1
|
Bian R, Shang Y, Xu N, Liu B, Ma Y, Li H, Chen J, Yao Q. HDAC inhibitor enhances ferroptosis susceptibility of AML cells by stimulating iron metabolism. Cell Signal 2025; 127:111583. [PMID: 39756501 DOI: 10.1016/j.cellsig.2024.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/14/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Acute Myeloid Leukemia (AML) are challenging blood cancers with limited long-term survival rates, necessitating novel therapeutic strategies. This study explored the role of Histone deacetylase (HDAC) inhibitors in enhancing ferroptosis in AML cells by modulating iron metabolism. We demonstrated that HDAC inhibitors (Entinostat and Vorinostat) sensitize AML cells to ferroptosis both in vitro and in vivo. Mechanistically, we show that HDAC inhibitor treatment upregulated the expression of iron metabolism genes that lead to increased labile iron pool. Notably, NCOA4, a ferritin degradation mediator, and HMOX1/2 proteins, involved in heme breakdown, were identified as critical contributors to this process. The functional role of these genes was confirmed through CRISPR-Cas9 mediated knockouts, which significantly rescued cells from HDAC-induced ferroptosis sensitivity. Our results suggest a novel therapeutic approach for AML, where combining HDAC inhibitors with ferroptosis inducers could exploit the disrupted iron metabolism in AML cells. This study highlights the potential of HDAC inhibitors to modulate iron metabolism pathways, offering new insights into the treatment of these malignancies.
Collapse
Affiliation(s)
- Ruipeng Bian
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Yingying Shang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Nahua Xu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Baiping Liu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Yanni Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing 401120, China
| | - Jieping Chen
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Hosseini MS, Sanaat Z, Akbarzadeh MA, Vaez-Gharamaleki Y, Akbarzadeh M. Histone deacetylase inhibitors for leukemia treatment: current status and future directions. Eur J Med Res 2024; 29:514. [PMID: 39456044 PMCID: PMC11515273 DOI: 10.1186/s40001-024-02108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Leukemia remains a major therapeutic challenge in clinical oncology. Despite significant advancements in treatment modalities, leukemia remains a significant cause of morbidity and mortality worldwide, as the current conventional therapies are accompanied by life-limiting adverse effects and a high risk of disease relapse. Histone deacetylase inhibitors have emerged as a promising group of antineoplastic agents due to their ability to modulate gene expression epigenetically. In this review, we explore these agents, their mechanisms of action, pharmacokinetics, safety and clinical efficacy, monotherapy and combination therapy strategies, and clinical challenges associated with histone deacetylase inhibitors in leukemia treatment, along with the latest evidence and ongoing studies in the field. In addition, we discuss future directions to optimize the therapeutic potential of these agents.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbarzadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Oikonomou A, Watrin T, Valsecchi L, Scharov K, Savino AM, Schliehe-Diecks J, Bardini M, Fazio G, Bresolin S, Biondi A, Borkhardt A, Bhatia S, Cazzaniga G, Palmi C. Synergistic drug interactions of the histone deacetylase inhibitor givinostat (ITF2357) in CRLF2-rearranged pediatric B-cell precursor acute lymphoblastic leukemia identified by high-throughput drug screening. Heliyon 2024; 10:e34033. [PMID: 39071567 PMCID: PMC11277435 DOI: 10.1016/j.heliyon.2024.e34033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Combining multiple drugs broadens the window of therapeutic opportunities and is crucial for diseases that are currently lacking fully curative treatments. A powerful emerging tool for selecting effective drugs and combinations is the high-throughput drug screening (HTP). The histone deacetylase inhibitor (HDACi) givinostat (ITF2357) has been shown to act effectively against CRLF2-rearranged pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), a subtype characterized by poor outcome and enriched in children with Down Syndrome, very fragile patients with a high susceptibility to treatment-related toxicity. The aim of this study is to investigate possible synergies with givinostat for these difficult-to-treat patients by performing HTP screening with a library of 174 drugs, either approved or in preclinical studies. By applying this approach to the CRLF2-r MHH-CALL-4 cell line, we identified 19 compounds with higher sensitivity in combination with givinostat compared to the single treatments. Next, the synergy between givinostat and the promising candidates was further validated in CRLF2r cell lines with a broad matrix of concentrations. The combinations with trametinib (MEKi) or venetoclax (BCL2i) were found to be the most effective and with the greatest synergy across three metrics (ZIP, HAS, Bliss). Their efficacy was confirmed in primary blasts treated ex vivo at concentration ranges with a safe profile on healthy cells. Finally, we described givinostat-induced modifications in gene expression of MAPK and BCL-2 family members, supporting the observed synergistic interactions. Overall, our study represents a model of drug repurposing strategy using HTP screening for identifying synergistic, efficient, and safe drug combinations.
Collapse
Affiliation(s)
| | - Titus Watrin
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Luigia Valsecchi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Katerina Scharov
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Angela Maria Savino
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Julian Schliehe-Diecks
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Michela Bardini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Women and Child Health Department, Padua University and Hospital, Padua, Italy
- Onco-Hematology, Stem Cell Transplant and Gene Therapy, Istituto di Ricerca Pediatrica Foundation - Città della Speranza, Padua, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Heinrich-Heine University Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Chiara Palmi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
4
|
Zhang H, Song W, Ma X, Yu M, Chen L, Tao Y. Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia. J Biol Chem 2023; 299:102971. [PMID: 36736423 PMCID: PMC9996369 DOI: 10.1016/j.jbc.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Acute myeloid leukemia (AML) is challenging to treat due to its heterogeneity, prompting a deep understanding of its pathogenesis mechanisms, diagnosis, and treatment. Here, we found reduced expression and acetylation levels of WISP2 in bone marrow mononuclear cells from AML patients and that AML patients with lower WISP2 expression tended to have reduced survival. At the functional level, overexpression of WISP2 in leukemia cells (HL-60 and Kasumi-1) suppressed cell proliferation, induced cell apoptosis, and exerted antileukemic effects in an in vivo model of AML. Our mechanistic investigation demonstrated that WISP2 deacetylation was regulated by the deacetylase histone deacetylase (HDAC)3. In addition, we determined that crosstalk between acetylation and ubiquitination was involved in the modulation of WISP2 expression in AML. Deacetylation of WISP2 decreased the stability of the WISP2 protein by boosting its ubiquitination mediated by NEDD4 and proteasomal degradation. Moreover, pan-HDAC inhibitors (valproic acid and trichostatin A) and an HDAC3-specific inhibitor (RGFP966) induced WISP2 acetylation at lysine K6 and prevented WISP2 degradation. This regulation led to inhibition of proliferation and induction of apoptosis in AML cells. In summary, our study revealed that WISP2 contributes to tumor suppression in AML, which provided an experimental framework for WISP2 as a candidate for gene therapy of AML.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China; Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China
| | - Wenjun Song
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Xinying Ma
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Mingxiao Yu
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lulu Chen
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China; Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China
| | - Yanling Tao
- Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
5
|
Pavan AR, Lopes JR, Dos Santos JL. The state of the art of fetal hemoglobin-inducing agents. Expert Opin Drug Discov 2022; 17:1279-1293. [PMID: 36302760 DOI: 10.1080/17460441.2022.2141708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Sickle cell anemia (SCA) is a hematological genetic disorder caused by a mutation in the gene of the β-globin. Pharmacological treatments will continue to be an important approach, including the strategy to induce fetal hemoglobin (HbF). AREAS COVERED Here, we analyzed the articles described in the literature regarding the drug discovery of HbF inducers. The main approaches for such strategy will be discussed, highlighting those most promising. EXPERT OPINION The comprehension of the mechanisms involved in the β-globin regulation is the main key to design new drugs to induce HbF. Among the strategies, gamma-globin regulation by epigenetic enzymes seems to be a promising approach to be pursued, although the comprehension of the selectivity role for those new drugs is crucial to reduce adverse effects. The low druggability of transcription factors and their vital role in embryonic human development are critical points that should be taken in account for drug design. The guanylate cyclase and the NO/cGMP signaling pathway seem to be promising not only for HbF induction, but also for the protective effects in the cardiovascular system. The association of drugs acting through different mechanisms to induce HbF seems to be promising for the discovery of new drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - Juliana Romano Lopes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.,School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| |
Collapse
|
6
|
Analysis of Givinostat/ITF2357 Treatment in a Rat Model of Neonatal Hypoxic-Ischemic Brain Damage. Int J Mol Sci 2022; 23:ijms23158287. [PMID: 35955430 PMCID: PMC9368553 DOI: 10.3390/ijms23158287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
The histone deacetylase inhibitor (HDACi) Givinostat/ITF2357 provides neuroprotection in adult models of brain injury; however, its action after neonatal hypoxia-ischemia (HI) is still undefined. The aim of our study was to test the hypothesis that the mechanism of Givinostat is associated with the alleviation of inflammation. For this purpose, we analyzed the microglial response and the effect on molecular mediators (chemokines/cytokines) that are crucial for inducing cerebral damage after neonatal hypoxia-ischemia. Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 60 min of hypoxia (7.6% O2). Givinostat (10 mg/kg b/w) was administered in a 5-day regimen. The effects of Givinostat on HI-induced inflammation (cytokine, chemokine and microglial activation and polarization) were assessed with a Luminex assay, immunohistochemistry and Western blot. Givinostat treatment did not modulate the microglial response specific for HI injury. After Givinostat administration, the investigated chemokines and cytokines remained at the level induced by HI. The only immunosuppressive effect of Givinostat may be associated with the decrease in MIP-1α. Neonatal hypoxia-ischemia produces an inflammatory response by activating the proinflammatory M1 phenotype of microglia, disrupting the microglia–neuron (CX3CL1/CX3CR1) axis and elevating numerous proinflammatory cytokines/chemokines. Givinostat/ITF2357 did not prevent an inflammatory reaction after HI.
