1
|
Binder MS, Nolan SO, Lugo JN. Neuronal subset-specific Pten-deficient mice do not exhibit deficits in sensorimotor gating processes. F1000Res 2025; 8:1727. [PMID: 39822947 PMCID: PMC11736557 DOI: 10.12688/f1000research.20604.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
Background Deficits in sensorimotor gating have been reported in individuals with autism spectrum disorder (ASD), as well as in ASD murine models. However, this behavior has not been examined in the neuronal subset-specific (NS)- Pten knockout (KO) model of ASD. NS-Pten KO mice exhibit hyperactivity of the PI3K/AKT/mTOR signaling pathway which is implicated in the onset of autistic deficits. This study investigates the potential relationship between PI3K/AKT/mTOR signaling and deficits in sensorimotor gating. Methods To assess sensorimotor gating in NS- Pten KO mice we utilized a three-day paradigm. On day 1 (habituation) the mice were administered 80 repetitions of a 120-dB startle stimulus. On day 2, prepulse inhibition was measured with 90 trials of the startle stimulus that was paired with a smaller (2, 7, or 12 dB) prepulse stimulus. Day 3 was assessed one week later, consisting of randomized startle trials and trials with no stimulus and was used to determine the startle response. Results No significant difference between NS- Pten KO or wildtype (WT) mice was found for habituation ( p > 0.05). No significant differences were found between groups when assessing the percentage of prepulse inhibition at 2, 7, and 12 dB ( p > 0.05). There was also no difference in startle response between groups ( p > 0.05). Conclusion Our study found that the NS- Pten KO model does not display significant deficits in sensorimotor gating processes. The present findings help to elucidate the relationship between PI3K/AKT/mTOR hyperactivation and sensory reactivity.
Collapse
Affiliation(s)
- Matthew S. Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - Suzanne O. Nolan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76787, USA
| |
Collapse
|
2
|
Lachiewicz AM, Stackhouse TM, Burgess K, Burgess D, Andrews HF, Choo TH, Kaufmann WE, Kidd SA. Sensory Symptoms and Signs of Hyperarousal in Individuals with Fragile X Syndrome: Findings from the FORWARD Registry and Database Multisite Study. J Autism Dev Disord 2024; 54:4259-4277. [PMID: 37840096 PMCID: PMC11461590 DOI: 10.1007/s10803-023-06135-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/17/2023]
Abstract
This study was designed to increase our understanding about characteristics and the impact of sensory symptoms (SS) and signs of hyperarousal (HA) in individuals with fragile X syndrome (FXS) from childhood through early adulthood and by gender. Data derived from the Fragile X Online Registry With Accessible Research Database (FORWARD), a natural history study of FXS, were analyzed using descriptive statistics and multivariate linear and logistic regression models to examine SS and signs of HA, their impact on behavioral regulation and limitations on the subject/family. The sample (N = 933) consisted of 720 males and 213 females. More males were affected with SS (87% vs. 68%) and signs of HA (92% vs. 79%). Subjects who were endorsed as having a strong sensory response had more comorbidities, including behavioral problems. The predominant SS was difficulty with eye gaze that increased with age in both genders. As individuals age, there was less use of non-medication therapies, such as occupational therapy (OT)/physical therapy (PT), but there was more use of psychopharmacological medications and investigational drugs for behaviors. Multiple regression models suggested that endorsing SS and signs of HA was associated with statistically significantly increased ABC-C-I subscale scores and limited participation in everyday activities. This study improves our understanding of SS and signs of HA as well as their impact in FXS. It supports the need for more research regarding these clinical symptoms, especially to understand how they contribute to well-known behavioral concerns.
Collapse
Affiliation(s)
- Ave M Lachiewicz
- Department of Pediatrics, Duke University Health System, Durham, NC, USA.
| | | | | | - Debra Burgess
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Howard F Andrews
- Departments of Psychiatry and Biostatistics, Mailman School of Public Health, Columbia University, Irving Medical Center, New York, NY, USA
| | - Tse-Hwei Choo
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon A Kidd
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Szelenyi ER, Fisenne D, Knox JE, Harris JA, Gornet JA, Palaniswamy R, Kim Y, Venkataraju KU, Osten P. Distributed X chromosome inactivation in brain circuitry is associated with X-linked disease penetrance of behavior. Cell Rep 2024; 43:114068. [PMID: 38614085 PMCID: PMC11107803 DOI: 10.1016/j.celrep.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024] Open
Abstract
The precise anatomical degree of brain X chromosome inactivation (XCI) that is sufficient to alter X-linked disorders in females is unclear. Here, we quantify whole-brain XCI at single-cell resolution to discover a prevalent activation ratio of maternal to paternal X at 60:40 across all divisions of the adult brain. This modest, non-random XCI influences X-linked disease penetrance: maternal transmission of the fragile X mental retardation 1 (Fmr1)-knockout (KO) allele confers 55% of total brain cells with mutant X-active, which is sufficient for behavioral penetrance, while 40% produced from paternal transmission is tolerated. Local XCI mosaicism within affected maternal Fmr1-KO mice further specifies sensorimotor versus social anxiety phenotypes depending on which distinct brain circuitry is most affected, with only a 50%-55% mutant X-active threshold determining penetrance. Thus, our results define a model of X-linked disease penetrance in females whereby distributed XCI among single cells populating brain circuitries can regulate the behavioral penetrance of an X-linked mutation.
Collapse
Affiliation(s)
- Eric R Szelenyi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Neurobiology and Behavior, Stony Brook, NY 11794, USA.
| | - Danielle Fisenne
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Hofstra University, Hempstead, NY 11549, USA; Certerra, Inc., Farmingdale, NY 11735, USA
| | - Joseph E Knox
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James A Gornet
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Columbia University, New York, NY 10027, USA
| | | | - Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; College of Medicine, Penn State University, Hershey, PA 17033, USA
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
4
|
Wu X, Liu Y, Wang X, Zheng L, Pan L, Wang H. Developmental Impairments of Synaptic Refinement in the Thalamus of a Mouse Model of Fragile X Syndrome. Neurosci Bull 2024; 40:439-450. [PMID: 38015349 PMCID: PMC11004103 DOI: 10.1007/s12264-023-01142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/16/2023] [Indexed: 11/29/2023] Open
Abstract
While somatosensory over-reactivity is a common feature of autism spectrum disorders such as fragile X syndrome (FXS), the thalamic mechanisms underlying this remain unclear. Here, we found that the developmental elimination of synapses formed between the principal nucleus of V (PrV) and the ventral posterior medial nucleus (VPm) of the somatosensory system was delayed in fragile X mental retardation 1 gene knockout (Fmr1 KO) mice, while the developmental strengthening of these synapses was disrupted. Immunohistochemistry showed excessive VGluT2 puncta in mutants at P12-13, but not at P7-8 or P15-16, confirming a delay in somatic pruning of PrV-VPm synapses. Impaired synaptic function was associated with a reduction in the frequency of quantal AMPA events, as well as developmental deficits in presynaptic vesicle size and density. Our results uncovered the developmental impairment of thalamic relay synapses in Fmr1 KO mice and suggest that a thalamic contribution to the somatosensory over-reactivity in FXS should be considered.
Collapse
Affiliation(s)
- Xiaotong Wu
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yali Liu
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomeng Wang
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lu Zheng
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Libiao Pan
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wang
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
5
|
Sakano H, Castle MS, Kundu P. Cochlear Nucleus Transcriptome of a Fragile X Mouse Model Reveals Candidate Genes for Hyperacusis. Laryngoscope 2024; 134:1363-1371. [PMID: 37551886 PMCID: PMC10879919 DOI: 10.1002/lary.30936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVE Fragile X Syndrome (FXS) is a hereditary form of autism spectrum disorder. It is caused by a trinucleotide repeat expansion in the Fmr1 gene, leading to a loss of Fragile X Protein (FMRP) expression. The loss of FMRP causes auditory hypersensitivity: FXS patients display hyperacusis and the Fmr1- knock-out (KO) mouse model for FXS exhibits auditory seizures. FMRP is strongly expressed in the cochlear nucleus and other auditory brainstem nuclei. We hypothesize that the Fmr1-KO mouse has altered gene expression in the cochlear nucleus that may contribute to auditory hypersensitivity. METHODS RNA was isolated from cochlear nuclei of Fmr1-KO and WT mice. Using next-generation sequencing (RNA-seq), the transcriptomes of Fmr1-KO mice and WT mice (n = 3 each) were compared and analyzed using gene ontology programs. RESULTS We identified 270 unique, differentially expressed genes between Fmr1-KO and WT cochlear nuclei. Upregulated genes (67%) are enriched in those encoding secreted molecules. Downregulated genes (33%) are enriched in neuronal function, including synaptic pathways, some of which are ideal candidate genes that may contribute to hyperacusis. CONCLUSION The loss of FMRP can affect the expression of genes in the cochlear nucleus that are important for neuronal signaling. One of these, Kcnab2, which encodes a subunit of the Shaker voltage-gated potassium channel, is expressed at an abnormally low level in the Fmr1-KO cochlear nucleus. Kcnab2 and other differentially expressed genes may represent pathways for the development of hyperacusis. Future studies will be aimed at investigating the effects of these altered genes on hyperacusis. LEVEL OF EVIDENCE N/A Laryngoscope, 134:1363-1371, 2024.
Collapse
Affiliation(s)
- Hitomi Sakano
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
- Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Michael S Castle
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York, USA
| | - Paromita Kundu
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
6
|
Kuruppath P, Xue L, Pouille F, Jones ST, Schoppa NE. Hyperexcitability in the Olfactory Bulb and Impaired Fine Odor Discrimination in the Fmr1 KO Mouse Model of Fragile X Syndrome. J Neurosci 2023; 43:8243-8258. [PMID: 37788940 PMCID: PMC10697393 DOI: 10.1523/jneurosci.0584-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/28/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
Fragile X syndrome (FXS) is the single most common monogenetic cause of autism spectrum disorders (ASDs) in humans. FXS is caused by loss of expression of the fragile X mental retardation protein (FMRP), an mRNA-binding protein encoded on the X chromosome involved in suppressing protein translation. Sensory processing deficits have been a major focus of studies of FXS in both humans and rodent models of FXS, but olfactory deficits remain poorly understood. Here, we conducted experiments in wild-type (WT) and Fmr1 knock-out (KO; Fmr1-/y ) mice (males) that lack expression of the gene encoding FMRP to assess olfactory circuit and behavioral abnormalities. In patch-clamp recordings conducted in slices of the olfactory bulb, output mitral cells (MCs) in Fmr1 KO mice displayed greatly enhanced excitation under baseline conditions, as evidenced by a much higher rate of occurrence of spontaneous network-level events known as long-lasting depolarizations (LLDs). The higher probability of spontaneous LLDs (sLLDs), which appeared to be because of a decrease in GABAergic synaptic inhibition in glomeruli leading to more feedforward excitation, caused a reduction in the reliability of stimulation-evoked responses in MCs. In addition, in a go/no-go operant discrimination paradigm, we found that Fmr1 KO mice displayed impaired discrimination of odors in difficult tasks that involved odor mixtures but not altered discrimination of monomolecular odors. We suggest that the Fmr1 KO-induced reduction in MC response reliability is one plausible mechanism for the impaired fine odor discrimination.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) in humans is associated with a range of debilitating deficits including aberrant sensory processing. One sensory system that has received comparatively little attention in studies in animal models of FXS is olfaction. Here, we report the first comprehensive physiological analysis of circuit defects in the olfactory bulb in the commonly-used Fmr1 knock-out (KO) mouse model of FXS. Our studies indicate that Fmr1 KO alters the local excitation/inhibition balance in the bulb, similar to what Fmr1 KO does in other brain circuits, but through a novel mechanism that involves enhanced feedforward excitation. Furthermore, Fmr1 KO mice display behavioral impairments in fine odor discrimination, an effect that may be explained by changes in neural response reliability.
