1
|
Dwivedi Y, Roy B, Korla PK. Genome-wide methylome-based molecular pathologies associated with depression and suicide. Neuropsychopharmacology 2025; 50:705-716. [PMID: 39645539 PMCID: PMC11845511 DOI: 10.1038/s41386-024-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Major depressive disorder (MDD) is a debilitating disorder. Suicide attempts are 5-times higher in MDD patients than in the general population. Interestingly, not all MDD patients develop suicidal thoughts or complete suicide. Thus, it is important to study the risk factors that can distinguish suicidality among MDD patients. The present study examined if DNA methylation changes can distinguish suicidal behavior among depressed subjects. Genome-wide DNA methylation was examined in the dorsolateral prefrontal cortex of depressed suicide (MDD+S; n = 15), depressed non-suicide (MDD-S; n = 17), and nonpsychiatric control (C; n = 16) subjects using 850 K Infinium Methylation EPIC BeadChip. The significantly differentially methylated genes were used to determine the functional enrichment of genes for ontological clustering and pathway analysis. Based on the number of CpG content and their relative distribution from specific landmark regions of genes, 32,958 methylation sites were identified across 12,574 genes in C vs. MDD+/-S subjects, 30,852 methylation sites across 12,019 genes in C vs. MDD-S, 41,648 methylation sites across 13,941 genes in C vs. MDD+S, and 49,848 methylation sites across 15,015 genes in MDD-S vs. MDD+S groups. A comparison of methylation sites showed 33,129 unique methylation sites and 5451 genes in the MDD-S group compared to the MDD+S group. Functional analysis suggested oxytocin, GABA, VGFA, TNFA, and mTOR pathways associated with suicide in the MDD group. Altogether, our data show a distinct pattern of DNA methylation, the genomic distribution of differentially methylated sites, gene enrichment, and pathways in MDD suicide compared to non-suicide MDD subjects.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Praveen Kumar Korla
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
2
|
Park H, Ryu H, Zhang S, Kim S, Chung C. Mitogen-activated protein kinase dependent presynaptic potentiation in the lateral habenula mediates depressive-like behaviors in rats. Neuropsychopharmacology 2025; 50:540-547. [PMID: 39528624 PMCID: PMC11735983 DOI: 10.1038/s41386-024-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Emerging evidence suggests that the enhanced activity of lateral habenula (LHb) is involved in depressive disorders. This abnormal potentiation of LHb neurons was shown to originate from presynaptic alterations; however, the mechanisms underlying this presynaptic enhancement and physiological consequences are yet to be elucidated. Previously, we reported that presynaptic transmission in the LHb is temporally rhythmic, showing greater activity in the afternoon than in the morning. Here, we used a learned helpless rodent model of depression to show that exposure to a stressor or incubation with the stress hormone, corticosterone, abolished the presynaptic temporal variation in the LHb. In addition, selective inhibition of mitogen-activated protein kinase (MAPK) kinase (MAPKK, MEK) activity in the LHb restored the presynaptic alteration even after stress exposure. Moreover, we observed a slight increase in phosphorylated synapsin I after stress exposure. Finally, we found that a blockade of MAPK signaling before stress exposure successfully prevented the depression-like behaviors, including behavioral despair and helplessness, in an acute learned helpless animal model of depression. Our study delineates the cellular and molecular mechanisms responsible for the abnormal presynaptic enhancement of the LHb in depression, which may mediate depressive behaviors.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sungmin Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea.
| |
Collapse
|
3
|
Lozupone M, Leccisotti I, Altamura M, Moretti MC, Bellomo A, Daniele A, Dibello V, Resta E, Panza F. Psychiatry and sensation: the epigenetic links. Epigenomics 2024; 16:1315-1327. [PMID: 39400085 PMCID: PMC11534141 DOI: 10.1080/17501911.2024.2410692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
A complex interaction among sensory, social and epigenetic determinants in psychiatric conditions was described across all age strata. The high prevalence of mental disorders in individuals with sensory deficits might be attributed to the interaction among social isolation, cognitive functioning and sensory processing. The epigenetic implications of such interactions were examined: environmental and social factors can affect gene expression and impact the pathogenesis of psychiatric disorders also through sensory processing. This article discussed the role of social determinants, in other words, social isolation, loneliness and chronic stress, in promoting psychiatric disorders and, in a vicious circle, sensory deficits (vision, hearing, olfaction and somatosensation). We emphasized the importance of integrating social, sensory and epigenetic factors to target different treatments for psychiatric conditions.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine & Neuroscience “DiBraiN”, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Ivana Leccisotti
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Maria Claudia Moretti
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, 71122, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, 00147, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, 00147, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain & Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam & Vrije Universiteit Amsterdam, Amsterdam, 1105 1081 HV, the Netherlands
| | - Emanuela Resta
- Translational Medicine & Health System Management, Department of Economy, University of Foggia, Foggia, 71122, Italy
| | - Francesco Panza
- Department of Interdisciplinary Medicine, “Cesare Frugoni” Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
4
|
Mitroshina EV, Marasanova EA, Vedunova MV. Functional Dimerization of Serotonin Receptors: Role in Health and Depressive Disorders. Int J Mol Sci 2023; 24:16416. [PMID: 38003611 PMCID: PMC10671093 DOI: 10.3390/ijms242216416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the neurobiological underpinnings of depressive disorder constitutes a pressing challenge in the fields of psychiatry and neurobiology. Depression represents one of the most prevalent forms of mental and behavioral disorders globally. Alterations in dimerization capacity can influence the functional characteristics of serotonin receptors and may constitute a contributing factor to the onset of depressive disorders. The objective of this review is to consolidate the current understanding of interactions within the 5-HT receptor family and between 5-HT receptors and members of other receptor families. Furthermore, it aims to elucidate the role of such complexes in depressive disorders and delineate the mechanisms through which antidepressants exert their effects.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Ekaterina A. Marasanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
