, the biological consequences of NK cell activation in response to target cell interactions have not been thoroughly characterized. We investigated the consequences of co-incubation with K562, CTV-1, Daudi RPMI-8226, and MCF-7 tumor cell lines on the phenotype, cytokine expression profile, and transcriptome of human NK cells. We observe the downregulation of several activation receptors including CD16, CD62L, C-X-C chemokine receptor (CXCR)-4, natural killer group 2 member D (NKG2D), DNAX accessory molecule (DNAM)-1, and NKp46 following tumor-priming. Although this NK cell phenotype is typically associated with NK cell dysfunction in cancer, we reveal the upregulation of NK cell activation markers, such as CD69 and CD25; secretion of pro-inflammatory cytokines, including macrophage inflammatory proteins (MIP-1) α /β and IL-1β/6/8; and overexpression of numerous genes associated with enhanced NK cell cytotoxicity and immunomodulatory functions, such as FAS, TNFSF10, MAPK11, TNF, and IFNG. Thus, it appears that tumor-mediated ligation of receptors on NK cells may induce a primed state which may or may not lead to full triggering of the lytic or cytokine secreting machinery. Key signaling molecules exclusively affected by tumor-priming include MAP2K3, MARCKSL1, STAT5A, and TNFAIP3, which are specifically associated with NK cell cytotoxicity against tumor targets. Collectively, these findings help define the phenotypic and transcriptional signature of NK cells following their encounters with tumor cells, independent of cytokine stimulation, and provide insight into tumor-specific NK cell responses to inform the transition toward harnessing the therapeutic potential of NK cells in cancer.
Collapse
Affiliation(s)
- May Sabry
- Department of Haematology, University College London, London, United Kingdom
| | - Agnieszka Zubiak
- Department of Haematology, University College London, London, United Kingdom
| | - Simon P. Hood
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Poppy Simmonds
- Department of Haematology, University College London, London, United Kingdom
| | | | - Eily Cournoyer
- Department of Haematology, University College London, London, United Kingdom
| | - Meghavi Mashar
- Department of Haematology, University College London, London, United Kingdom
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Mark W. Lowdell
- Department of Haematology, University College London, London, United Kingdom
- InmuneBio Inc., La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Wu J, Mishra HK, Walcheck B. Role of ADAM17 as a regulatory checkpoint of CD16A in NK cells and as a potential target for cancer immunotherapy. J Leukoc Biol 2019; 105:1297-1303. [PMID: 30786043 PMCID: PMC6792391 DOI: 10.1002/jlb.2mr1218-501r] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 01/11/2023] Open
Abstract
Human NK cell antitumor activities involve Ab-dependent cell-mediated cytotoxicity (ADCC), which is a key mechanism of action for several clinically successful tumor-targeting therapeutic mAbs. Human NK cells exclusively recognize these Abs by the Fcγ receptor CD16A (FcγRIIIA), one of their most potent activating receptors. Unlike other activating receptors on NK cells, CD16A undergoes a rapid down-regulation in expression by a proteolytic process following NK cell activation with various stimuli. In this review, the role of a disintegrin and metalloproteinase-17 (ADAM17) in CD16A cleavage and as a regulatory checkpoint is discussed. Several studies have examined the effects of inhibiting ADAM17 or CD16A cleavage directly during NK cell engagement of Ab-coated tumor cells, which resulted in strengthened Ab tethering, decreased tumor cell detachment, and enhanced CD16A signaling and cytokine production. However, the effects of either manipulation on ADCC have varied between studies, which may be due to dissimilar assays and the contribution of different killing processes by NK cells. Of importance is that NK cells under various circumstances, including in the tumor microenvironment of patients, down-regulate CD16A and this appears to impair their function. Considerable progress has been made in the development of ADAM17 inhibitors, including human mAbs that have advantages of high specificity and increased half-life in vivo. These inhibitors may provide a therapeutic means of increasing ADCC potency and/or antitumor cytokine production by NK cells in an immunosuppressive tumor microenvironment, and if used in combination with tumor-targeting Abs or NK cell-based adoptive immunotherapies may improve their efficacy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Hemant K Mishra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