Collapse
|
7
|
Kamal SR, Potukutchi S, Gelovani DJ, Bonomi RE, Kallakuri S, Cavanaugh JM, Mangner T, Conti A, Liu RS, Pasqualini R, Arap W, Sidman RL, Perrine SA, Gelovani JG. Spatial and temporal dynamics of HDACs class IIa following mild traumatic brain injury in adult rats. Mol Psychiatry 2022; 27:1683-1693. [PMID: 35027678 PMCID: PMC11629393 DOI: 10.1038/s41380-021-01369-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([18F]trifluoroacetamido)-1- hexanoicanilide ([18F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI). The mTBI model was validated by histopathological and immunohistochemical analyses of brain tissue sections for localization and magnitude of expression of heat-shock protein-70 kDa (HSP70), amyloid precursor protein (APP), cannabinoid receptor-2 (CB2), ionized calcium-binding adapter protein-1 (IBA1), histone deacetylase-4 and -5 (HDAC4 and HDAC5). In comparison to baseline, the expression-activities of HDAC4 and HDAC5 were downregulated in the hippocampus, nucleus accumbens, peri-3rd ventricular part of the thalamus, and substantia nigra at 1-3 days post mTBI, and remained low at 7-8 days post mTBI. Reduced levels of HDAC4 and HDAC5 expression observed in neurons of these brain regions post mTBI were associated with the reduced nuclear and neuropil levels of HDAC4 and HDAC5 with the shift to perinuclear localization of these enzymes. These results support the rationale for the development of therapeutic strategies to upregulate expression-activity of HDACs class IIa post-TBI. PET/CT (MRI) with [18F]TFAHA can facilitate the development and clinical translation of unique therapeutic approaches to upregulate the expression and activity of HDACs class IIa enzymes in the brain after TBI.
Collapse
Affiliation(s)
- Swatabdi R Kamal
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Shreya Potukutchi
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - David J Gelovani
- School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Robin E Bonomi
- School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Srinivasu Kallakuri
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - John M Cavanaugh
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Thomas Mangner
- Cyclotron-Radiochemistry Facility, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alana Conti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
- Departments of Neurosurgery and Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, 112, Taiwan
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Renata Pasqualini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, NJ, 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, 07103, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI, 48201, USA.
- Molecular Imaging Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
8
|
Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance? Cancers (Basel) 2021; 13:cancers13215319. [PMID: 34771483 PMCID: PMC8582363 DOI: 10.3390/cancers13215319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite high rates of remission obtained with conventional chemotherapy, the persistence of leukemic cells after treatments, eventually exiting in disease relapse, remains the main challenge in acute myeloid leukemia (AML). Increasing evidence indicates that, besides AML cell mutations, stromal and immune cells, as leukemic microenvironment components, may protect AML cells from therapies. Here, we will recapitulate emerging bone marrow (BM) microenvironment-dependent mechanisms of therapy resistance. The understanding of these processes will help find new drug combinations and conceive novel and more effective treatments. Abstract Acute myeloid leukemia (AML) has been considered for a long time exclusively driven by critical mutations in hematopoietic stem cells. Recently, the contribution of further players, such as stromal and immune bone marrow (BM) microenvironment components, to AML onset and progression has been pointed out. In particular, mesenchymal stromal cells (MSCs) steadily remodel the leukemic niche, not only favoring leukemic cell growth and development but also tuning their responsiveness to treatments. The list of mechanisms driven by MSCs to promote a leukemia drug-resistant phenotype has progressively expanded. Moreover, the relative proportion and the activation status of immune cells in the BM leukemic microenvironment may vary by influencing their reactivity against leukemic cells. In that, the capacity of the stroma to re-program immune cells, thus promoting and/or hampering therapeutic efficacy, is emerging as a crucial aspect in AML biology, adding an extra layer of complexity. Current treatments for AML have mainly focused on eradicating leukemia cells, with little consideration for the leukemia-damaged BM niche. Increasing evidence on the contribution of stromal and immune cells in response to therapy underscores the need to hold the mutual interplay, which takes place in the BM. A careful dissection of these interactions will help provide novel applications for drugs already under experimentation and open a wide array of opportunities for new drug discovery.
Collapse
|
9
|
Shallis RM, Podoltsev NA. Emerging agents and regimens for polycythemia vera and essential thrombocythemia. Biomark Res 2021; 9:40. [PMID: 34049597 PMCID: PMC8161993 DOI: 10.1186/s40364-021-00298-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Polycythemia vera (PV) and essential thrombocythemia (ET) are both driven by JAK-STAT pathway activation and consequently much of the recent research efforts to improve the management and outcomes of patients with these neoplasms have centered around inhibition of this pathway. In addition to newer JAK inhibitors and improved interferons, promising novel agents exploiting a growing understanding of PV and ET pathogenesis and disease evolution mechanisms are being developed. These agents may modify the disease course in addition to cytoreduction. Histone deacetylase, MDM2 and telomerase inhibitors in patients with PV/ET have demonstrated clinically efficacy and serve as chief examples. Hepcidin mimetics, limiting iron availability to red blood cell precursors, offer an exciting alternative to therapeutic phlebotomy and have the potential to revolutionize management for patients with PV. Many of these newer agents are found to improve hematologic parameters and symptom burden, but their role in thrombotic risk reduction and disease progression control is currently unknown. The results of larger, randomized studies to confirm the early efficacy signals observed in phase 1/2 trials are eagerly awaited.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA
| | - Nikolai A Podoltsev
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA.
| |
Collapse
|
10
|
Reeves BN, Beckman JD. Novel Pathophysiological Mechanisms of Thrombosis in Myeloproliferative Neoplasms. Curr Hematol Malig Rep 2021; 16:304-313. [PMID: 33876389 DOI: 10.1007/s11899-021-00630-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Thrombosis remains a leading cause of morbidity and mortality in BCR/ABL negative myeloproliferative neoplasms (MPN). Circulating blood cells are both increased in quantity and qualitatively abnormal in MPN, resulting in an increased thrombotic risk. Herein, we review recently elucidated mechanisms of MPN thrombosis and discuss implications of drugs currently under investigation for MPN. RECENT FINDINGS Recent studies highlight that in JAK2V617F granulocytes and platelets, thrombo-inflammatory genes are upregulated. Furthermore, in JAK2V617F granulocytes, protein expression of integrin CD11b, tissue factor, and leukocyte alkaline phosphatase are all increased. Overall, myeloid cells, namely neutrophils, may contribute in several ways, such as through increased adhesion via β1 integrin binding to VCAM1, increased infiltration, and enhanced inducibility to extrude neutrophil extracellular traps. Non-myeloid inflammatory cells may also contribute via secretion of cytokines. With regard to red blood cells, number, rigidity, adhesion, and generation of microvesicles may lead to increased vascular resistance as well as increased cell-cell interactions that promote rolling and adhesion. Platelets may also contribute in a similar fashion. Lastly, the vasculature is also increasingly appreciated, as several studies have demonstrated increased endothelial expression of pro-coagulant and pro-adhesive proteins, such as von Willebrand factor or P-selectin in JAK2V617F endothelial cells. With the advent of molecular diagnostics, MPN therapeutics are advancing beyond cytoreduction. Our increased understanding of pro-inflammatory and thrombotic pathophysiology in MPN provides a rational basis for evaluation of in-development MPN therapeutics to reduce thrombosis.
Collapse
Affiliation(s)
- Brandi N Reeves
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joan D Beckman
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware St. SE, MMC 480, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Bartalucci N, Guglielmelli P, Vannucchi AM. Polycythemia vera: the current status of preclinical models and therapeutic targets. Expert Opin Ther Targets 2020; 24:615-628. [PMID: 32366208 DOI: 10.1080/14728222.2020.1762176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Polycythemia vera (PV) is the most common myeloproliferative neoplasm (MPN). PV is characterized by erythrocytosis, leukocytosis, thrombocytosis, increased hematocrit, and hemoglobin in the peripheral blood. Splenomegaly and myelofibrosis often occur in PV patients. Almost all PV patients harbor a mutation in the JAK2 gene, mainly represented by the JAK2V617F point mutation. AREAS COVERED This article examines the recent in vitro and in vivo available models of PV and moreover, it offers insights on emerging biomarkers and therapeutic targets. The evidence from mouse models, resembling a PV-like phenotype generated by different technical approaches, is discussed. The authors searched PubMed, books, and clinicaltrials.gov for original and review articles and drugs development status including the terms Myeloproliferative Neoplasms, Polycythemia Vera, erythrocytosis, hematocrit, splenomegaly, bone marrow fibrosis, JAK2V617F, Hematopoietic Stem Cells, MPN cytoreductive therapy, JAK2 inhibitor, histone deacetylase inhibitor, PV-like phenotype, JAK2V617F BMT, transgenic JAK2V617F mouse, JAK2 physiologic promoter. EXPERT OPINION Preclinical models of PV are valuable tools for enabling an understanding of the pathophysiology and the molecular mechanisms of the disease. These models provide new biological insights on the contribution of concomitant mutations and the efficacy of novel drugs in a 'more faithful' setting. This may facilitate an enhanced understanding of pathogenetic mechanisms and targeted therapy.