- Faculty of Biology and Biotechnology, HSE University, St. Profsoyuznaya, 33, 117418 Moscow, Russia
| |
Collapse
|
5
|
Can AT, Mitchell JS, Dutton M, Bennett M, Hermens DF, Lagopoulos J. Insights into the neurobiology of suicidality: explicating the role of glutamatergic systems through the lens of ketamine. Psychiatry Clin Neurosci 2023; 77:513-529. [PMID: 37329495 DOI: 10.1111/pcn.13572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Suicidality is a prevalent mental health condition, and managing suicidal patients is one of the most challenging tasks for health care professionals due to the lack of rapid-acting, effective psychopharmacological treatment options. According to the literature, suicide has neurobiological underpinnings that are not fully understood, and current treatments for suicidal tendencies have considerable limitations. To treat suicidality and prevent suicide, new treatments are required; to achieve this, the neurobiological processes underlying suicidal behavior must be thoroughly investigated. Although multiple neurotransmitter systems, particularly serotonergic systems, have been studied in the past, less has been reported in relation to disruptions in glutamatergic neurotransmission, neuronal plasticity, and neurogenesis that result from stress-related abnormalities of the hypothalamic-pituitary-adrenal system. Informed by the literature, which reports robust antisuicidal and antidepressive properties of subanaesthetic doses of ketamine, this review aims to provide an examination of the neurobiology of suicidality (and relevant mood disorders) with implications of pertinent animal, clinical, and postmortem studies. We discuss dysfunctions in the glutamatergic system, which may play a role in the neuropathology of suicidality and the role of ketamine in restoring synaptic connectivity at the molecular levels.
Collapse
Affiliation(s)
- Adem Tevfik Can
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Jules Shamus Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Maxwell Bennett
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | | | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| |
Collapse
|
6
|
Li W, Ali T, Mou S, Gong Q, Li N, Hao L, Yu ZJ, Li S. D1R-5-HT2AR Uncoupling Reduces Depressive Behaviours via HDAC Signalling. Neurotherapeutics 2023; 20:1875-1892. [PMID: 37782408 PMCID: PMC10684469 DOI: 10.1007/s13311-023-01436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 10/03/2023] Open
Abstract
Dopamine and serotonin signalling are associated with major depressive disorder, which is a prevalent life-threatening illness worldwide. Numerous FDA-approved dopamine/serotonin signalling-modifying drugs are available but are associated with concurrent side effects and limited efficacy. Thus, identifying and targeting their signalling pathway is crucial for improving depression treatment. Here, we determined that serotonin receptor 2A (5-HT2AR) abundantly forms a protein complex with dopamine receptor 1 (D1R) in high abundance via its carboxy-terminus in the brains of mice subjected to various chronic stress paradigms. Furthermore, the D1R/5-HT2AR interaction elicited CREB/ERK/AKT modulation during synaptic regulation. An interfering peptide (TAT-5-HT2AR-SV) agitated the D1R/5-HT2AR interaction and attenuated depressive symptoms accompanied by CREB/ERK molecule costimulation. Interestingly, HDAC antagonism but not TrkB antagonism reversed the antidepressant effect of competitive peptides. These findings revealed a novel D1R/5-HT2AR heteroreceptor complex mechanism in the pathophysiology of depression, and their uncoupling ameliorates depressive-like behaviours through HDAC-, and not BDNF-, dependent mechanisms.
Collapse
Affiliation(s)
- Weifen Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Shengnan Mou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qichao Gong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ningning Li
- Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
- Precision Medicine Research Centre, Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Liangliang Hao
- Hospital of Chengdu, University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, People's Republic of China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Orrico-Sanchez A, Guiard BP, Manta S, Callebert J, Launay JM, Louis F, Paccard A, Gruszczynski C, Betancur C, Vialou V, Gautron S. Organic cation transporter 2 contributes to SSRI antidepressant efficacy by controlling tryptophan availability in the brain. Transl Psychiatry 2023; 13:302. [PMID: 37775532 PMCID: PMC10542329 DOI: 10.1038/s41398-023-02596-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are common first-line treatments for major depression. However, a significant number of depressed patients do not respond adequately to these pharmacological treatments. In the present preclinical study, we demonstrate that organic cation transporter 2 (OCT2), an atypical monoamine transporter, contributes to the effects of SSRI by regulating the routing of the essential amino acid tryptophan to the brain. Contrarily to wild-type mice, OCT2-invalidated mice failed to respond to prolonged fluoxetine treatment in a chronic depression model induced by corticosterone exposure recapitulating core symptoms of depression, i.e., anhedonia, social withdrawal, anxiety, and memory impairment. After corticosterone and fluoxetine treatment, the levels of tryptophan and its metabolites serotonin and kynurenine were decreased in the brain of OCT2 mutant mice compared to wild-type mice and reciprocally tryptophan and kynurenine levels were increased in mutants' plasma. OCT2 was detected by immunofluorescence in several structures at the blood-cerebrospinal fluid (CSF) or brain-CSF interface. Tryptophan supplementation during fluoxetine treatment increased brain concentrations of tryptophan and, more discreetly, of 5-HT in wild-type and OCT2 mutant mice. Importantly, tryptophan supplementation improved the sensitivity to fluoxetine treatment of OCT2 mutant mice, impacting chiefly anhedonia and short-term memory. Western blot analysis showed that glycogen synthase kinase-3β (GSK3β) and mammalian/mechanistic target of rapamycin (mTOR) intracellular signaling was impaired in OCT2 mutant mice brain after corticosterone and fluoxetine treatment and, conversely, tryptophan supplementation recruited selectively the mTOR protein complex 2. This study provides the first evidence of the physiological relevance of OCT2-mediated tryptophan transport, and its biological consequences on serotonin homeostasis in the brain and SSRI efficacy.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Stella Manta
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Jacques Callebert
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jean-Marie Launay
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Franck Louis
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Antoine Paccard
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | | | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Vincent Vialou