38
|
Poorly cytotoxic terminally differentiated CD56 negCD16 pos NK cells accumulate in Kenyan children with Burkitt lymphomas. Blood Adv 2019; 2:1101-1114. [PMID: 29764843 DOI: 10.1182/bloodadvances.2017015404] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/21/2018] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are critical for restricting viral infections and mediating tumor immunosurveillance. Epstein-Barr virus (EBV) and Plasmodium falciparum malaria are known risk factors for endemic Burkitt lymphoma (eBL), the most common childhood cancer in equatorial Africa. To date, the composition and function of NK cells have not been evaluated in eBL etiology or pathogenesis. Therefore, using multiparameter flow cytometry and in vitro killing assays, we compared NK cells from healthy children and children diagnosed with eBL in Kenya. We defined 5 subsets based on CD56 and CD16 expression, including CD56negCD16pos We found that licensed and terminally differentiated perforin-expressing CD56negCD16pos NK cells accumulated in eBL children, particularly in those with high EBV loads (45.2%) compared with healthy children without (6.07%) or with (13.5%) malaria exposure (P = .0007 and .002, respectively). This progressive shift in NK cell proportions was concomitant with fewer CD56dimCD16pos cells. Despite high MIP-1β expression, CD56negCD16pos NK cells had diminished cytotoxicity, with lower expression of activation markers NKp46, NKp30, and CD160 and the absence of TNF-α. Of note, the accumulation of poorly cytotoxic CD56negCD16pos NK cells resolved in long-term eBL survivors. Our study demonstrates impaired NK cell-mediated immunosurveillance in eBL patients but with the potential to restore a protective NK cell repertoire after cancer treatment. Characterizing NK cell dysfunction during coinfections with malaria and EBV has important implications for designing immunotherapies to improve outcomes for children diagnosed with eBL.
Collapse
|
39
|
Lo Nigro C, Macagno M, Sangiolo D, Bertolaccini L, Aglietta M, Merlano MC. NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumors: biological evidence and clinical perspectives. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:105. [PMID: 31019955 DOI: 10.21037/atm.2019.01.42] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of antibody-dependent cell-mediated cytotoxicity (ADCC) makes use of the innate immune cells providing antitumor cytotoxicity activated by antibodies linked to target cells. Natural killer (NK) cells are a small set of lymphocytes, but are considered the most important cells among those able to induce ADCC. They provoke innate immune responses and harmonise spontaneous cytotoxicity towards tumor and virus-infected cells. They are able to swiftly produce biochemical signals and cytokines so as to stimulate subsequent adaptive immune responses. Immunotherapeutics that target NK cells, augmenting their immune response, can cause the antitumor dynamics of the antibodies to be improved. The recent developments in the field of NK cell immunotherapy and genotypic factors which might affect patient responses to antibody-dependent immunotherapies are the main subject of this review, with a particular focus on the manipulations and strategies used to augment ADCC. In the next years combined treatment with monoclonal antibodies (mAbs) and immunomodulatory drugs will be an important part in antitumor therapy. The main challenge remains the difficulty in distinguishing in the clinical setting, between the target effect that many mAbs exert against specific cell membrane receptors and the ADCC effect that they too also can induce. Drugs able to activate NK cells, that are major actors in mAb-mediated ADCC, will improve the ADCC effect against tumors.
Collapse
Affiliation(s)
- Cristiana Lo Nigro
- Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Marco Macagno
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Luca Bertolaccini
- Department of Thoracic Surgery, AUSL Bologna Maggiore Teaching Hospital, Bologna, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | | |
Collapse
|
40
|