Collapse
Affiliation(s)
- Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| |
Collapse
|
12
|
Chifotides HT, Bose P, Verstovsek S. Givinostat: an emerging treatment for polycythemia vera. Expert Opin Investig Drugs 2020; 29:525-536. [PMID: 32693648 PMCID: PMC7534842 DOI: 10.1080/13543784.2020.1761323] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Polycythemia vera (PV), a Philadelphia chromosome-negative myeloproliferative neoplasm, is characterized by panmyelosis, pancytosis, and a JAK2 mutation. Patients are at increased risk of thrombohemorrhagic events, and progression to myelofibrosis or acute leukemia. Current treatments include aspirin, phlebotomy, and cytoreductive drugs (most commonly hydroxyurea). Givinostat is a potent, class I/II histone deacetylase (HDAC) inhibitor that is in phase I/II clinical trials in PV. Givinostat was well tolerated and yielded promising clinico-hematological responses. A phase III study of givinostat versus hydroxyurea in high-risk PV patients is planned. AREAS COVERED We present an overview of PV, current treatment guidelines, and the putative mechanism(s) of action of givinostat. We discuss the preclinical and clinical studies of givinostat in PV and briefly review approved and investigational competitor compounds. EXPERT OPINION HDAC inhibitors have long been known to be active in PV, but chronic toxicities can be challenging. Givinostat, however, is active and well tolerated, and is entering a pivotal Phase III randomized trial. Givinostat offers the possibility of replacing hydroxyurea as the standard first-line cytoreductive choice for PV patients. This would completely change the current therapeutic paradigm and guidelines for PV management. Although surrogate clinical study endpoints may suffice for regulatory purposes, thrombosis reduction and prevention of disease progression remain most important to patients and clinicians.
Collapse
Affiliation(s)
- Helen T. Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
13
|
Ciciarello M, Curti A. Good news for acute myeloid leukaemia patients from the stroll niche? Br J Haematol 2020; 189:597-599. [PMID: 31960415 DOI: 10.1111/bjh.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marilena Ciciarello
- Department of Haematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Haematology "L. and A. Seràgnoli", Bologna, Italy
| | - Antonio Curti
- Department of Haematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Haematology "L. and A. Seràgnoli", Bologna, Italy
| |
Collapse
|
14
|
Jiang Y, Li Y, Cheng J, Ma J, Li Q, Pang T. Upregulation of AKR1C1 in mesenchymal stromal cells promotes the survival of acute myeloid leukaemia cells. Br J Haematol 2020; 189:694-706. [PMID: 31943135 DOI: 10.1111/bjh.16253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/01/2019] [Indexed: 01/03/2023]
Abstract
The leukaemic bone marrow microenvironment, comprising abnormal mesenchymal stromal cells (MSCs), is responsible for the poor prognosis of acute myeloid leukaemia (AML). Therefore, it is essential to determine the mechanisms underlying the supportive role of MSCs in the survival of leukaemia cells. Through in silico analyses, we identified a total of 271 aberrantly expressed genes in the MSCs derived from acute myeloid leukemia (AML) patients that were associated with adipogenic differentiation, of which aldo-keto reductase 1C1 (AKR1C1) was significantly upregulated in the AML-MSCs. Knockdown of AKR1C1 in the MSCs suppressed adipogenesis and promoted osteogenesis, and inhibited the growth of co-cultured AML cell lines compared to the situation in wild- type AML-derived MSCs. Introduction of recombinant human AKR1C1 in the MSCs partially alleviated the effects of AKR1C1 knockdown. In addition, the absence of AKR1C1 reduced secretion of cytokines such as MCP-1, IL-6 and G-CSF from the MSCs, along with inactivation of STAT3 and ERK1/2 in the co-cultured AML cells. AKR1C1 is an essential factor driving the adipogenic differentiation of leukaemic MSCs and mediates its pro-survival effects on AML cells by promoting cytokine secretion and activating the downstream pathways in the AML cells.
Collapse
Affiliation(s)
- Yajing Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jingying Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiao Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qinghua Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tianxiang Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Disease, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
15
|
San José-Enériz E, Gimenez-Camino N, Agirre X, Prosper F. HDAC Inhibitors in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11111794. [PMID: 31739588 PMCID: PMC6896008 DOI: 10.3390/cancers11111794] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by uncontrolled proliferation, differentiation arrest, and accumulation of immature myeloid progenitors. Although clinical advances in AML have been made, especially in young patients, long-term disease-free survival remains poor, making this disease an unmet therapeutic challenge. Epigenetic alterations and mutations in epigenetic regulators contribute to the pathogenesis of AML, supporting the rationale for the use of epigenetic drugs in patients with AML. While hypomethylating agents have already been approved in AML, the use of other epigenetic inhibitors, such as histone deacetylases (HDAC) inhibitors (HDACi), is under clinical development. HDACi such as Panobinostat, Vorinostat, and Tricostatin A have been shown to promote cell death, autophagy, apoptosis, or growth arrest in preclinical AML models, yet these inhibitors do not seem to be effective as monotherapies, but rather in combination with other drugs. In this review, we discuss the rationale for the use of different HDACi in patients with AML, the results of preclinical studies, and the results obtained in clinical trials. Although so far the results with HDACi in clinical trials in AML have been modest, there are some encouraging data from treatment with the HDACi Pracinostat in combination with DNA demethylating agents.
Collapse
Affiliation(s)
- Edurne San José-Enériz
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Naroa Gimenez-Camino
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Xabier Agirre
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (X.A.); (F.P.); Tel.: +34-948-194700 (ext. 1002) (X.A.); +34-948-255400 (ext. 5807) (F.P.)
| | - Felipe Prosper
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra (IDISNA), Universidad de Navarra, 31008 Pamplona, Spain; (E.S.J.-E.); (N.G.-C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (X.A.); (F.P.); Tel.: +34-948-194700 (ext. 1002) (X.A.); +34-948-255400 (ext. 5807) (F.P.)
| |
Collapse
|
16
|
Ciciarello M, Corradi G, Loscocco F, Visani G, Monaco F, Cavo M, Curti A, Isidori A. The Yin and Yang of the Bone Marrow Microenvironment: Pros and Cons of Mesenchymal Stromal Cells in Acute Myeloid Leukemia. Front Oncol 2019; 9:1135. [PMID: 31709192 PMCID: PMC6823864 DOI: 10.3389/fonc.2019.01135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have, for a long time, been recognized as pivotal contributors in the set up and maintenance of the hematopoietic stem cell (HSC) niche, as well as in the development and differentiation of the lympho-hematopoietic system. MSCs also have a unique immunomodulatory capacity, which makes them able to affect, both in vitro and in vivo, the function of immune cells. These features, namely the facilitation of stem cell engraftment and the inhibition of lymphocyte responses, have both proven essential for successful allogeneic stem cell transplantation (allo-SCT), which remains the only curative option for several hematologic malignancies. For example, in steroid-refractory acute graft-vs. host disease developing after allo-SCT, MSCs have produced significant results and are now considered a treatment option. However, more recently, the other side of the MSC coin has been unveiled, because of their emerging role in creating a protective and immune-tolerant microenvironment able to support the survival of leukemic cells and affect the response to therapies. In this light, it has been proposed that the failure of current treatments to efficiently override the stroma-mediated protection of leukemic cells accounts for the high rate of relapse in acute myeloid leukemia, at least in part. In this review, we will focus on emerging microenvironment-driven mechanisms conferring a survival advantage to leukemic cells overt physiological HSCs. This body of evidence increasingly highlights the opportunity to consider tumor-microenvironment interactions when designing new therapeutic strategies.
Collapse
Affiliation(s)
- Marilena Ciciarello
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. & A. Seràgnoli", University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giulia Corradi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. & A. Seràgnoli", University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Federica Loscocco
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Federica Monaco
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. & A. Seràgnoli", University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy.,Department of Hematology and Oncology, Institute of Hematology "L. and A. Seràgnoli", University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Antonio Curti
- Department of Hematology and Oncology, Institute of Hematology "L. and A. Seràgnoli", University Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Alessandro Isidori
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| |
Collapse
|
17
|
Zhao LM, Zhang JH. Histone Deacetylase Inhibitors in Tumor Immunotherapy. Curr Med Chem 2019; 26:2990-3008. [PMID: 28762309 DOI: 10.2174/0929867324666170801102124] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 04/26/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND With an increasing understanding of the antitumor immune response, considerable progress has been made in the field of tumor immunotherapy in the last decade. Inhibition of histone deacetylases represents a new strategy in tumor therapy and histone deacetylase inhibitors have been recently developed and validated as potential antitumor drugs. In addition to the direct antitumor effects, histone deacetylase inhibitors have been found to have the ability to improve tumor recognition by immune cells that may contribute to their antitumor activity. These immunomodolutory effects are desirable, and their in-depth comprehension will facilitate the design of novel regimens with improved clinical efficacy. OBJECTIVE Our goal here is to review recent developments in the application of histone deacetylase inhibitors as immune modulators in cancer treatment. METHODS Systemic compilation of the relevant literature in this field. RESULTS & CONCLUSION In this review, we summarize recent advances in the understanding of how histone deacetylase inhibitors alter immune process and discuss their effects on various cytokines. We also discuss the challenges to optimize the use of these inhibitors as immune modulators in cancer treatment. Information gained from this review will be valuable to this field and may be helpful for designing tumor immunotherapy trials involving histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Li-Ming Zhao
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Jie-Huan Zhang
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
18
|
Yuan XG, Huang YR, Yu T, Jiang HW, Xu Y, Zhao XY. Chidamide, a histone deacetylase inhibitor, induces growth arrest and apoptosis in multiple myeloma cells in a caspase-dependent manner. Oncol Lett 2019; 18:411-419. [PMID: 31289512 PMCID: PMC6540238 DOI: 10.3892/ol.2019.10301] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Chidamide, a novel histone deacetylase (HDAC) inhibitor, induces antitumor effects in various types of cancer. The present study aimed to evaluate the cytotoxic effect of chidamide on multiple myeloma and the underlying mechanisms involved. Viability of multiple myeloma cells upon chidamide treatment was determined by the Cell Counting Kit-8 assay. Apoptosis induction and cell cycle alteration were detected by flow cytometry. Specific apoptosis-associated proteins and cell cycle proteins were evaluated by western blot analysis. Chidamide suppressed cell viability in a time- and dose-dependent manner. Chidamide treatment markedly suppressed the expression of type I HDACs and further induced the acetylation of histones H3 and H4. In addition, it promoted G0/G1 arrest by decreasing cyclin D1 and c-myc expression, and increasing phosphorylated-cellular tumor antigen p53 and cyclin-dependent kinase inhibitor 1 (p21) expression in a dose-dependent manner. Treatment with chidamide induced cell apoptosis by upregulating the apoptosis regulator Bax/B-cell lymphoma 2 ratio in a caspase-dependent manner. In addition, the combination of chidamide with bortezomib, a proteasome inhibitor widely used as a therapeutic agent for multiple myeloma, resulted in enhanced inhibition of cell viability. In conclusion, chidamide induces a marked antimyeloma effect by inducing G0/G1 arrest and apoptosis via a caspase-dependent pathway. The present study provides evidence for the clinical application of chidamide in multiple myeloma.