Collapse
Affiliation(s)
- Praveen Kuruppath
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Lin Xue
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Frederic Pouille
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Shelly T Jones
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Nathan E Schoppa
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
7
|
Mosconi MW, Stevens CJ, Unruh KE, Shafer R, Elison JT. Endophenotype trait domains for advancing gene discovery in autism spectrum disorder. J Neurodev Disord 2023; 15:41. [PMID: 37993779 PMCID: PMC10664534 DOI: 10.1186/s11689-023-09511-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with a diverse range of etiological processes, including both genetic and non-genetic causes. For a plurality of individuals with ASD, it is likely that the primary causes involve multiple common inherited variants that individually account for only small levels of variation in phenotypic outcomes. This genetic landscape creates a major challenge for detecting small but important pathogenic effects associated with ASD. To address similar challenges, separate fields of medicine have identified endophenotypes, or discrete, quantitative traits that reflect genetic likelihood for a particular clinical condition and leveraged the study of these traits to map polygenic mechanisms and advance more personalized therapeutic strategies for complex diseases. Endophenotypes represent a distinct class of biomarkers useful for understanding genetic contributions to psychiatric and developmental disorders because they are embedded within the causal chain between genotype and clinical phenotype, and they are more proximal to the action of the gene(s) than behavioral traits. Despite their demonstrated power for guiding new understanding of complex genetic structures of clinical conditions, few endophenotypes associated with ASD have been identified and integrated into family genetic studies. In this review, we argue that advancing knowledge of the complex pathogenic processes that contribute to ASD can be accelerated by refocusing attention toward identifying endophenotypic traits reflective of inherited mechanisms. This pivot requires renewed emphasis on study designs with measurement of familial co-variation including infant sibling studies, family trio and quad designs, and analysis of monozygotic and dizygotic twin concordance for select trait dimensions. We also emphasize that clarification of endophenotypic traits necessarily will involve integration of transdiagnostic approaches as candidate traits likely reflect liability for multiple clinical conditions and often are agnostic to diagnostic boundaries. Multiple candidate endophenotypes associated with ASD likelihood are described, and we propose a new focus on the analysis of "endophenotype trait domains" (ETDs), or traits measured across multiple levels (e.g., molecular, cellular, neural system, neuropsychological) along the causal pathway from genes to behavior. To inform our central argument for research efforts toward ETD discovery, we first provide a brief review of the concept of endophenotypes and their application to psychiatry. Next, we highlight key criteria for determining the value of candidate endophenotypes, including unique considerations for the study of ASD. Descriptions of different study designs for assessing endophenotypes in ASD research then are offered, including analysis of how select patterns of results may help prioritize candidate traits in future research. We also present multiple candidate ETDs that collectively cover a breadth of clinical phenomena associated with ASD, including social, language/communication, cognitive control, and sensorimotor processes. These ETDs are described because they represent promising targets for gene discovery related to clinical autistic traits, and they serve as models for analysis of separate candidate domains that may inform understanding of inherited etiological processes associated with ASD as well as overlapping neurodevelopmental disorders.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA.
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA.
| | - Cassandra J Stevens
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Kathryn E Unruh
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Robin Shafer
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Ferraguto C, Bouleau Y, Peineau T, Dulon D, Pietropaolo S. Hyperacusis in the Adult Fmr1-KO Mouse Model of Fragile X Syndrome: The Therapeutic Relevance of Cochlear Alterations and BKCa Channels. Int J Mol Sci 2023; 24:11863. [PMID: 37511622 PMCID: PMC10380266 DOI: 10.3390/ijms241411863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperacusis, i.e., an increased sensitivity to sounds, is described in several neurodevelopmental disorders (NDDs), including Fragile X Syndrome (FXS). The mechanisms underlying hyperacusis in FXS are still largely unknown and effective therapies are lacking. Big conductance calcium-activated potassium (BKCa) channels were proposed as a therapeutic target to treat several behavioral disturbances in FXS preclinical models, but their role in mediating their auditory alterations was not specifically addressed. Furthermore, studies on the acoustic phenotypes of FXS animal models mostly focused on central rather than peripheral auditory pathways. Here, we provided an extensive characterization of the peripheral auditory phenotype of the Fmr1-knockout (KO) mouse model of FXS at adulthood. We also assessed whether the acute administration of Chlorzoxazone, a BKCa agonist, could rescue the auditory abnormalities of adult mutant mice. Fmr1-KO mice both at 3 and 6 months showed a hyperacusis-like startle phenotype with paradoxically reduced auditory brainstem responses associated with a loss of ribbon synapses in the inner hair cells (IHCs) compared to their wild-type (WT) littermates. BKCa expression was markedly reduced in the IHCs of KOs compared to WT mice, but only at 6 months, when Chlorzoxazone rescued mutant auditory dysfunction. Our findings highlight the age-dependent and progressive contribution of peripheral mechanisms and BKCa channels to adult hyperacusis in FXS, suggesting a novel therapeutic target to treat auditory dysfunction in NDDs.
Collapse
Affiliation(s)
- Celeste Ferraguto
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Yohan Bouleau
- Neurophysiologie de la Synapse Auditive, Université de Bordeaux, INSERM UA06, F-33000 Bordeaux, France
- Institut de l'Audition, Centre Institut Pasteur, Inserm UA06, F-75012 Paris, France
| | - Thibault Peineau
- Neurophysiologie de la Synapse Auditive, Université de Bordeaux, INSERM UA06, F-33000 Bordeaux, France
- Institut de l'Audition, Centre Institut Pasteur, Inserm UA06, F-75012 Paris, France
| | - Didier Dulon
- Neurophysiologie de la Synapse Auditive, Université de Bordeaux, INSERM UA06, F-33000 Bordeaux, France
- Institut de l'Audition, Centre Institut Pasteur, Inserm UA06, F-75012 Paris, France
| | | |
Collapse
|
9
|
Schiöth HB, Donzelli L, Arvidsson N, Williams MJ, Moulin TC. Evidence for Prepulse Inhibition of Visually Evoked Motor Response in Drosophila melanogaster. BIOLOGY 2023; 12:biology12040635. [PMID: 37106835 PMCID: PMC10135638 DOI: 10.3390/biology12040635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Prepulse inhibition (PPI) is a widely investigated behavior to study the mechanisms of disorders such as anxiety, schizophrenia, and bipolar mania. PPI has been observed across various vertebrate and invertebrate species; however, it has not yet been reported in adult Drosophila melanogaster. In this study, we describe the first detection of PPI of visually evoked locomotor arousal in flies. To validate our findings, we demonstrate that PPI in Drosophila can be partially reverted by the N-methyl D-aspartate (NMDA) receptor antagonist MK-801, known for inducing sensorimotor gating deficits in rodent models. Additionally, we show that the visually evoked response can be inhibited by multiple stimuli presentation, which can also be affected by MK-801. Given the versatility of Drosophila as a model organism for genetic screening and analysis, our results suggest that high-throughput behavioral screenings of adult flies can become a valuable tool for investigating the mechanisms behind PPI.
Collapse
Affiliation(s)
- Helgi B Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Laura Donzelli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Nicklas Arvidsson
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Michael J Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Thiago C Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
10
|
Abstract
The fragile X-related disorders are an important group of hereditary disorders that are caused by expanded CGG repeats in the 5' untranslated region of the FMR1 gene or by mutations in the coding sequence of this gene. Two categories of pathological CGG repeats are associated with these disorders, full mutation alleles and shorter premutation alleles. Individuals with full mutation alleles develop fragile X syndrome, which causes autism and intellectual disability, whereas those with premutation alleles, which have shorter CGG expansions, can develop fragile X-associated tremor/ataxia syndrome, a progressive neurodegenerative disease. Thus, fragile X-related disorders can manifest as neurodegenerative or neurodevelopmental disorders, depending on the size of the repeat expansion. Here, we review mouse models of fragile X-related disorders and discuss how they have informed our understanding of neurodegenerative and neurodevelopmental disorders. We also assess the translational value of these models for developing rational targeted therapies for intellectual disability and autism disorders.
Collapse
Affiliation(s)
- Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| | - R. Frank Kooy
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
11
|
Unzueta-Larrinaga P, Urigüen L. Evaluation of Sensorimotor Gating Deficits in Mice Through Prepulse Inhibition (PPI) of the Startle Response. Methods Mol Biol 2023; 2687:57-64. [PMID: 37464162 DOI: 10.1007/978-1-0716-3307-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Prepulse inhibition of the startle response enables measuring animal behavior and helps us understand core aspects of neuropsychiatric diseases. Prepulse inhibition is considered a translational indicator of sensorimotor gating deficits present in schizophrenia patients and is crucial in the characterization of animal models of schizophrenia-like behaviors. Hallucinogenic drugs acting through 5-HT2A receptors, such as psilocybin, lysergic acid diethylamide (LSD), and dimethoxyiodoamphetamine (DOI), produce symptoms in healthy subjects comparable to those seen in schizophrenia and can be used in rodent models for mimicking some of these behaviors. Here we describe a protocol for the evaluation of prepulse inhibition of the startle response in CD1-Swiss male mice after a single dose of the hallucinogenic drug DOI.
Collapse
Affiliation(s)
- Paula Unzueta-Larrinaga
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Leyre Urigüen
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain.
| |
Collapse
|
12
|
Talvio K, Minkeviciene R, Townsley KG, Achuta VS, Huckins LM, Corcoran P, Brennand KJ, Castrén ML. Reduced LYNX1 expression in transcriptome of human iPSC-derived neural progenitors modeling fragile X syndrome. Front Cell Dev Biol 2022; 10:1034679. [PMID: 36506088 PMCID: PMC9731341 DOI: 10.3389/fcell.2022.1034679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Lack of FMR1 protein results in fragile X syndrome (FXS), which is the most common inherited intellectual disability syndrome and serves as an excellent model disease to study molecular mechanisms resulting in neuropsychiatric comorbidities. We compared the transcriptomes of human neural progenitors (NPCs) generated from patient-derived induced pluripotent stem cells (iPSCs) of three FXS and three control male donors. Altered expression of RAD51C, PPIL3, GUCY1A2, MYD88, TRAPPC4, LYNX1, and GTF2A1L in FXS NPCs suggested changes related to triplet repeat instability, RNA splicing, testes development, and pathways previously shown to be affected in FXS. LYNX1 is a cholinergic brake of tissue plasminogen activator (tPA)-dependent plasticity, and its reduced expression was consistent with augmented tPA-dependent radial glial process growth in NPCs derived from FXS iPSC lines. There was evidence of human iPSC line donor-dependent variation reflecting potentially phenotypic variation. NPCs derived from an FXS male with concomitant epilepsy expressed differently several epilepsy-related genes, including genes shown to cause the auditory epilepsy phenotype in the murine model of FXS. Functional enrichment analysis highlighted regulation of insulin-like growth factor pathway in NPCs modeling FXS with epilepsy. Our results demonstrated potential of human iPSCs in disease modeling for discovery and development of therapeutic interventions by showing early gene expression changes in FXS iPSC-derived NPCs consistent with the known pathophysiological changes in FXS and by revealing disturbed FXS progenitor growth linked to reduced expression of LYNX1, suggesting dysregulated cholinergic system.