Nayyar G, Chu Y, Cairo MS. Overcoming Resistance to Natural Killer Cell Based Immunotherapies for Solid Tumors. Front Oncol 2019; 9:51. [PMID: 30805309 PMCID: PMC6378304 DOI: 10.3389/fonc.2019.00051] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Despite advances in the diagnostic and therapeutic modalities, the prognosis of several solid tumor malignancies remains poor. Different factors associated with solid tumors including a varied genetic signature, complex molecular signaling pathways, defective cross talk between the tumor cells and immune cells, hypoxic and immunosuppressive effects of tumor microenvironment result in a treatment resistant and metastatic phenotype. Over the past several years, immunotherapy has emerged as an attractive therapeutic option against multiple malignancies. The unique ability of natural killer (NK) cells to target cancer cells without antigen specificity makes them an ideal candidate for use against solid tumors. However, the outcomes of adoptive NK cell infusions into patients with solid tumors have been disappointing. Extensive studies have been done to investigate different strategies to improve the NK cell function, trafficking and tumor targeting. Use of cytokines and cytokine analogs has been well described and utilized to enhance the proliferation, stimulation and persistence of NK cells. Other techniques like blocking the human leukocyte antigen-killer cell receptors (KIR) interactions with anti-KIR monoclonal antibodies, preventing CD16 receptor shedding, increasing the expression of activating NK cell receptors like NKG2D, and use of immunocytokines and immune checkpoint inhibitors can enhance NK cell mediated cytotoxicity. Using genetically modified NK cells with chimeric antigen receptors and bispecific and trispecific NK cell engagers, NK cells can be effectively redirected to the tumor cells improving their cytotoxic potential. In this review, we have described these strategies and highlighted the need to further optimize these strategies to improve the clinical outcome of NK cell based immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, United States.,Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, United States.,Department of Medicine, New York Medical College, Valhalla, NY, United States.,Department of Pathology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
41
|
Vujanovic L, Chuckran C, Lin Y, Ding F, Sander CA, Santos PM, Lohr J, Mashadi-Hossein A, Warren S, White A, Huang A, Kirkwood JM, Butterfield LH. CD56 dim CD16 - Natural Killer Cell Profiling in Melanoma Patients Receiving a Cancer Vaccine and Interferon-α. Front Immunol 2019; 10:14. [PMID: 30761123 PMCID: PMC6361792 DOI: 10.3389/fimmu.2019.00014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/04/2019] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are innate cytotoxic and immunoregulatory lymphocytes that have a central role in anti-tumor immunity and play a critical role in mediating cellular immunity in advanced cancer immunotherapies, such as dendritic cell (DC) vaccines. Our group recently tested a novel recombinant adenovirus-transduced autologous DC-based vaccine that simultaneously induces T cell responses against three melanoma-associated antigens for advanced melanoma patients. Here, we examine the impact of this vaccine as well as the subsequent systemic delivery of high-dose interferon-α2b (HDI) on the circulatory NK cell profile in melanoma patients. At baseline, patient NK cells, particularly those isolated from high-risk patients with no measurable disease, showed altered distribution of CD56dim CD16+ and CD56dim CD16− NK cell subsets, as well as elevated serum levels of immune suppressive MICA, TN5E/CD73 and tactile/CD96, and perforin. Surprisingly, patient NK cells displayed a higher level of activation than those from healthy donors as measured by elevated CD69, NKp44 and CCR7 levels, and enhanced K562 killing. Elevated cytolytic ability strongly correlated with increased representation of CD56dim CD16+ NK cells and amplified CD69 expression on CD56dim CD16+ NK cells. While intradermal DC immunizations did not significantly impact circulatory NK cell activation and distribution profiles, subsequent HDI injections enhanced CD56bright CD16− NK cell numbers when compared to patients that did not receive HDI. Phenotypic analysis of tumor-infiltrating NK cells showed that CD56dim CD16− NK cells are the dominant subset in melanoma tumors. NanoString transcriptomic analysis of melanomas resected at baseline indicated that there was a trend of increased CD56dim NK cell gene signature expression in patients with better clinical response. These data indicate that melanoma patient blood NK cells display elevated activation levels, that intra-dermal DC immunizations did not effectively promote systemic NK cell responses, that systemic HDI administration can modulate NK cell subset distributions and suggest that CD56dim CD16− NK cells are a unique non-cytolytic subset in melanoma patients that may associate with better patient outcome.