Collapse
Affiliation(s)
- Xiang-Gui Yuan
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yu-Rong Huang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Teng Yu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Hua-Wei Jiang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiao-Ying Zhao
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
19
|
Marampon F, Leoni F, Mancini A, Pietrantoni I, Codenotti S, Ferella L, Megiorni F, Porro G, Galbiati E, Pozzi P, Mascagni P, Budillon A, Maggio R, Tombolini V, Fanzani A, Gravina GL, Festuccia C. Histone deacetylase inhibitor ITF2357 (givinostat) reverts transformed phenotype and counteracts stemness in in vitro and in vivo models of human glioblastoma. J Cancer Res Clin Oncol 2019; 145:393-409. [PMID: 30474756 DOI: 10.1007/s00432-018-2800-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/17/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE Aberrant expression and activity of histone deacetylases (HDACs) sustain glioblastoma (GBM) onset and progression, and, therefore, HDAC inhibitors (HDACi) represent a promising class of anti-tumor agents. Here, we analyzed the effects of ITF2357 (givinostat), a pan-HDACi, in GBM models for its anti-neoplastic potential. METHODS A set of GBM- and patient-derived GBM stem-cell lines was used and the ITF2357 effects on GBM oncophenotype were investigated in in vitro and in vivo xenograft models. RESULTS ITF2357 inhibited HDAC activity and affected GBM cellular fate in a dose-dependent manner by inducing G1/S growth arrest (1-2.5 µM) or caspase-mediated cell death (≥ 2.5 µM). Chronic treatment with low doses (≤ 1 µM) induced autophagy-mediated cell death, neuronal-like phenotype, and the expression of differentiation markers, such as glial fibrillar actin protein (GFAP) and neuron-specific class III beta-tubulin (Tuj-1); this reduces neurosphere formation from patient-derived GBM stem cells. Autophagy inhibition counteracted the ITF2357-induced expression of differentiation markers in p53-expressing GBM cells. Finally, in in vivo experiments, ITF2357 efficiently passed the blood-brain barrier, so rapidly reaching high concentration in the brain tissues, and significantly affected U87MG and U251MG growth in orthotopic xenotransplanted mice. CONCLUSIONS The present findings provide evidence of the key role played by HDACs in sustaining transformed and stem phenotype of GBM and strongly suggest that ITF2357 may have a clinical potential for the HDACi-based therapeutic strategies against GBM.
Collapse
Affiliation(s)
- Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Flavio Leoni
- Research Center, Italfarmaco SpA, Cinisello Balsamo, Milan, Italy
| | - Andrea Mancini
- Radiobiology Laboratory, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via vetoiossnc, Coppito II, L'aquila, Italy
| | - Ilaria Pietrantoni
- Laboratory of Pharmacology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'aquila, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Letizia Ferella
- Radiobiology Laboratory, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via vetoiossnc, Coppito II, L'aquila, Italy
- Division of Radiation Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'aquila, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Giuliana Porro
- Research Center, Italfarmaco SpA, Cinisello Balsamo, Milan, Italy
| | | | - Pietro Pozzi
- Research Center, Italfarmaco SpA, Cinisello Balsamo, Milan, Italy
| | - Paolo Mascagni
- Research Center, Italfarmaco SpA, Cinisello Balsamo, Milan, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Roberto Maggio
- Laboratory of Pharmacology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'aquila, Italy
| | - Vincenzo Tombolini
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Luca Gravina
- Radiobiology Laboratory, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via vetoiossnc, Coppito II, L'aquila, Italy
- Division of Radiation Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'aquila, Italy
| | - Claudio Festuccia
- Radiobiology Laboratory, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via vetoiossnc, Coppito II, L'aquila, Italy.
| |
Collapse
|
20
|
Shen J, Yin C, Jiang X, Wang X, Yang S, Song G. Aberrant histone modification and inflammatory cytokine production of peripheral CD4+ T cells in patients with oral lichen planus. J Oral Pathol Med 2018; 48:136-142. [PMID: 30329194 PMCID: PMC6588086 DOI: 10.1111/jop.12790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/05/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
Abstract
Backgrounds To investigate alterations in histone modification and histone deacetylases (HDACs) in patients with oral lichen planus (OLP), and to evaluate correlations with inflammatory cytokine production. Methods Global histone H3/H4 acetylation and HDAC activity in CD4+ T cells from 23 patients with OLP and 10 healthy control subjects were examined using spectrophotometry. The mRNA levels of eight members of four classes of HDAC genes were measured by real‐time quantitative polymerase chain reaction. Forty cytokines involved in inflammation were examined with a cytokine array. The correlation between histone modification and cytokine production was analyzed. Results Global histone H3 hypo‐acetylation was observed in OLP patients. Patients with OLP had significantly higher HDACs activity,and higher HDAC6 and HDAC7 mRNA level compared with the controls. Of the 40 cytokines in the cytokine array, eight were significantly increased in OLP patients: interleukin (IL)‐4, IL‐8, IL‐1ra, tumor necrosis factor receptor II (TNFR II), macrophage inflammatory protein 1b (MIP‐1b), fibrosis‐associated tissue inhibitors of metalloproteinase 1 (TIMP)‐1, monocyte chemotactic protein 1 (MCP‐1), and eotaxin‐2. In the OLP group, the acetylation level of histone H3 was negatively correlated with IL‐4 and MCP‐1 production, and the expression of HDAC6 mRNA was positively correlated with MCP‐1 production. In the non‐erosive subgroup, acetylation of histone H3 was negatively correlated with IL‐4, IL‐16, and TIMP‐2 production. In the erosive OLP subgroup, the expression of HDAC7 mRNA was positively correlated with MIP‐1a production. Conclusion Aberrant histone modification of CD4+ T cells in peripheral blood could occur in OLP patients, and possibly affects inflammatory cytokine production.
Collapse
Affiliation(s)
- Jun Shen
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cao Yin
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Jiang
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuan Wang
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shujuan Yang
- Department of Oral Pathology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangbao Song
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Angiolilli C, Kabala PA, Grabiec AM, Rossato M, Lai WS, Fossati G, Mascagni P, Steinkühler C, Blackshear PJ, Reedquist KA, Baeten DL, Radstake TRDJ. Control of cytokine mRNA degradation by the histone deacetylase inhibitor ITF2357 in rheumatoid arthritis fibroblast-like synoviocytes: beyond transcriptional regulation. Arthritis Res Ther 2018; 20:148. [PMID: 30029685 PMCID: PMC6053802 DOI: 10.1186/s13075-018-1638-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/01/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACi) suppress cytokine production in immune and stromal cells of patients with rheumatoid arthritis (RA). Here, we investigated the effects of the HDACi givinostat (ITF2357) on the transcriptional and post-transcriptional regulation of inflammatory markers in RA fibroblast-like synoviocytes (FLS). METHODS The effects of ITF2357 on the expression and messenger RNA (mRNA) stability of IL-1β-inducible genes in FLS were analyzed using array-based qPCR and Luminex. The expression of primary and mature cytokine transcripts, the mRNA levels of tristetraprolin (TTP, or ZFP36) and other AU-rich element binding proteins (ARE-BP) and the cytokine profile of fibroblasts derived from ZFP36+/+ and ZFP36-/- mice was measured by qPCR. ARE-BP silencing was performed by small interfering RNA (siRNA)-mediated knockdown, and TTP post-translational modifications were analyzed by immunoblotting. RESULTS ITF2357 reduced the expression of 85% of the analyzed IL-1β-inducible transcripts, including cytokines (IL6, IL8), chemokines (CXCL2, CXCL5, CXCL6, CXCL10), matrix-degrading enzymes (MMP1, ADAMTS1) and other inflammatory mediators. Analyses of mRNA stability demonstrated that ITF2357 accelerates IL6, IL8, PTGS2 and CXCL2 mRNA degradation, a phenomenon associated with the enhanced transcription of TTP, but not other ARE-BP, and the altered post-translational status of TTP protein. TTP knockdown potentiated cytokine production in RA FLS and murine fibroblasts, which in the latter case was insensitive to inhibition by ITF2357 treatment. CONCLUSIONS Our study identifies that regulation of cytokine mRNA stability is a predominant mechanism underlying ITF2357 anti-inflammatory properties, occurring via regulation of TTP. These results highlight the therapeutic potential of ITF2357 in the treatment of RA.
Collapse
Affiliation(s)
- Chiara Angiolilli
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands. .,Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| | - Pawel A Kabala
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Aleksander M Grabiec
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marzia Rossato
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Functional Genomics Center, University of Verona, Verona, Italy
| | - Wi S Lai
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | | | - Paolo Mascagni
- Italfarmaco Research and Development, Cinisello Balsamo, Italy
| | | | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kris A Reedquist
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Dominique L Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology and Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Histone deacetylase inhibitor ITF2357 leads to apoptosis and enhances doxorubicin cytotoxicity in preclinical models of human sarcoma. Oncogenesis 2018; 7:20. [PMID: 29472530 PMCID: PMC5833676 DOI: 10.1038/s41389-018-0026-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/26/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are rare tumors with generally poor prognosis, for which current therapies have shown limited efficacy. Histone deacetylase inhibitors (HDACi) are emerging anti-tumor agents; however, little is known about their effect in sarcomas. By using established and patient-derived sarcoma cells with different subtypes, we showed that the pan-HDACi, ITF2357, potently inhibited in vitro survival in a p53-independent manner. ITF2357-mediated cell death implied the activation of mitochondrial apoptosis, as attested by induction of pro-apoptotic BH3-only proteins and a caspases-dependent mechanism. ITF2357 also induced autophagy, which protected sarcoma cells from apoptotic cell death. ITF2357 activated forkhead box (FOXO) 1 and 3a transcription factors and their downstream target genes, however, silencing of both FOXO1 and 3a did not protect sarcoma cells against ITF2357-induced apoptosis and upregulated FOXO4 and 6. Notably, ITF2357 synergized with Doxorubicin to induce cell death of established and patient-derived sarcoma cells. Furthermore, combination treatment strongly impaired xenograft tumor growth in vivo, when compared to single treatments, suggesting that combination of ITF2357 with Doxorubicin has the potential to enhance sensitization in different preclinical models of sarcoma. Overall, our study highlights the therapeutic potential of ITF2357, alone or in rational combination therapies, for bone and soft tissue sarcomas management.