Collapse
Affiliation(s)
- Karo Talvio
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rimante Minkeviciene
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kayla G. Townsley
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Padraic Corcoran
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kristen J. Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, United States,Department of Genetics, Yale University, New Haven, CT, United States
| | - Maija L. Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Maija L. Castrén,
| |
Collapse
|
13
|
Kat R, Kas MJH. Largely unaffected auditory and visual sensory processing phenotypes in the evoked potentials of Fmr1 KO2 mice. Eur J Neurosci 2022; 56:5260-5273. [PMID: 36017614 PMCID: PMC9826194 DOI: 10.1111/ejn.15808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/11/2023]
Abstract
Sensory sensitivity symptoms are common in autism spectrum disorders and fragile X syndrome. Mainly in the auditory modality, disturbed processing has been found in both fragile X patients and the corresponding genetic mouse model, the Fmr1 knockout mouse. Here, we tried to replicate the auditory deficits and assess whether also visual processing is affected, using electroencephalography readouts under freely behaving conditions in the second-generation Fmr1 knockout mice. No differences between wild-type and knockout animals were found in single auditory and visual evoked potentials in response to pure sine tones and full-field light flashes. Visual sensory gating was enhanced in the early but not the late components of the evoked potentials, but no changes were found in auditory sensory gating. The higher harmonics of the synchronisation response to flickering visual stimuli seemed to be reduced with 10, but not 20 or 40 Hz, stimulation. However, this effect was not reproduced in an independent second cohort of animals. No synchronisation differences were found in response to a chirp stimulus, of which the frequency steadily increased. Taken together, this study could not reproduce earlier reported increased amplitudes in auditory responses, nor could it convincingly show that synchronisation deficits found to be present in the auditory modality also existed in the visual modality. The discrepancies within this study as well as between various studies assessing sensory processing in the Fmr1 KO raise questions about the external validity of these phenotypes and warrant careful interpretation of these phenotypes.
Collapse
Affiliation(s)
- Renate Kat
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| |
Collapse
|
14
|
Wilde M, Constantin L, Thorne PR, Montgomery JM, Scott EK, Cheyne JE. Auditory processing in rodent models of autism: a systematic review. J Neurodev Disord 2022; 14:48. [PMID: 36042393 PMCID: PMC9429780 DOI: 10.1186/s11689-022-09458-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
Autism is a complex condition with many traits, including differences in auditory sensitivity. Studies in human autism are plagued by the difficulty of controlling for aetiology, whereas studies in individual rodent models cannot represent the full spectrum of human autism. This systematic review compares results in auditory studies across a wide range of established rodent models of autism to mimic the wide range of aetiologies in the human population. A search was conducted in the PubMed and Web of Science databases to find primary research articles in mouse or rat models of autism which investigate central auditory processing. A total of 88 studies were included. These used non-invasive measures of auditory function, such as auditory brainstem response recordings, cortical event-related potentials, electroencephalography, and behavioural tests, which are translatable to human studies. They also included invasive measures, such as electrophysiology and histology, which shed insight on the origins of the phenotypes found in the non-invasive studies. The most consistent results across these studies were increased latency of the N1 peak of event-related potentials, decreased power and coherence of gamma activity in the auditory cortex, and increased auditory startle responses to high sound levels. Invasive studies indicated loss of subcortical inhibitory neurons, hyperactivity in the lateral superior olive and auditory thalamus, and reduced specificity of responses in the auditory cortex. This review compares the auditory phenotypes across rodent models and highlights those that mimic findings in human studies, providing a framework and avenues for future studies to inform understanding of the auditory system in autism.
Collapse
Affiliation(s)
- Maya Wilde
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lena Constantin
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter R Thorne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Section of Audiology, School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
15
|
Yamazaki M, Arai T, Yarimizu J, Matsumoto M. 5-HT5A Receptor Antagonist ASP5736 Ameliorates Several Abnormal Behaviors in an Fmr1-Targeted Transgenic Male Rat Model of Fragile X Syndrome. Int J Neuropsychopharmacol 2022; 25:786-793. [PMID: 35882205 PMCID: PMC9515134 DOI: 10.1093/ijnp/pyac041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/24/2022] [Accepted: 07/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a genetic condition that causes a range of developmental problems, including intellectual disability, aggressive behavior, anxiety, abnormal sensory processing, and cognitive impairment. Despite intensive preclinical research in Fmr1-targeted transgenic mice, an effective treatment for FXS has yet to be developed. We previously demonstrated that ASP5736, a 5-Hydroxytryptamine (serotonin) receptor 5A receptor antagonist, ameliorated scopolamine-induced working memory deficits in mice, reference memory impairment in aged rats, and methamphetamine-induced positive symptoms and phencyclidine-induced cognitive impairment in animal models of schizophrenia. We hypothesized that ASP5736 may be effective for ameliorating similar behavior deficits in male Fmr1-targeted transgenic rats as a preclinical model of FXS. METHODS We evaluated the effect of acute oral administration of ASP5736 on the abnormal behavior of hyperactivity (0.01, 0.1 mg/kg), prepulse inhibition (0.01, 0.03, 0.1 mg/kg), and the novel object recognition task (0.1 mg/kg) in Frmr1-knockout (KO) rats. RESULTS Fmr1-KO rats showed body weight gain, hyperactivity, abnormal sensory motor gating, and cognitive impairment. ASP5736 (0.1 mg/kg) reversed the hyperactivity and ameliorated the sensory motor gating deficits (0.03-0.1 mg/kg). ASP5736 (0.01 mg/kg) also improved cognitive impairment. CONCLUSIONS ASP5736 is a potential drug candidate for FXS. Further studies are needed to confirm its clinical efficacy.
Collapse
Affiliation(s)
- Mayako Yamazaki
- Correspondence: Mayako Yamazaki, PhD, Research Fellow, Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan ()
| | - Takatomo Arai
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Junko Yarimizu
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Mitsuyuki Matsumoto
- Department of Neuroscience, Drug Discovery Research, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan,Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| |
Collapse
|
16
|
Kat R, Arroyo-Araujo M, de Vries RBM, Koopmans MA, de Boer SF, Kas MJH. Translational validity and methodological underreporting in animal research: A systematic review and meta-analysis of the Fragile X syndrome (Fmr1 KO) rodent model. Neurosci Biobehav Rev 2022; 139:104722. [PMID: 35690123 DOI: 10.1016/j.neubiorev.2022.104722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Predictive models are essential for advancing knowledge of brain disorders. High variation in study outcomes hampers progress. To address the validity of predictive models, we performed a systematic review and meta-analysis on behavioural phenotypes of the knock-out rodent model for Fragile X syndrome according to the PRISMA reporting guidelines. In addition, factors accountable for the heterogeneity between findings were analyzed. The knock-out model showed good translational validity and replicability for hyperactivity, cognitive and seizure phenotypes. Despite low replicability, translational validity was also found for social behaviour and sensory sensitivity, but not for attention, aggression and cognitive flexibility. Anxiety, acoustic startle and prepulse inhibition phenotypes, despite low replicability, were opposite to patient symptomatology. Subgroup analyses for experimental factors moderately explain the low replicability, these analyses were hindered by under-reporting of methodologies and environmental conditions. Together, the model has translational validity for most clinical phenotypes, but caution must be taken due to low effect sizes and high inter-study variability. These findings should be considered in view of other rodent models in preclinical research.
Collapse
Affiliation(s)
- Renate Kat
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - María Arroyo-Araujo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Rob B M de Vries
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Centre, Geert Groteplein Zuid 21, 6525 EZ Nijmegen, the Netherlands.
| | - Marthe A Koopmans
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Sietse F de Boer
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
17
|
Holley A, Shedd A, Boggs A, Lovelace J, Erickson C, Gross C, Jankovic M, Razak K, Huber K, Gibson JR. A sound-driven cortical phase-locking change in the Fmr1 KO mouse requires Fmr1 deletion in a subpopulation of brainstem neurons. Neurobiol Dis 2022; 170:105767. [PMID: 35588990 PMCID: PMC9273231 DOI: 10.1016/j.nbd.2022.105767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Sensory impairments commonly occur in patients with autism or intellectual disability. Fragile X syndrome (FXS) is one form of intellectual disability that is often comorbid with autism. In electroencephalographic (EEG) recordings obtained from humans with FXS, the ability of cortical regions to consistently synchronize, or “phase-lock”, to modulated auditory stimuli is reduced compared to that of typically developing individuals. At the same time, less time-locked, “non-phase-locked” power induced by sounds is higher. The same changes occur in the Fmr1 knockout (KO) mouse – an animal model of FXS. We determined if Fmr1 deletion in a subset of brainstem auditory neurons plays any role in these EEG changes in the mouse. Methods: We reinstated FMRP expression in a subpopulation of brainstem auditory neurons in an otherwise Fmr1 KO control (conditional on; cON Fmr1) mouse and used EEG recordings to determine if reinstatement normalized, or “rescued”, the phase-locking phenotype observed in the cON Fmr1 mouse. In determining rescue, this also meant that Fmr1 deletion in the same neuron population was necessary for the phenotype to occur. Results: We find that Fmr1 reinstatement in a subset of brainstem neurons rescues certain aspects of the phase-locking phenotype but does not rescue the increase in non-phase-locked power. Unexpectedly, not all electrophysiological phenotypes observed in the Fmr1 KO were observed in the cON Fmr1 mouse used for the reinstatement experiments, and this was likely due to residual expression of FMRP in these Fmr1 KO controls. Conclusions: Fmr1 deletion in brainstem neurons is necessary for certain aspects of the decreased phase-locking phenotype in the Fmr1 KO, but not necessary for the increase in non-phase-locked power induced by a sound. The most likely brainstem structure underlying these results is the inferior colliculus. We also demonstrate that low levels of FMRP can rescue some EEG phenotypes but not others. This latter finding provides a foundation for how symptoms in FXS individuals may vary due to FMRP levels and that reinstatement of low FMRP levels may be sufficient to alleviate particular symptoms.
Collapse
Affiliation(s)
- AndrewJ Holley
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Aleya Shedd
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Anna Boggs
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jonathan Lovelace
- Department of Psychology, University of California, Riverside, CA 92521, USA
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Miranda Jankovic
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Khaleel Razak
- Department of Psychology, University of California, Riverside, CA 92521, USA
| | - Kimberly Huber
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Jay R Gibson
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA.
| |
Collapse
|
18
|
Capellán R, Moreno-Fernández M, Orihuel J, Roura-Martínez D, Ucha M, Ambrosio E, Higuera-Matas A. Ex vivo 1H-MRS brain metabolic profiling in a two-hit model of neurodevelopmental disorders: Prenatal immune activation and peripubertal stress. Schizophr Res 2022; 243:232-240. [PMID: 31787482 DOI: 10.1016/j.schres.2019.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/28/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023]
Abstract
Prenatal infections are environmental risk factors for neurodevelopmental disorders. In addition, traumatic experiences during adolescence in individuals exposed to infections during gestation could increase the risk of schizophrenia. It is of the most crucial importance to discover potential markers of the disease in its early stages or before its onset, so that therapeutic strategies may be implemented. In the present study, we combined a proposed two-hit model of schizophrenia-related symptoms with proton magnetic resonance spectroscopy (1H-MRS) to discover potential biomarkers. To this end, we i.p. injected 100 μg/kg/ml of lipopolysaccharide (LPS) or saline on gestational days 15 and 16 to pregnant rats. Their male offspring were then subjected to five episodes of stress or handling on alternate days during postnatal days (PND) 28-38. Once the animals reached adulthood (PND70), we evaluated prepulse inhibition (PPI). At PND90, we performed an ex vivo 1H-MRS study in the cortex and striatum. While we did not detect alterations in PPI at the age tested, we found neurochemical disturbances induced by LPS, stress or (more interestingly) their interaction. LPS decreased glucose levels in the cortex and striatum and altered glutamate, glutamine and N-acetylaspartate levels. Glutamate and glutamine levels in the left (but not right) striatum were differentially affected by prenatal LPS exposure in a manner that depended on stress experiences. These results suggest that alterations in the glutamate cycle in the striatum could be used as early markers of developmental disorders.
