1
|
Visibelli A, Finetti R, Roncaglia B, Poli P, Spiga O, Santucci A. Predicting therapy dropout in chronic pain management: a machine learning approach to cannabis treatment. Front Artif Intell 2025; 8:1557894. [PMID: 40051572 PMCID: PMC11882547 DOI: 10.3389/frai.2025.1557894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Chronic pain affects approximately 30% of the global population, posing a significant public health challenge. Despite their widespread use, traditional pharmacological treatments, such as opioids and NSAIDs, often fail to deliver adequate, long-term relief while exposing patients to risks of addiction and adverse side effects. Given these limitations, medical cannabis has emerged as a promising therapeutic alternative with both analgesic and anti-inflammatory properties. However, its clinical efficacy is hindered by high interindividual variability in treatment response and elevated dropout rates. Methods A comprehensive dataset integrating genetic, clinical, and pharmacological information was compiled from 542 Caucasian patients undergoing cannabis-based treatment for chronic pain. A machine learning (ML) model was developed and validated to predict therapy dropout. To identify the most influential factors driving dropout, SHapley Additive exPlanations (SHAP) analysis was performed. Results The random forest classifier demonstrated robust performance, achieving a mean accuracy of 80% and a maximum of 86%, with an AUC of 0.86. SHAP analysis revealed that high final VAS scores and elevated THC dosages were the most significant predictors of dropout, both strongly correlated with an increased likelihood of discontinuation. In contrast, baseline therapeutic benefits, CBD dosages, and the CC genotype of the rs1049353 polymorphism in the CNR1 gene were associated with improved adherence. Discussion Our findings highlight the potential of ML and pharmacogenetics to personalize cannabis-based therapies, improving adherence and enabling more precise management of chronic pain. This research paves the way for the development of tailored therapeutic strategies that maximize the benefits of medical cannabis while minimizing its side effects.
Collapse
Affiliation(s)
- Anna Visibelli
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Rebecca Finetti
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Bianca Roncaglia
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Paolo Poli
- POLIPAIN CLINIC, SIRCA Italian Society of Cannabis Research, Pisa, Italy
| | - Ottavia Spiga
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- Centro della Scienza e della Tecnica, Polo Universitario Grossetano, Grosseto, Italy
- Competence Center, ARTES 4.0, Siena, Italy
| | - Annalisa Santucci
- ONE-HEALTH Lab, Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- Competence Center, ARTES 4.0, Siena, Italy
| |
Collapse
|
2
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024; 61:641-684. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Guardiola-Ripoll M, Sotero-Moreno A, Chaumette B, Kebir O, Hostalet N, Almodóvar-Payá C, Moreira M, Giralt-López M, Krebs MO, Fatjó-Vilas M. Genetic and Neurodevelopmental Markers in Schizophrenia-Spectrum Disorders: Analysis of the Combined Role of the CNR1 Gene and Dermatoglyphics. Biomedicines 2024; 12:2270. [PMID: 39457583 PMCID: PMC11505170 DOI: 10.3390/biomedicines12102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Dermatoglyphic pattern deviances have been associated with schizophrenia-spectrum disorders (SSD) and are considered neurodevelopment vulnerability markers based on the shared ectodermal origin of the epidermis and the central nervous system. The endocannabinoid system participates in epidermal differentiation, is sensitive to prenatal insults and is associated with SSD. Objective: We aimed to investigate whether the Cannabinoid Receptor 1 gene (CNR1) modulates the dermatoglyphics-SSD association. Methods: In a sample of 112 controls and 97 patients with SSD, three dermatoglyphic markers were assessed: the total palmar a-b ridge count (TABRC), the a-b ridge count fluctuating asymmetry (ABRC-FA), and the pattern intensity index (PII). Two CNR1 polymorphisms were genotyped: rs2023239-T/C and rs806379-A/T. We tested: (i) the CNR1 association with SSD and dermatoglyphic variability within groups; and (ii) the CNR1 × dermatoglyphic measures interaction on SSD susceptibility. Results: Both polymorphisms were associated with SSD. The polymorphism rs2023239 modulated the relationship between PII and SSD: a high PII score was associated with a lower SSD risk within C-allele carriers and a higher SSD risk within TT-homozygotes. This result indicates an inverse relationship between the PII and the SSD predicted probability conditional to the rs2023239 genotype. Conclusions: These novel findings suggest the endocannabinoid system's role in the development and variability of dermatoglyphic patterns. The identified interaction encourages combining genetic and dermatoglyphics to assess neurodevelopmental alterations predisposing to SSD in future studies.
Collapse
Affiliation(s)
- Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Spain
- CIBERER (Biomedical Research Network in Rare Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alejandro Sotero-Moreno
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (INSERM U1266), GHU-Paris Psychiatrie et Neurosciences, 75014 Paris, France
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Oussama Kebir
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (INSERM U1266), GHU-Paris Psychiatrie et Neurosciences, 75014 Paris, France
| | - Noemí Hostalet
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mónica Moreira
- Servei de Psiquiatria Infantil i de l’Adolescència, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
- Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Maria Giralt-López
- Servei de Psiquiatria Infantil i de l’Adolescència, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
- Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (INSERM U1266), GHU-Paris Psychiatrie et Neurosciences, 75014 Paris, France
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, 08830 Sant Boi de Llobregat, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Maciocha F, Suchanecka A, Chmielowiec K, Chmielowiec J, Ciechanowicz A, Boroń A. Correlations of the CNR1 Gene with Personality Traits in Women with Alcohol Use Disorder. Int J Mol Sci 2024; 25:5174. [PMID: 38791212 PMCID: PMC11121729 DOI: 10.3390/ijms25105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Alcohol use disorder (AUD) is a significant issue affecting women, with severe consequences for society, the economy, and most importantly, health. Both personality and alcohol use disorders are phenotypically very complex, and elucidating their shared heritability is a challenge for medical genetics. Therefore, our study investigated the correlations between the microsatellite polymorphism (AAT)n of the Cannabinoid Receptor 1 (CNR1) gene and personality traits in women with AUD. The study group included 187 female subjects. Of these, 93 were diagnosed with alcohol use disorder, and 94 were controls. Repeat length polymorphism of microsatellite regions (AAT)n in the CNR1 gene was identified with PCR. All participants were assessed with the Mini-International Neuropsychiatric Interview and completed the NEO Five-Factor and State-Trait Anxiety Inventories. In the group of AUD subjects, significantly fewer (AAT)n repeats were present when compared with controls (p = 0.0380). While comparing the alcohol use disorder subjects (AUD) and the controls, we observed significantly higher scores on the STAI trait (p < 0.00001) and state scales (p = 0.0001) and on the NEO Five-Factor Inventory Neuroticism (p < 0.00001) and Openness (p = 0.0237; insignificant after Bonferroni correction) scales. Significantly lower results were obtained on the NEO-FFI Extraversion (p = 0.00003), Agreeability (p < 0.00001) and Conscientiousness (p < 0.00001) scales by the AUD subjects when compared to controls. There was no statistically significant Pearson's linear correlation between the number of (AAT)n repeats in the CNR1 gene and the STAI and NEO Five-Factor Inventory scores in the group of AUD subjects. In contrast, Pearson's linear correlation analysis in controls showed a positive correlation between the number of the (AAT)n repeats and the STAI state scale (r = 0.184; p = 0.011; insignificant after Bonferroni correction) and a negative correlation with the NEO-FFI Openness scale (r = -0.241; p = 0.001). Interestingly, our study provided data on two separate complex issues, i.e., (1) the association of (AAT)n CNR1 repeats with the AUD in females; (2) the correlation of (AAT)n CNR1 repeats with anxiety as a state and Openness in non-alcohol dependent subjects. In conclusion, our study provided a plethora of valuable data for improving our understanding of alcohol use disorder and anxiety.
Collapse
Affiliation(s)
- Filip Maciocha
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland; (F.M.); (A.C.)
| | - Aleksandra Suchanecka
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland; (F.M.); (A.C.)
| | - Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland; (F.M.); (A.C.)
| |
Collapse
|
5
|
Bottiroli S, Greco R, Franco V, Zanaboni A, Palmisani M, Vaghi G, Sances G, De Icco R, Tassorelli C. Peripheral Endocannabinoid Components and Lipid Plasma Levels in Patients with Resistant Migraine and Co-Morbid Personality and Psychological Disorders: A Cross-Sectional Study. Int J Mol Sci 2024; 25:1893. [PMID: 38339171 PMCID: PMC10855606 DOI: 10.3390/ijms25031893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Resistant migraine characterizes those patients who have failed at least three classes of migraine prophylaxis. These difficult-to-treat patients are likely to be characterized by a high prevalence of psychological disturbances. A dysfunction of the endocannabinoid system (ECS), including alteration in the levels of endocannabinoid congeners, may underlie several psychiatric disorders and the pathogenesis of migraines. Here we explored whether the peripheral gene expression of major components of the ECS and the plasma levels of endocannabinoids and related lipids are associated with psychological disorders in resistant migraine. Fifty-one patients (age = 46.0 ± 11.7) with resistant migraine received a comprehensive psychological evaluation according to the DSM-5 criteria. Among the patients, 61% had personality disorders (PD) and 61% had mood disorders (MD). Several associations were found between these psychological disorders and peripheral ECS alterations. Lower plasma levels of palmitoiletanolamide (PEA) were found in the PD group compared with the non-PD group. The MD group was characterized by lower mRNA levels of diacylglycerol lipase α (DAGLα) and CB2 (cannabinoid-2) receptor. The results suggest the existence of peripheral dysfunction in some components of the ECS and an alteration in plasma levels of PEA in patients with resistant migraine and mood or personality disorders.
Collapse
Affiliation(s)
- Sara Bottiroli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Rosaria Greco
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Valentina Franco
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Annamaria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Michela Palmisani
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Grazia Sances
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.Z.); (G.V.); (R.D.I.); (C.T.)
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.F.); (M.P.); (G.S.)
| |
Collapse
|
6
|
Visibelli A, Peruzzi L, Poli P, Scocca A, Carnevale S, Spiga O, Santucci A. Supporting Machine Learning Model in the Treatment of Chronic Pain. Biomedicines 2023; 11:1776. [PMID: 37509416 PMCID: PMC10376077 DOI: 10.3390/biomedicines11071776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Conventional therapy options for chronic pain are still insufficient and patients most frequently request alternative medical treatments, such as medical cannabis. Although clinical evidence supports the use of cannabis for pain, very little is known about the efficacy, dosage, administration methods, or side effects of widely used and accessible cannabis products. A possible solution could be given by pharmacogenetics, with the identification of several polymorphic genes that may play a role in the pharmacodynamics and pharmacokinetics of cannabis. Based on these findings, data from patients treated with cannabis and genotyped for several candidate polymorphic genes (single-nucleotide polymorphism: SNP) were collected, integrated, and analyzed through a machine learning (ML) model to demonstrate that the reduction in pain intensity is closely related to gene polymorphisms. Starting from the patient's data collected, the method supports the therapeutic process, avoiding ineffective results or the occurrence of side effects. Our findings suggest that ML prediction has the potential to positively influence clinical pharmacogenomics and facilitate the translation of a patient's genomic profile into useful therapeutic knowledge.