Collapse
|
23
|
Xu W, Liu H, Liu ZG, Wang HS, Zhang F, Wang H, Zhang J, Chen JJ, Huang HJ, Tan Y, Cao MT, Du J, Zhang QG, Jiang GM. Histone deacetylase inhibitors upregulate Snail via Smad2/3 phosphorylation and stabilization of Snail to promote metastasis of hepatoma cells. Cancer Lett 2018; 420:1-13. [PMID: 29410023 DOI: 10.1016/j.canlet.2018.01.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/18/2017] [Accepted: 01/25/2018] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) remains the third most common cause of cancer-related mortality. Resection and transplantation are the only curative treatments available, but are greatly hampered by high recurrence rates. Histone deacetylase inhibitors (HDACIs) are considered to be promising anticancer agents in drug development. Currently, four HDACIs have been granted Food and Drug Administration (FDA) approval for cancer. HDACIs have shown significant efficacy in hematological malignancies. However, they have limited effects in epithelial cell-derived cancers, including HCC, and the mechanisms of these are not elucidated. In this study, our results demonstrated that HDACIs were able to induce epithelial-mesenchymal transitions (EMT) in hepatoma cells which are believed to trigger tumor cell invasion and metastasis. We found that HDACIs promoted the expression of Snail and Snail-induced EMT was critical for HDACI-initiated invasion and metastasis. We indicated that HDACIs upregulated Snail in two ways. Firstly, HDACIs upregulated Snail at the transcriptional level by promoting Smad2/3 phosphorylation and nuclear translocation, then combined with the promoter to activate the transcription of Snail. Secondly, we showed that HDACIs regulated the stabilization of Snail via upregulating the expression of COP9 signalosome 2 (CSN2), which combined with Snail and exposed its acetylation site, then promoted acetylation of Snail, thereby inhibiting its phosphorylation and ubiquitination to repress the degradation of Snail. All these results highlighted that HDACIs have limited effects in HCC, and the use of HDACIs combined with other targeted strategies to inhibit EMT, which explored in this study is a promising treatment method for treating HCC.
Collapse
Affiliation(s)
- Wei Xu
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hao Liu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-Gang Liu
- Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fan Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hao Wang
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Ji Zhang
- The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing-Jing Chen
- Sinocare Biosensing Limited Company, Changsha, Hunan, China
| | - Hong-Jun Huang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuan Tan
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meng-Ting Cao
- The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiu-Gui Zhang
- The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Brenner AK, Nepstad I, Bruserud Ø. Mesenchymal Stem Cells Support Survival and Proliferation of Primary Human Acute Myeloid Leukemia Cells through Heterogeneous Molecular Mechanisms. Front Immunol 2017; 8:106. [PMID: 28232835 PMCID: PMC5299032 DOI: 10.3389/fimmu.2017.00106] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a bone marrow malignancy, and various bone marrow stromal cells seem to support leukemogenesis, including osteoblasts and endothelial cells. We have investigated how normal bone marrow mesenchymal stem cells (MSCs) support the in vitro proliferation of primary human AML cells. Both MSCs and primary AML cells show constitutive release of several soluble mediators, and the mediator repertoires of the two cell types are partly overlapping. The two cell populations were cocultured on transwell plates, and MSC effects on AML cells mediated through the local cytokine/soluble mediator network could thus be evaluated. The presence of normal MSCs had an antiapoptotic and growth-enhancing effect on primary human AML cells when investigating a group of 51 unselected AML patients; this was associated with increased phosphorylation of mTOR and its downstream targets, and the effect was independent of cytogenetic or molecular-genetic abnormalities. The MSCs also supported the long-term proliferation of the AML cells. A subset of the patients also showed an altered cytokine network with supra-additive levels for several cytokines. The presence of cytokine-neutralizing antibodies or receptor inhibitors demonstrated that AML cells derived from different patients were heterogeneous with regard to effects of various cytokines on AML cell proliferation or regulation of apoptosis. We conclude that even though the effects of single cytokines derived from bone marrow MSCs on human AML cells differ among patients, the final cytokine-mediated effects of the MSCs during coculture is growth enhancement and inhibition of apoptosis.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Clinical Science, Section for Hematology, University of Bergen , Bergen , Norway
| | - Ina Nepstad
- Department of Clinical Science, Section for Hematology, University of Bergen , Bergen , Norway
| | - Øystein Bruserud
- Department of Clinical Science, Section for Hematology, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
25
|
Roles of HDACs in the Responses of Innate Immune Cells and as Targets in Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:91-110. [DOI: 10.1007/978-981-10-5987-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Angeletti F, Fossati G, Pattarozzi A, Würth R, Solari A, Daga A, Masiello I, Barbieri F, Florio T, Comincini S. Inhibition of the Autophagy Pathway Synergistically Potentiates the Cytotoxic Activity of Givinostat (ITF2357) on Human Glioblastoma Cancer Stem Cells. Front Mol Neurosci 2016; 9:107. [PMID: 27833530 PMCID: PMC5081386 DOI: 10.3389/fnmol.2016.00107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence highlighted the role of cancer stem cells (CSCs) in the development of tumor resistance to therapy, particularly in glioblastoma (GBM). Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of cancer-related pathways modulated by histone acetylation/deacetylation processes, we studied the anti-proliferative and pro-apoptotic efficacy of givinostat (GVS), a pan-histone deacetylase inhibitor, on cell cultures enriched in CSCs, isolated from nine human GBMs. We report that GVS induced a significant reduction of viability and self-renewal ability in all GBM CSC cultures; conversely, GVS exposure did not cause a significant cytotoxic activity toward differentiated GBM cells and normal mesenchymal human stem cells. Analyzing the cellular and molecular mechanisms involved, we demonstrated that GVS affected CSC viability through the activation of programmed cell death pathways. In particular, a marked stimulation of macroautophagy was observed after GVS treatment. To understand the functional link between GVS treatment and autophagy activation, different genetic and pharmacological interfering strategies were used. We show that the up-regulation of the autophagy process, obtained by deprivation of growth factors, induced a reduction of CSC sensitivity to GVS, while the pharmacological inhibition of the autophagy pathway and the silencing of the key autophagy gene ATG7, increased the cell death rate induced by GVS. Altogether these findings suggest that autophagy represents a pro-survival mechanism activated by GBM CSCs to counteract the efficacy of the anti-proliferative activity of GVS. In conclusion, we demonstrate that GVS is a novel pharmacological tool able to target GBM CSC viability and its efficacy can be enhanced by autophagy inhibitory strategies.
Collapse
Affiliation(s)
| | - Gianluca Fossati
- Preclinical Research Department Italfarmaco Research Center, Italfarmaco S.p.A Cinisello Balsamo, Italy
| | - Alessandra Pattarozzi
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Roberto Würth
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Agnese Solari
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Antonio Daga
- Regenerative Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST Genova, Italy
| | - Irene Masiello
- Department of Biology and Biotechnology, University of Pavia Pavia, Italy
| | - Federica Barbieri
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Sergio Comincini
- Department of Biology and Biotechnology, University of Pavia Pavia, Italy
| |
Collapse
|
27
|
Manal M, Chandrasekar M, Gomathi Priya J, Nanjan M. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg Chem 2016; 67:18-42. [DOI: 10.1016/j.bioorg.2016.05.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/29/2016] [Accepted: 05/15/2016] [Indexed: 12/11/2022]
|
28
|
Falchi L, Newberry KJ, Verstovsek S. New Therapeutic Approaches in Polycythemia Vera. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 15 Suppl:S27-33. [PMID: 26297275 DOI: 10.1016/j.clml.2015.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/03/2015] [Indexed: 12/18/2022]
Abstract
Polycythemia vera (PV) is 1 of the 3 Philadelphia-negative myeloproliferative neoplasms. Clinically, PV is an indolent disease, but its course can be complicated by arterial and venous vascular incidents, evolution to myelofibrosis, or leukemic transformation. Treatment of PV is therefore aimed at preventing such acute complications. The cornerstone of therapy of low-risk patients remains strict control of cardiovascular risk factors, the use of phlebotomy, and low-dose aspirin. Higher-risk patients should also receive cytoreductive treatments. Hydroxyurea and interferon α represent standard first-line options for newly diagnosed high-risk PV patients. Recommendations for patients whose disease fails to respond to these therapies are less clearly defined. The discovery of a mutation in the Janus kinase (JAK) 2 gene (V617F) in almost all cases of PV has prompted the development of molecularly targeted agents for the treatment of these patients. In this review, we discuss key clinical aspects, the current therapeutic armamentarium, and data on the use of novel agents in patients with PV.