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| |
Collapse
|
8
|
Li X, Teng T, Yan W, Fan L, Liu X, Clarke G, Zhu D, Jiang Y, Xiang Y, Yu Y, Zhang Y, Yin B, Lu L, Zhou X, Xie P. AKT and MAPK signaling pathways in hippocampus reveals the pathogenesis of depression in four stress-induced models. Transl Psychiatry 2023; 13:200. [PMID: 37308476 DOI: 10.1038/s41398-023-02486-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Major depressive disorder (MDD) is a highly heterogeneous psychiatric disorder. The pathogenesis of MDD remained unclear, and it may be associated with exposure to different stressors. Most previous studies have focused on molecular changes in a single stress-induced depression model, which limited the identification of the pathogenesis of MDD. The depressive-like behaviors were induced by four well-validated stress models in rats, including chronic unpredictable mild stress, learned helplessness stress, chronic restraint stress and social defeat stress. We applied proteomic and metabolomic to investigate molecular changes in the hippocampus of those four models and revealed 529 proteins and 98 metabolites. Ingenuity Pathways Analysis (IPA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified differentially regulated canonical pathways, and then we presented a schematic model that simulates AKT and MAPK signaling pathways network and their interactions and revealed the cascade reactions. Further, the western blot confirmed that p-AKT, p-ERK12, GluA1, p-MEK1, p-MEK2, p-P38, Syn1, and TrkB, which were changed in at least one depression model. Importantly, p-AKT, p-ERK12, p-MEK1 and p-P38 were identified as common alterations in four depression models. The molecular level changes caused by different stressors may be dramatically different, and even opposite, between four depression models. However, the different molecular alterations converge on a common AKT and MAPK molecular pathway. Further studies of these pathways could contribute to a better understanding of the pathogenesis of depression, with the ultimate goal of helping to develop or select more effective treatment strategies for MDD.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Fan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Tian JS, Qin PF, Xu T, Gao Y, Zhou YZ, Gao XX, Qin XM, Ren Y. Chaigui granule exerts anti-depressant effects by regulating the synthesis of Estradiol and the downstream of CYP19A1-E2-ERKs signaling pathway in CUMS-induced depressed rats. Front Pharmacol 2022; 13:1005438. [PMID: 36353500 PMCID: PMC9637986 DOI: 10.3389/fphar.2022.1005438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 09/05/2023] Open
Abstract
Background: There is a significant gender difference in the prevalence of depression. Recent studies have shown that estrogen plays a crucial role in depression. Therefore, studying the specific mechanism of estrogen's role in depression can provide new ideas to address the treatment of depression. Chaigui granule has been shown to have exact antidepressant efficacy, and the contents of saikosaponin (a, b1, b2, d) and paeoniflorin in Chaigui granule are about 0.737% and 0.641%, respectively. Some studies have found that they can improve depression-induced decrease in testosterone (T) levels (∼36.99% decrease compared to control). However, whether Chaigui granule can exert antidepressant efficacy by regulating estrogen is still unclear. This study aimed to elucidate the regulation of estrogen levels by Chaigui granule and the underlying mechanism of its anti-depressant effect. Methods: Eighty-four male Sprague-Dawley (SD) rats were modeled using a chronic unpredictable mild stress (CUMS) procedure. The administration method was traditional oral gavage administration, and behavioral indicators were used to evaluate the anti-depressant effect of Chaigui granule. Enzyme-linked immunosorbent assay (ELISA) was adopted to assess the modulating impact of Chaigui granule on sex hormones. Then, reverse transcription-quantitative PCR (RT-qPCR), and Western blot (WB) techniques were employed to detect extracellular regulated protein kinases (ERK) signaling-related molecules downstream of estradiol in the hippocampus tissue. Results: The administration of Chaigui granule significantly alleviated the desperate behavior of CUMS-induced depressed rats. According to the results, we found that Chaigui granule could upregulate the level of estradiol (E2) in the serum (∼46.56% increase compared to model) and hippocampus (∼26.03% increase compared to model) of CUMS rats and increase the levels of CYP19A1 gene and protein, which was the key enzyme regulating the synthesis of T into E2 in the hippocampus. Chaigui granule was also found to have a significant back-regulatory effect on the gene and protein levels of ERβ, ERK1, and ERK2. Conclusion: Chaigui granule can increase the synthesis of E2 in the hippocampus of CUMS-induced depressed rats and further exert antidepressant effects by activating the CYP19A1-E2-ERKs signaling pathway.
Collapse
Affiliation(s)
- Jun-sheng Tian
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Peng-fei Qin
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Teng Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yu-zhi Zhou
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiao-xia Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xue-mei Qin
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yan Ren
- Department of Psychiatry, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Hippocampal neuropathology in suicide: Gaps in our knowledge and opportunities for a breakthrough. Neurosci Biobehav Rev 2021; 132:542-552. [PMID: 34906612 DOI: 10.1016/j.neubiorev.2021.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 01/27/2023]
Abstract
Suicide is a major global hazard. There is a need for increasing suicide awareness and effective and evidence-based interventions, targeting both suicidal ideation and conduct. However, anti-suicide pharmacological effects are unsatisfactory. The human hippocampus is vulnerable to neuropsychiatric damages and subsequently releases psychobiological signals. Human hippocampal studies of suicide completers have shown mechanistic changes in neurobiology, which, however, could not reflect the neuropathological 'fingerprints' of fatal suicide ideations and suicide attempts. In this review, we provide several leading theories of suicide, including the serotoninergic system, Wnt pathway and brain-derived neurotrophic factor/tropomyosin receptor kinase B signalling, and discuss the evidence for their roles in suicide and treatment. Moreover, the cognitive dysfunctions associated with suicide risk are discussed, as well as the novel evidence on cognitive therapies that decrease suicidal ideation. We highlight the need to apply multi-omics techniques (including single-nucleus RNA sequencing and mass spectrometry histochemistry) on hippocampal samples from donors who died by suicide or legal euthanasia, to clarify the aetiology of suicide and propose novel therapeutic strategies.