Collapse
Affiliation(s)
- Anna Visibelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Luana Peruzzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Paolo Poli
- POLIPAIN CLINIC, SIRCA Italian Society of Cannabis Research, 56124 Pisa, Italy
| | - Antonella Scocca
- POLIPAIN CLINIC, SIRCA Italian Society of Cannabis Research, 56124 Pisa, Italy
| | - Simona Carnevale
- POLIPAIN CLINIC, SIRCA Italian Society of Cannabis Research, 56124 Pisa, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Competence Center ARTES 4.0, 53100 Siena, Italy
- SienabioACTIVE-SbA, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Competence Center ARTES 4.0, 53100 Siena, Italy
- SienabioACTIVE-SbA, 53100 Siena, Italy
| |
Collapse
|
7
|
Babayeva M, Loewy ZG. Cannabis Pharmacogenomics: A Path to Personalized Medicine. Curr Issues Mol Biol 2023; 45:3479-3514. [PMID: 37185752 PMCID: PMC10137111 DOI: 10.3390/cimb45040228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Zvi G Loewy
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
8
|
Nouh RA, Kamal A, Abdelnaser A. Cannabinoids and Multiple Sclerosis: A Critical Analysis of Therapeutic Potentials and Safety Concerns. Pharmaceutics 2023; 15:1151. [PMID: 37111637 PMCID: PMC10146800 DOI: 10.3390/pharmaceutics15041151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Multiple sclerosis (MS) is a complicated condition in which the immune system attacks myelinated axons in the central nervous system (CNS), destroying both myelin and axons to varying degrees. Several environmental, genetic, and epigenetic factors influence the risk of developing the disease and how well it responds to treatment. Cannabinoids have recently sparked renewed interest in their therapeutic applications, with growing evidence for their role in symptom control in MS. Cannabinoids exert their roles through the endogenous cannabinoid (ECB) system, with some reports shedding light on the molecular biology of this system and lending credence to some anecdotal medical claims. The double nature of cannabinoids, which cause both positive and negative effects, comes from their actions on the same receptor. Several mechanisms have been adopted to evade this effect. However, there are still numerous limitations to using cannabinoids to treat MS patients. In this review, we will explore and discuss the molecular effect of cannabinoids on the ECB system, the various factors that affect the response to cannabinoids in the body, including the role of gene polymorphism and its relation to dosage, assessing the positive over the adverse effects of cannabinoids in MS, and finally, exploring the possible functional mechanism of cannabinoids in MS and the current and future progress of cannabinoid therapeutics.
Collapse
Affiliation(s)
- Roua A. Nouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Kamal
- Biochemistry Department, Faculty of Science, Suez University, P.O. Box 43518, Suez 43533, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
9
|
Marini P, Cowie P, Ayar A, Bewick GS, Barrow J, Pertwee RG, MacKenzie A, Tucci P. M3 Receptor Pathway Stimulates Rapid Transcription of the CB1 Receptor Activation through Calcium Signalling and the CNR1 Gene Promoter. Int J Mol Sci 2023; 24:ijms24021308. [PMID: 36674826 PMCID: PMC9867084 DOI: 10.3390/ijms24021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, we have investigated a possible mechanism that enables CB1/M3 receptor cross-talk, using SH-SY5Y cells as a model system. Our results show that M3 receptor activation initiates signaling that rapidly upregulates the CNR1 gene, resulting in a greatly potentiated CB1 receptor response to agonists. Calcium homeostasis plays an essential intermediary role in this functional CB1/M3 receptor cross-talk. We show that M3 receptor-triggered calcium release greatly increases CB1 receptor expression via both transcriptional and translational activity, by enhancing CNR1 promoter activity. The co-expression of M3 and CB1 receptors in brain areas such as the nucleus accumbens and amygdala support the hypothesis that the altered synaptic plasticity observed after exposure to cannabinoids involves cross-talk with the M3 receptor subtype. In this context, M3 receptors and their interaction with the cannabinoid system at the transcriptional level represent a potential pharmacogenomic target not only for the develop of new drugs for addressing addiction and tolerance. but also to understand the mechanisms underpinning response stratification to cannabinoids.
Collapse
Affiliation(s)
- Pietro Marini
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Philip Cowie
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ahmet Ayar
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Guy S. Bewick
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - John Barrow
- Institute of Education in Healthcare and Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Roger G. Pertwee
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Alasdair MacKenzie
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| |
Collapse
|
10
|
Verweij KJH, Vink JM, Abdellaoui A, Gillespie NA, Derks EM, Treur JL. The genetic aetiology of cannabis use: from twin models to genome-wide association studies and beyond. Transl Psychiatry 2022; 12:489. [PMID: 36411281 PMCID: PMC9678872 DOI: 10.1038/s41398-022-02215-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Cannabis is among the most widely consumed psychoactive substances worldwide. Individual differences in cannabis use phenotypes can partly be explained by genetic differences. Technical and methodological advances have increased our understanding of the genetic aetiology of cannabis use. This narrative review discusses the genetic literature on cannabis use, covering twin, linkage, and candidate-gene studies, and the more recent genome-wide association studies (GWASs), as well as the interplay between genetic and environmental factors. Not only do we focus on the insights that these methods have provided on the genetic aetiology of cannabis use, but also on how they have helped to clarify the relationship between cannabis use and co-occurring traits, such as the use of other substances and mental health disorders. Twin studies have shown that cannabis use is moderately heritable, with higher heritability estimates for more severe phases of use. Linkage and candidate-gene studies have been largely unsuccessful, while GWASs so far only explain a small portion of the heritability. Dozens of genetic variants predictive of cannabis use have been identified, located in genes such as CADM2, FOXP2, and CHRNA2. Studies that applied multivariate methods (twin models, genetic correlation analysis, polygenic score analysis, genomic structural equation modelling, Mendelian randomisation) indicate that there is considerable genetic overlap between cannabis use and other traits (especially other substances and externalising disorders) and some evidence for causal relationships (most convincingly for schizophrenia). We end our review by discussing implications of these findings and suggestions for future work.
Collapse
Affiliation(s)
- Karin J. H. Verweij
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| | - Jacqueline M. Vink
- grid.5590.90000000122931605Behavioural Science Institute, Radboud University Nijmegen, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| | - Abdel Abdellaoui
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| | - Nathan A. Gillespie
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 East Leigh St, Suite 100, Richmond, VA 23219 USA
| | - Eske M. Derks
- grid.1049.c0000 0001 2294 1395Translational Neurogenomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006 Australia
| | - Jorien L. Treur
- grid.7177.60000000084992262Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 5, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
11
|
Lack of Association between (AAT)n Polymorphism of the CNR1 Gene Encoding the Cannabinoid Receptor (CB1) and Patient’s Quality of Life. Genes (Basel) 2022; 13:genes13112046. [DOI: 10.3390/genes13112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic factors may predispose persons to decreased pain excitability. One of the interesting modulators affecting pain perception may be polymorphisms of the cannabinoid receptor type 1 (CNR1) gene. In this study, we examined the association between three-nucleotide repeats (AAT) polymorphism located in the 3′UTR non-translational region of CNR1 and the patient’s quality of life after total hip arthroplasty. Our study examined the degree of pain sensation, hip function, and the patient’s performance at defined intervals after elective hip replacement due to degenerative changes. The study included 198 patients (128 women and 70 men). The average age was 67 years. PCR genotyping assay was used to identify the (AAT)n triplet repeat polymorphism in the CNR1 gene. The (AAT)n repeat number was determined by sequencing using a standard sequencing protocol. Our study found no statistically significant association between the degree of pain, hip function, and the change in the degree of disability and the (AAT)n polymorphism in the CNR1 gene, no statistically significant correlations between clinical symptoms, the patient’s age, and the number of AAT repeats, no association between the length of the allele and the degree of pain, hip function, and the change in disability.
Collapse
|
12
|
Basavarajappa BS, Subbanna S. Molecular Insights into Epigenetics and Cannabinoid Receptors. Biomolecules 2022; 12:1560. [PMID: 36358910 PMCID: PMC9687363 DOI: 10.3390/biom12111560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/29/2022] [Accepted: 10/22/2022] [Indexed: 09/22/2023] Open
Abstract
The actions of cannabis are mediated by G protein-coupled receptors that are part of an endogenous cannabinoid system (ECS). ECS consists of the naturally occurring ligands N-arachidonylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the CB1 and CB2 cannabinoid receptors. Epigenetics are heritable changes that affect gene expression without changing the DNA sequence, transducing external stimuli in stable alterations of the DNA or chromatin structure. Cannabinoid receptors are crucial candidates for exploring their functions through epigenetic approaches due to their significant roles in health and diseases. Epigenetic changes usually promote alterations in the expression of genes and proteins that can be evaluated by various transcriptomic and proteomic analyses. Despite the exponential growth of new evidence on the critical functions of cannabinoid receptors, much is still unknown regarding the contribution of various genetic and epigenetic factors that regulate cannabinoid receptor gene expression. Recent studies have identified several immediate and long-lasting epigenetic changes, such as DNA methylation, DNA-associated histone proteins, and RNA regulatory networks, in cannabinoid receptor function. Thus, they can offer solutions to many cellular, molecular, and behavioral impairments found after modulation of cannabinoid receptor activities. In this review, we discuss the significant research advances in different epigenetic factors contributing to the regulation of cannabinoid receptors and their functions under both physiological and pathological conditions. Increasing our understanding of the epigenetics of cannabinoid receptors will significantly advance our knowledge and could lead to the identification of novel therapeutic targets and innovative treatment strategies for diseases associated with altered cannabinoid receptor functions.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
13
|
Bornscheuer L, Lundin A, Forsell Y, Lavebratt C, Melas PA. The cannabinoid receptor-1 gene interacts with stressful life events to increase the risk for problematic alcohol use. Sci Rep 2022; 12:4963. [PMID: 35322131 PMCID: PMC8941304 DOI: 10.1038/s41598-022-08980-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Problematic alcohol use is a major contributor to the global burden of death and disabilities, and it represents a public health concern that has grown substantially following the COVID-19 pandemic. The available treatment options remain limited and to develop better pharmacotherapies for alcohol misuse we need to identify suitable biological targets. Previous research has implicated the brain’s endocannabinoid system (ECS) in psychiatric and stress-related outcomes, including substance use and habituation to repeated stress. Moreover, genetic variants in the cannabinoid-1 receptor gene (CNR1; CB1R) have been associated with personality traits, which are in turn predictors of substance use disorders. To date, however, no human genome-wide association study has provided evidence for an involvement of the ECS in substance use outcomes. One reason for this ECS-related “missing heritability” may be unexamined gene-environment interactions. To explore this possibility, we conducted cross-sectional analyses using DNA samples and stress-exposure data from a longitudinal Swedish population-based study (N = 2,915). Specifically, we genotyped rs2023239, a functional C/T single nucleotide polymorphism in CNR1, previously reported to be associated with CNR1 binding in the brain, subjective reward following alcohol intake, and alcohol cue-elicited brain activation. Our two outcomes of interest were (i) problematic alcohol use based on the Alcohol Use Disorders Identification Test (AUDIT), and (ii) personality trait scores based on the Five Factor Model. We found no baseline association between rs2023239 and problematic alcohol use or personality traits. However, there was a clear trend for interaction between rs2023239’s risk allele (C) and stressful life events (SLEs) in both childhood and adulthood, which predicted problematic alcohol use. Although not significant, there was also some indication that the risk allele interacted with child SLEs to increase scores on neuroticism. Our study supports the notion that the ECS can affect alcohol intake behaviors by interacting with life adversities and is—to the best of our knowledge—the first to focus on the interaction between CNR1 and stressors in both childhood and adulthood in humans. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Lisa Bornscheuer
- Department of Public Health Sciences, Stockholm University, 10691, Stockholm, Sweden.,Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Andreas Lundin
- Department of Global Public Health, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Catharina Lavebratt
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Philippe A Melas
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176, Stockholm, Sweden. .,Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, 11364, Stockholm, Sweden.