Collapse
Affiliation(s)
- Roberto Capellán
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Mario Moreno-Fernández
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Javier Orihuel
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain.
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/Juan del Rosal 10, Madrid, Spain.
| |
Collapse
|
19
|
Scaramella C, Alzagatiti JB, Creighton C, Mankatala S, Licea F, Winter GM, Emtage J, Wisnieski JR, Salazar L, Hussain A, Lee FM, Mammootty A, Mammootty N, Aldujaili A, Runnberg KA, Hernandez D, Zimmerman-Thompson T, Makwana R, Rouvere J, Tahmasebi Z, Zavradyan G, Campbell CS, Komaranchath M, Carmona J, Trevitt J, Glanzman D, Roberts AC. Bisphenol A Exposure Induces Sensory Processing Deficits in Larval Zebrafish during Neurodevelopment. eNeuro 2022; 9:ENEURO.0020-22.2022. [PMID: 35508370 PMCID: PMC9116930 DOI: 10.1523/eneuro.0020-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Because of their ex utero development, relatively simple nervous system, translucency, and availability of tools to investigate neural function, larval zebrafish are an exceptional model for understanding neurodevelopmental disorders and the consequences of environmental toxins. Furthermore, early in development, zebrafish larvae easily absorb chemicals from water, a significant advantage over methods required to expose developing organisms to chemical agents in utero Bisphenol A (BPA) and BPA analogs are ubiquitous environmental toxins with known molecular consequences. All humans have measurable quantities of BPA in their bodies. Most concerning, the level of BPA exposure is correlated with neurodevelopmental difficulties in people. Given the importance of understanding the health-related effects of this common toxin, we have exploited the experimental advantages of the larval zebrafish model system to investigate the behavioral and anatomic effects of BPA exposure. We discovered that BPA exposure early in development leads to deficits in the processing of sensory information, as indicated by BPA's effects on prepulse inhibition (PPI) and short-term habituation (STH) of the C-start reflex. We observed no changes in locomotion, thigmotaxis, and repetitive behaviors (circling). Despite changes in sensory processing, we detected no regional or whole-brain volume changes. Our results show that early BPA exposure can induce sensory processing deficits, as revealed by alterations in simple behaviors that are mediated by a well-defined neural circuit.
Collapse
Affiliation(s)
- Courtney Scaramella
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Joseph B Alzagatiti
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Christopher Creighton
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Samandeep Mankatala
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Fernando Licea
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gabriel M Winter
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Jasmine Emtage
- Department of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Joseph R Wisnieski
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Luis Salazar
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Anjum Hussain
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | - Faith M Lee
- Department of Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Asma Mammootty
- Saint Louis University School of Medicine, St. Louis, MO 63104
| | | | - Andrew Aldujaili
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristine A Runnberg
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Daniela Hernandez
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | | | - Rikhil Makwana
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Julien Rouvere
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Zahra Tahmasebi
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - Gohar Zavradyan
- Department of Neuroscience, University of California, Riverside, Riverside, CA 92521
| | | | - Meghna Komaranchath
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Javier Carmona
- Department of Physics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jennifer Trevitt
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | - David Glanzman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
- Integrative Center for Learning and Memory, Brain Research Institute, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Adam C Roberts
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| |
Collapse
|
20
|
Nolan SO, Hodges SL, Binder MS, Smith GD, Okoh JT, Jefferson TS, Escobar B, Lugo JN. Dietary rescue of adult behavioral deficits in the Fmr1 knockout mouse. PLoS One 2022; 17:e0262916. [PMID: 35089938 PMCID: PMC8797197 DOI: 10.1371/journal.pone.0262916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022] Open
Abstract
The current study aimed to further address important questions regarding the therapeutic efficacy of omega-3 fatty acids for various behavioral and neuroimmune aspects of the Fmr1 phenotype. To address these questions, our experimental design utilized two different omega-3 fatty acid administration timepoints, compared to both standard laboratory chow controls ("Standard") and a diet controlling for the increase in fat content ("Control Fat"). In the first paradigm, post-weaning supplementation (after postnatal day 21) with the omega-3 fatty acid diet ("Omega-3") reversed deficits in startle threshold, but not deficits in prepulse inhibition, and the effect on startle threshold was not specific to the Omega-3 diet. However, post-weaning supplementation with both experimental diets also impaired acquisition of a fear response, recall of the fear memory and contextual fear conditioning compared to the Standard diet. The post-weaning Omega-3 diet reduced hippocampal expression of IL-6 and this reduction of IL-6 was significantly associated with diminished performance in the fear conditioning task. In the perinatal experimental paradigm, the Omega-3 diet attenuated hyperactivity and acquisition of a fear response. Additionally, perinatal exposure to the Control Fat diet (similar to a "Western" diet) further diminished nonsocial anxiety in the Fmr1 knockout. This study provides significant evidence that dietary fatty acids throughout the lifespan can significantly impact the behavioral and neuroimmune phenotype of the Fmr1 knockout model.
Collapse
Affiliation(s)
- Suzanne O. Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Samantha L. Hodges
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| | - Matthew S. Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Gregory D. Smith
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| | - James T. Okoh
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Taylor S. Jefferson
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Brianna Escobar
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
21
|
Clipperton-Allen AE, Swick H, Botero V, Aceti M, Ellegood J, Lerch JP, Page DT. Pten haploinsufficiency causes desynchronized growth of brain areas involved in sensory processing. iScience 2022; 25:103796. [PMID: 35198865 PMCID: PMC8844819 DOI: 10.1016/j.isci.2022.103796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/25/2021] [Accepted: 01/18/2022] [Indexed: 01/16/2023] Open
Abstract
How changes in brain scaling relate to altered behavior is an important question in neurodevelopmental disorder research. Mice with germline Pten haploinsufficiency (Pten +/-) closely mirror the abnormal brain scaling and behavioral deficits seen in humans with macrocephaly/autism syndrome, which is caused by PTEN mutations. We explored whether deviation from normal patterns of growth can predict behavioral abnormalities. Brain regions associated with sensory processing (e.g., pons and inferior colliculus) had the biggest deviations from expected volume. While Pten +/- mice showed little or no abnormal behavior on most assays, both sexes showed sensory deficits, including impaired sensorimotor gating and hyporeactivity to high-intensity stimuli. Developmental analysis of this phenotype showed sexual dimorphism for hyporeactivity. Mapping behavioral phenotypes of Pten +/- mice onto relevant brain regions suggested abnormal behavior is likely when associated with relatively enlarged brain regions, while unchanged or relatively decreased brain regions have little predictive value.
Collapse
Affiliation(s)
| | - Hannah Swick
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Valentina Botero
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA,Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL 33458, USA
| | - Massimiliano Aceti
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA,Doctoral Program in Chemical and Biological Sciences, The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL 33458, USA,Corresponding author
| |
Collapse
|
22
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
23
|
Isenstein EL, Grosman HE, Guillory SB, Zhang Y, Barkley S, McLaughlin CS, Levy T, Halpern D, Siper PM, Buxbaum JD, Kolevzon A, Foss-Feig JH. Neural Markers of Auditory Response and Habituation in Phelan-McDermid Syndrome. Front Neurosci 2022; 16:815933. [PMID: 35592263 PMCID: PMC9110667 DOI: 10.3389/fnins.2022.815933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Phelan-McDermid Syndrome (PMS) is a rare genetic disorder caused by deletion or sequence variation in the SHANK3 gene at terminal chromosome 22 that confers high likelihood of comorbid autism spectrum disorder (ASD). Whereas individuals with idiopathic ASD (iASD) can demonstrate diverse patterns of sensory differences, PMS is mainly characterized by sensory hyporesponsiveness. This study used electrophysiology and a passive auditory habituation paradigm to test for neural markers of hyporesponsiveness. EEG was recorded from 15 individuals with PMS, 15 with iASD, and 16 with neurotypical development (NT) while a series of four consecutive 1,000 Hz tones was repeatedly presented. We found intact N1, P2, and N2 event-related potentials (ERPs) and habituation to simple auditory stimuli, both in individuals with iASD and in those with PMS. Both iASD and PMS groups showed robust responses to the initial tone and decaying responses to each subsequent tone, at levels comparable to the NT control group. However, in PMS greater initial N1 amplitude and habituation were associated with auditory hypersensitivity, and P2 habituation correlated with ASD symptomatology. Additionally, further classification of the PMS cohort into genetic groupings revealed dissociation of initial P2 amplitude and habituation of N1 based on whether the deletions included additional genes beyond solely SHANK3 and those not thought to contribute to phenotype. These results provide preliminary insight into early auditory processing in PMS and suggest that while neural response and habituation is generally preserved in PMS, genotypic and phenotypic characteristics may drive some variability. These initial findings provide early evidence that the robust pattern of behavioral hyporesponsiveness in PMS may be due, at least in audition, to higher order factors.
Collapse
Affiliation(s)
- Emily L Isenstein
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Hannah E Grosman
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, United States
| | - Sylvia B Guillory
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yian Zhang
- Center for Neural Science, New York University, New York, NY, United States
| | - Sarah Barkley
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher S McLaughlin
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tess Levy
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Danielle Halpern
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Paige M Siper
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joseph D Buxbaum
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alexander Kolevzon
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jennifer H Foss-Feig
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Rais M, Lovelace JW, Shuai XS, Woodard W, Bishay S, Estrada L, Sharma AR, Nguy A, Kulinich A, Pirbhoy PS, Palacios AR, Nelson DL, Razak KA, Ethell IM. Functional consequences of postnatal interventions in a mouse model of Fragile X syndrome. Neurobiol Dis 2022; 162:105577. [PMID: 34871737 DOI: 10.1016/j.nbd.2021.105577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a leading genetic cause of autism and intellectual disability with cortical hyperexcitability and sensory hypersensitivity attributed to loss and hypofunction of inhibitory parvalbumin-expressing (PV) cells. Our studies provide novel insights into the role of excitatory neurons in abnormal development of PV cells during a postnatal period of inhibitory circuit refinement. METHODS To achieve Fragile X mental retardation gene (Fmr1) deletion and re-expression in excitatory neurons during the postnatal day (P)14-P21 period, we generated CreCaMKIIa/Fmr1Flox/y (cOFF) and CreCaMKIIa/Fmr1FloxNeo/y (cON) mice, respectively. Cortical phenotypes were evaluated in adult mice using biochemical, cellular, clinically relevant electroencephalogram (EEG) and behavioral tests. RESULTS We found that similar to global Fmr1 KO mice, the density of PV-expressing cells, their activation, and sound-evoked gamma synchronization were impaired in cOFF mice, but the phenotypes were improved in cON mice. cOFF mice also showed enhanced cortical gelatinase activity and baseline EEG gamma power, which were reduced in cON mice. In addition, TrkB phosphorylation and PV levels were lower in cOFF mice, which also showed increased locomotor activity and anxiety-like behaviors. Remarkably, when FMRP levels were restored in only excitatory neurons during the P14-P21 period, TrkB phosphorylation and mouse behaviors were also improved. CONCLUSIONS These results indicate that postnatal deletion or re-expression of FMRP in excitatory neurons is sufficient to elicit or ameliorate structural and functional cortical deficits, and abnormal behaviors in mice, informing future studies about appropriate treatment windows and providing fundamental insights into the cellular mechanisms of cortical circuit dysfunction in FXS.