Collapse
|
11
|
Chang J, Zhang Y, Shen N, Zhou J, Zhang H. MiR-129-5p prevents depressive-like behaviors by targeting MAPK1 to suppress inflammation. Exp Brain Res 2021; 239:3359-3370. [PMID: 34482419 DOI: 10.1007/s00221-021-06203-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Depression is a complex etiological disease with limited effective treatments. Previous studies have indicated the involvement of miRNAs in the pathophysiology of mood disorders. In this study, we focused on the role and mechanisms of miR-129-5p in depression by successfully constructing mice models of depressive-like behavior via chronic unpredictable mild stress (CUMS) exposure. Herein, miR-129-5p expression was decreased in the hippocampus of CUMS mice model. Upregulation of miR-129-5p reduced depressive-like behaviors of CUMS mice, as revealed in sucrose preference test, novelty suppressed feeding test, forced swim test, tail suspension test, social interaction test. MiR-129-5p upregulation decreased the concentrations and protein levels of proinflammatory cytokines (IL-6, IL-1β and TNF-α), indicating the inhibitory role of miR-129-5p in inflammation. Furthermore, miR-129-5p was identified to target MAPK1. MAPK1 was negatively regulated by miR-129-5p, and silencing of MAPK1 attenuated depressive-like behaviors in CUMS mice. Moreover, MAPK1 downregulation decreased inflammation in the hippocampus of CUMS mice. Upregulation of MAPK1 reversed the suppressive effects of miR-129-5p upregulation on depressive-like behaviors and inflammation in CUMS mice. In conclusion, the current study identified that miR-129-5p reduces depressive-like behaviors and suppresses inflammation by targeting MAPK1 in CUMS mice, offering a novel molecular interpretation for depression prevention.
Collapse
Affiliation(s)
- Jie Chang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| | - Yanhong Zhang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China.
| | - Nianhong Shen
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China.
| | - Jingquan Zhou
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| | - Huan Zhang
- The Third Department of Psychiatry, Huai'an No. 3 People's Hospital, 272 Huaihai West Road, Huaian, Jiangsu, China
| |
Collapse
|
12
|
Głuch-Lutwin M, Sałaciak K, Gawalska A, Jamrozik M, Sniecikowska J, Newman-Tancredi A, Kołaczkowski M, Pytka K. The selective 5-HT 1A receptor biased agonists, F15599 and F13714, show antidepressant-like properties after a single administration in the mouse model of unpredictable chronic mild stress. Psychopharmacology (Berl) 2021; 238:2249-2260. [PMID: 33973045 PMCID: PMC8292235 DOI: 10.1007/s00213-021-05849-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/12/2021] [Indexed: 01/12/2023]
Abstract
RATIONALE The prevalence of depression is ever-increasing throughout the population. However, available treatments are ineffective in around one-third of patients and there is a need for more effective and safer drugs. OBJECTIVES The antidepressant-like and procognitive effects of the "biased agonists" F15599 (also known as NLX-101) which preferentially targets postsynaptic 5-HT1A receptors and F13714, which targets 5-HT1A autoreceptors, were investigated in mice. METHODS Antidepressant-like properties of the compounds and their effect on cognitive functions were assessed using the forced swim test (FST) and the novel object recognition (NOR), respectively. Next, we induced a depressive-like state by an unpredictable chronic mild stress (UCMS) procedure to test the compounds' activity in the depression model, followed by measures of sucrose preference, FST, and locomotor activity. Levels of phosphorylated cyclic AMP response element-binding protein (p-CREB) and phosphorylated extracellular signal-regulated kinase (p-ERK1/2) were also determined. RESULTS F15599 reduced immobility time in the FST over a wider dose-range (2 to 16 mg/kg po) than F13714 (2 and 4 mg/kg po), suggesting accentuated antidepressant-like properties in mice. F15599 did not disrupt long-term memory consolidation in the NOR at any dose tested, while F13714 impaired memory formation, notably at higher doses (4-16 mg/kg). In UCMS mice, a single administration of F15599 and F13714 was sufficient to robustly normalize depressive-like behavior in the FST but did not rescue disrupted sucrose preference. Both F15599 and F13714 rescued cortical and hippocampal deficits in p-ERK1/2 levels of UCMS mice but did not influence the p-CREB levels. CONCLUSIONS Our studies showed that 5-HT1A receptor biased agonists such as F13714 and especially F15599, due to its less pronounced side effects, might have potential as fast-acting antidepressants.