| |
Collapse
|
14
|
Kasai S, Nishizawa D, Hasegawa J, Fukuda KI, Ichinohe T, Nagashima M, Hayashida M, Ikeda K. Short Tandem Repeat Variation in the CNR1 Gene Associated With Analgesic Requirements of Opioids in Postoperative Pain Management. Front Genet 2022; 13:815089. [PMID: 35360861 PMCID: PMC8963810 DOI: 10.3389/fgene.2022.815089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Short tandem repeats (STRs) and variable number of tandem repeats (VNTRs) that have been identified at approximately 0.7 and 0.5 million loci in the human genome, respectively, are highly multi-allelic variations rather than single-nucleotide polymorphisms. The number of repeats of more than a few thousand STRs was associated with the expression of nearby genes, indicating that STRs are influential genetic variations in human traits. Analgesics act on the central nervous system via their intrinsic receptors to produce analgesic effects. In the present study, we focused on STRs and VNTRs in the CNR1, GRIN2A, PENK, and PDYN genes and analyzed two peripheral pain sensation-related traits and seven analgesia-related traits in postoperative pain management. A total of 192 volunteers who underwent the peripheral pain sensation tests and 139 and 252 patients who underwent open abdominal and orthognathic cosmetic surgeries, respectively, were included in the study. None of the four STRs or VNTRs were associated with peripheral pain sensation. Short tandem repeats in the CNR1, GRIN2A, and PENK genes were associated with the frequency of fentanyl use, fentanyl dose, and visual analog scale pain scores 3 h after orthognathic cosmetic surgery (Spearman's rank correlation coefficient ρ = 0.199, p = 0.002, ρ = 0.174, p = 0.006, and ρ = 0.135, p = 0.033, respectively), analgesic dose, including epidural analgesics after open abdominal surgery (ρ = -0.200, p = 0.018), and visual analog scale pain scores 24 h after orthognathic cosmetic surgery (ρ = 0.143, p = 0.023), respectively. The associations between STRs in the CNR1 gene and the frequency of fentanyl use and fentanyl dose after orthognathic cosmetic surgery were confirmed by Holm's multiple-testing correction. These findings indicate that STRs in the CNR1 gene influence analgesia in the orofacial region.
Collapse
Affiliation(s)
- Shinya Kasai
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ken-ichi Fukuda
- Department of Oral Health Science, Tokyo Dental College, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Makoto Nagashima
- Department of Surgery, Toho University Sakura Medical Center, Sakura, Japan
| | - Masakazu Hayashida
- Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
15
|
Abstract
PURPOSE The purpose of this review is to discuss the literature regarding the concurrent use (co-use) of alcohol and cannabis and competing hypotheses as to whether cannabis acts as a substitute for (i.e., replacing the effects of alcohol, resulting in decreased use) or a complement to (i.e., used to enhance the effects of alcohol, resulting in increased use) alcohol. The impact of cannabis use on alcohol-related outcomes has received increased attention in the wake of ongoing legalization of cannabis for both medical and recreational purposes. Evidence for both hypotheses exists in the literature across a broad range of data collection methods and samples and is carefully reviewed here. In addition, various mechanisms by which cannabis may act as an alcohol substitute or complement are explored in depth with the goal of better understanding equivocal findings. SEARCH METHODS This review includes articles that were identified from a search for studies on alcohol and cannabis co-use, with a specific focus on studies exploring complementary versus substitution aspects of co-use. Search terms were included in Google Scholar, PsycINFO, MEDLINE, and Web of Science. Eligible studies were those that measured alcohol and cannabis co-use in human samples in laboratory, survey, or ecological momentary assessment studies, or that directly referenced substitution or complementary patterns of use. SEARCH RESULTS Search results returned 650 articles, with 95 meeting inclusion criteria. DISCUSSION AND CONCLUSIONS Results of this review reveal compelling evidence for both substitution and complementary effects, suggesting nuanced yet significant distinctions across different populations examined in these studies. Several mechanisms for the impact of cannabis use on alcohol-related outcomes are identified, including patterns and context of co-use, timing and order of use, cannabinoid formulation, pharmacokinetic interactions, and user characteristics (including diagnostic status), all of which may influence substitution versus complementary effects. This review will inform future research studies examining this topic in both clinical and community samples and aid in the development of treatment and prevention efforts targeting those populations most vulnerable to negative consequences of co-use. Finally, this review highlights the need for additional research in more diverse samples and the use of mixed-methods designs to examine both pharmacological and contextual influences on co-use.
Collapse
Affiliation(s)
- Rachel L Gunn
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, Rhode Island
| | - Elizabeth R Aston
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, Rhode Island
| | - Jane Metrik
- Center for Alcohol and Addiction Studies, Brown University School of Public Health, Providence, Rhode Island
- Providence VA Medical Center, Providence, Rhode Island
| |
Collapse
|
16
|
Veerappa A, Pendyala G, Guda C. A systems omics-based approach to decode substance use disorders and neuroadaptations. Neurosci Biobehav Rev 2021; 130:61-80. [PMID: 34411560 PMCID: PMC8511293 DOI: 10.1016/j.neubiorev.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/14/2021] [Indexed: 11/15/2022]
Abstract
Substance use disorders (SUDs) are a group of neuropsychiatric conditions manifesting due to excessive dependence on potential drugs of abuse such as psychostimulants, opioids including prescription opioids, alcohol, inhalants, etc. Experimental studies have generated enormous data in the area of SUDs, but outcomes from such data have remained largely fragmented. In this review, we attempt to coalesce these data points providing an important first step towards our understanding of the etiology of SUDs. We propose and describe a 'core addictome' pathway that behaves central to all SUDs. Besides, we also have made some notable observations paving way for several hypotheses; MECP2 behaves as a master switch during substance use; five distinct gene clusters were identified based on respective substance addiction; a central cluster of genes serves as a hub of the addiction pathway connecting all other substance addiction clusters. In addition to describing these findings, we have emphasized the importance of some candidate genes that are of substantial interest for further investigation and serve as high-value targets for translational efforts.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gurudutt Pendyala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
17
|
Pabalan N, Chaweeborisuit P, Tharabenjasin P, Tasanarong A, Jarjanazi H, Eiamsitrakoon T, Tapanadechopone P. Associations of CB1 cannabinoid receptor (CNR1) gene polymorphisms with risk for alcohol dependence: Evidence from meta-analyses of genetic and genome-wide association studies. Medicine (Baltimore) 2021; 100:e27343. [PMID: 34713823 PMCID: PMC8556036 DOI: 10.1097/md.0000000000027343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/08/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Reported associations of the cannabinoid receptor 1 (CNR1) single nucleotide polymorphisms (SNPs) with alcohol dependence (AD) have been inconsistent, prompting a meta-analysis to obtain more precise estimates. METHODS A Boolean search of 4 databases (PubMed, Scopus, Google Scholar, and Mednar) sought articles that evaluated the association between CNR1 polymorphisms and risk of AD. We selected the articles with sufficient genotype frequency data to enable calculation of odds ratios (ORs) and 95% confidence intervals (CIs). Using the Population Intervention Comparators Outcome elements, AD patients (P) were compared by genotype data between AD-participants (I) and non-AD-participants (C) in order to determine the risk of AD (O) attributed to the CNR1 SNPs. Analyzing 4 SNPs (rs1049353, rs1535255, rs2023239, and rs806379) using standard genetic models, we examined associations where multiple comparisons were Holm-Bonferroni corrected. The pooled ORs were assessed for aggregate statistical power and robustness (sensitivity analysis). Subgroups were Caucasians and African-Americans. RESULTS From 32 comparisons, 14 were significant indicating increased risk, from which 5 outcomes (P-value for association [Pa] = .003 to <.001) survived the Holm-Bonferroni-correction, which were deemed robust. In the rs1535255 outcomes, the codominant effect (OR = 1.43, 95% CIs = 1.24-1.65, Pa < .001) had greater statistical power than the dominant effect (OR = 1.30, 95% CI = 1.08-1.57, Pa = .006). In contrast, the rs2023239 codominant outcome was underpowered. Significance of both rs806379 Caucasian outcomes (ORs = 1.20-1.43, 95% CIs = 1.07-1.57, Pa = .003) contrasted with the null effects in African-Americans (ORs = 0.98-1.08, 95% CIs = 0.70-1.53). CONCLUSIONS Three CNR1 SNPs (rs1535255, rs2023239, and rs806379) were implicated in their associations with development of AD: based on aggregate statistical power, rs1535255 presented greater evidence for associations than rs2023239; rs806379 implicated the Caucasian subgroup. Multiple statistical and meta-analytical features (consistency, robustness, and high significance) underpinned the strengths of these outcomes. Our findings could render the CNR1 polymorphisms useful in the clinical genetics of AD.