Collapse
Affiliation(s)
- Lorenzo Falchi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kate J Newberry
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
29
|
Smith EM, Zhang L, Walker BA, Davenport EL, Aronson LI, Krige D, Hooftman L, Drummond AH, Morgan GJ, Davies FE. The combination of HDAC and aminopeptidase inhibitors is highly synergistic in myeloma and leads to disruption of the NFκB signalling pathway. Oncotarget 2016; 6:17314-27. [PMID: 26015393 PMCID: PMC4627310 DOI: 10.18632/oncotarget.1168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/10/2013] [Indexed: 02/05/2023] Open
Abstract
There is a growing body of evidence supporting the use of epigenetic therapies in the treatment of multiple myeloma. We show the novel HDAC inhibitor CHR-3996 induces apoptosis in myeloma cells at concentrations in the nanomolar range and with apoptosis mediated by p53 and caspase pathways. In addition, HDAC inhibitors are highly synergistic, both in vitro and in vivo, with the aminopeptidase inhibitor tosedostat (CHR-2797). We demonstrate that the basis for this synergy is a consequence of changes in the levels of NFκB regulators BIRC3/cIAP2, A20, CYLD, and IκB, which were markedly affected by the combination. When co-administered the HDAC and aminopeptidase inhibitors caused rapid nuclear translocation of NFκB family members p65 and p52, following activation of both canonical and non-canonical NFκB signalling pathways. The subsequent up-regulation of inhibitors of NFκB activation (most significantly BIRC3/cIAP2) turned off the cytoprotective effects of the NFκB signalling response in a negative feedback loop. These results provide a rationale for combining HDAC and aminopeptidase inhibitors clinically for the treatment of myeloma patients and support the disruption of the NFκB signalling pathway as a therapeutic strategy.
Collapse
Affiliation(s)
- Emma M Smith
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | - Lei Zhang
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | - Brian A Walker
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | - Emma L Davenport
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | - Lauren I Aronson
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | | | | | | | - Gareth J Morgan
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | - Faith E Davies
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| |
Collapse
|
30
|
Tandon N, Ramakrishnan V, Kumar SK. Clinical use and applications of histone deacetylase inhibitors in multiple myeloma. Clin Pharmacol 2016; 8:35-44. [PMID: 27226735 PMCID: PMC4866749 DOI: 10.2147/cpaa.s94021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incorporation of various novel therapies has resulted in a significant survival benefit in newly diagnosed and relapsed patients with multiple myeloma (MM) over the past decade. Despite these advances, resistance to therapy leads to eventual relapse and fatal outcomes in the vast majority of patients. Hence, there is an unmet need for new safe and efficacious therapies for continued improvement in outcomes. Given the role of epigenetic aberrations in the pathogenesis and progression of MM and the success of histone deacetylase inhibitors (HDACi) in other malignancies, many HDACi have been tried in MM. Various preclinical studies helped us to understand the antimyeloma activity of different HDACi in MM as a single agent or in combination with conventional, novel, and immune therapies. The early clinical trials of HDACi depicted only modest single-agent activity, but recent studies have revealed encouraging clinical response rates in combination with other antimyeloma agents, especially proteasome inhibitors. This led to the approval of the combination of panobinostat and bortezomib for the treatment of relapsed/refractory MM patients with two prior lines of treatment by the US Food and Drug Administration. However, it remains yet to be defined how we can incorporate HDACi in the current therapeutic paradigms for MM that will help to achieve longer disease control and significant survival benefits. In addition, isoform-selective and/or class-selective HDAC inhibition to reduce unfavorable side effects needs further evaluation.
Collapse
Affiliation(s)
- Nidhi Tandon
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Ganai SA. Histone deacetylase inhibitor givinostat: the small-molecule with promising activity against therapeutically challenging haematological malignancies. J Chemother 2016; 28:247-54. [PMID: 27121910 DOI: 10.1080/1120009x.2016.1145375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone acetyl transferases and histone deacetylases (HDACs) are counteracting epigenetic enzymes regulating the turnover of histone acetylation thereby regulating transcriptional events in a precise manner. Deregulation of histone acetylation caused by aberrant expression of HDACs plays a key role in tumour onset and progression making these enzymes as candidate targets for anticancer drugs and therapy. Small-molecules namely histone deacetylase inhibitors (HDACi) modulating the biological function of HDACs have shown multiple biological effects including differentiation, cell cycle arrest and apoptosis in tumour models. HDACi in general have been described in plethora of reviews with respect to various cancers. However, no review article is available describing thoroughly the role of inhibitor givinostat (ITF2357 or [6-(diethylaminomethyl) naphthalen-2-yl] methyl N-[4-(hydroxycarbamoyl) phenyl] carbamate) in haematological malignancies. Thus, the present review explores the intricate role of novel inhibitor givinostat in the defined malignancies including multiple myeloma, acute myelogenous leukaemia, Hodgkin's and non-Hodgkin's lymphoma apart from myeloproliferative neoplasms. The distinct molecular mechanisms triggered by this small-molecule inhibitor in these cancers to exert cytotoxic effect have also been dealt with. The article also highlights the combination strategy that can be used for enhancing the therapeutic efficiency of this inhibitor in the upcoming future.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- a Plant Virology and Molecular Pathology Laboratory, Division of Plant Pathology , SKUAST-Kashmir , Srinagar , India
| |
Collapse
|
32
|
Lim RR, Tan A, Liu YC, Barathi VA, Mohan RR, Mehta JS, Chaurasia SS. ITF2357 transactivates Id3 and regulate TGFβ/BMP7 signaling pathways to attenuate corneal fibrosis. Sci Rep 2016; 6:20841. [PMID: 26865052 PMCID: PMC4750002 DOI: 10.1038/srep20841] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022] Open
Abstract
Corneal fibrosis is often seen in patients with ocular trauma and infection that compromises corneal transparency resulting in vision loss. Treatment strategies including NSAIDs, steroids, MMC and corneal transplants have shown tremendous success but with several side effects and cellular toxicity. Histone deacetylase inhibitors (HDACi) have been shown to inhibit corneal fibrosis via TGFβ signaling pathway. In this study, we investigated safety, efficacy and mechanism of action of a HDACi, ITF2357 in TGFβ-stimulated in vitro primary human cornea stromal fibroblasts (pHCSFs) and in vivo in a photorefractive keratectomy-treated rabbit model of corneal fibrosis. We found that in vivo ITF2357 decreased collagen I, collagen IV, fibronectin, integrin αVβ3 expression with a reduction in corneal haze. In addition, ITF2357 reduced myofibroblast formation, suppressed phosphorylation of Smad proteins in TGFβ pathway and inhibited key responsive protein, P4HA1 involved in pro-collagen synthesis. Treatment of pHCSFs with ITF2357 activated BMP7 levels and expressed all the members of inhibitor of differentiation proteins (Id1-Id4), however, it failed to rescue TGFβ-driven transdifferentiation of fibroblasts to myofibroblasts in the presence of siRNA specific to Id3. We conclude that ITF2357 is a potential anti-fibrotic drug that exerts its action via activation of Id3, a downstream target of TGFβ/BMP7 signaling pathways.
Collapse
Affiliation(s)
- Rayne R. Lim
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO 65211, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Alison Tan
- Singapore Eye Research Institute, 20 College Road, 169856, Singapore
- Institute of Molecular and Cellular Biology, A*Star, Biopolis, Singapore
| | - Yu-Chi Liu
- Singapore Eye Research Institute, 20 College Road, 169856, Singapore
- Singapore National Eye Centre, 11 Third Hospital Avenue, 168751, Singapore
| | - Veluchamy A. Barathi
- Singapore Eye Research Institute, 20 College Road, 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Rd, 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rajiv R. Mohan
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Memorial Veteran Hospital, Columbia, MO 65201, USA
- Mason Eye Institute, University of Missouri, Columbia, MO 65211, USA
| | - Jodhbir S. Mehta
- Singapore Eye Research Institute, 20 College Road, 169856, Singapore
- Institute of Molecular and Cellular Biology, A*Star, Biopolis, Singapore
- Singapore National Eye Centre, 11 Third Hospital Avenue, 168751, Singapore
| | - Shyam S. Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO 65211, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- Singapore Eye Research Institute, 20 College Road, 169856, Singapore
- Institute of Molecular and Cellular Biology, A*Star, Biopolis, Singapore
| |
Collapse
|
33
|
Pinkerneil M, Hoffmann MJ, Deenen R, Köhrer K, Arent T, Schulz WA, Niegisch G. Inhibition of Class I Histone Deacetylases 1 and 2 Promotes Urothelial Carcinoma Cell Death by Various Mechanisms. Mol Cancer Ther 2016; 15:299-312. [DOI: 10.1158/1535-7163.mct-15-0618] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/14/2015] [Indexed: 11/16/2022]
|
34
|
Orally available stilbene derivatives as potent HDAC inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts. Eur J Med Chem 2016; 108:274-286. [DOI: 10.1016/j.ejmech.2015.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 11/22/2022]
|
35
|
Wang YG, Xu L, Wang T, Wei J, Meng WY, Wang N, Shi M. Givinostat inhibition of hepatic stellate cell proliferation and protein acetylation. World J Gastroenterol 2015; 21:8326-8339. [PMID: 26217084 PMCID: PMC4507102 DOI: 10.3748/wjg.v21.i27.8326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/02/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the effect of the histone deacetylase inhibitor givinostat on proteins related to regulation of hepatic stellate cell proliferation. METHODS The cell counting kit-8 assay and flow cytometry were used to observe changes in proliferation, apoptosis, and cell cycle in hepatic stellate cells treated with givinostat. Western blot was used to observe expression changes in p21, p57, CDK4, CDK6, cyclinD1, caspase-3, and caspase-9 in hepatic stellate cells exposed to givinostat. The scratch assay was used to analyze the effect of givinostat on cell migration. Effects of givinostat on the reactive oxygen species profile, mitochondrial membrane potential, and mitochondrial permeability transition pore opening in JS-1 cells were observed by laser confocal microscopy. RESULTS Givinostat significantly inhibited JS-1 cell proliferation and promoted cell apoptosis, leading to cell cycle arrest in G0/G1 phases. Treatment with givinostat downregulated protein expression of CDK4, CDK6, and cyclin D1, whereas expression of p21 and p57 was significantly increased. The givinostat-induced apoptosis of hepatic stellate cells was mainly mediated through p38 and extracellular signal-regulated kinase 1/2. Givinostat treatment increased intracellular reactive oxygen species production, decreased mitochondrial membrane potential, and promoted mitochondrial permeability transition pore opening. Acetylation of superoxide dismutase (acetyl K68) and nuclear factor-κB p65 (acetyl K310) was upregulated, while there was no change in protein expression. Moreover, the notable beneficial effect of givinostat on liver fibrosis was also confirmed in the mouse models. CONCLUSION Givinostat has antifibrotic activities via regulating the acetylation of nuclear factor-κB and superoxide dismutase 2, thus inhibiting hepatic stellate cell proliferation and inducing apoptosis.