Collapse
Affiliation(s)
- Maham Rais
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| | - Xinghao S Shuai
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Walker Woodard
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Steven Bishay
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Leo Estrada
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Ashwin R Sharma
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Austin Nguy
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Anna Kulinich
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Patricia S Pirbhoy
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Arnold R Palacios
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | | | - Khaleel A Razak
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
25
|
Perche O, Lesne F, Patat A, Raab S, Twyman R, Ring RH, Briault S. Electroretinography and contrast sensitivity, complementary translational biomarkers of sensory deficits in the visual system of individuals with fragile X syndrome. J Neurodev Disord 2021; 13:45. [PMID: 34625026 PMCID: PMC8501595 DOI: 10.1186/s11689-021-09375-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disturbances in sensory function are an important clinical feature of neurodevelopmental disorders such as fragile X syndrome (FXS). Evidence also directly connects sensory abnormalities with the clinical expression of behavioral impairments in individuals with FXS; thus, positioning sensory function as a potential clinical target for the development of new therapeutics. Using electroretinography (ERG) and contrast sensitivity (CS), we previously reported the presence of sensory deficits in the visual system of the Fmr1-/y genetic mouse model of FXS. The goals of the current study were two-folds: (1) to assess the feasibility of measuring ERG and CS as a biomarker of sensory deficits in individuals with FXS, and (2) to investigate whether the deficits revealed by ERG and CS in Fmr1-/y mice translate to humans with FXS. METHODS Both ERG and CS were measured in a cohort of male individuals with FXS (n = 20, 18-45 years) and age-matched healthy controls (n = 20, 18-45 years). Under light-adapted conditions, and using both single flash and flicker (repeated train of flashes) stimulation protocols, retinal function was recorded from individual subjects using a portable, handheld, full-field flash ERG device (RETeval®, LKC Technologies Inc., Gaithersburg, MD, USA). CS was assessed in each subject using the LEA SYMBOLS® low-contrast test (Good-Lite, Elgin, IL, USA). RESULTS Data recording was successfully completed for ERG and assessment of CS in most individuals from both cohorts demonstrating the feasibility of these methods for use in the FXS population. Similar to previously reported findings from the Fmr1-/y genetic mouse model, individuals with FXS were found to exhibit reduced b-wave and flicker amplitude in ERG and an impaired ability to discriminate contrasts compared to healthy controls. CONCLUSIONS This study demonstrates the feasibility of using ERG and CS for assessing visual deficits in FXS and establishes the translational validity of the Fmr1-/y mice phenotype to individuals with FXS. By including electrophysiological and functional readouts, the results of this study suggest the utility of both ERG and CS (ERG-CS) as complementary translational biomarkers for characterizing sensory abnormalities found in FXS, with potential applications to the clinical development of novel therapeutics that target sensory function abnormalities to treat core symptomatology in FXS. TRIAL REGISTRATION ID-RCB number 2019-A01015-52 registered on the 17 May 2019.
Collapse
Affiliation(s)
- Olivier Perche
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France
- UMR7355, Centre National de la Recherche Scientifique (CNRS), Orléans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
| | | | - Alain Patat
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
| | | | | | - Robert H Ring
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sylvain Briault
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France.
- UMR7355, Centre National de la Recherche Scientifique (CNRS), Orléans, France.
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France.
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK.
| |
Collapse
|
26
|
Nomura T. Interneuron Dysfunction and Inhibitory Deficits in Autism and Fragile X Syndrome. Cells 2021; 10:2610. [PMID: 34685590 PMCID: PMC8534049 DOI: 10.3390/cells10102610] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
The alteration of excitatory-inhibitory (E-I) balance has been implicated in various neurological and psychiatric diseases, including autism spectrum disorder (ASD). Fragile X syndrome (FXS) is a single-gene disorder that is the most common known cause of ASD. Understanding the molecular and physiological features of FXS is thought to enhance our knowledge of the pathophysiology of ASD. Accumulated evidence implicates deficits in the inhibitory circuits in FXS that tips E-I balance toward excitation. Deficits in interneurons, the main source of an inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), have been reported in FXS, including a reduced number of cells, reduction in intrinsic cellular excitability, or weaker synaptic connectivity. Manipulating the interneuron activity ameliorated the symptoms in the FXS mouse model, which makes it reasonable to conceptualize FXS as an interneuronopathy. While it is still poorly understood how the developmental profiles of the inhibitory circuit go awry in FXS, recent works have uncovered several developmental alterations in the functional properties of interneurons. Correcting disrupted E-I balance by potentiating the inhibitory circuit by targeting interneurons may have a therapeutic potential in FXS. I will review the recent evidence about the inhibitory alterations and interneuron dysfunction in ASD and FXS and will discuss the future directions of this field.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
27
|
Reversal of synaptic and behavioral deficits in a 16p11.2 duplication mouse model via restoration of the GABA synapse regulator Npas4. Mol Psychiatry 2021; 26:1967-1979. [PMID: 32099100 PMCID: PMC7483162 DOI: 10.1038/s41380-020-0693-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/09/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
The human 16p11.2 gene locus is a hot spot for copy number variations, which predispose carriers to a range of neuropsychiatric phenotypes. Microduplications of 16p11.2 are associated with autism spectrum disorder (ASD), intellectual disability (ID), and schizophrenia (SZ). Despite the debilitating nature of 16p11.2 duplications, the underlying molecular mechanisms remain poorly understood. Here we performed a comprehensive behavioral characterization of 16p11.2 duplication mice (16p11.2dp/+) and identified social and cognitive deficits reminiscent of ASD and ID phenotypes. 16p11.2dp/+ mice did not exhibit the SZ-related sensorimotor gating deficits, psychostimulant-induced hypersensitivity, or motor impairment. Electrophysiological recordings of 16p11.2dp/+ mice found deficient GABAergic synaptic transmission and elevated neuronal excitability in the prefrontal cortex (PFC), a brain region critical for social and cognitive functions. RNA-sequencing identified genome-wide transcriptional aberrance in the PFC of 16p11.2dp/+ mice, including downregulation of the GABA synapse regulator Npas4. Restoring Npas4 expression in PFC of 16p11.2dp/+ mice ameliorated the social and cognitive deficits and reversed GABAergic synaptic impairment and neuronal hyperexcitability. These findings suggest that prefrontal cortical GABAergic synaptic circuitry and Npas4 are strongly implicated in 16p11.2 duplication pathology, and may represent potential targets for therapeutic intervention in ASD.
Collapse
|
28
|
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism. The condition stems from loss of fragile X mental retardation protein (FMRP), which regulates a wide range of ion channels via translational control, protein-protein interactions and second messenger pathways. Rapidly increasing evidence demonstrates that loss of FMRP leads to numerous ion channel dysfunctions (that is, channelopathies), which in turn contribute significantly to FXS pathophysiology. Consistent with this, pharmacological or genetic interventions that target dysregulated ion channels effectively restore neuronal excitability, synaptic function and behavioural phenotypes in FXS animal models. Recent studies further support a role for direct and rapid FMRP-channel interactions in regulating ion channel function. This Review lays out the current state of knowledge in the field regarding channelopathies and the pathogenesis of FXS, including promising therapeutic implications.
Collapse
|
29
|
Involvement of the thalamic reticular nucleus in prepulse inhibition of acoustic startle. Transl Psychiatry 2021; 11:241. [PMID: 33895779 PMCID: PMC8068728 DOI: 10.1038/s41398-021-01363-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Thalamic reticular nucleus (TRN) is a group of inhibitory neurons surrounding the thalamus. Due to its important role in sensory information processing, TRN is considered as the target nucleus for the pathophysiological investigation of schizophrenia and autism spectrum disorder (ASD). Prepulse inhibition (PPI) of acoustic startle response, a phenomenon that strong stimulus-induced startle reflex is reduced by a weaker prestimulus, is always found impaired in schizophrenia and ASD. But the role of TRN in PPI modulation remains unknown. Here, we report that parvalbumin-expressing (PV+) neurons in TRN are activated by sound stimulation of PPI paradigm. Chemogenetic inhibition of PV+ neurons in TRN impairs PPI performance. Further investigations on the mechanism suggest a model of burst-rebound burst firing in TRN-auditory thalamus (medial geniculate nucleus, MG) circuitry. The burst firing is mediated by T-type calcium channel in TRN, and rebound burst firing needs the participation of GABAB receptor in MG. Overall, these findings support the involvement of TRN in PPI modulation.
Collapse
|
30
|
Serotonin 5-HT 1B receptor-mediated behavior and binding in mice with the overactive and dysregulated serotonin transporter Ala56 variant. Psychopharmacology (Berl) 2021; 238:1111-1120. [PMID: 33511450 PMCID: PMC8728944 DOI: 10.1007/s00213-020-05758-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
RATIONALE Elevated whole-blood serotonin (5-HT) is a robust biomarker in ~ 30% of patients with autism spectrum disorders, in which repetitive behavior is a core symptom. Furthermore, elevated whole-blood 5-HT has also been described in patients with pediatric obsessive-compulsive disorder. The 5-HT1B receptor is associated with repetitive behaviors seen in both disorders. Chronic blockade of serotonin transporter (SERT) reduces 5-HT1B receptor levels in the orbitofrontal cortex (OFC) and attenuates the sensorimotor deficits and hyperactivity seen with the 5-HT1B agonist RU24969. We hypothesized that enhanced SERT function would increase 5-HT1B receptor levels in OFC and enhance sensorimotor deficits and hyperactivity induced by RU24969. OBJECTIVES We examined the impact of the SERT Ala56 mutation, which leads to enhanced SERT function, on 5-HT1B receptor binding and 5-HT1B-mediated sensorimotor deficits. METHODS Specific binding to 5-HT1B receptors was measured in OFC and striatum of naïve SERT Ala56 or wild-type mice. The impact of the 5-HT1A/1B receptor agonist RU24969 on prepulse inhibition (PPI) of startle, hyperactivity, and expression of cFos was examined. RESULTS While enhanced SERT function increased 5-HT1B receptor levels in OFC of Ala56 mice, RU24969-induced PPI deficits and hyperlocomotion were not different between genotypes. Baseline levels of cFos expression were not different between groups. RU24969 increased cFos expression in OFC of wild-types and decreased cFos in the striatum. CONCLUSIONS While reducing 5-HT1B receptors may attenuate sensorimotor gating deficits, increased 5-HT1B levels in SERT Ala56 mice do not necessarily exacerbate these deficits, potentially due to compensations during neural circuit development in this model system.
Collapse
|
31
|
Ayub R, Sun KL, Flores RE, Lam VT, Jo B, Saggar M, Fung LK. Thalamocortical connectivity is associated with autism symptoms in high-functioning adults with autism and typically developing adults. Transl Psychiatry 2021; 11:93. [PMID: 33536431 PMCID: PMC7859407 DOI: 10.1038/s41398-021-01221-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
Alterations in sensorimotor functions are common in individuals with autism spectrum disorder (ASD). Such aberrations suggest the involvement of the thalamus due to its key role in modulating sensorimotor signaling in the cortex. Although previous research has linked atypical thalamocortical connectivity with ASD, investigations of this association in high-functioning adults with autism spectrum disorder (HFASD) are lacking. Here, for the first time, we investigated the resting-state functional connectivity of the thalamus, medial prefrontal, posterior cingulate, and left dorsolateral prefrontal cortices and its association with symptom severity in two matched cohorts of HFASD. The principal cohort consisted of 23 HFASD (mean[SD] 27.1[8.9] years, 39.1% female) and 20 age- and sex-matched typically developing controls (25.1[7.2] years, 30.0% female). The secondary cohort was a subset of the ABIDE database consisting of 58 HFASD (25.4[7.8] years, 37.9% female) and 51 typically developing controls (24.4[6.7] years, 39.2% female). Using seed-based connectivity analysis, between-group differences were revealed as hyperconnectivity in HFASD in the principal cohort between the right thalamus and bilateral precentral/postcentral gyri and between the right thalamus and the right superior parietal lobule. The former was associated with autism-spectrum quotient in a sex-specific manner, and was further validated in the secondary ABIDE cohort. Altogether, we present converging evidence for thalamocortical hyperconnectivity in HFASD that is associated with symptom severity. Our results fill an important knowledge gap regarding atypical thalamocortical connectivity in HFASD, previously only reported in younger cohorts.