Collapse
Affiliation(s)
- Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | | | - Phuntila Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Adis Tasanarong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Hamdi Jarjanazi
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, Ontario, Canada
| | - Thanee Eiamsitrakoon
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | | |
Collapse
|
18
|
Ney LJ, Matthews A, Hsu CMK, Zuj DV, Nicholson E, Steward T, Nichols D, Graham B, Harrison B, Bruno R, Felmingham K. Cannabinoid polymorphisms interact with plasma endocannabinoid levels to predict fear extinction learning. Depress Anxiety 2021; 38:1087-1099. [PMID: 34151472 DOI: 10.1002/da.23170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The endocannabinoid system is gaining increasing attention as a favorable target for improving posttraumatic stress disorder (PTSD) treatments. Exposure therapy is the gold-standard treatment for PTSD, and fear extinction learning is a key concept underlying successful exposure. METHODS This study examined the role of genetic endocannabinoid polymorphisms in a fear extinction paradigm with PTSD compared to healthy participants (N = 220). Participants provided saliva for genotyping, completed a fear conditioning and extinction task, with blood samples taken before and after the task (n = 57). Skin conductance was the outcome and was analyzed using mixed models. RESULTS Results for cannabinoid receptor type 1 polymorphisms suggested that minor alleles of rs2180619 and rs1049353 were associated with poorer extinction learning in PTSD participants. The minor allele of the fatty acid amide hydrolase (FAAH) polymorphism rs324420 was associated with worse extinction in PTSD participants. Subanalysis of healthy participants (n = 57) showed the FAAH rs324420 genotype effect was dependent on plasma arachidonoyl ethanolamide (AEA) level, but not oleoylethanolamide or 2-arachidonoyl glycerol. Specifically, higher but not lower AEA levels in conjunction with the minor allele of FAAH rs324420 were associated with better extinction learning. CONCLUSIONS These findings provide translational evidence that cannabinoid receptor 1 and AEA are involved in extinction learning in humans. FAAH rs324420's effect on fear extinction is moderated by AEA plasma level in healthy controls. These findings imply that FAAH inhibitors may be effective for targeting anxiety in PTSD, but this effect needs to be explored further in clinical populations.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Hobart, Australia
| | | | | | - Daniel V Zuj
- Department of Psychology, Swansea University, Wales, United Kingdom
| | - Emma Nicholson
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Trevor Steward
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - Bronwyn Graham
- School of Psychology, The University of New South Wales, Kensington, Australia
| | - Ben Harrison
- Department of Psychiatry, Melbourne Neuropsychiatry Center, University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Raimondo Bruno
- School of Psychology, University of Tasmania, Hobart, Australia
| | - Kim Felmingham
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Soundararajan S, Kazmi N, Brooks AT, Krumlauf M, Schwandt ML, George DT, Hodgkinson CA, Wallen GR, Ramchandani VA. FAAH and CNR1 Polymorphisms in the Endocannabinoid System and Alcohol-Related Sleep Quality. Front Psychiatry 2021; 12:712178. [PMID: 34566715 PMCID: PMC8458733 DOI: 10.3389/fpsyt.2021.712178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Sleep disturbances are common among individuals with alcohol use disorder (AUD) and may not resolve completely with short-term abstinence from alcohol, potentially contributing to relapse to drinking. The endocannabinoid system (ECS) is associated with both sleep and alcohol consumption, and genetic variation in the ECS may underlie sleep-related phenotypes among individuals with AUD. In this study, we explored the influence of genetic variants in the ECS (Cannabinoid receptor 1/CNR1: rs806368, rs1049353, rs6454674, rs2180619, and Fatty Acid Amide Hydrolase/FAAH rs324420) on sleep quality in individuals with AUD (N = 497) and controls without AUD (N = 389). We assessed subjective sleep quality (from the Pittsburgh Sleep Quality Index/PSQI) for both groups at baseline and objective sleep efficiency and duration (using actigraphy) in a subset of individuals with AUD at baseline and after 4 weeks of inpatient treatment. We observed a dose-dependent relationship between alcohol consumption and sleep quality in both AUD and control groups. Sleep disturbance, a subscale measure in PSQI, differed significantly among CNR1 rs6454674 genotypes in both AUD (p = 0.015) and controls (p = 0.016). Only among controls, neuroticism personality scores mediated the relationship between genotype and sleep disturbance. Objective sleep measures (sleep efficiency, wake bouts and wake after sleep onset), differed significantly by CNR1 rs806368 genotype, both at baseline (p = 0.023, 0.029, 0.015, respectively) and at follow-up (p = 0.004, p = 0.006, p = 0.007, respectively), and by FAAH genotype for actigraphy recorded sleep duration at follow-up (p = 0.018). These relationships suggest a significant role of the ECS in alcohol-related sleep phenotypes.
Collapse
Affiliation(s)
- Soundarya Soundararajan
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Narjis Kazmi
- National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Alyssa T. Brooks
- National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Michael Krumlauf
- National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Melanie L. Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - David T. George
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Colin A. Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Gwenyth R. Wallen
- National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Vijay A. Ramchandani
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Ferretjans R, de Souza RP, Panizzutti B, Ferrari P, Mantovani L, de Campos-Carli SM, Santos RR, Guimarães FC, Teixeira AL, Gama CS, Salgado JV. Cannabinoid receptor gene polymorphisms and cognitive performance in patients with schizophrenia and controls. ACTA ACUST UNITED AC 2021; 44:26-34. [PMID: 34190825 PMCID: PMC8827365 DOI: 10.1590/1516-4446-2020-1650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
Abstract
Objective: To test the hypothesis that genetic variations of cannabinoid receptors contribute to the pathophysiology of cognitive deficits in schizophrenia. Methods: In this genetic association case-control study, cannabinoid receptor polymorphisms CNR1 rs12720071 and CNR2 rs2229579 were tested for association with neurocognitive performance in 69 patients with schizophrenia and 45 healthy controls. Neurocognition was assessed by the Brief Assessment of Cognition in Schizophrenia (BACS). Results: We found a consistent association between CNR1 rs12720071 polymorphism and the cognitive performance of patients in several cognitive domains. Patients with C/C polymorphism presented significantly worse performance in motor speed, verbal fluency, attention/processing speed and reasoning/problem solving. Conclusion: Although limited, our data support the hypothesis that CNR1 variations may be associated with the pathogenesis of cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
- Rodrigo Ferretjans
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Renan P de Souza
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil
| | - Bruna Panizzutti
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, Australia.,Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Pâmela Ferrari
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento (PPGPSIQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratório de Psiquiatria Molecular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Lucas Mantovani
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Salvina M de Campos-Carli
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rafael R Santos
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fernanda C Guimarães
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Antonio L Teixeira
- Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, MG, Brazil.,Neuropsychiatry Program, UTHealth Houston, TX, USA
| | - Clarissa S Gama
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento (PPGPSIQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - João V Salgado
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Austrich-Olivares A, Manzanares J. Role of Cannabidiol in the Therapeutic Intervention for Substance Use Disorders. Front Pharmacol 2021; 12:626010. [PMID: 34093179 PMCID: PMC8173061 DOI: 10.3389/fphar.2021.626010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/04/2021] [Indexed: 01/04/2023] Open
Abstract
Drug treatments available for the management of substance use disorders (SUD) present multiple limitations in efficacy, lack of approved treatments or alarming relapse rates. These facts hamper the clinical outcome and the quality of life of the patients supporting the importance to develop new pharmacological agents. Lately, several reports suggest that cannabidiol (CBD) presents beneficial effects relevant for the management of neurological disorders such as epilepsy, multiple sclerosis, Parkinson's, or Alzheimer's diseases. Furthermore, there is a large body of evidence pointing out that CBD improves cognition, neurogenesis and presents anxiolytic, antidepressant, antipsychotic, and neuroprotective effects suggesting potential usefulness for the treatment of neuropsychiatric diseases and SUD. Here we review preclinical and clinical reports regarding the effects of CBD on the regulation of the reinforcing, motivational and withdrawal-related effects of different drugs of abuse such as alcohol, opioids (morphine, heroin), cannabinoids, nicotine, and psychostimulants (cocaine, amphetamine). Furthermore, a special section of the review is focused on the neurobiological mechanisms that might be underlying the 'anti-addictive' action of CBD through the regulation of dopaminergic, opioidergic, serotonergic, and endocannabinoid systems as well as hippocampal neurogenesis. The multimodal pharmacological profile described for CBD and the specific regulation of addictive behavior-related targets explains, at least in part, its therapeutic effects on the regulation of the reinforcing and motivational properties of different drugs of abuse. Moreover, the remarkable safety profile of CBD, its lack of reinforcing properties and the existence of approved medications containing this compound (Sativex®, Epidiolex®) increased the number of studies suggesting the potential of CBD as a therapeutic intervention for SUD. The rising number of publications with substantial results on the valuable therapeutic innovation of CBD for treating SUD, the undeniable need of new therapeutic agents to improve the clinical outcome of patients with SUD, and the upcoming clinical trials involving CBD endorse the relevance of this review.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
22
|
Chukwueke CC, Kowalczyk WJ, Gendy M, Taylor R, Tyndale RF, Le Foll B, Heishman SJ. The CB1R rs2023239 receptor gene variant significantly affects the reinforcing effects of nicotine, but not cue reactivity, in human smokers. Brain Behav 2021; 11:e01982. [PMID: 33369277 PMCID: PMC7882168 DOI: 10.1002/brb3.1982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The cannabinoid CB1 receptor (CB1R) has been shown in preclinical studies to be involved in nicotine reinforcement and relapse-like behavior. The common single nucleotide polymorphism (SNP) rs2023239 may code for an alternative CB1R protein, alter CB1R expression, and be involved in nicotine dependence. To date, no study has explored the relationship between this SNP in CB1R and specific phenotypes of nicotine dependence. METHODS The current study investigated the influence of CB1R rs2023239 in nicotine reinforcement and craving in regular cigarette smokers. Current smokers (n = 104, cigarettes per day ≥ 10) were genetically grouped (C allele group vs. No C allele group) and underwent laboratory measures of nicotine reinforcement and smoking cue-elicited craving. Nicotine reinforcement was assessed using a forced choice paradigm, while a cue-reactivity procedure measured cue-elicited craving. RESULTS These results show that smokers with the C allele variant (CC + CT genotypes) experienced a lower nicotine reinforcement effect compared to those without the C allele (TT genotype). These results were similar in both our subjective and behavioral reinforcement measures, though the subjective effects did not withstand controlling for race. There was no difference between genotype groups with respect to cue-elicited craving, suggesting a lack of influence in cue reactivity. CONCLUSION Taken together, these results suggest that the variation in the CB1R (i.e., rs2023239 SNP) may play a larger role in nicotine reinforcement compared to cue reactivity. This work provides impetus to further understand the physiological mechanisms that explain how CB1Rs influence nicotine dependence phenotypes.