Collapse
Affiliation(s)
- Lazar Vujanovic
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher Chuckran
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Lin
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Fei Ding
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cindy A Sander
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Patricia M Santos
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joel Lohr
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Sarah Warren
- NanoString Technologies, Seattle, WA, United States
| | - Andy White
- NanoString Technologies, Seattle, WA, United States
| | - Alan Huang
- NanoString Technologies, Seattle, WA, United States
| | - John M Kirkwood
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lisa H Butterfield
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
42
|
Hood SP, Foulds GA, Imrie H, Reeder S, McArdle SEB, Khan M, Pockley AG. Phenotype and Function of Activated Natural Killer Cells From Patients With Prostate Cancer: Patient-Dependent Responses to Priming and IL-2 Activation. Front Immunol 2019; 9:3169. [PMID: 30761160 PMCID: PMC6362408 DOI: 10.3389/fimmu.2018.03169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Although immunotherapy has emerged as the “next generation” of cancer treatments, it has not yet been shown to be successful in the treatment of patients with prostate cancer, for whom therapeutic options remain limited to radiotherapy and androgen (hormone) deprivation therapy. Previous studies have shown that priming natural killer (NK) cells isolated from healthy individuals via co-incubation with CTV-1 cells derived from an acute lymphoblastic leukemia (ALL) enhances their cytotoxicity against human DU145 (metastatic) prostate cancer cells, but it remains unknown to what extent NK cells from patients with prostate cancer can be triggered to kill. Herein, we explore the phenotype of peripheral blood NK cells in patients with prostate cancer and compare the capacity of CTV-1 cell-mediated priming and IL-2 stimulation to trigger NK cell-mediated killing of the human PC3 (metastatic) prostate cancer cell line. Methods: The phenotype of resting, primed (co-incubation with CTV-1 cells for 17 h) and IL-2 activated (100 IU/ml IL-2 for 17 h) NK cells isolated from frozen-thawed peripheral blood mononuclear cell (PBMC) preparations from patients with benign disease (n = 6) and prostate cancer (n = 18) and their cytotoxicity against PC3 and K562 cells was determined by flow cytometry. Relationship(s) between NK cell phenotypic features and cytotoxic potential were interrogated using Spearman Rank correlation matrices. Results and Conclusions: NK cell priming and IL-2 activation of patient-derived NK cells resulted in similar levels of cytotoxicity, but distinct NK cell phenotypes. Importantly, the capacity of priming and IL-2 stimulation to trigger cytotoxicity was patient-dependent and mutually exclusive, in that NK cells from ~50% of patients preferentially responded to priming whereas NK cells from the remaining patients preferentially responded to cytokine stimulation. In addition to providing more insight into the biology of primed and cytokine-stimulated NK cells, this study supports the use of autologous NK cell-based immunotherapies for the treatment of prostate cancer. However, our findings also indicate that patients will need to be stratified according to their potential responsiveness to individual therapeutic approaches.
Collapse
Affiliation(s)
- Simon P Hood
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Gemma A Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Heather Imrie
- School of Animal Rural and Environmental Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephen Reeder
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stéphanie E B McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Masood Khan
- Department of Urology, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Alan Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
43
|
Eränkö E, Ilander M, Tuomiranta M, Mäkitie A, Lassila T, Kreutzman A, Klemetti P, Mustjoki S, Hannula-Jouppi K, Ranki A. Immune cell phenotype and functional defects in Netherton syndrome. Orphanet J Rare Dis 2018; 13:213. [PMID: 30477583 PMCID: PMC6258305 DOI: 10.1186/s13023-018-0956-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background Netherton syndrome (NS) is a rare life-threatening syndrome caused by SPINK5 mutations leading to a skin barrier defect and a severe atopic diathesis. NS patients are prone to bacterial infections, but the understanding of the underlying immune deficiency is incomplete. Results We analyzed blood lymphocyte phenotypes and function in relation to clinical infections in 11 Finnish NS patients, aged 3 to 17 years, and healthy age-matched controls. The proportion of B cells (CD19+) and naïve B cells (CD27−, IgD+) were high while memory B cells (CD27+) and switched memory B cells (CD27+IgM−IgD−), crucial for the secondary response to pathogens, was below or in the lowest quartile of the reference values in 8/11 (73%) and 9/11 (82%) patients, respectively. The proportion of activated non-differentiated B cells (CD21low, CD38low) was below or in the lowest quartile of the reference values in 10/11 (91%) patients. Despite normal T cell counts, the proportion of naïve CD4+ T cells was reduced significantly and the proportion of CD8+ T central memory significantly elevated. An increased proportion of CD57+ CD8+ T cells indicated increased differentiation potential of the T cells. The proportion of cytotoxic NK cells was elevated in NS patients in phenotypic analysis based on CD56DIM, CD16+ and CD27− NK cells but in functional analysis, decreased expression of CD107a/b indicated impaired cytotoxicity. The T and NK cell phenotype seen in NS patients also significantly differed from that of age-matched atopic dermatitis (AD) patients, indicating a distinctive profile in NS. The frequency of skin infections correlated with the proportion of CD62L+ T cells, naïve CD4+ and CD27+ CD8+ T cells and with activated B cells. Clinically beneficial intravenous immunoglobulin therapy (IVIG) increased naïve T cells and terminal differentiated effector memory CD8+ cells and decreased the proportion of activated B cells and plasmablasts in three patients studied. Conclusions This study shows novel quantitative and functional aberrations in several lymphocyte subpopulations, which correlate with the frequency of infections in patients with Netherton syndrome. IVIG therapy normalized some dysbalancies and was clinically beneficial. Electronic supplementary material The online version of this article (10.1186/s13023-018-0956-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elina Eränkö
- Department of Dermatology and Allergology, Helsinki University Hospital and University of Helsinki, P.O.Box 160, FI-00029 HUS, Helsinki, Finland.