Collapse
Affiliation(s)
- Rafi Ayub
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Kevin L Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Ryan E Flores
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vicky T Lam
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lawrence K Fung
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Robust and replicable measurement for prepulse inhibition of the acoustic startle response. Mol Psychiatry 2021; 26:1909-1927. [PMID: 32144356 PMCID: PMC7483293 DOI: 10.1038/s41380-020-0703-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Measuring animal behavior in the context of experimental manipulation is critical for modeling, and understanding neuropsychiatric disease. Prepulse inhibition of the acoustic startle response (PPI) is a behavioral phenomenon studied extensively for this purpose, but the results of PPI studies are often inconsistent. As a result, the utility of this phenomenon remains uncertain. Here, we deconstruct the phenomenon of PPI and confirm several limitations of the methodology traditionally utilized to describe PPI, including that the underlying startle response has a non-Gaussian distribution, and that the traditional PPI metric changes with different stimuli. We then develop a novel model that reveals PPI to be a combination of the previously appreciated scaling of the startle response, as well as a scaling of sound processing. Using our model, we find no evidence for differences in PPI in a rat model of Fragile-X Syndrome (FXS) compared with wild-type controls. These results in the rat provide a reliable methodology that could be used to clarify inconsistent PPI results in mice and humans. In contrast, we find robust differences between wild-type male and female rats. Our model allows us to understand the nature of these differences, and we find that both the startle-scaling and sound-scaling components of PPI are a function of the baseline startle response. Males and females differ specifically in the startle-scaling, but not the sound-scaling, component of PPI. These findings establish a robust experimental and analytical approach that has the potential to provide a consistent biomarker of brain function.
Collapse
|
33
|
Schaefer TL, Ashworth AA, Tiwari D, Tomasek MP, Parkins EV, White AR, Snider A, Davenport MH, Grainger LM, Becker RA, Robinson CK, Mukherjee R, Williams MT, Gibson JR, Huber KM, Gross C, Erickson CA. GABA A Alpha 2,3 Modulation Improves Select Phenotypes in a Mouse Model of Fragile X Syndrome. Front Psychiatry 2021; 12:678090. [PMID: 34093287 PMCID: PMC8175776 DOI: 10.3389/fpsyt.2021.678090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability. FXS is caused by functional loss of the Fragile X Protein (FXP), also known as Fragile X Mental Retardation Protein (FMRP). In humans and animal models, loss of FXP leads to sensory hypersensitivity, increased susceptibility to seizures and cortical hyperactivity. Several components of the GABAergic system, the major inhibitory system in the brain, are dysregulated in FXS, and thus modulation of GABAergic transmission was suggested and tested as a treatment strategy. However, so far, clinical trials using broad spectrum GABAA or GABAB receptor-specific agonists have not yielded broad improvement of FXS phenotypes in humans. Here, we tested a more selective strategy in Fmr1 knockout (KO) mice using the experimental drug BAER-101, which is a selective GABAA α2/α3 agonist. Our results suggest that BAER-101 reduces hyperexcitability of cortical circuits, partially corrects increased frequency-specific baseline cortical EEG power, reduces susceptibility to audiogenic seizures and improves novel object memory. Other Fmr1 KO-specific phenotypes were not improved by the drug, such as increased hippocampal dendritic spine density, open field activity and marble burying. Overall, this work shows that BAER-101 improves select phenotypes in Fmr1 KO mice and encourages further studies into the efficacy of GABAA-receptor subunit-selective agonists for the treatment of FXS.
Collapse
Affiliation(s)
- Tori L Schaefer
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Amy A Ashworth
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Madison P Tomasek
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Emma V Parkins
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Angela R White
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Andrew Snider
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew H Davenport
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lindsay M Grainger
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Robert A Becker
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chandler K Robinson
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rishav Mukherjee
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael T Williams
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jay R Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Craig A Erickson
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
34
|
Filice F, Janickova L, Henzi T, Bilella A, Schwaller B. The Parvalbumin Hypothesis of Autism Spectrum Disorder. Front Cell Neurosci 2020; 14:577525. [PMID: 33390904 PMCID: PMC7775315 DOI: 10.3389/fncel.2020.577525] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD)-a type of neurodevelopmental disorder-is increasing and is around 2% in North America, Asia, and Europe. Besides the known genetic link, environmental, epigenetic, and metabolic factors have been implicated in ASD etiology. Although highly heterogeneous at the behavioral level, ASD comprises a set of core symptoms including impaired communication and social interaction skills as well as stereotyped and repetitive behaviors. This has led to the suggestion that a large part of the ASD phenotype is caused by changes in a few and common set of signaling pathways, the identification of which is a fundamental aim of autism research. Using advanced bioinformatics tools and the abundantly available genetic data, it is possible to classify the large number of ASD-associated genes according to cellular function and pathways. Cellular processes known to be impaired in ASD include gene regulation, synaptic transmission affecting the excitation/inhibition balance, neuronal Ca2+ signaling, development of short-/long-range connectivity (circuits and networks), and mitochondrial function. Such alterations often occur during early postnatal neurodevelopment. Among the neurons most affected in ASD as well as in schizophrenia are those expressing the Ca2+-binding protein parvalbumin (PV). These mainly inhibitory interneurons present in many different brain regions in humans and rodents are characterized by rapid, non-adaptive firing and have a high energy requirement. PV expression is often reduced at both messenger RNA (mRNA) and protein levels in human ASD brain samples and mouse ASD (and schizophrenia) models. Although the human PVALB gene is not a high-ranking susceptibility/risk gene for either disorder and is currently only listed in the SFARI Gene Archive, we propose and present supporting evidence for the Parvalbumin Hypothesis, which posits that decreased PV level is causally related to the etiology of ASD (and possibly schizophrenia).
Collapse
Affiliation(s)
| | | | | | | | - Beat Schwaller
- Section of Medicine, Anatomy, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
35
|
Loss of
Cntnap2
in the Rat Causes Autism‐Related Alterations in Social Interactions, Stereotypic Behavior, and Sensory Processing. Autism Res 2020; 13:1698-1717. [DOI: 10.1002/aur.2364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
|
36
|
Nguyen AO, Binder DK, Ethell IM, Razak KA. Abnormal development of auditory responses in the inferior colliculus of a mouse model of Fragile X Syndrome. J Neurophysiol 2020; 123:2101-2121. [PMID: 32319849 DOI: 10.1152/jn.00706.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sensory processing abnormalities are frequently associated with autism spectrum disorders, but the underlying mechanisms are unclear. Here we studied auditory processing in a mouse model of Fragile X Syndrome (FXS), a leading known genetic cause of autism and intellectual disability. Both humans with FXS and the Fragile X mental retardation gene (Fmr1) knockout (KO) mouse model show auditory hypersensitivity, with the latter showing a strong propensity for audiogenic seizures (AGS) early in development. Because midbrain abnormalities cause AGS, we investigated whether the inferior colliculus (IC) of the Fmr1 KO mice shows abnormal auditory processing compared with wild-type (WT) controls at specific developmental time points. Using antibodies against neural activity marker c-Fos, we found increased density of c-Fos+ neurons in the IC, but not auditory cortex, of Fmr1 KO mice at P21 and P34 following sound presentation. In vivo single-unit recordings showed that IC neurons of Fmr1 KO mice are hyperresponsive to tone bursts and amplitude-modulated tones during development and show broader frequency tuning curves. There were no differences in rate-level responses or phase locking to amplitude-modulated tones in IC neurons between genotypes. Taken together, these data provide evidence for the development of auditory hyperresponsiveness in the IC of Fmr1 KO mice. Although most human and mouse work in autism and sensory processing has centered on the forebrain, our new findings, along with recent work on the lower brainstem, suggest that abnormal subcortical responses may underlie auditory hypersensitivity in autism spectrum disorders.NEW & NOTEWORTHY Autism spectrum disorders (ASD) are commonly associated with sensory sensitivity issues, but the underlying mechanisms are unclear. This study presents novel evidence for neural correlates of auditory hypersensitivity in the developing inferior colliculus (IC) in Fmr1 knockout (KO) mouse, a mouse model of Fragile X Syndrome (FXS), a leading genetic cause of ASD. Responses begin to show genotype differences between postnatal days 14 and 21, suggesting an early developmental treatment window.
Collapse
Affiliation(s)
- Anna O Nguyen
- Bioengineering Program, University of California, Riverside, California
| | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, California.,Division of Biomedical Sciences, University of California, Riverside, California
| | - Iryna M Ethell
- Graduate Neuroscience Program, University of California, Riverside, California.,Division of Biomedical Sciences, University of California, Riverside, California
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, California.,Psychology Department, University of California, Riverside, California
| |
Collapse
|
37
|
McCullagh EA, Rotschafer SE, Auerbach BD, Klug A, Kaczmarek LK, Cramer KS, Kulesza RJ, Razak KA, Lovelace JW, Lu Y, Koch U, Wang Y. Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB J 2020; 34:3501-3518. [PMID: 32039504 DOI: 10.1096/fj.201902435r] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 01/14/2023]
Abstract
Autism spectrum disorders (ASD) are strongly associated with auditory hypersensitivity or hyperacusis (difficulty tolerating sounds). Fragile X syndrome (FXS), the most common monogenetic cause of ASD, has emerged as a powerful gateway for exploring underlying mechanisms of hyperacusis and auditory dysfunction in ASD. This review discusses examples of disruption of the auditory pathways in FXS at molecular, synaptic, and circuit levels in animal models as well as in FXS individuals. These examples highlight the involvement of multiple mechanisms, from aberrant synaptic development and ion channel deregulation of auditory brainstem circuits, to impaired neuronal plasticity and network hyperexcitability in the auditory cortex. Though a relatively new area of research, recent discoveries have increased interest in auditory dysfunction and mechanisms underlying hyperacusis in this disorder. This rapidly growing body of data has yielded novel research directions addressing critical questions regarding the timing and possible outcomes of human therapies for auditory dysfunction in ASD.