Collapse
Affiliation(s)
- Chidera C Chukwueke
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - William J Kowalczyk
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.,Department of Psychology, Hartwick College, Oneonta, NY, USA
| | - Marie Gendy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Richard Taylor
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Rachel F Tyndale
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,CAMH, Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,CAMH, Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Acute Care Program, CAMH, Toronto, ON, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health, Institute for Mental Health Policy Research, Toronto, ON, Canada
| | - Stephen J Heishman
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| |
Collapse
|
23
|
Preadult polytoxicomania-strong environmental underpinnings and first genetic hints. Mol Psychiatry 2021; 26:3211-3222. [PMID: 33824432 PMCID: PMC8505259 DOI: 10.1038/s41380-021-01069-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 11/09/2022]
Abstract
Considering the immense societal and personal costs and suffering associated with multiple drug use or "polytoxicomania", better understanding of environmental and genetic causes is crucial. While previous studies focused on single risk factors and selected drugs, effects of early-accumulated environmental risks on polytoxicomania were never addressed. Similarly, evidence of genetic susceptibility to particular drugs is abundant, while genetic predisposition to polytoxicomania is unexplored. We exploited the GRAS data collection, comprising information on N~2000 deep-phenotyped schizophrenia patients, to investigate effects of early-life environmental risk accumulation on polytoxicomania and additionally provide first genetic insight. Preadult accumulation of environmental risks (physical or sexual abuse, urbanicity, migration, cannabis, alcohol) was strongly associated with lifetime polytoxicomania (p = 1.5 × 10-45; OR = 31.4), preadult polytoxicomania with OR = 226.6 (p = 1.0 × 10-33) and adult polytoxicomania with OR = 17.5 (p = 3.4 × 10-24). Parallel accessibility of genetic data from GRAS patients and N~2100 controls for genome-wide association (GWAS) and phenotype-based genetic association studies (PGAS) permitted the creation of a novel multiple GWAS-PGAS approach. This approach yielded 41 intuitively interesting SNPs, potentially conferring liability to preadult polytoxicomania, which await replication upon availability of suitable deep-phenotyped cohorts anywhere world-wide. Concisely, juvenile environmental risk accumulation, including cannabis and alcohol as starter/gateway drugs, strongly predicts polytoxicomania during adolescence and adulthood. This pivotal message should launch more effective sociopolitical measures to prevent this deleterious psychiatric condition.
Collapse
|
24
|
Joshi N, Onaivi ES. Psychiatric Disorders and Cannabinoid Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:131-153. [PMID: 33332008 PMCID: PMC10810008 DOI: 10.1007/978-3-030-57369-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
With the increasing global use of medical and adult recreational use of cannabis and cannabinoids, this chapter provides overview of evidence from animal and human studies on psychiatric disorders and cannabinoid receptors. We review and present evaluation of the relationship between changes in the ECS and psychiatric disorders. Evidence suggests the existence of a relationship between changes in components of the ECS, and some of the symptoms present in psychiatric disorders. Both CB1Rs and CB2Rs are components of the endocannabinoid system with different cellular and tissue localization patterns that are differentially expressed in the CNS and PNS and are emerging targets for the treatment of number psychiatric disorders. As cannabis preparations are widely used for recreation globally, it is predictable that cannabis use disorders (CUDs) will increase and there is currently no available treatment for CUDs. Although major advances have been reported from cannabinoid and ECS research, there are gaps in scientific knowledge on long-term consequences of cannabis use. Adolescent and cannabis use during pregnancy presents further challenges, and more research will uncover the signaling pathways that couple the gut microbiota with the host ECS. Development of cannabis and cannabinoid nanomedicine for nanotherapy will certainly overcome some of the shortcomings and challenges in medicinal and recreational use of cannabis and cannabinoids. Thus, nanotechnology will allow targeted delivery of cannabinoid formulations with the potential to elevate their use to scientifically validated nanotherapeutic applications as the field of cannabis nanoscience matures.
Collapse
Affiliation(s)
- Neal Joshi
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | | |
Collapse
|
25
|
Morel A, Lebard P, Dereux A, Azuar J, Questel F, Bellivier F, Marie-Claire C, Fatséas M, Vorspan F, Bloch V. Clinical Trials of Cannabidiol for Substance Use Disorders: Outcome Measures, Surrogate Endpoints, and Biomarkers. Front Psychiatry 2021; 12:565617. [PMID: 33692705 PMCID: PMC7937926 DOI: 10.3389/fpsyt.2021.565617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Cannabidiol (CBD) is a cannabinoid of potential interest for the treatment of substance use disorders. Our aim was to review the outcome measures, surrogate endpoints, and biomarkers in published and ongoing randomized clinical trials. Methods: We conducted a search in PubMed, Web of Science, PMC, PsycINFO, EMBASE, CENTRAL Cochrane Library, "clinicalTrials.gov," "clinicaltrialsregister.eu," and "anzctr.org.au" for published and ongoing studies. Inclusion criteria were randomized clinical trials (RCTs) examining the use of CBD alone or in association with other cannabinoids, in all substance use disorders. The included studies were analyzed in detail and their qualities assessed by a standardized tool (CONSORT 2010). A short description of excluded studies, consisting in controlled short-term or single administration in non-treatment-seeking drug users, is provided. Findings: The screening retrieved 207 published studies, including only 3 RCTs in cannabis use disorder. Furthermore, 12 excluded studies in cannabis, tobacco, and opioid use disorders are described. Interpretation: Primary outcomes were validated withdrawal symptoms scales and drug use reduction in the three RCTs. In the short-term or crossover studies, the outcome measures were visual analog scales for subjective states; self-rated scales for withdrawal, craving, anxiety, or psychotomimetic symptoms; and laboratory tasks of drug-induced craving, effort expenditure, attentional bias for substance, impulsivity, or anxiety to serve as surrogate endpoints for treatment efficacy. Of note, ongoing studies are now adding peripheral biomarkers of the endocannabinoid system status to predict treatment response. Conclusion: The outcome measures and biomarkers assessed in the ongoing CBD trials for substance use disorders are improving.
Collapse
Affiliation(s)
- Alix Morel
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France
| | - Pierre Lebard
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France
| | - Alexandra Dereux
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France.,INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Julien Azuar
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France.,INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Frank Questel
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France.,INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France.,INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France.,UFR Médecine, Université de Paris, 3 rue Thomas Mann, Paris, France
| | - Cynthia Marie-Claire
- INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Mélina Fatséas
- University of Bordeaux, Bordeaux, France.,CNRS-UMR 5287- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Bordeaux, France.,Pôle d'addictologie, CHU de Bordeaux, Hôpital Haut-Lévêque, Avenue de Magellan, Pessac, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France.,INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France.,UFR Médecine, Université de Paris, 3 rue Thomas Mann, Paris, France
| | - Vanessa Bloch
- INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France.,Service de Pharmacie, Hôpital Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France
| |
Collapse
|
26
|
On the Role of Central Type-1 Cannabinoid Receptor Gene Regulation in Food Intake and Eating Behaviors. Int J Mol Sci 2021; 22:ijms22010398. [PMID: 33401515 PMCID: PMC7796374 DOI: 10.3390/ijms22010398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Different neuromodulatory systems are involved in long-term energy balance and body weight and, among these, evidence shows that the endocannabinoid system, in particular the activation of type-1 cannabinoid receptor, plays a key role. We here review current literature focusing on the role of the gene encoding type-1 cannabinoid receptors in the CNS and on the modulation of its expression by food intake and specific eating behaviors. We point out the importance to further investigate how environmental cues might have a role in the development of obesity as well as eating disorders through the transcriptional regulation of this gene in order to prevent or to treat these pathologies.
Collapse
|
27
|
Terry GE, Raymont V, Horti AG. PET Imaging of the Endocannabinoid System. PET AND SPECT OF NEUROBIOLOGICAL SYSTEMS 2021:319-426. [DOI: 10.1007/978-3-030-53176-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Soriano D, Brusco A, Caltana L. Further evidence of anxiety- and depression-like behavior for total genetic ablation of cannabinoid receptor type 1. Behav Brain Res 2020; 400:113007. [PMID: 33171148 DOI: 10.1016/j.bbr.2020.113007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Cannabinoid receptor type 1 (CB1R) is the most abundant cannabinoid receptor in central nervous system. Clinical studies and animal models have shown that the attenuation of endocannabinoid system signaling correlates with the development of psychiatric disorders such as anxiety, depression and schizophrenia. In the present work, multiple behavioral tests were performed to evaluate behaviors related to anxiety and depression in CB1R+/- and CB1R-/-. CB1R+/- mice had anxiety-related behavior similar to wild type (CB1R+/+) mice, whereas CB1R-/- mice displayed an anxious-like phenotype, which indicates that lower expression of CB1R is sufficient to maintain the neural circuits modulating anxiety. In addition, CB1R-/- mice exhibited alterations in risk assessment and less exploration, locomotion, grooming, body weight and appetite. These phenotypic characteristics observed in CB1R-/- mice could be associated with symptoms observed in human psychiatric disorders such as depression. A better knowledge of the neuromodulatory role of CB1R may contribute to understand scope and limitations of the development of medical treatments.
Collapse
Affiliation(s)
- Delia Soriano
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina
| | - Laura Caltana
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina.
| |
Collapse
|
29
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
30
|
Soriano D, Vacotto M, Brusco A, Caltana L. Neuronal and synaptic morphological alterations in the hippocampus of cannabinoid receptor type 1 knockout mice. J Neurosci Res 2020; 98:2245-2262. [DOI: 10.1002/jnr.24694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/28/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Delia Soriano
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Marina Vacotto
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Laura Caltana
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
31
|
Chang HW, Ho WC, Huang CL, Wang RY. Precision therapeutic opioid dosing implications from genetic biomarkers and craving score. Medicine (Baltimore) 2020; 99:e20429. [PMID: 32481444 DOI: 10.1097/md.0000000000020429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Determining the clinically optimal dose in methadone maintenance therapy (MMT) is a time-consuming procedure, which considers clinical signs and symptoms.To perform a quantitative trait locus association for identifying genetic variants for MMT dosage that underlie heroin addiction and methadone metabolism and then integrate several genotypic and phenotypic factors are potential predictors for clinically optimal MMT dose for personalized prescription.In total, 316 heroin-dependent patients undergoing MMT were recruited at the Addiction Center of the China Medical University Hospital. A multinomial logistic regression model was used to assess associations between genetic polymorphisms and MMT dosing. The data were randomly separated into training and testing sets. In order to enhance the prediction accuracy and the reliability of the prediction model, we used areas under the receiver operating characteristic curves to evaluate optimal MMT dose in both training and testing sets.Four single nucleotide polymorphisms, namely rs806368 in CNR1, s1386493 in TPH2, s16974799 in CYP2B6, and rs2229205 in OPRL1, were significantly associated with the maximum MMT dose (P < .05). The genetic risk score (GRS) was associated with maximum MMT dose, and after adjustments for age, sex, and body mass index, the GRS remained independently associated with the maximum MMT dose. The area under the receiver operating characteristic curve of the combined GRS and craving score was 0.77 for maximum MMT dose, with 75% sensitivity and 60% specificity.Integrating the GRS and craving scores may be useful in the evaluation of individual MMT dose requirements at treatment initiation. Optimal dose prediction allows clinicians to tailor MMT to each patient's needs.