Collapse
Affiliation(s)
- Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Alicja Gawalska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Jamrozik
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Sniecikowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | | | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
13
|
Potential Correlation Between Depression-like Behavior and the Mitogen-Activated Protein Kinase Pathway in the Rat Hippocampus Following Spinal Cord Injury. World Neurosurg 2021; 154:e29-e38. [PMID: 34271150 DOI: 10.1016/j.wneu.2021.06.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Depression induced by spinal cord injury (SCI) has been demonstrated in clinical and experimental studies; it significantly impacts patients' lives and may be associated with changes in the hippocampus. However, the biological mechanisms underlying depression after SCI are unknown. The mitogen-activated protein kinase (MAPK) signaling pathway participates in potential mechanisms of depression; it is unknown whether this pathway plays a role in SCI-induced depression. METHODS We applied an animal model of depression induced by SCI, established using an aneurysm clip, to determine whether MAPK activation in the hippocampus is associated with depression-like behavior. RESULTS SCI led to depression-like behavior, such as anhedonia in the sucrose preference test, decreased number of crossings in the open field test, decreased body weight, and decreased immobility time in the forced swim test. Western blot analysis further showed that SCI significantly increased the levels of phosphorylated p38 MAPK and cleaved caspase-3 in the hippocampus and inhibited the phosphorylation of extracellular signal-related kinase 1/2 and c-Jun N-terminal kinase 1/2. In addition, there were significant negative correlations between depression-like behavior and phosphorylated extracellular signal-related kinase 1/2 and positive correlations between depression-like behavior and phosphorylated p38 MAPK and cleaved caspase-3. CONCLUSIONS These findings suggest that the MAPK pathway in the rat hippocampus may be involved in the pathophysiology of depression induced by SCI.
Collapse
|
14
|
Langreck C, Wauson E, Nerland D, Lamb B, Folkerts T, Winter L, Lu E, Tague S, McCarson KE, Ploski JE, Banasr M, Duman RS, Roland MM, Babich V, Di Sole F, Duric V. Hippocampal mitogen-activated protein kinase phosphatase-1 regulates behavioral and systemic effects of chronic corticosterone administration. Biochem Pharmacol 2021; 190:114617. [PMID: 34023293 DOI: 10.1016/j.bcp.2021.114617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022]
Abstract
Clinical reports indicate a bidirectional relationship between mental illness and chronic systemic diseases. However, brain mechanisms linking chronic stress and development of mood disorders to accompanying peripheral organ dysfunction are still not well characterized in animal models. In the current study, we investigated whether activation of hippocampal mitogen-activated protein kinase phosphatase-1 (MKP-1), a key factor in depression pathophysiology, also acts as a mediator of systemic effects of stress. First, we demonstrated that treatment with the glucocorticoid receptor (GR) agonist dexamethasone or acute restraint stress (ARS) significantly increased Mkp-1 mRNA levels within the rat hippocampus. Conversely, administration of the GR antagonist mifepristone 30 min before ARS produced a partial blockade of Mkp-1 upregulation, suggesting that stress activates MKP-1, at least in part, through upstream GR signaling. Chronic corticosterone (CORT) administration evoked comparable increases in hippocampal MKP-1 protein levels and produced a robust increase in behavioral emotionality. In addition to behavioral deficits, chronic CORT treatment also produced systemic pathophysiological effects. Elevated levels of renal inflammation protein markers (NGAL and IL18) were observed suggesting tissue damage and early kidney impairment. In a rescue experiment, the effects of CORT on development of depressive-like behaviors and increased NGAL and IL18 protein levels in the kidney were blocked by CRISPR-mediated knockdown of hippocampal Mkp-1 prior to CORT exposure. In sum, these findings further demonstrate that MKP-1 is necessary for development of enhanced behavioral emotionality, while also suggesting a role in stress mechanisms linking brain dysfunction and systemic illness such as kidney disease.
Collapse
Affiliation(s)
- Cory Langreck
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States; Department of Pharmacology, Columbia University, New York, NY 10032, United States
| | - Eric Wauson
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States
| | - Dakota Nerland
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States
| | - Brad Lamb
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States
| | - Tyler Folkerts
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States
| | - Lori Winter
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States
| | - Eileen Lu
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States
| | - Sarah Tague
- Smith Intellectual & Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Kenneth E McCarson
- Smith Intellectual & Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS 66160, United States; Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences and Department of Molecular and Cell Biology, The University of Texas at Dallas, Dallas, TX 75080, United States
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada; Department of Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Ronald S Duman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, United States
| | - Miranda M Roland
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States
| | - Victor Babich
- School of Liberal Arts and Sciences, Mercy College of Health Sciences, Des Moines, IA 50312, United States
| | - Francesca Di Sole
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States
| | - Vanja Duric
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States.
| |
Collapse
|
15
|
Sałaciak K, Pytka K. Biased agonism in drug discovery: Is there a future for biased 5-HT 1A receptor agonists in the treatment of neuropsychiatric diseases? Pharmacol Ther 2021; 227:107872. [PMID: 33905796 DOI: 10.1016/j.pharmthera.2021.107872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Serotonin (5-HT) is one of the fundamental neurotransmitters that contribute to the information essential for an organism's normal, physiological function. Serotonin acts centrally and systemically. The 5-HT1A receptor is the most widespread serotonin receptor, and participates in many brain-related disorders, including anxiety, depression, and cognitive impairments. The 5-HT1A receptor can activate several different biochemical pathways and signals through both G protein-dependent and G protein-independent pathways. Preclinical experiments indicate that distinct signaling pathways in specific brain regions may be crucial for antidepressant-like, anxiolytic-like, and procognitive responses. Therefore, the development of new ligands that selectively target a particular signaling pathway(s) could open new possibilities for more effective and safer pharmacotherapy. This review discusses the current state of preclinical studies focusing on the concept of functional selectivity (biased agonism) regarding the 5-HT1A receptor and its role in antidepressant-like, anxiolytic-like, and procognitive regulation. Such work highlights not only the differential effects of targeted autoreceptors, vs. heteroreceptors, but also the importance of targeting specific downstream intracellular signaling processes, thereby enhancing favorable over unfavorable signaling activation.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
16
|
An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, Rutten BPF. Dual-specificity phosphatases in mental and neurological disorders. Prog Neurobiol 2020; 198:101906. [PMID: 32905807 DOI: 10.1016/j.pneurobio.2020.101906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.