| | - Mette Ilander
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, P.O.Box 700, FI-00029 HUS, Helsinki, Finland
| | - Mirja Tuomiranta
- Dermatology Unit, Seinäjoki Central Hospital, Hanneksenrinne 7, 60220, Seinäjoki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, P.O.Box 263, FI-00029 HUS, Helsinki, Finland
| | - Tea Lassila
- Department of Dermatology and Allergology, Helsinki University Hospital and University of Helsinki, P.O.Box 160, FI-00029 HUS, Helsinki, Finland
| | - Anna Kreutzman
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, P.O.Box 700, FI-00029 HUS, Helsinki, Finland
| | - Paula Klemetti
- Children's hospital, Helsinki University Hospital, P.O.Box 28, FI-00029 HUS, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, P.O.Box 700, FI-00029 HUS, Helsinki, Finland
| | - Katariina Hannula-Jouppi
- Department of Dermatology and Allergology, Helsinki University Hospital and University of Helsinki, P.O.Box 160, FI-00029 HUS, Helsinki, Finland.,Folkhälsan Institute of Genetics, Helsinki, and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology and Allergology, Helsinki University Hospital and University of Helsinki, P.O.Box 160, FI-00029 HUS, Helsinki, Finland
| |
Collapse
|
44
|
Picard E, Godet Y, Laheurte C, Dosset M, Galaine J, Beziaud L, Loyon R, Boullerot L, Lauret Marie Joseph E, Spehner L, Jacquin M, Eberst G, Gaugler B, Le Pimpec-Barthes F, Fabre E, Westeel V, Caignard A, Borg C, Adotévi O. Circulating NKp46 + Natural Killer cells have a potential regulatory property and predict distinct survival in Non-Small Cell Lung Cancer. Oncoimmunology 2018; 8:e1527498. [PMID: 30713781 DOI: 10.1080/2162402x.2018.1527498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022] Open
Abstract
Natural killer (NK) cells are innate effector lymphocytes widely involved in cancer immunosurveillance. In this study, we described three circulating NK cell subsets in patients with non-small cell lung cancer (NSCLC). Compared to healthy donors (HD), lower rate of the cytotoxic CD56dim CD16+ NK cells was found in NSCLC patients (76.1% vs 82.4%, P = 0.0041). In contrast, the rate of CD56bright NK cells was similar between patients and HD. We showed in NSCLC patients a higher rate of a NK cell subset with CD56dim CD16- phenotype (16.7% vs 9.9% P = 0.0001). The degranulation property and cytokines production were mainly drive by CD56dim CD16- NK cell subset in patients. Analysis of natural cytotoxicity receptors (NCRs) expression identified four distinct clusters of patients with distinct NK cell subset profiles as compared to one major cluster in HD. Notably the cluster characterized by a low circulating level of NKp46+ NK cell subsets was absent in HD. We showed that the rate of circulating NKp46+ CD56dim CD16+ NK cells influenced the patients' survival. Indeed, the median overall survival in patients exhibiting high versus low level of this NK cell subset was 16 and 27 months respectively (P = 0.02). Finally, we demonstrated that blocking NKp46 receptor in vitro was able to restore spontaneous tumor specific T cell responses in NSCLC patients. In conclusion, this study showed a distinct distribution and phenotype of circulating NK cell subsets in NSCLC. It also supports the regulatory role of NKp46+ NK cell subset in NSCLC patients.