Collapse
Affiliation(s)
- Hsin-Wen Chang
- Department of Public Health, China Medical University, Taichung
- Center for General Education, Hsuan Chuang University, Hsinchu City
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung
| | - Chieh-Liang Huang
- Brain Disease Research Center
- Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Ruey-Yun Wang
- Department of Public Health, China Medical University, Taichung
| |
Collapse
|
32
|
Zeng J, Liu M, Hou X, Zhang Q, Chen H, Su L. Can genes modulate anchoring effect? INTERNATIONAL JOURNAL OF PSYCHOLOGY 2020; 55:1011-1015. [PMID: 32319088 DOI: 10.1002/ijop.12669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 03/10/2020] [Indexed: 11/07/2022]
Abstract
The anchoring effect is a well-known decision bias, referring that initial irrelevant number (anchor) can impact late estimation. Anchoring effect can be explained as people starting from the anchor and stopping incremental adjustment too early-in other words, jumping into the conclusion impulsively. High impulsivity is associated with AA genotype of rs806379. Therefore, we hypothesized that rs806379 polymorphism can exert an influence on the anchoring effect. The subjects completed an experimental task of anchoring effect and provided saliva for genotyping. As expected, we found that subjects with AA genotype of rs806379 demonstrated stronger anchoring effect. This is the first article that explores the anchoring effect from the gene perspective. Our finding suggests that nature plays a role in anchoring effect.
Collapse
Affiliation(s)
- Jianmin Zeng
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, China.,Key Laboratory of Cognition and Personality of Ministry of Education of China, Southwest University, China.,National Demonstration Center for Experimental Psychology Education, Southwest University, China
| | - Manru Liu
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, China.,Key Laboratory of Cognition and Personality of Ministry of Education of China, Southwest University, China.,National Demonstration Center for Experimental Psychology Education, Southwest University, China
| | - Xingrong Hou
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, China.,Key Laboratory of Cognition and Personality of Ministry of Education of China, Southwest University, China.,National Demonstration Center for Experimental Psychology Education, Southwest University, China
| | - Qinglin Zhang
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, China.,Key Laboratory of Cognition and Personality of Ministry of Education of China, Southwest University, China.,National Demonstration Center for Experimental Psychology Education, Southwest University, China
| | - Hong Chen
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, China.,Key Laboratory of Cognition and Personality of Ministry of Education of China, Southwest University, China.,National Demonstration Center for Experimental Psychology Education, Southwest University, China
| | - Li Su
- Department of Psychiatry, University of Cambridge, UK
| |
Collapse
|
33
|
Hay EA, Cowie P, McEwan AR, Ross R, Pertwee RG, MacKenzie A. Disease-associated polymorphisms within the conserved ECR1 enhancer differentially regulate the tissue-specific activity of the cannabinoid-1 receptor gene promoter; implications for cannabinoid pharmacogenetics. Hum Mutat 2019; 41:291-298. [PMID: 31608546 PMCID: PMC6973010 DOI: 10.1002/humu.23931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
Cannabinoid receptor‐1 (CB1) represents a potential drug target against conditions that include obesity and substance abuse. However, drug trials targeting CB1 (encoded by the CNR1 gene) have been compromised by differences in patient response. Toward addressing the hypothesis that genetic changes within the regulatory regions controlling CNR1 expression contribute to these differences, we characterized the effects of disease‐associated allelic variation within a conserved regulatory sequence (ECR1) in CNR1 intron 2 that had previously been shown to modulate cannabinoid response, alcohol intake, and anxiety‐like behavior. We used primary cell analysis of reporters carrying different allelic variants of the human ECR1 and found that human‐specific C‐allele variants of ECR1 (ECR1(C)) drove higher levels of CNR1prom activity in primary hippocampal cells than did the ancestral T‐allele and demonstrated a differential response to CB1 agonism. We further demonstrate a role for the AP‐1 transcription factor in driving higher ECR1(C) activity and evidence that the ancestral t‐allele variant of ECR1 interacted with higher affinity with the insulator binding factor CTCF. The cell‐specific approaches used in our study represent an important step in gaining a mechanistic understanding of the roles of noncoding polymorphic variation in disease and in the increasingly important field of cannabinoid pharmacogenetics.
Collapse
Affiliation(s)
- Elizabeth A Hay
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Philip Cowie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Andrew R McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Ruth Ross
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Alasdair MacKenzie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
34
|
Disruption of an enhancer associated with addictive behaviour within the cannabinoid receptor-1 gene suggests a possible role in alcohol intake, cannabinoid response and anxiety-related behaviour. Psychoneuroendocrinology 2019; 109:104407. [PMID: 31445429 PMCID: PMC6857436 DOI: 10.1016/j.psyneuen.2019.104407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
The cannabinoid-1 receptor (CB1) plays a critical role in a number of biological processes including nutrient intake, addiction and anxiety-related behaviour. Numerous studies have shown that expression of the gene encoding CB1 (CNR1) is highly dynamic with changes in the tissue specific expression of CNR1 associated with brain homeostasis and disease progression. However, little is known of the mechanisms regulating this dynamic expression. To gain a better understanding of the genomic mechanisms modulating the expression of CNR1 in health and disease we characterised the role of a highly conserved regulatory sequence (ECR1) in CNR1 intron 2 that contained a polymorphism in linkage disequilibrium with disease associated SNPs. We used CRISPR/CAS9 technology to disrupt ECR1 within the mouse genome. Disruption of ECR1 significantly reduced CNR1 expression in the hippocampus but not in the hypothalamus. These mice also displayed an altered sex-specific anxiety-related behavioural profile (open field test), reduced ethanol intake and a reduced hypothermic response following CB1 agonism. However, no significant changes in feeding patterns were detected. These data suggest that, whilst not all of the expression of CNR1 is modulated by ECR1, this highly conserved enhancer is required for appropriate physiological responses to a number of stimuli. The combination of comparative genomics and CRISPR/CAS9 disruption used in our study to determine the functional effects of genetic and epigenetic changes on the activity of tissue-specific regulatory elements at the CNR1 locus represent an important first step in gaining a mechanistic understanding of cannabinoid regulatory pharmacogenetics.
Collapse
|
35
|
Bonn-Miller MO, Pollack CV, Casarett D, Dart R, ElSohly M, Good L, Guzmán M, Hanuš L, Hill KP, Huestis MA, Marsh E, Sisley S, Skinner N, Spahr J, Vandrey R, Viscusi E, Ware MA, Abrams D. Priority Considerations for Medicinal Cannabis-Related Research. Cannabis Cannabinoid Res 2019; 4:139-157. [PMID: 31579832 DOI: 10.1089/can.2019.0045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Marcel O Bonn-Miller
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles V Pollack
- Department of Emergency Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - David Casarett
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Richard Dart
- Rocky Mountain Drug and Poison Control Center, Denver, Colorado
| | - Mahmoud ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, Mississippi
| | - Larry Good
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Lumír Hanuš
- Department of Medicinal and Natural Products, Institute for Drug Research, The Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kevin P Hill
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Eric Marsh
- Departments of Neurology and Pediatrics, Division of Child Neurology, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan Sisley
- Colorado State University-Pueblo, Pueblo, Colorado
| | | | | | - Ryan Vandrey
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eugene Viscusi
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mark A Ware
- Department of Family Medicine, McGill University, Montreal, Quebec, Canada
| | - Donald Abrams
- UCSF Osher Center for Integrative Medicine, University of California-San Francisco, San Francisco, California
| |
Collapse
|
36
|
Identification of novel mouse and rat CB1R isoforms and in silico modeling of human CB1R for peripheral cannabinoid therapeutics. Acta Pharmacol Sin 2019; 40:387-397. [PMID: 30202012 DOI: 10.1038/s41401-018-0152-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/18/2018] [Indexed: 01/28/2023]
Abstract
Targeting peripheral CB1R is desirable for the treatment of metabolic syndromes without adverse neuropsychiatric effects. We previously reported a human hCB1b isoform that is selectively enriched in pancreatic beta-cells and hepatocytes, providing a potential peripheral therapeutic hCB1R target. It is unknown whether there are peripherally enriched mouse and rat CB1R (mCB1 and rCB1, respectively) isoforms. In this study, we found no evidence of peripherally enriched rodent CB1 isoforms; however, some mCB1R isoforms are absent in peripheral tissues. We show that the mouse Cnr1 gene contains six exons that are transcribed from a single promoter. We found that mCB1A is a spliced variant of extended exon 1 and protein-coding exon 6; mCB1B is a novel spliced variant containing unspliced exon 1, intron 1, and exon 2, which is then spliced to exon 6; and mCB1C is a spliced variant including all 6 exons. Using RNAscope in situ hybridization, we show that the isoforms mCB1A and mCB1B are expressed at a cellular level and colocalized in GABAergic neurons in the hippocampus and cortex. RT-qPCR reveals that mCB1A and mCB1B are enriched in the brain, while mCB1B is not expressed in the pancreas or the liver. Rat rCB1R isoforms are differentially expressed in primary cultured neurons, astrocytes, and microglia. We also investigated modulation of Cnr1 expression by insulin in vivo and carried out in silico modeling of CB1R with JD5037, a peripherally restricted CB1R inverse agonist, using the published crystal structure of hCB1R. The results provide models for future CB1R peripheral targeting.
Collapse
|
37
|
Cannabidiol does not display drug abuse potential in mice behavior. Acta Pharmacol Sin 2019; 40:358-364. [PMID: 30022153 DOI: 10.1038/s41401-018-0032-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/20/2018] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that cannabidiol (CBD) may be useful for the treatment of different neuropsychiatric disorders. However, some controversy regarding its profile as a drug of abuse hampers the further development of basic and clinical studies. In this study, the behavioral profile of CBD as a potential drug of abuse was evaluated in C57BL/6J mice. Reinforcing properties of CBD (15, 30, and 60 mg/kg; i.p.) were assessed using the conditioned place preference (CPP) paradigm. Spontaneous withdrawal symptoms and motor activity in the open field were examined 12 h after the last CBD administration (30 mg/kg/12 h, i.p., 6 days). CBD plasma concentrations were measured at 2, 4, 8, 12, and 24 h after the administration of CBD (30 mg/kg, i.p.). Furthermore, an oral CBD self-administration paradigm (50 mg/kg; CBD water-soluble 1.2 mg/mL) was performed to evaluate whether this drug produced any effects on motivation compared with a non-reinforcing substance (water). We found that CBD failed to induce CPP, withdrawal symptoms, or altered motor behavior 12 h after its administration. At that time, only traces of CBD were detected, ensuring that the lack of alterations in somatic signs and locomotor activity was not due to residual drug in plasma. Interestingly, mice displayed similar motivation and consumption of CBD and water. Taken together, these results show that CBD lacks activity as a drug of abuse and should stimulate the development of the basic and clinical studies needed to elucidate its potential therapeutic use for the treatment of neuropsychiatric and drug use disorders.