Collapse
Affiliation(s)
- Ning An
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ghazi I Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; College of Applied Medical Sciences, Department of Public Health, King Faisal University, Al-Ahsa, Saudi Arabia; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Markus Rothermel
- European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Chemosensation - AG Neuromodulation, RWTH Aachen University, Aachen, Germany
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
17
|
Román-Albasini L, Díaz-Véliz G, Olave FA, Aguayo FI, García-Rojo G, Corrales WA, Silva JP, Ávalos AM, Rojas PS, Aliaga E, Fiedler JL. Antidepressant-relevant behavioral and synaptic molecular effects of long-term fasudil treatment in chronically stressed male rats. Neurobiol Stress 2020; 13:100234. [PMID: 33344690 PMCID: PMC7739043 DOI: 10.1016/j.ynstr.2020.100234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Several lines of evidence suggest that antidepressant drugs may act by modulating neuroplasticity pathways in key brain areas like the hippocampus. We have reported that chronic treatment with fasudil, a Rho-associated protein kinase inhibitor, prevents both chronic stress-induced depressive-like behavior and morphological changes in CA1 area. Here, we examined the ability of fasudil to (i) prevent stress-altered behaviors, (ii) influence the levels/phosphorylation of glutamatergic receptors and (iii) modulate signaling pathways relevant to antidepressant actions. 89 adult male Sprague-Dawley rats received intraperitoneal fasudil injections (10 mg/kg/day) or saline vehicle for 18 days. Some of these animals were daily restraint-stressed from day 5–18 (2.5 h/day). 24 hr after treatments, rats were either evaluated for behavioral tests (active avoidance, anxiety-like behavior and object location) or euthanized for western blot analyses of hippocampal whole extract and synaptoneurosome-enriched fractions. We report that fasudil prevents stress-induced impairments in active avoidance, anxiety-like behavior and novel location preference, with no effect in unstressed rats. Chronic stress reduced phosphorylations of ERK-2 and CREB, and decreased levels of GluA1 and GluN2A in whole hippocampus, without any effect of fasudil. However, fasudil decreased synaptic GluA1 Ser831 phosphorylation in stressed animals. Additionally, fasudil prevented stress-decreased phosphorylation of GSK-3β at Ser9, in parallel with an activation of the mTORC1/4E-BP1 axis, both in hippocampal synaptoneurosomes, suggesting the activation of the AKT pathway. Our study provides evidence that chronic fasudil treatment prevents chronic stress-altered behaviors, which correlated with molecular modifications of antidepressant-relevant signaling pathways in hippocampal synaptoneurosomes.
Collapse
Affiliation(s)
- Luciano Román-Albasini
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Gabriela Díaz-Véliz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Antonio Olave
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Ignacio Aguayo
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Gonzalo García-Rojo
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.,Carrera de Odontología, Facultad de Ciencias, Universidad de La Serena, La Serena, Chile
| | - Wladimir Antonio Corrales
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Silva
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Ana María Ávalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Paulina S Rojas
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Esteban Aliaga
- Department of Kinesiology and The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Jenny Lucy Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Antidepressant efficacy of a selective organic cation transporter blocker in a mouse model of depression. Mol Psychiatry 2020; 25:1245-1259. [PMID: 31619760 DOI: 10.1038/s41380-019-0548-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
Abstract
Current antidepressants act principally by blocking monoamine reuptake by high-affinity transporters in the brain. However, these antidepressants show important shortcomings such as slow action onset and limited efficacy in nearly a third of patients with major depression disorder. Here, we report the development of a prodrug targeting organic cation transporters (OCT), atypical monoamine transporters recently implicated in the regulation of mood. Using molecular modeling, we designed a selective OCT2 blocker, which was modified to increase brain penetration. This compound, H2-cyanome, was tested in a rodent model of chronic depression induced by 7-week corticosterone exposure. In male mice, prolonged administration of H2-cyanome induced positive effects on several behaviors mimicking symptoms of depression, including anhedonia, anxiety, social withdrawal, and memory impairment. Importantly, in this validated model, H2-cyanome compared favorably with the classical antidepressant fluoxetine, with a faster action on anhedonia and better anxiolytic effects. Integrated Z-scoring across these depression-like variables revealed a lower depression score for mice treated with H2-cyanome than for mice treated with fluoxetine for 3 weeks. Repeated H2-cyanome administration increased ventral tegmental area dopaminergic neuron firing, which may underlie its rapid action on anhedonia. H2-cyanome, like fluoxetine, also modulated several intracellular signaling pathways previously involved in antidepressant response. Our findings provide proof-of-concept of antidepressant efficacy of an OCT blocker, and a mechanistic framework for the development of new classes of antidepressants and therapeutic alternatives for resistant depression and other psychiatric disturbances such as anxiety.