Collapse
Affiliation(s)
- Emilie Picard
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Yann Godet
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Caroline Laheurte
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, INSERM CIC-1431 Clinical Investigation Center in Biotherapies, Besançon, France
| | - Magalie Dosset
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Jeanne Galaine
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Laurent Beziaud
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Romain Loyon
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Laura Boullerot
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | | | - Laurie Spehner
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | - Marion Jacquin
- University Hospital of Besançon, INSERM CIC-1431 Clinical Investigation Center in Biotherapies, Besançon, France
| | - Guillaume Eberst
- University Hospital of Besançon, Department of Pneumology, Besançon, France
| | - Béatrice Gaugler
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France
| | | | - Elizabeth Fabre
- Service d'Oncologie Médicale, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Virginie Westeel
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, Department of Pneumology, Besançon, France
| | - Anne Caignard
- INSERM, UMR1160, Institut Universitaire d'hématologie, Paris, France
| | - Christophe Borg
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| | - Olivier Adotévi
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, LabEx LipSTIC, Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, Besançon, France
| |
Collapse
|
45
|
Yin X, Liu T, Wang Z, Ma M, Lei J, Zhang Z, Fu S, Fu Y, Hu Q, Ding H, Han X, Xu J, Shang H, Jiang Y. Expression of the Inhibitory Receptor TIGIT Is Up-Regulated Specifically on NK Cells With CD226 Activating Receptor From HIV-Infected Individuals. Front Immunol 2018; 9:2341. [PMID: 30364127 PMCID: PMC6192288 DOI: 10.3389/fimmu.2018.02341] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells are important for maintenance of innate immune system stability and serve as a first line of defense against tumors and virus infections; they can act either directly or indirectly and are regulated via co-operation between inhibitory and stimulatory surface receptors. The recently reported inhibitory receptor, TIGIT, can be expressed on the NK cell surface; however, the expression level and function of TIGIT on NK cells during HIV infection is unknown. In this study, for the first time, we investigated the expression and function of TIGIT in NK cells from HIV-infected individuals. Our data demonstrate that the level of TIGIT is higher on NK cells from patients infected with human immunodeficiency virus (HIV) compared with HIV-negative healthy controls. TIGIT expression is inversely correlated with CD4+ T cell counts and positively correlated with plasma viral loads. Additionally, levels of the TIGIT ligand, CD155, were higher on CD4+ T cells from HIV-infected individuals compared with those from healthy controls; however, there was no difference in the level of the activating receptor, CD226, which recognizes the same ligands as TIGIT. Furthermore, TIGIT was found to specifically up-regulated on CD226+ NK cells in HIV-infected individuals, and either rIL-10, or rIL-12 + rIL-15, could induce TIGIT expression on these cells. In addition, high TIGIT expression inhibited the production of interferon-gamma (IFN-γ) by NK cells, while TIGIT inhibition restored IFN-γ production. Overall, these results highlight the important role of TIGIT in NK cell function and suggest a potential new avenue for the development of therapeutic strategies toward a functional cure for HIV.
Collapse
Affiliation(s)
- Xiaowan Yin
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Tingting Liu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Laboratory Medicine, General Hospital of Shenyang Military Command, Shenyang, China
| | - Zhuo Wang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meichen Ma
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Jie Lei
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Zining Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Shuai Fu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yajing Fu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qinghai Hu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Junjie Xu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
46
|
Increased degranulation of immune cells is associated with higher cervical viral load in HIV-infected women. AIDS 2018; 32:1939-1949. [PMID: 29912065 DOI: 10.1097/qad.0000000000001925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The activation of effector immune cells at the cervicovaginal mucosa (CVM) might influence the cervical HIV load and thus the secondary transmission; however, limited information is available about the innate effector cells at CVM during HIV infection. In this study, we quantified and assessed the activation of the effector immune cells at the CVM of HIV-infected women with different disease outcomes: nonprogressive HIV disease (LTNPs) and chronic HIV-infected (CHI) and their relationship with cervical viral shedding. METHOD The phenotype and frequency of cytobrush-derived effector immune cells like natural killer cells, T cells, and dendritic cells and their degranulation status (CD107a expression as a surrogate marker of activation) was determined using flow cytometry in age-matched HIV- infected and uninfected women and their association with cervical HIV load was determined. RESULT The frequencies of dendritic cells, CD56, CD56 natural killer cell subsets were similar in both the study groups and also within the HIV-infected women with and without progressive disease. The frequencies of CD56CD16 natural killer cells (P = 0.04) and degranulating CD56 natural killer cells were significantly higher among HIV-infected women (P < 0.05). Among HIV-infected women, LTNP women showed reduced degranulation of natural killer and CD8 T cells than seen in the CHI women, which was also associated with lower cervical viral load (P < 0.05). CONCLUSION The present study showed that increased degranulation of natural killer and T cells is associated with higher HIV shedding at the CVM of HIV-infected women. Hence reduction of the local immune activation at CVM could be an effective strategy to reduce the cervical viral load.