Collapse
|
38
|
Yukseloglu EH, Ortug A, Rayimoglu G, Yonar FC, Erkan I, Kara U, Islek DS, Kolusayin Ozar MO, Dastan K, Karatas O. Association of 10 single nucleotide polymorphism loci with nicotine addiction in the Anatolian population? BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1637782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Emel Hulya Yukseloglu
- Department of Forensic Genetics, Institute of Forensic Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Alpen Ortug
- Department of Anatomy, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Gulten Rayimoglu
- Department of Forensic Genetics, Institute of Forensic Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Fatma Cavus Yonar
- Department of Forensic Genetics, Institute of Forensic Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Itir Erkan
- Department of Healthcare Management, Faculty of Health Sciences, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Umut Kara
- Department of Forensic Genetics, Institute of Forensic Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dilek Salkim Islek
- Department of Forensic Genetics, Institute of Forensic Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Melek Ozlem Kolusayin Ozar
- Department of Forensic Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kadir Dastan
- Department of Nutrition and Dietetic, Faculty of Health Sciences, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Omer Karatas
- Department of Forensic Genetics, Institute of Forensic Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
39
|
Joshi N, Onaivi ES. Endocannabinoid System Components: Overview and Tissue Distribution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:1-12. [PMID: 31332731 DOI: 10.1007/978-3-030-21737-2_1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Marijuana/cannabinoid research has been transformed into mainstream science during the last half-century. Evidence based research and remarkable biotechnological advances demonstrate that phytocannabinoids and endocannabinoid (eCBs) acting on cannabinoid receptors (CBRs) regulate various aspects of human physiological, behavioral, immunological and metabolic functions. The distribution and function of the components of the endocannabinoid system (ECS) in the central nervous system (CNS) and immune processes have garnished significant research focus with major milestones. With these advances in biotechnology, rapid extension of the ECS research in the periphery has gained momentum. In this chapter, we review the components and tissue distribution of this previously unknown but ubiquitous and complex ECS that is involved in almost all aspects of mammalian physiology and pathology.
Collapse
Affiliation(s)
- Neal Joshi
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | | |
Collapse
|
40
|
Stampanoni Bassi M, Gilio L, Maffei P, Dolcetti E, Bruno A, Buttari F, Centonze D, Iezzi E. Exploiting the Multifaceted Effects of Cannabinoids on Mood to Boost Their Therapeutic Use Against Anxiety and Depression. Front Mol Neurosci 2018; 11:424. [PMID: 30515077 PMCID: PMC6256035 DOI: 10.3389/fnmol.2018.00424] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid system (ECS) has been recently recognized as a prominent promoter of the emotional homeostasis, mediating the effects of different environmental signals including rewarding and stressing stimuli. The ECS modulates the rewarding effects of environmental stimuli, influencing synaptic transmission in the dopaminergic projections to the limbic system, and mediates the neurophysiological and behavioral consequences of stress. Notably, the individual psychosocial context is another key element modulating the activity of the ECS. Finally, inflammation represents an additional factor that could alter the cannabinoid signaling in the CNS inducing a "sickness behavior," characterized by anxiety, anhedonia, and depressive symptoms. The complex influences of the ECS on both the environmental and internal stimuli processing, make the cannabinoid-based drugs an appealing option to treat different psychiatric conditions. Although ample experimental evidence shows beneficial effects of ECS modulation on mood, scarce clinical indication limits the use of cannabis-based treatments. To better define the possible clinical indications of cannabinoid-based drugs in psychiatry, a number of issues should be better addressed, including genetic variability and psychosocial factors possibly affecting the individual response. In particular, better knowledge of the multifaceted effects of cannabinoids could help to understand how to boost their therapeutic use in anxiety and depression treatment.
Collapse
Affiliation(s)
| | - Luana Gilio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Pierpaolo Maffei
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Ettore Dolcetti
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonio Bruno
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
41
|
Hryhorowicz S, Walczak M, Zakerska-Banaszak O, Słomski R, Skrzypczak-Zielińska M. Pharmacogenetics of Cannabinoids. Eur J Drug Metab Pharmacokinet 2018; 43:1-12. [PMID: 28534260 PMCID: PMC5794848 DOI: 10.1007/s13318-017-0416-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the application of medical marijuana and cannabinoid drugs is controversial, it is a part of modern-day medicine. The list of diseases in which cannabinoids are promoted as a treatment is constantly expanding. Cases of significant improvement in patients with a very poor prognosis of glioma or epilepsy have already been described. However, the occurrence of side effects is still difficult to estimate, and the current knowledge of the therapeutic effects of cannabinoids is still insufficient. In our opinion, the answers to many questions and concerns regarding the medical use of cannabis can be provided by pharmacogenetics. Knowledge based on proteins and molecules involved in the transport, action, and metabolism of cannabinoids in the human organism leads us to predict candidate genes which variations are responsible for the presence of the therapeutic and side effects of medical marijuana and cannabinoid-based drugs. We can divide them into: receptor genes-CNR1, CNR2, TRPV1, and GPR55, transporters-ABCB1, ABCG2, SLC6A, biotransformation, biosynthesis, and bioactivation proteins encoded by CYP3A4, CYP2C19, CYP2C9, CYP2A6, CYP1A1, COMT, FAAH, COX2, ABHD6, ABHD12 genes, and also MAPK14. This review organizes the current knowledge in the context of cannabinoids pharmacogenetics according to individualized medicine and cannabinoid drugs therapy.
Collapse
Affiliation(s)
- Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| | - Michal Walczak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Oliwia Zakerska-Banaszak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
- Department of Biochemistry and Biotechnology, University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland
| | | |
Collapse
|
42
|
Yao Y, Xu Y, Zhao J, Ma Y, Su K, Yuan W, Ma JZ, Payne TJ, Li MD. Detection of Significant Association Between Variants in Cannabinoid Receptor 1 Gene ( CNR1) and Personality in African-American Population. Front Genet 2018; 9:199. [PMID: 29963071 PMCID: PMC6010580 DOI: 10.3389/fgene.2018.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/17/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Several studies have revealed significant associations between single nucleotide polymorphisms (SNPs) in the cannabinoid receptor 1 (CNR1) gene and a broad spectrum of psychiatric disorders such as major depressive disorder (MDD), attention deficit hyperactivity disorder (ADHD), and schizophrenia. Personality traits that are highly related to susceptibility to these conditions have been associated with the CNR1 variants in subjects of Caucasian origin. However, there are no reported studies regarding the effects of CNR1 polymorphisms on personality traits in the African-American (AA) population. Methods: We performed an imputation-based association analysis for 26 CNR1 variants with five dimensions of personality in 3,046 AAs. Results: SNPs rs806372 and rs2180619 showed a significant association with extraversion after Bonferroni correction for multiple testing (p < 0.0019). Further, several extraversion-associated SNPs were significantly associated with conscientiousness, agreeableness, and openness. SNP priority score analysis indicated that SNPs rs806368, rs806371, and rs2180619 play a role in the modulation of personality and psychiatric conditions. Conclusion:CNR1 is important in determining personality traits in the AA population.
Collapse
Affiliation(s)
- Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Thomas J Payne
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
43
|
Choi NG, DiNitto DM, Marti CN. A longitudinal assessment of change in marijuana use with other substance use problems. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2018; 44:642-652. [DOI: 10.1080/00952990.2018.1461879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Namkee G. Choi
- Steve Hicks School of Social Work, University of Texas at Austin, Austin, TX, USA
| | - Diana M. DiNitto
- Steve Hicks School of Social Work, University of Texas at Austin, Austin, TX, USA
| | - C. Nathan Marti
- Steve Hicks School of Social Work, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
44
|
Ketcherside A, Noble LJ, McIntyre CK, Filbey FM. Cannabinoid Receptor 1 Gene by Cannabis Use Interaction on CB1 Receptor Density. Cannabis Cannabinoid Res 2017; 2:202-209. [PMID: 29082317 PMCID: PMC5628563 DOI: 10.1089/can.2017.0007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Because delta-9-tetrahydrocannabinol (THC), the primary psychoactive ingredient in cannabis, binds to cannabinoid 1 (CB1) receptors, levels of CB1 protein could serve as a potential biomarker for response to THC. To date, available techniques to characterize CB1 expression and function in vivo are limited. In this study, we developed an assay to quantify CB1 in lymphocytes to determine how it relates to cannabis use in 58 daily cannabis users compared with 47 nonusers. Furthermore, we tested whether CB1 levels are associated with mutations in a single nucleotide polymorphism known to regulate CB1 functioning (i.e., rs2023239). Methods: Total protein concentration was analyzed through the Pierce BCA Protein assay kit. CB1 protein was quantified through CNR1 enzyme-linked immunosorbent assay (ELISA) kit from MyBioSource. CB1 concentration and total protein concentration were quantified and used to calculate a ratio of CB1 to total protein. Results: Inherent levels of peripheral lymphocyte CB1 were sufficient for quantification through ELISA without protein amplification. We found a group×genotype interaction such that users with the G allele had greater CB1 concentration than users with the A/A genotype, and a trend-level difference between genotypes in nonusers. Conclusions: This study demonstrates a minimally invasive technique of CB1 quantification that holds promise for the use of CB1 protein concentration, along with rs2023239 genotype, as a potential biomarker for susceptibility to cannabis use. These results suggest a gene (rs2023239 G)×environment (cannabis use) effect on CB1 density.