Collapse
|
19
|
Amare AT, Vaez A, Hsu YH, Direk N, Kamali Z, Howard DM, McIntosh AM, Tiemeier H, Bültmann U, Snieder H, Hartman CA. Bivariate genome-wide association analyses of the broad depression phenotype combined with major depressive disorder, bipolar disorder or schizophrenia reveal eight novel genetic loci for depression. Mol Psychiatry 2020; 25:1420-1429. [PMID: 30626913 PMCID: PMC7303007 DOI: 10.1038/s41380-018-0336-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 11/09/2022]
Abstract
Although a genetic basis of depression has been well established in twin studies, identification of genome-wide significant loci has been difficult. We hypothesized that bivariate analyses of findings from a meta-analysis of genome-wide association studies (meta-GWASs) of the broad depression phenotype with those from meta-GWASs of self-reported and recurrent major depressive disorder (MDD), bipolar disorder and schizophrenia would enhance statistical power to identify novel genetic loci for depression. LD score regression analyses were first used to estimate the genetic correlations of broad depression with self-reported MDD, recurrent MDD, bipolar disorder and schizophrenia. Then, we performed four bivariate GWAS analyses. The genetic correlations (rg ± SE) of broad depression with self-reported MDD, recurrent MDD, bipolar disorder and schizophrenia were 0.79 ± 0.07, 0.24 ± 0.08, 0.53 ± 0.09 and 0.57 ± 0.05, respectively. From a total of 20 independent genome-wide significant loci, 13 loci replicated of which 8 were novel for depression. These were MUC21 for the broad depression phenotype with self-reported MDD and ZNF804A, MIR3143, PSORS1C2, STK19, SPATA31D1, RTN1 and TCF4 for the broad depression phenotype with schizophrenia. Post-GWAS functional analyses of these loci revealed their potential biological involvement in psychiatric disorders. Our results emphasize the genetic similarities among different psychiatric disorders and indicate that cross-disorder analyses may be the best way forward to accelerate gene finding for depression, or psychiatric disorders in general.
Collapse
Affiliation(s)
- Azmeraw T. Amare
- 0000 0000 9558 4598grid.4494.dDepartment of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,0000 0004 0565 2606grid.430453.5South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA Australia ,0000 0004 1936 7304grid.1010.0School of Medicine, University of Adelaide, Adelaide, SA Australia ,0000 0000 8994 5086grid.1026.5Division of Health Sciences, University of South Australia, Adelaide, SA Australia
| | - Ahmad Vaez
- 0000 0000 9558 4598grid.4494.dDepartment of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,0000 0001 1498 685Xgrid.411036.1Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yi-Hsiang Hsu
- 000000041936754Xgrid.38142.3cHSL Institute for Aging Research, Harvard Medical School, Boston, MA USA ,000000041936754Xgrid.38142.3cProgram for Quantitative Genomics, Harvard School of Public Health, Boston, MA USA ,grid.66859.34Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Nese Direk
- 000000040459992Xgrid.5645.2Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands ,0000 0001 2183 9022grid.21200.31Department of Psychiatry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Zoha Kamali
- 0000 0001 1498 685Xgrid.411036.1Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - David M. Howard
- 0000 0000 9845 9303grid.416119.aDivision of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Andrew M. McIntosh
- 0000 0000 9845 9303grid.416119.aDivision of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK ,0000 0004 1936 7988grid.4305.2Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Henning Tiemeier
- 000000040459992Xgrid.5645.2Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands ,000000040459992Xgrid.5645.2Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ute Bültmann
- 0000 0000 9558 4598grid.4494.dDepartment of Health Sciences, Community and Occupational Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Catharina A. Hartman
- 0000 0000 9558 4598grid.4494.dInterdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Wang XL, Yuan K, Zhang W, Li SX, Gao GF, Lu L. Regulation of Circadian Genes by the MAPK Pathway: Implications for Rapid Antidepressant Action. Neurosci Bull 2020; 36:66-76. [PMID: 30859414 PMCID: PMC6940409 DOI: 10.1007/s12264-019-00358-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that the circadian rhythm plays a critical role in mood regulation, and circadian disturbances are often found in patients with major depressive disorder (MDD). The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is involved in mediating entrainment of the circadian system. Furthermore, the MAPK/ERK signaling pathway has been shown to be involved in the pathogenesis of MDD and the rapid onset of action of antidepressant therapies, both pharmaceutical and non-pharmaceutical. This review provides an overview of the involvement of the MAPK/ERK pathway in modulating the circadian system in the rapid action of antidepressant therapies. This pathway holds much promise for the development of novel, rapid-onset-of-action therapeutics for MDD.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Kai Yuan
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China.
| | - George Fu Gao
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China.
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Lin Lu
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100191, China.
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, 100191, China.
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing, 100191, China.
| |
Collapse
|
21
|
Eid RS, Lieblich SE, Wong SJ, Galea LAM. Ovarian status dictates the neuroinflammatory and behavioral consequences of sub-chronic stress exposure in middle-aged female mice. Neurobiol Stress 2019; 12:100199. [PMID: 31871960 PMCID: PMC6909340 DOI: 10.1016/j.ynstr.2019.100199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/09/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
Ovarian hormones influence the outcomes of stress exposure and are implicated in stress-related disorders including depression, yet their roles are often complex and seemingly contradictory. Importantly, depression and stress exposure are associated with immune dysregulation, and ovarian hormones have immunomodulatory properties. However, how ovarian hormones can influence the inflammatory outcomes of stress exposure is poorly understood. Here, we examined the effects of long-term ovariectomy on the behavioral and neuroinflammatory outcomes of sub-chronic stress exposure in middle-aged mice. Briefly, sham-operated and ovariectomized mice were assigned to non-stress groups or exposed to 6 days of variable stress. Mice were assessed on a battery of behavioral tests, and cytokine concentrations were quantified in the frontal cortex and hippocampus. In the frontal cortex, postsynaptic density protein-95 expression was examined as an index of excitatory synapse number and/or stability, and phosphorylated mitogen-activated protein kinases (MAPKs) were measured to explore potential cell signaling pathways elicited by stress exposure and/or ovarian hormones. Long-term ovariectomy modified the central cytokine profile by robustly reducing cytokine concentrations in the frontal cortex and modestly increasing concentrations in the hippocampus. Under non-stress conditions, long-term ovariectomy also reduced extracellular signal-regulated kinase (ERK) phosphoprotein expression in the frontal cortex and increased some measures of depressive-like behavior. The effects of sub-chronic stress exposure were however more pronounced in sham-operated mice. Notably, in sham-operated mice only, sub-chronic stress exposure increased IL-1β and IL-6:IL-10 ratio in the frontal cortex and hippocampus and reduced pERK1/2 expression in the frontal cortex. Further, although sub-chronic stress exposure increased anhedonia-like behavior regardless of ovarian status, it increased passive-coping behavior in sham-operated mice only. These data indicate that long-term ovariectomy has potent effects on the central cytokine milieu and dictates the neuroinflammatory and behavioral effects of sub-chronic stress exposure in middle-aged mice. These findings therefore suggest that the immunomodulatory properties of ovarian hormones are of relevance in the context of stress and possibly depression.