Collapse
Affiliation(s)
- Elizabeth A McCullagh
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA.,Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Sarah E Rotschafer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.,Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Benjamin D Auerbach
- Center for Hearing and Deafness, Department of Communicative Disorders & Sciences, SUNY at Buffalo, Buffalo, NY, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Randy J Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, CA, USA
| | | | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, Berlin, Germany
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
38
|
Kulinich AO, Reinhard SM, Rais M, Lovelace JW, Scott V, Binder DK, Razak KA, Ethell IM. Beneficial effects of sound exposure on auditory cortex development in a mouse model of Fragile X Syndrome. Neurobiol Dis 2020; 134:104622. [PMID: 31698054 DOI: 10.1016/j.nbd.2019.104622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common genetic cause of autism and intellectual disability. Fragile X mental retardation gene (Fmr1) knock-out (KO) mice display core deficits of FXS, including abnormally increased sound-evoked responses, and show a delayed development of parvalbumin (PV) cells. Here, we present the surprising result that sound exposure during early development reduces correlates of auditory hypersensitivity in Fmr1 KO mice. METHODS Fmr1 KO and wild-type (WT) mice were raised in a sound-attenuated environment (AE) or sound-exposed (SE) to 14 kHz tones (5 Hz repetition rate) from P9 until P21. At P21-P23, event-related potentials (ERPs), dendritic spine density, PV expression and phosphorylation of tropomyosin receptor kinase B (TrkB) were analyzed in the auditory cortex of AE and SE mice. RESULTS Enhanced N1 amplitude of ERPs, impaired PV cell development, and increased spine density in layers (L) 2/3 and L5/6 excitatory neurons were observed in AE Fmr1 KO compared to WT mice. In contrast, developmental sound exposure normalized ERP N1 amplitude, density of PV cells and dendritic spines in SE Fmr1 KO mice. Finally, TrkB phosphorylation was reduced in AE Fmr1 KO, but was enhanced in SE Fmr1 KO mice, suggesting that BDNF-TrkB signaling may be regulated by sound exposure to influence PV cell development. CONCLUSIONS Our results demonstrate that sound exposure, but not attenuation, during early developmental window restores molecular, cellular and functional properties in the auditory cortex of Fmr1 KO mice, and suggest this approach as a potential treatment for sensory phenotypes in FXS.
Collapse
Affiliation(s)
- Anna O Kulinich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Sarah M Reinhard
- Psychology Department, University of California, Riverside, CA, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA
| | | | - Veronica Scott
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA
| | - Khaleel A Razak
- Psychology Department, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA.
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA; Biomedical Sciences Graduate Program, University of California, Riverside, CA, USA.
| |
Collapse
|
39
|
Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S. What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 2020; 109:29-53. [DOI: 10.1016/j.neubiorev.2019.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
40
|
Characterization of Auditory and Binaural Spatial Hearing in a Fragile X Syndrome Mouse Model. eNeuro 2020; 7:ENEURO.0300-19.2019. [PMID: 31953317 PMCID: PMC7031856 DOI: 10.1523/eneuro.0300-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/01/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
The auditory brainstem compares sound-evoked excitation and inhibition from both ears to compute sound source location and determine spatial acuity. Although alterations to the anatomy and physiology of the auditory brainstem have been demonstrated in fragile X syndrome (FXS), it is not known whether these changes cause spatial acuity deficits in FXS. To test the hypothesis that FXS-related alterations to brainstem circuits impair spatial hearing abilities, a reflexive prepulse inhibition (PPI) task, with variations in sound (gap, location, masking) as the prepulse stimulus, was used on Fmr1 knock-out mice and B6 controls. Specifically, Fmr1 mice show decreased PPI compared with wild-type mice during gap detection, changes in sound source location, and spatial release from masking with no alteration to their overall startle thresholds compared with wild-type mice. Last, Fmr1 mice have increased latency to respond in these tasks, suggesting additional impairments in the pathway responsible for reacting to a startling sound. This study further supports data in humans with FXS that show similar deficits in PPI.
Collapse
|
41
|
Cunha AOS, Moradi M, de Deus JL, Ceballos CC, Benites NM, de Barcellos Filho PCG, de Oliveira JAC, Garcia-Cairasco N, Leão R. Alterations in brainstem auditory processing, the acoustic startle response and sensorimotor gating of startle in Wistar audiogenic rats (WAR), an animal model of reflex epilepsies. Brain Res 2020; 1727:146570. [PMID: 31811837 DOI: 10.1016/j.brainres.2019.146570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 11/30/2022]
Abstract
While acute audiogenic seizures in response to acoustic stimulus appear as an alteration in sensory-motor processing in the brainstem, the repetition of the stimulus leads to the spread of epileptic activity to limbic structures. Here, we investigated whether animals of the Wistar Audiogenic Rat (WAR) strain, genetically selected by inbreeding for seizure susceptibility, would have alterations in their auditory response, assessed by the auditory brainstem responses (ABR) and sensory-motor gating, measured as pre-pulse inhibition (PPI), which could be related to their audiogenic seizures susceptibility or severity. We did not find differences between the amplitudes and latencies of ABR waves in response to clicks for WARs when compared to Wistars. Auditory gain and symmetry between ears were also similar. However, hearing thresholds in response to some tones were lower and amplitudes of wave II were larger in WARs. WARs had smaller acoustic startle reflex amplitudes and the percentages of startle inhibited by an acoustic prepulse were higher for WARs than for Wistars. However, no correlation was found between these alterations and brainstem-dependent seizure severity or limbic seizure frequency during audiogenic kindling. Our data show that while WARs present moderate alterations in primary auditory processing, the sensory motor gating measured in startle/PPI tests appears to be more drastically altered. The observed changes might be correlated with audiogenic seizure susceptibility but not seizures severity.
Collapse
Affiliation(s)
| | - Marzieh Moradi
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Junia Lara de Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cesar Celis Ceballos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nikollas Moreira Benites
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Norberto Garcia-Cairasco
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
42
|
Ryan AM, Berman RF, Bauman MD. Bridging the species gap in translational research for neurodevelopmental disorders. Neurobiol Learn Mem 2019; 165:106950. [PMID: 30347236 PMCID: PMC6474835 DOI: 10.1016/j.nlm.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/19/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
The prevalence and societal impact of neurodevelopmental disorders (NDDs) continue to increase despite years of research in both patient populations and animal models. There remains an urgent need for translational efforts between clinical and preclinical research to (i) identify and evaluate putative causes of NDD, (ii) determine their underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches, and (iv) translate basic research into safe and effective clinical practices. Given the complexity behind potential causes and behaviors affected by NDDs, modeling these uniquely human brain disorders in animals will require that we capitalize on unique advantages of a diverse array of species. While much NDD research has been conducted in more traditional animal models such as the mouse, ultimately, we may benefit from creating animal models with species that have a more sophisticated social behavior repertoire such as the rat (Rattus norvegicus) or species that more closely related to humans, such as the rhesus macaque (Macaca mulatta). Here, we highlight the rat and rhesus macaque models for their role in previous psychological research discoveries, current efforts to understand the neurobiology of NDDs, and focus on the convergence of behavior outcome measures that parallel features of human NDDs.
Collapse
Affiliation(s)
- A M Ryan
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Psychiatry and Behavioral Sciences, University of California, Davis, United States; California National Primate Research Center, University of California, Davis, United States
| | - R F Berman
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Neurological Surgery, University of California, Davis, United States
| | - M D Bauman
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Psychiatry and Behavioral Sciences, University of California, Davis, United States; California National Primate Research Center, University of California, Davis, United States.
| |
Collapse
|
43
|
Hodges SL, Reynolds CD, Nolan SO, Huebschman JL, Okoh JT, Binder MS, Lugo JN. A single early-life seizure results in long-term behavioral changes in the adult Fmr1 knockout mouse. Epilepsy Res 2019; 157:106193. [PMID: 31520894 PMCID: PMC6823160 DOI: 10.1016/j.eplepsyres.2019.106193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability and a significant genetic contributor to Autism spectrum disorder. In addition to autistic-like phenotypes, individuals with FXS are subject to developing numerous comorbidities, one of the most prevalent being seizures. In the present study, we investigated how a single early-life seizure superimposed on a genetic condition impacts the autistic-like behavioral phenotype of the mouse. We induced status epilepticus (SE) on postnatal day (PD) 10 in Fmr1 wild type (WT) and knockout (KO) mice. We then tested the mice in a battery of behavioral tests during adulthood (PD90) to examine the long-term impact of an early-life seizure. Our findings replicated prior work that reported a single instance of SE results in behavioral deficits, including increases in repetitive behavior, enhanced hippocampal-dependent learning, and reduced sociability and prepulse inhibition (p < 0.05). We also observed genotypic differences characteristic of the FXS phenotype in Fmr1 KO mice, such as enhanced prepulse inhibition and repetitive behavior, hyperactivity, and reduced startle responses (p < 0.05). Superimposing a seizure on deletion of Fmr1 significantly impacted repetitive behavior in a nosepoke task. Specifically, a single early-life seizure increased consecutive nose poking behavior in the task in WT mice (p < 0.05), yet seizures did not exacerbate the elevated stereotypy observed in Fmr1 KO mice (p > 0.05). Overall, these findings help to elucidate how seizures in a critical period of development can impact long-term behavioral manifestations caused by underlying gene mutations in Fmr1. Utilizing double-hit models, such as superimposing seizures on the Fmr1 mutation, can help to enhance our understanding of comorbidities in disease models.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| | - Conner D Reynolds
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth TX, 76107, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | | | - James T Okoh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
44
|
Khoja S, Asatryan L, Jakowec MW, Davies DL. Dopamine Receptor Blockade Attenuates Purinergic P2X4 Receptor-Mediated Prepulse Inhibition Deficits and Underlying Molecular Mechanisms. Front Cell Neurosci 2019; 13:331. [PMID: 31396053 PMCID: PMC6664007 DOI: 10.3389/fncel.2019.00331] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor gating refers to the ability to filter incoming sensory information in a stimulus-laden environment and disruption of this physiological process has been documented in psychiatric disorders characterized by cognitive aberrations. The effectiveness of current pharmacotherapies for treatment of sensorimotor gating deficits in the patient population still remains controversial. These challenges emphasize the need to better understand the biological underpinnings of sensorimotor gating which could lead to discovery of novel drug targets for therapeutic intervention. Notably, we recently reported a role for purinergic P2X4 receptors (P2X4Rs) in regulation of sensorimotor gating using prepulse inhibition (PPI) of acoustic startle reflex. P2X4Rs are ion channels gated by adenosine-5′-triphosphate (ATP). Ivermectin (IVM) induced PPI deficits in C57BL/6J mice in a P2X4R-specific manner. Furthermore, mice deficient in P2X4Rs [P2X4R knockout (KO)] exhibited PPI deficits that were alleviated by dopamine (DA) receptor antagonists demonstrating an interaction between P2X4Rs and DA receptors in PPI regulation. On the basis of these findings, we hypothesized that increased DA neurotransmission underlies IVM-mediated PPI deficits. To test this hypothesis, we measured the effects of D1 and D2 receptor antagonists, SCH 23390 and raclopride respectively and D1 agonist, SKF 82958 on IVM-mediated PPI deficits. To gain mechanistic insights, we investigated the interaction between IVM and dopaminergic drugs on signaling molecules linked to PPI regulation in the ventral striatum. SCH 23390 significantly attenuated the PPI disruptive effects of IVM to a much greater degree than that of raclopride. SKF 82958 failed to potentiate IVM-mediated PPI disruption. At the molecular level, modulation of D1 receptors altered IVM’s effects on dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa (DARPP-32) phosphorylation. Additionally, IVM interacted with the DA receptors antagonists and SKF 82958 in phosphorylation of Ca2+/calmodulin kinase IIα (CaMKIIα) and its downstream target, neuronal nitric oxide synthase (nNOS). Current findings suggest an involvement for D1 and D2 receptors in IVM-mediated PPI disruption via modulation of DARPP-32, CaMKIIα and nNOS. Taken together, the findings suggest that stimulation of P2X4Rs can lead to DA hyperactivity and disruption of information processing, implicating P2X4Rs as a novel drug target for treatment of psychiatric disorders characterized by sensorimotor gating deficits.