Collapse
|
47
|
Cooper GE, Ostridge K, Khakoo SI, Wilkinson TMA, Staples KJ. Human CD49a + Lung Natural Killer Cell Cytotoxicity in Response to Influenza A Virus. Front Immunol 2018; 9:1671. [PMID: 30079068 PMCID: PMC6062652 DOI: 10.3389/fimmu.2018.01671] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023] Open
Abstract
Influenza A virus (IAV) is a major global public health burden due to its routine evasion of immunization strategies. Natural killer (NK) cells are innate cytotoxic cells with important antiviral activity in the human body, yet the function of these cells in the control of IAV infection is unclear. The aim of this study was to determine the role of lung NK cell cytotoxic responses to IAV. Human lung explants were infected ex vivo with IAV, and lung NK cell activation was analyzed by flow cytometry. Cytotoxic responses of NK cell subsets against IAV-infected macrophages were measured by flow cytometry and ELISA. Despite reports of hypofunctionality in the pulmonary environment, human lung-associated NK cells responded rapidly to ex vivo IAV infection, with upregulation of surface CD107a 24 h post-infection. The lung NK cell phenotype is similar in maturity and differentiation to NK cells of the peripheral blood but a unique CD56brightCD49a+CD103+CD69+ NK cell population was identified in the lung, indicating NK cell residency within this organ. In response to ex vivo IAV infection a greater proportion of resident CD56brightCD49a+ NK cells expressed surface CD107a compared with CD56brightCD49a− NK cells, suggesting a hyperfunctional NK cell population may be present within human lung tissue and could be the result of innate immunological training. Furthermore, NK cells provided significant antiviral, cytotoxic activity following contact with influenza-infected cells, including the production and release of IFN-γ and granzyme-B resulting in macrophage cell death. These results suggest that a resident, trained NK cell population are present in the human lung and may provide early and important control of viral infection. A greater understanding of this resident mucosal population may provide further insight into the role of these cells in controlling viral infection and generating appropriate adaptive immunity to IAV.
Collapse
Affiliation(s)
- Grace E Cooper
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Kristoffer Ostridge
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, United Kingdom.,Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom
| | - Salim I Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, United Kingdom.,Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
48
|
Johnson JK, Miller JS. Current strategies exploiting NK-cell therapy to treat haematologic malignancies. Int J Immunogenet 2018; 45:237-246. [PMID: 30009514 DOI: 10.1111/iji.12387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/10/2018] [Accepted: 06/07/2018] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells recognize targets that have been changed via malignant transformation or infection. Previously, NK cells were thought to be short-lived, but we now know that NK cells can be long-lived and remember past exposures in response to CMV. NK cells use a plethora of activating and inhibitory receptors to recognize these changes and attack targets, but tumour cells often evade NK cells. Therefore, major efforts are being made to hone in on NK cell antitumour properties in immunotherapy. In the clinical setting, haploidentical NK cells can be adoptively transferred to help treat cancer. To expand NK cells in vivo and enhance tumour targeting, IL-15 is being tested in combination with a glycogen synthase kinase (GSK) 3 inhibitor (CHIR99021), an inhibitor that has been shown to expand mature, highly functional NK cells capable of killing multiple tumour targets. One major limitation to NK cell therapy is lack of specificity. To address this concern, bispecific or trispecific engagers that target NK cells to the tumour and an ADAM17 inhibitor that prevents CD16 shedding after NK cell activation are being tested. Additionally, monoclonal antibodies are being designed to redirect the inhibitory signals that limit NK cell functionality. Further understanding of the biology of NK cells will inform strategies to exploit NK cells for therapeutic purposes.