Collapse
|
36
|
Abstract
SIGNIFICANCE Epigenetic inactivation of pivotal genes involved in cell growth is a hallmark of human pathologies, in particular cancer. Histone acetylation balance obtained through opposing actions of histone deacetylases (HDACs) and histone acetyltransferases is one epigenetic mechanism controlling gene expression and is, thus, associated with disease etiology and progression. Interfering pharmacologically with HDAC activity can correct abnormalities in cell proliferation, migration, vascularization, and death. RECENT ADVANCES Histone deacetylase inhibitors (HDACi) represent a new class of cytostatic agents that interfere with the function of HDACs and are able to increase gene expression by indirectly inducing histone acetylation. Several HDACi, alone or in combination with DNA-demethylating agents, chemopreventive, or classical chemotherapeutic drugs, are currently being used in clinical trials for solid and hematological malignancies, and are, thus, promising candidates for cancer therapy. CRITICAL ISSUES (i) Non-specific (off-target) HDACi effects due to activities unassociated with HDAC inhibition. (ii) Advantages/disadvantages of non-selective or isoform-directed HDACi. (iii) Limited number of response-predictive biomarkers. (iv) Toxicity leading to dysfunction of critical biological processes. FUTURE DIRECTIONS Selective HDACi could achieve enhanced clinical utility by reducing or eliminating the serious side effects associated with current first-generation non-selective HDACi. Isoform-selective and pan-HDACi candidates might benefit from the identification of biomarkers, enabling better patient stratification and prediction of response to treatment.
Collapse
Affiliation(s)
- Rosaria Benedetti
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Mariarosaria Conte
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy
| | - Lucia Altucci
- 1 Department of Biochemistry, Biophysics, and General Pathology, Seconda Università degli Studi di Napoli , Napoli, Italy .,2 Istituto di Genetica e Biofisica "Adriano Buzzati-Traverso," Napoli, Italy
| |
Collapse
|
37
|
Kupsa T, Horacek JM, Jebavy L. The role of adhesion molecules in acute myeloid leukemia and (hemato)oncology: A systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:1-11. [DOI: 10.5507/bp.2014.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/16/2014] [Indexed: 12/18/2022] Open
|
38
|
Abstract
Polycythemia vera (PV) is a chronic myeloproliferative neoplasm defined by erythrocytosis and often accompanied by leukocytosis and thrombocytosis. Current treatment options, including IFN-α and hydroxyurea, effectively manage PV in many patients. However, some high-risk patients, particularly those who become hydroxyurea-intolerant/resistant, may benefit from IFN-α or new treatment options. A better understanding of PV pathophysiology, including the role of the JAK/STAT pathway, has inspired the development of new therapies. Several JAK inhibitors directly target JAK/STAT pathway activation and have been evaluated in Phase II/III trials with promising results. Pegylated variants of IFN-α, which reduce dosing frequency and toxicity associated with recombinant IFN-α, have yielded favorable efficacy results in Phase II trials. Finally, histone deacetylase inhibitors have been developed to manage PV at the level of chromatin-regulated gene expression. The earliest Phase III results from these next-generation therapies are expected in 2014.
Collapse
Affiliation(s)
- Srdan Verstovsek
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 418, Houston, TX 77030, USA
| | - Rami S Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
39
|
Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F, Janz S. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res 2014; 59:188-202. [PMID: 24845460 PMCID: PMC4209159 DOI: 10.1007/s12026-014-8528-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies on the biologic and molecular genetic underpinnings of multiple myeloma (MM) have identified the pleiotropic, pro-inflammatory cytokine, interleukin-6 (IL-6), as a factor crucial to the growth, proliferation and survival of myeloma cells. IL-6 is also a potent stimulator of osteoclastogenesis and a sculptor of the tumor microenvironment in the bone marrow of patients with myeloma. This knowledge has engendered considerable interest in targeting IL-6 for therapeutic purposes, using a variety of antibody- and small-molecule-based therapies. However, despite the early recognition of the importance of IL-6 for myeloma and the steady progress in our knowledge of IL-6 in normal and malignant development of plasma cells, additional efforts will be required to translate the promise of IL-6 as a target for new myeloma therapies into significant clinical benefits for patients with myeloma. This review summarizes published research on the role of IL-6 in myeloma development and describes ongoing efforts by the University of Iowa Myeloma Multidisciplinary Oncology Group to develop new approaches to the design and testing of IL-6-targeted therapies and preventions of MM.
Collapse
Affiliation(s)
- Timothy R Rosean
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Pieri L, Guglielmelli P, Finazzi G, Vannucchi AM. Givinostat for the treatment of polycythemia vera. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.934223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
41
|
Ronzoni L, Sonzogni L, Fossati G, Modena D, Trombetta E, Porretti L, Cappellini MD. Modulation of gamma globin genes expression by histone deacetylase inhibitors: an in vitro study. Br J Haematol 2014; 165:714-21. [PMID: 24606390 DOI: 10.1111/bjh.12814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/05/2014] [Indexed: 02/04/2023]
Abstract
Induction of fetal haemoglobin (HbF) is a promising therapeutic approach for the treatment of β-thalassaemia and sickle cell disease (SCD). Several pharmacological agents, such as hydroxycarbamide (HC) and butyrates, have been shown to induce the γ-globin genes (HBG1, HBG2). However, their therapeutic use is limited due to weak efficacy and an inhibitory effect on erythroid differentiation. Thus, more effective agents are needed. The histone deacetylase (HDAC) inhibitors are potential therapeutic haemoglobin (Hb) inducers able to modulate gene expression through pleiotropic mechanisms. We investigated the effects of a HDAC inhibitor, Givinostat (GVS), on erythropoiesis and haemoglobin synthesis and compared it with sodium butyrate and HC. We used an in vitro erythropoiesis model derived from peripheral CD34⁺ cells of healthy volunteers and SCD donors. GVS effects on erythroid proliferation and differentiation and on Hb synthesis were investigated. We found that GVS at high concentrations delayed erythroid differentiation with no specific effect on HBG1/2 transcription. At a low concentration (1 nmol/l), GVS induced Hb production with no effects on cells proliferation and differentiation. The efficacy of GVS 1 mol/l in Hb induction in vitro was comparable to that of HC and butyrate. Our results support the evaluation of GVS as a new candidate molecule for the treatment of the haemoglobinophathies due to its positive effects on haemoglobin production at low and non-toxic concentrations.
Collapse
Affiliation(s)
- Luisa Ronzoni
- Department of Clinical Sciences and Community, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; UO Genetica Medica, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Manson McManamy ME, Hakre S, Verdin EM, Margolis DM. Therapy for latent HIV-1 infection: the role of histone deacetylase inhibitors. Antivir Chem Chemother 2014; 23:145-9. [PMID: 24318952 DOI: 10.3851/imp2551] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2013] [Indexed: 01/06/2023] Open
Abstract
Persistence of HIV-1 in latently infected CD4(+) T-cells prevents eradication in HIV-infected treated patients. Latency is characterized by a reversible silencing of transcription of integrated HIV-1. Several molecular mechanisms have been described which contribute to latency, including the establishment and maintenance of repressive chromatin on the HIV-1 promoter. Histone deacetylation is a landmark modification associated with transcriptional repression of the HIV-1 promoter and inhibition of histone deacetylase enzymes (HDACs) reactivates latent HIV-1. Here, we review the different HDAC inhibitors that have been studied in HIV-1 latency and their therapeutic potential in reactivating latent HIV-1.
Collapse
|
43
|
Hajek R, Siegel D, Orlowski RZ, Ludwig H, Palumbo A, Dimopoulos M. The role of histone deacetylase inhibitors in patients with relapsed/refractory multiple myeloma. Leuk Lymphoma 2014; 55:11-8. [PMID: 23614765 DOI: 10.3109/10428194.2013.797084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Clinical outcomes for patients with multiple myeloma (MM) have improved substantially since the introduction of novel agents including the proteasome inhibitor bortezomib and the immunomodulatory drugs thalidomide and lenalidomide. However, most patients with MM eventually relapse, and prognosis remains poor among patients with relapsed and/or refractory disease. Combination therapy using agents with different mechanisms of action is emerging as an attractive treatment approach in oncology to increase efficacy and/or overcome resistance to standard treatment regimens. This review discusses unmet needs in the treatment of MM and the development of histone deacetylase inhibitors as a treatment modality for MM.