Collapse
Affiliation(s)
- Sheraz Khoja
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Michael W Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
45
|
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that causes intellectual disability. It is a leading known genetic cause of autism. In addition to cognitive, social, and communication deficits, humans with FXS demonstrate abnormal sensory processing including sensory hypersensitivity. Sensory hypersensitivity commonly manifests as auditory, tactile, or visual defensiveness or avoidance. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity, impaired habituation to repeated sounds, and reduced auditory attention in humans with FXS. Children with FXS also exhibit significant visuospatial impairments. Studies in infants and toddlers with FXS have documented impairments in processing texture-defined motion stimuli, temporal flicker, perceiving ordinal numerical sequence, and the ability to maintain the identity of dynamic object information during occlusion. Consistent with the observations in humans with FXS, fragile X mental retardation 1 ( Fmr1) gene knockout (KO) rodent models of FXS also show seizures, abnormal visual-evoked responses, auditory hypersensitivity, and abnormal processing at multiple levels of the auditory system, including altered acoustic startle responses. Among other sensory symptoms, individuals with FXS exhibit tactile defensiveness. Fmr1 KO mice also show impaired encoding of tactile stimulation frequency and larger size of receptive fields in the somatosensory cortex. Since sensory deficits are relatively more tractable from circuit mechanisms and developmental perspectives than more complex social behaviors, the focus of this review is on clinical, functional, and structural studies that outline the auditory, visual, and somatosensory processing deficits in FXS. The similarities in sensory phenotypes between humans with FXS and animal models suggest a likely conservation of basic sensory processing circuits across species and may provide a translational platform to not just develop biomarkers but also to understand underlying mechanisms. We argue that preclinical studies in animal models of FXS can facilitate the ongoing search for new therapeutic approaches in FXS by understanding mechanisms of basic sensory processing circuits and behaviors that are conserved across species.
Collapse
Affiliation(s)
- Maham Rais
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA
| | - Devin K Binder
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA
| | - Khaleel A Razak
- 2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA.,4 Psychology Department, University of California Riverside, CA, USA
| | - Iryna M Ethell
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA
| |
Collapse
|
46
|
Fricano-Kugler C, Gordon A, Shin G, Gao K, Nguyen J, Berg J, Starks M, Geschwind DH. CYFIP1 overexpression increases fear response in mice but does not affect social or repetitive behavioral phenotypes. Mol Autism 2019; 10:25. [PMID: 31198525 PMCID: PMC6555997 DOI: 10.1186/s13229-019-0278-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background CYFIP1, a protein that interacts with FMRP and regulates protein synthesis and actin dynamics, is overexpressed in Dup15q syndrome as well as autism spectrum disorder (ASD). While CYFIP1 heterozygosity has been rigorously studied due to its loss in 15q11.2 deletion, Prader-Willi and Angelman syndrome, the effects of CYFIP1 overexpression, as is observed in patients with CYFIP1 duplication, are less well understood. Methods We developed and validated a mouse model of human CYFIP1 overexpression (CYFIP1 OE) using qPCR and western blot analysis. We performed a large battery of behavior testing on these mice, including ultrasonic vocalizations, three-chamber social assay, home-cage behavior, Y-maze, elevated plus maze, open field test, Morris water maze, fear conditioning, prepulse inhibition, and the hot plate assay. We also performed RNA sequencing and analysis on the basolateral amygdala. Results Extensive behavioral testing in CYFIP1 OE mice reveals no changes in the core behaviors related to ASD: social interactions and repetitive behaviors. However, we did observe mild learning deficits and an exaggerated fear response. Using RNA sequencing of the basolateral amygdala, a region associated with fear response, we observed changes in pathways related to cytoskeletal regulation, oligodendrocytes, and myelination. We also identified GABA-A subunit composition changes in basolateral amygdala neurons, which are essential components of the neural fear conditioning circuit. Conclusion Overall, this research identifies the behavioral and molecular consequences of CYFIP1 overexpression and how they contribute to the variable phenotype seen in Dup15q syndrome and in ASD patients with excess CYFIP1.
Collapse
Affiliation(s)
- Catherine Fricano-Kugler
- Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Aaron Gordon
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Grace Shin
- Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Kun Gao
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Jade Nguyen
- Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Jamee Berg
- Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Mary Starks
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Daniel H. Geschwind
- Program in Neurobehavioral Genetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
47
|
Cannabidiol (CBD) reduces anxiety-related behavior in mice via an FMRP-independent mechanism. Pharmacol Biochem Behav 2019; 181:93-100. [DOI: 10.1016/j.pbb.2019.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/21/2019] [Accepted: 05/01/2019] [Indexed: 11/18/2022]
|
48
|
Kokash J, Alderson EM, Reinhard SM, Crawford CA, Binder DK, Ethell IM, Razak KA. Genetic reduction of MMP-9 in the Fmr1 KO mouse partially rescues prepulse inhibition of acoustic startle response. Brain Res 2019; 1719:24-29. [PMID: 31128097 DOI: 10.1016/j.brainres.2019.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 12/31/2022]
Abstract
Sensory processing abnormalities are consistently associated with autism, but the underlying mechanisms and treatment options are unclear. Fragile X Syndrome (FXS) is the leading known genetic cause of intellectual disabilities and autism. One debilitating symptom of FXS is hypersensitivity to sensory stimuli. Sensory hypersensitivity is seen in both humans with FXS and FXS mouse model, the Fmr1 knock out (Fmr1 KO) mouse. Abnormal sensorimotor gating may play a role in the hypersensitivity to sensory stimuli. Humans with FXS and Fmr1 KO mice show abnormalities in acoustic startle response (ASR) and prepulse inhibition (PPI) of startle, responses commonly used to quantify sensorimotor gating. Recent studies have suggested high levels of matrix metalloproteinase-9 (MMP-9) as a potential mechanism of sensory abnormalities in FXS. Here we tested the hypothesis that genetic reduction of MMP-9 in Fmr1 KO mice rescues ASR and PPI phenotypes in adult Fmr1 KO mice. We measured MMP-9 levels in the inferior colliculus (IC), an integral region of the PPI circuit, of WT and Fmr1 KO mice at P7, P12, P18, and P40. MMP-9 levels were higher in the IC of Fmr1 KO mice during early development (P7, P12), but not in adults. We compared ASR and PPI responses in young (P23-25) and adult (P50-80) Fmr1 KO mice to their age-matched wildtype (WT) controls. We found that both ASR and PPI were reduced in the young Fmr1 KO mice compared to age-matched WT mice. There was no genotype difference for ASR in the adult mice, but PPI was significantly reduced in the adult Fmr1 KO mice. The adult mouse data are similar to those observed in humans with FXS. Genetic reduction of MMP-9 in the Fmr1 KO mice resulted in a rescue of adult PPI responses to WT levels. Taken together, these results show sensorimotor gating abnormalities in Fmr1 KO mice, and suggest the potential for MMP-9 regulation as a therapeutic target to reduce sensory hypersensitivity.
Collapse
Affiliation(s)
- Jamiela Kokash
- Graduate Neuroscience Program, University of California, Riverside, United States
| | - Erin M Alderson
- Dept. of Psychology, University of California, Riverside, United States
| | - Sarah M Reinhard
- Dept. of Psychology, University of California, Riverside, United States
| | - Cynthia A Crawford
- Psychology Dept. California State University, San Bernardino, United States
| | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, United States; Biomedical Sciences Division, School of Medicine, University of California, Riverside, United States
| | - Iryna M Ethell
- Graduate Neuroscience Program, University of California, Riverside, United States; Biomedical Sciences Division, School of Medicine, University of California, Riverside, United States
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, United States; Dept. of Psychology, University of California, Riverside, United States.
| |
Collapse
|
49
|
Coors A, Brosch M, Kahl E, Khalil R, Michels B, Laub A, Franke K, Gerber B, Fendt M. Rhodiola rosea root extract has antipsychotic-like effects in rodent models of sensorimotor gating. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:320-328. [PMID: 30776471 DOI: 10.1016/j.jep.2019.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
UNLABELLED ETHNOPHARMACOLOGICAL RELEVANCE: The plant arctic root (Rhodiola rosea, L.) is growing in northern regions of Europe, Asia and North America. Extracts of R. rosea are used in traditional medicine for various conditions related to nervous system function. According to scientific studies from the last decades, the plant might have potential for use in the treatment of memory impairments, stress and depression, but reports concerning other neuropsychiatric disorders are scarce. AIM OF THE STUDY In this context, our study aimed to examine potential antipsychotic-like effects of R. rosea root extract. MATERIALS AND METHODS We tested the effects of R. rosea root extract on prepulse inhibition in rats and mice. Prepulse inhibition is an established operational measure of sensorimotor gating, which is impaired in schizophrenia and other psychotic disorders. RESULTS R. rosea root extract increased prepulse inhibition in rats and mice. Interestingly, the R. rosea extract had stronger effects in those individual animals that had low baseline levels of prepulse inhibition. Therefore, we performed further experiments in which we pharmacologically induced a prepulse inhibition deficit by two different psychostimulants, either the dopamine D2 receptor agonist apomorphine or the NMDA receptor antagonist dizocilpine (MK-801). Pre-treatment with the R. rosea extract significantly restored both, apomorphine- and dizocilpine-induced prepulse inhibition deficits. CONCLUSIONS The present study demonstrates that R. rosea extract robustly reverses prepulse inhibition deficits in rodents. This suggests antipsychotic-like effects of R. rosea extract. Future studies should focus on the pharmacological mechanisms underlying these effects.
Collapse
Affiliation(s)
- Andreas Coors
- Neuroscience Program, University of Bremen, Germany; Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany.
| | - Marcel Brosch
- Integrative Neuroscience Program, Otto-von-Guericke University Magdeburg, Germany.
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany.
| | - Radwa Khalil
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany.
| | - Birgit Michels
- Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Annegret Laub
- Leibniz Institute of Plant Biochemistry, Halle, Germany.
| | - Katrin Franke
- Leibniz Institute of Plant Biochemistry, Halle, Germany.
| | - Bertram Gerber
- Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany; Institute of Biology, Otto-von-Guericke University Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany.
| |
Collapse
|
50
|
Lee KY, Jewett KA, Chung HJ, Tsai NP. Loss of fragile X protein FMRP impairs homeostatic synaptic downscaling through tumor suppressor p53 and ubiquitin E3 ligase Nedd4-2. Hum Mol Genet 2019; 27:2805-2816. [PMID: 29771335 DOI: 10.1093/hmg/ddy189] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Synaptic scaling allows neurons to homeostatically readjust synaptic strength upon chronic neural activity perturbations. Although altered synaptic scaling has been implicated to underlie imbalanced brain excitability in neurological disorders such as autism spectrum disorders and epilepsy, the molecular dysregulation and restoration of synaptic scaling in those diseases have not been demonstrated. Here, we showed that the homeostatic synaptic downscaling is absent in the hippocampal neurons of Fmr1 KO mice, the mouse model of the most common inherited autism, fragile X syndrome (FXS). We found that the impaired homeostatic synaptic downscaling in Fmr1 KO neurons is caused by loss-of-function dephosphorylation of an epilepsy-associated ubiquitin E3 ligase, neural precursor cell expressed developmentally down-regulated gene 4-2, Nedd4-2. Such dephosphorylation of Nedd4-2 is surprisingly caused by abnormally stable tumor suppressor p53 and subsequently destabilized kinase Akt. Dephosphorylated Nedd4-2 fails to elicit 14-3-3-dependent ubiquitination and down-regulation of the GluA1 subunit of AMPA receptor, and therefore impairs synaptic downscaling. Most importantly, using a pharmacological inhibitor of p53, Nedd4-2 phosphorylation, GluA1 ubiquitination and synaptic downscaling are all restored in Fmr1 KO neurons. Together, our results discover a novel cellular mechanism underlying synaptic downscaling, and demonstrate the dysregulation and successful restoration of this mechanism in the FXS mouse model.
Collapse
Affiliation(s)
- Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|