Collapse
Affiliation(s)
- Jenna K Johnson
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
- Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| |
Collapse
|
49
|
Desimio MG, Giuliani E, Ferraro AS, Adorno G, Doria M. In Vitro Exposure to Prostratin but Not Bryostatin-1 Improves Natural Killer Cell Functions Including Killing of CD4 + T Cells Harboring Reactivated Human Immunodeficiency Virus. Front Immunol 2018; 9:1514. [PMID: 30008723 PMCID: PMC6033996 DOI: 10.3389/fimmu.2018.01514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023] Open
Abstract
In the attempt of purging the HIV-1 reservoir through the “shock-and-kill” strategy, it is important to select latency-reversing agents (LRAs) devoid of deleterious effects on the antiviral function of immune effector cells. Here, we investigated two LRAs with PKC agonist activity, prostratin (PRO) and bryostatin-1 (BRY), for their impact on the function of natural killer (NK) cells, the major effectors of innate immunity whose potential in HIV-1 eradication has emerged in recent clinical trials. Using NK cells of healthy donors, we found that exposure to either PRO or BRY potently activated NK cells, resulting in upmodulation of NKG2D and NKp44 activating receptors and matrix metalloprotease-mediated shedding of CD16 receptor. Despite PRO and BRY affected NK cell phenotype in the same manner, their impact on NK cell function was diverse and showed considerable donor-to-donor variation. Altogether, in most tested donors, the natural cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC) of NK cells were either improved or maintained by PRO, while both activities were impaired by BRY. Moreover, we analyzed the effect of these drugs on the capacity of treated NK cells to kill autologous latently infected CD4+ T cells reactivated via the same treatment. First, we found that PRO but not BRY increased upmodulation of the ULBP2 ligand for NKG2D on reactivated p24+ cells. Importantly, we showed that clearance of reactivated p24+ cells by NK cells was enhanced when both targets and effectors were exposed to PRO but not to BRY. Overall, PRO had a superior potential compared with BRY as to the impact on key NK cell functions and on NK-cell-mediated clearance of the HIV-1 reservoir. Our results emphasize the importance of considering the effects on NK cells of candidate “shock-and-kill” interventions. With respect to combinative approaches, the impact on NK cells of each LRA should be re-evaluated upon combination with a second LRA, which may have analogous or opposite effects, or with immunotherapy targeting NK cells. In addition, avoiding co-administration of LRAs that negatively impact ADCC activity by NK cells might be essential for successful application of antibodies or vaccination to “shock-and-kill” strategies.
Collapse
Affiliation(s)
- Maria Giovanna Desimio
- Laboratory of Immunoinfectivology, Immune and Infectious Diseases Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Erica Giuliani
- Laboratory of Immunoinfectivology, Immune and Infectious Diseases Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Gaspare Adorno
- SIMT, Policlinico Tor Vergata, Rome, Italy.,Department of Biomedicine and Prevention, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Margherita Doria
- Laboratory of Immunoinfectivology, Immune and Infectious Diseases Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
50
|
Garand M, Goodier M, Owolabi O, Donkor S, Kampmann B, Sutherland JS. Functional and Phenotypic Changes of Natural Killer Cells in Whole Blood during Mycobacterium tuberculosis Infection and Disease. Front Immunol 2018. [PMID: 29520269 PMCID: PMC5827559 DOI: 10.3389/fimmu.2018.00257] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB) is still a global health concern, especially in resource-poor countries such as The Gambia. Defining protective immunity to TB is challenging: its pathogenesis is complex and involves several cellular components of the immune system. Recent works in vaccine development suggest important roles of the innate immunity in natural protection to TB, including natural killer (NK) cells. NK cells mediate cellular cytotoxicity and cytokine signaling in response to Mycobacterium tuberculosis (Mtb). NK cells can display specific memory-type markers to previous antigen exposure; thus, bridging innate and adaptive immunity. However, major knowledge gaps exist on the contribution of NK cells in protection against Mtb infection or TB. We performed a cross-sectional assessment of NK cells phenotype and function in four distinct groups of individuals: TB cases pre-treatment (n = 20) and post-treatment (n = 19), and household contacts with positive (n = 9) or negative (n = 18) tuberculin skin test (TST). While NK cells frequencies were similar between all groups, significant decreases in interferon-γ expression and degranulation were observed in NK cells from TB cases pre-treatment compared to post-treatment. Conversely, CD57 expression, a marker of advanced NK cells differentiation, was significantly lower in cases post-treatment compared to pre-treatment. Finally, NKG2C, an activation and imprinted-NK memory marker, was significantly increased in TST+ (latently infected) compared to TB cases pre-treatment and TST- (uninfected) individuals. The results of this study provide valuable insights into the role of NK cells in Mtb infection and TB disease, demonstrating potential markers for distinguishing between infection states and monitoring of TB treatment response.
Collapse
Affiliation(s)
- Mathieu Garand
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Martin Goodier
- London School of Hygiene and Tropical Medicine, Bloomsbury, London, United Kingdom
| | - Olumuyiwa Owolabi
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Simon Donkor
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, Gambia
| |
Collapse
|