Collapse
Affiliation(s)
- Ariel Ketcherside
- Center for BrainHealth, University of Texas at Dallas, Dallas, Texas.,The School of Behavior and Brain Science, University of Texas at Dallas, Dallas, Texas
| | - Lindsey J Noble
- The School of Behavior and Brain Science, University of Texas at Dallas, Dallas, Texas
| | - Christa K McIntyre
- The School of Behavior and Brain Science, University of Texas at Dallas, Dallas, Texas
| | - Francesca M Filbey
- Center for BrainHealth, University of Texas at Dallas, Dallas, Texas.,The School of Behavior and Brain Science, University of Texas at Dallas, Dallas, Texas
| |
Collapse
|
45
|
Evans DE, Sutton SK, Jentink KG, Lin HY, Park JY, Drobes DJ. Cannabinoid receptor 1 (CNR1) gene variant moderates neural index of cognitive disruption during nicotine withdrawal. GENES BRAIN AND BEHAVIOR 2017; 15:621-6. [PMID: 27453054 DOI: 10.1111/gbb.12311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/06/2016] [Accepted: 07/22/2016] [Indexed: 11/27/2022]
Abstract
Nicotine withdrawal-related disruption of cognitive control may contribute to the reinforcement of tobacco use. Identification of gene variants that predict this withdrawal phenotype may lead to tailored pharmacotherapy for smoking cessation. Variation on the cannabinoid receptor 1 gene (CNR1) has been related to nicotine dependence, and CNR1 antagonists may increase attention and memory functioning. We targeted CNR1 variants as moderators of a validated neural marker of nicotine withdrawal-related cognitive disruption. CNR1 polymorphisms comprising the 'TAG' haplotype (rs806379, rs1535255 and rs2023239) were tested independently, as no participants in this sample possessed this haplotype. Nicotine withdrawal-related cognitive disruption was indexed as increased resting electroencephalogram (EEG) alpha-1 power density across 17 electrodes. Seventy-three Caucasian Non-Hispanic smokers (≥15 cigarettes per day) visited the laboratory on two occasions following overnight smoking/nicotine deprivation. Either two nicotine or two placebo cigarettes were smoked prior to collecting EEG data at each session. Analyses showed that rs806379 moderated the effects of nicotine deprivation increasing slow wave EEG (P = 0.004). Smokers homozygous for the major allele exhibited greater nicotine withdrawal-related cognitive disruption. The current findings suggest potential efficacy of cannabinoid receptor antagonism as a pharmacotherapy approach for smoking cessation among individuals who exhibit greater nicotine withdrawal-related cognitive disruption.
Collapse
Affiliation(s)
- D E Evans
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA. .,Departments of Oncologic Sciences & Psychology, University of South Florida, Tampa, FL, USA.
| | - S K Sutton
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA.,Departments of Oncologic Sciences & Psychology, University of South Florida, Tampa, FL, USA.,Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - K G Jentink
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - H-Y Lin
- Department of Biostatistics, Louisiana State University, Baton Rouge, LA, USA
| | - J Y Park
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA.,Departments of Oncologic Sciences & Psychology, University of South Florida, Tampa, FL, USA
| | - D J Drobes
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA.,Departments of Oncologic Sciences & Psychology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
46
|
Abstract
The CB1 and CB2 cannabinoid receptors (CB1R, CB2R) are members of the G protein-coupled receptor (GPCR) family that were identified over 20 years ago. CB1Rs and CB2Rs mediate the effects of Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of marijuana, and subsequently identified endogenous cannabinoids (endocannabinoids) anandamide and 2-arachidonoyl glycerol. CB1Rs and CB2Rs have both similarities and differences in their pharmacology. Both receptors recognize multiple classes of agonist and antagonist compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. This chapter will discuss their pharmacological characterization, distribution, phylogeny, and signaling pathways. In addition, the effects of extended agonist exposure and how that affects signaling and expression patterns of the receptors are considered.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- Humans
- Phylogeny
- Polymorphism, Genetic
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Allyn C Howlett
- Center for Research on Substance Use and Addiction, Wake Forest University Health Sciences, Winston-Salem, NC, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
47
|
Ramer R, Hinz B. Cannabinoids as Anticancer Drugs. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:397-436. [PMID: 28826542 DOI: 10.1016/bs.apha.2017.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The endocannabinoid system encompassing cannabinoid receptors, endogenous receptor ligands (endocannabinoids), as well as enzymes conferring the synthesis and degradation of endocannabinoids has emerged as a considerable target for pharmacotherapeutical approaches of numerous diseases. Besides palliative effects of cannabinoids used in cancer treatment, phytocannabinoids, synthetic agonists, as well as substances that increase endogenous endocannabinoid levels have gained interest as potential agents for systemic cancer treatment. Accordingly, cannabinoid compounds have been reported to inhibit tumor growth and spreading in numerous rodent models. The underlying mechanisms include induction of apoptosis, autophagy, and cell cycle arrest in tumor cells as well as inhibition of tumor cell invasion and angiogenic features of endothelial cells. In addition, cannabinoids have been shown to suppress epithelial-to-mesenchymal transition, to enhance tumor immune surveillance, and to support chemotherapeutics' effects on drug-resistant cancer cells. However, unwanted side effects include psychoactivity and possibly pathogenic effects on liver health. Other cannabinoids such as the nonpsychoactive cannabidiol exert a comparatively good safety profile while exhibiting considerable anticancer properties. So far experience with anticarcinogenic effects of cannabinoids is confined to in vitro studies and animal models. Although a bench-to-bedside conversion remains to be established, the current knowledge suggests cannabinoid compounds to serve as a group of drugs that may offer significant advantages for patients suffering from cancer diseases. The present review summarizes the role of the endocannabinoid system and cannabinoid compounds in tumor progression.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
48
|
Ruiz-Contreras AE, Román-López TV, Caballero-Sánchez U, Rosas-Escobar CB, Ortega-Mora EI, Barrera-Tlapa MA, Romero-Hidalgo S, Carrillo-Sánchez K, Hernández-Morales S, Vadillo-Ortega F, González-Barrios JA, Méndez-Díaz M, Prospéro-García O. Because difficulty is not the same for everyone: the impact of complexity in working memory is associated with cannabinoid 1 receptor genetic variation in young adults. Memory 2016; 25:335-343. [PMID: 27108777 DOI: 10.1080/09658211.2016.1172642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Individual differences in working memory ability are mainly revealed when a demanding challenge is imposed. Here, we have associated cannabinoid 1 (CB1) receptor genetic variation rs2180619 (AA, AG, GG), which is located in a potential CNR1 regulatory sequence, with performance in working memory. Two-hundred and nine Mexican-mestizo healthy young participants (89 women, 120 men, mean age: 23.26 years, SD = 2.85) were challenged to solve a medium (2-back) vs. a high (3-back) difficulty N-back tasks. All subjects responded as expected, performance was better with the medium than the high demand task version, but no differences were found among genotypes while performing each working memory (WM) task. However, the cost of the level of complexity in N-back paradigm was double for GG subjects than for AA subjects. It is noteworthy that an additive-dosage allele relation was found for G allele in terms of cost of level of complexity. These genetic variation results support that the endocannabinoid system, evaluated by rs2180619 polymorphism, is involved in WM ability in humans.
Collapse
Affiliation(s)
- Alejandra E Ruiz-Contreras
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico.,b Gpo. Neurociencias: Lab. Canabinoides, Depto. Fisiologia, Fac. Medicina , UNAM , Cd. Mexico, Mexico
| | - Talía V Román-López
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico
| | - Ulises Caballero-Sánchez
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico
| | - Cintia B Rosas-Escobar
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico
| | - E Ivett Ortega-Mora
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico
| | - Miguel A Barrera-Tlapa
- a Gpo. Neurociencias: Lab. Neurogenomica Cognitiva, Coord. Psicobiología y Neurociencias, Fac. Psicologia , Universidad Nacional Autonoma de Mexico (UNAM) , Cd. Mexico, Mexico
| | - Sandra Romero-Hidalgo
- c Departamento de Genómica Computacional , Instituto Nacional de Medicina Genómica (INMEGEN) , Cd. Mexico, Mexico
| | | | | | - Felipe Vadillo-Ortega
- f Unidad de Vinculación Científica Facultad de Medicina , UNAM, INMEGEN , Cd. Mexico, Mexico
| | - Juan Antonio González-Barrios
- g Lab. Medicina Genómica, Hospital Regional "Primero de Octubre" , Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE) , Cd. Mexico, Mexico
| | - Mónica Méndez-Díaz
- b Gpo. Neurociencias: Lab. Canabinoides, Depto. Fisiologia, Fac. Medicina , UNAM , Cd. Mexico, Mexico
| | - Oscar Prospéro-García
- b Gpo. Neurociencias: Lab. Canabinoides, Depto. Fisiologia, Fac. Medicina , UNAM , Cd. Mexico, Mexico
| |
Collapse
|
49
|
Hill SY, Jones BL, Steinhauer SR, Zezza N, Stiffler S. Longitudinal predictors of cannabis use and dependence in offspring from families at ultra high risk for alcohol dependence and in control families. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:383-95. [PMID: 26756393 PMCID: PMC5444658 DOI: 10.1002/ajmg.b.32417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 01/04/2016] [Indexed: 11/06/2022]
Abstract
Cannabis use is common among adolescents. Identification of the factors associated with continued heavy use into young adulthood and development of cannabis abuse and dependence is of considerable importance. The role of familial risk for addiction and an associated endophenotype, P300 amplitude, has not previously been related to cannabis use and dependence. A prospective longitudinal study spanning childhood and young adulthood provided the opportunity for exploring these factors, along with genetic variation, in the cannabis use behaviors of 338 young adult offspring from high and low familial risk for alcohol dependence families (ages 19-30). P300 data were collected multiple times in childhood. The association between young adult patterns of cannabis use or cannabis abuse/dependence was tested with genetic variation in the cannabinoid gene, CNR1, the ANKK1-DRD2 gene, and childhood developmental trajectories of P300. Young adult patterns of cannabis use was characterized by three patterns: (i) no use throughout; (ii) declining use from adolescence through young adulthood; and (iii) frequent use throughout. Following the low P300 trajectory in childhood predicted cannabis abuse and dependence by young adulthood. A four SNP ANKK1-DRD2 haplotype (G-G-G-C) was found to be significantly associated with the frequency of use patterns (P = 0.0008). Although CNR1 variation overall was not significantly associated with these patterns, among individuals with cannabis abuse/dependence the presence of one or both copies of the rs806368 A > G minor allele conferred a 5.4-fold increase (P = 0.003) in the likelihood that they would be in the frequent and persistent use group rather than the declining use group.
Collapse
Affiliation(s)
- Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Correspondence to: Shirley Y. Hill, Ph.D., Department of Psychiatry, University of Pittsburgh Medical Center, 3811 O’ Hara St. Pittsburgh, PA 15213.
| | - Bobby L. Jones
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Nicholas Zezza
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Scott Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Henderson-Redmond AN, Guindon J, Morgan DJ. Roles for the endocannabinoid system in ethanol-motivated behavior. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:330-9. [PMID: 26123153 PMCID: PMC4679600 DOI: 10.1016/j.pnpbp.2015.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.
Collapse
Affiliation(s)
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Science Center, Lubbock, TX, 79430
| | - Daniel J Morgan
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|