Collapse
Affiliation(s)
- Roman Hajek
- Faculty of Medicine, University of Ostrava and University Hospital Ostrava, Ostrava, Czech Republic
| | | | | | | | | | | |
Collapse
|
44
|
Verdelli D, Nobili L, Todoerti K, Mosca L, Fabris S, D'Anca M, Pellegrino E, Piva R, Inghirami G, Capelli C, Introna M, Baldini L, Chiaramonte R, Lombardi L, Neri A. Molecular events underlying interleukin-6 independence in a subclone of the CMA-03 multiple myeloma cell line. Genes Chromosomes Cancer 2013; 53:154-67. [PMID: 24327544 DOI: 10.1002/gcc.22127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 11/08/2022] Open
Abstract
We explored the molecular mechanisms involved in the establishement of CMA-03/06, an IL-6-independent variant of the multiple myeloma cell line CMA-03 previously generated in our Institution. CMA-03/06 cells grow in the absence of IL-6 with a doubling time comparable with that of CMA-03 cells; neither the addition of IL6 (IL-6) to the culture medium nor co-culture with multipotent mesenchymal stromal cells increases the proliferation rate, although they maintain the responsiveness to IL-6 stimulation as demonstrated by STAT1, STAT3, and STAT5 induction. IL-6 independence of CMA-03/06 cells is not apparently due to the development of an autocrine IL-6 loop, nor to the observed moderate constitutive activation of STAT5 and STAT3, since STAT3 silencing does not affect cell viability or proliferation. When compared to the parental cell line, CMA-03/06 cells showed an activated pattern of the NF-κB pathway. This finding is supported by gene expression profiling (GEP) analysis identifying an appreciable fraction of modulated genes (28/308) in the CMA-03/06 subclone reported to be involved in this pathway. Furthermore, although more resistant to apoptotic stimuli compared to the parental cell line, CMA-03/06 cells display a higher sensibility to NF-κB inhibition induced by bortezomib. Finally, GEP analysis suggests an involvement of a number of cytokines, which might contribute to IL-6 independence of CMA-03/06 by stimulating growth and antiapoptotic processes. In conclusion, the parental cell-line CMA-03 and its variant CMA-03/06 represent a suitable model to further investigate molecular mechanisms involved in the IL-6-independent growth of myeloma cells.
Collapse
Affiliation(s)
- Donata Verdelli
- Department of Clinical Sciences and Community Health, University of Milano and Hematology-CTMO, Fondazione Cà Granda, IRCCS Policlinico, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mascarenhas JO, Orazi A, Bhalla KN, Champlin RE, Harrison C, Hoffman R. Advances in myelofibrosis: a clinical case approach. Haematologica 2013; 98:1499-509. [PMID: 24091929 PMCID: PMC3789453 DOI: 10.3324/haematol.2013.086348] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/02/2013] [Indexed: 12/11/2022] Open
Abstract
Primary myelofibrosis is a member of the myeloproliferative neoplasms, a diverse group of bone marrow malignancies. Symptoms of myelofibrosis, particularly those associated with splenomegaly (abdominal distention and pain, early satiety, dyspnea, and diarrhea) and constitutional symptoms, represent a substantial burden to patients. Most patients eventually die from the disease, with a median survival ranging from approximately 5-7 years. Mutations in Janus kinase 2 (JAK2), a kinase that is essential for the normal development of erythrocytes, granulocytes, and platelets, notably the V617F mutation, have been identified in approximately 50% of patients with myelofibrosis. The approval of a JAK2 inhibitor in 2011 has improved the outlook of many patients with myelofibrosis and has changed the treatment landscape. This article focuses on some of the important issues in current myelofibrosis treatment management, including differentiation of myelofibrosis from essential thrombocythemia and polycythemia vera, up-dated data on the results of JAK2 inhibitor therapy, the role of epigenetic mechanisms in myelofibrosis pathogenesis, investigational therapies for myelofibrosis, and advances in hematopoietic stem cell transplant. Three myelofibrosis cases are included to underscore the issues in diagnosing and treating this complex disease.
Collapse
|
46
|
Finazzi G, Vannucchi AM, Martinelli V, Ruggeri M, Nobile F, Specchia G, Pogliani EM, Olimpieri OM, Fioritoni G, Musolino C, Cilloni D, Sivera P, Barosi G, Finazzi MC, Tollo SD, Demuth T, Barbui T, Rambaldi A. A phase II study of Givinostat in combination with hydroxycarbamide in patients with polycythaemia vera unresponsive to hydroxycarbamide monotherapy. Br J Haematol 2013; 161:688-694. [PMID: 23573950 DOI: 10.1111/bjh.12332] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/26/2013] [Indexed: 12/19/2022]
Abstract
Givinostat, a histone-deacetylase inhibitor (HDACi), inhibits proliferation of cells bearing the JAK2 V617F mutation and has shown significant activity with good tolerability in patients with chronic myeloproliferative neoplasms (MPN). In this multicentre, open-label, phase II study, 44 patients with polycythaemia vera (PV), unresponsive to the maximum tolerated doses (MTD) of hydroxycarbamide (HC), were treated with Givinostat (50 or 100 mg/d) in combination with MTD of HC. The European LeukaemiaNet response criteria were used to assess the primary endpoint after 12 weeks of treatment. Complete or partial response was observed in 55% and 50% of patients receiving 50 or 100 mg of Givinostat, respectively. Control of pruritus was observed in 64% and 67% of patients in the 50 and 100 mg groups, respectively. The combination of Givinostat and HC was well tolerated: eight patients (18%) discontinued, four in each treatment arm; grade 3 adverse events were reported in one patient (4·5%) in each treatment arm. The combined use of Givinostat and HC was safe and clinically effective in HC-unresponsive PV patients.
Collapse
Affiliation(s)
- Guido Finazzi
- Haematology, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Marco Ruggeri
- Department of Cell Therapy and Haematology, San Bortolo Hospital, Vicenza, Italy
| | - Francesco Nobile
- Onco-haematology Department, A.O. "Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | | | - Enrico Maria Pogliani
- Clinical Haematology, New Hospital San.Gerardo, University of Milano Bicocca, Monza, Italy
| | | | | | | | - Daniela Cilloni
- Internal Medicine 2, AOU San Luigi Gonzaga, Orbassano, Italy
| | - Piera Sivera
- SCU Haematology, A.O. "Ordine Mauriziano" Umberto I, Turin, Italy
| | - Giovanni Barosi
- Centre for the Study of Myelofibrosis, IRCCS Policlinico S.Matteo Foundation, Pavia, Italy
| | | | - Silvia Di Tollo
- Clinical R&D Department, Italfarmaco S.p.A., Cinisello Balsamo, Italy
| | - Tim Demuth
- Clinical R&D Department, Italfarmaco S.p.A., Cinisello Balsamo, Italy
| | - Tiziano Barbui
- Haematology, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | | |
Collapse
|
47
|
Amaru Calzada A, Pedrini O, Finazzi G, Leoni F, Mascagni P, Introna M, Rambaldi A, Golay J. Givinostat and hydroxyurea synergize in vitro to induce apoptosis of cells from JAK2V617F myeloproliferative neoplasm patients. Exp Hematol 2013; 41:253-60.e2. [DOI: 10.1016/j.exphem.2012.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
48
|
Fraczek J, Vanhaecke T, Rogiers V. Toxicological and metabolic considerations for histone deacetylase inhibitors. Expert Opin Drug Metab Toxicol 2013; 9:441-57. [PMID: 23286281 DOI: 10.1517/17425255.2013.754011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Vorinostat and romidepsin were the first histone deacetylase (HDAC) inhibitors (HDi) that fulfilled the preclinical promise of anticancer potential in clinical trials. Nevertheless, they merely opened a new chapter in the history of cancer therapy. Demonstration of their antitumor activity was a straightforward task in in vitro setting. Proving their efficacy in vivo was much more difficult, since the effects of an administrated drug strongly depend on its absorption, distribution, metabolism and excretion. AREAS COVERED This article summarizes clinical data on the pharmacokinetic properties of HDi that are currently at more advanced stages of clinical development. Specific attention is paid to the metabolic pathways. Moreover, a comprehensive overview of HDi-related adverse effects is given. EXPERT OPINION At this moment, HDi form one of the most interesting classes of therapeutics, yet their efficacy and safety profiles could still be improved by i) designing better formulations, ii) more extensive characterization of their disposition at the preclinical stage, iii) targeting of individual disease-related deacetylase isoforms and/or their complexes, iv) selecting a target patient population with the highest probability of response based on molecular signatures.
Collapse
Affiliation(s)
- Joanna Fraczek
- VUB, Toxicology, Laarbeeklaan 103, Brussels 1090, Belgium.
| | | | | |
Collapse
|
49
|
Klein K, Ospelt C, Gay S. Epigenetic contributions in the development of rheumatoid arthritis. Arthritis Res Ther 2012; 14:227. [PMID: 23164162 PMCID: PMC3674613 DOI: 10.1186/ar4074] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease, characterized by chronic inflammation of the joints with severe pain and swelling, joint damage and disability, which leads to joint destruction and loss of function. Despite extensive research efforts, the underlying cause for RA is still unknown and current therapies are more or less effective in controlling symptoms but still fail to cure the disease. In recent years, epigenetic modifications were found to strongly contribute to the development of RA by affecting diverse aspects of the disease and modifying gene expression levels and behavior of several cell types, first and foremost joint resident synovial fibroblasts (SF). RASF are the most common cell type at the site of invasion. Owing to their aggressive, intrinsically activated phenotype, RASF are active contributors in joint damage. RASF are characterized by their ability to secrete cytokines, chemokines and joint-damaging enzymes. Furthermore, these cells are resistant to apoptosis, leading to hyperplasia of the synovium. In addition, RASF have invasive and migratory properties that could lead to spreading of the disease to unaffected joints. Epigenetic modifications, including DNA methylation and post-translational histone modifications, such as histone (de)acetylation, histone methylation and histone sumoylation were identified as regulatory mechanisms in controlling aggressive cell activation in vitro and in disease outcome in animal models in vivo. In the last 5 years, the field of epigenetics in RA has impressively increased. In this review we consider the role of diverse epigenetic modifications in the development of RA, with a special focus on epigenetic modifications in RASF.
Collapse
|
50
|
Amaru Calzada A, Todoerti K, Donadoni L, Pellicioli A, Tuana G, Gatta R, Neri A, Finazzi G, Mantovani R, Rambaldi A, Introna M, Lombardi L, Golay J. The HDAC inhibitor Givinostat modulates the hematopoietic transcription factors NFE2 and C-MYB in JAK2V617F myeloproliferative neoplasm cells. Exp Hematol 2012; 40:634-45.e10. [DOI: 10.1016/j.exphem.2012.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 01/13/2023]
|