Collapse
Affiliation(s)
- Rand S Eid
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Sarah J Wong
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Ribeiro DE, Müller HK, Elfving B, Eskelund A, Joca SR, Wegener G. Antidepressant-like effect induced by P2X7 receptor blockade in FSL rats is associated with BDNF signalling activation. J Psychopharmacol 2019; 33:1436-1446. [PMID: 31526216 DOI: 10.1177/0269881119872173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND P2X7 receptors (P2X7R) are ligand-gated ion channels activated by adenosine 5'-triphosphate (ATP), which are involved in processes that are dysfunctional in stress response and depression, such as neurotransmitter release, and neuroimmune response. Genetic and pharmacological inhibition of the P2X7R induce antidepressant-like effects in animals exposed to stress. However, the effect of P2X7R antagonism in an animal model of depression based on selective breeding has not previously been studied, and the mechanism underling the antidepressant-like effect induced by the P2X7R blockade remains unknown. AIMS The present study aimed to: (1) determine whether P2X7R blockade induces antidepressant-like effects in the Flinders Sensitive Line (FSL) rats and, (2) investigate whether brain-derived neurotrophic factor (BDNF) signalling in the frontal cortex and hippocampus is involved in this effect. METHODS FSL and the control Flinders Resistant Line (FRL) rats were treated with vehicle or the P2X7R antagonist A-804598 (3, 10 or 30 mg/Kg/day) for 1 or 7 days before being exposed to the forced swim test (FST). After the behavioural test, animals were decapitated, their brains were removed and the frontal cortex, ventral and dorsal hippocampus were dissected for BDNF signalling analysis. RESULTS We found that repeated treatment with A-804598 (30 mg/Kg) reduced the immobility time in the FST and activated the BDNF signalling in the ventral hippocampus of FSL rats. CONCLUSIONS P2X7R blockade induces an antidepressant-like effect associated with increased levels of BDNF-AKT-p70 S6 kinase in the ventral hippocampus, which may be mediated by tropomyosin-related kinase B (TRKB) receptor activation supporting the notion of P2X7R antagonism as a potential new antidepressant strategy.
Collapse
Affiliation(s)
- Deidiane E Ribeiro
- Department of Pharmacology, School of Medicine of Ribeirão Preto - University of São Paulo, São Paulo, Brazil.,Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil
| | - Heidi K Müller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Betina Elfving
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Amanda Eskelund
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Samia Rl Joca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,AUGUST Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Lee CW, Chen YJ, Wu HF, Chung YJ, Lee YC, Li CT, Lin HC. Ketamine ameliorates severe traumatic event-induced antidepressant-resistant depression in a rat model through ERK activation. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:102-113. [PMID: 30940482 DOI: 10.1016/j.pnpbp.2019.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/12/2019] [Accepted: 03/29/2019] [Indexed: 12/28/2022]
Abstract
Treatment-resistant depression (TRD) is a major public health issue, as it is common for patients with depression to fail to respond to adequate trials of antidepressants. However, a well-established animal model of TRD is still warranted. The present study focused on selective serotonin reuptake inhibitor (SSRI) resistance, and aimed to investigate whether higher levels of traumatic stress caused by greater numbers of foot-shocks may lead to severe depression and to examine the feasibility of this as an animal model of SSRI-resistant depression. To reveal the correlation between traumatic stress and severe depression, rats received 3, 6 and 10 tone (conditioned stimulus, CS)-shock (unconditioned stimulus, US) pairings to mimic mild, moderate, and severe traumatic events, and subsequent depressive-like behaviors and protein immunocontents were analyzed. The antidepressant efficacy was assessed for ketamine and SSRI (i.e., fluoxetine) treatment. We found that only the severe stress group presented depressive-like behaviors. Phosphorylation of extracellular signal-regulated kinases (ERKs) was decreased in the amygdala and prefrontal cortex (PFC). The immunocontents of GluA1 and PSD 95 were increased in the amygdala and decreased in the PFC. Moreover, the glutamate-related abnormalities in the amygdala and PFC were normalized by single-dose (10 mg/kg, i.p.) ketamine treatment. In contrast, the depressive-like behaviors were not reversed by 28 days of fluoxetine treatment (10 mg/kg, i.p.) in the severe stress group. Our data demonstrated that high levels of traumatic stress could lead to SSRI-resistant depressive symptoms through impacts on the glutamatergic system, and that this rat model has the potential to be a feasible animal model of SSRI-resistant depression.
Collapse
Affiliation(s)
- Chi-Wei Lee
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Instiutes, Taiwan
| | - Yi-Ju Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Han-Fang Wu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Optometry, Hsin-Sheng College of Medical Care and Management, Taoyuan, Taiwan
| | - Yueh-Jung Chung
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Instiutes, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Instiutes, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
24
|
Rothenberg DO, Zhang L. Mechanisms Underlying the Anti-Depressive Effects of Regular Tea Consumption. Nutrients 2019; 11:E1361. [PMID: 31212946 PMCID: PMC6627400 DOI: 10.3390/nu11061361] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
This article is a comprehensive review of the literature pertaining to the antidepressant effects and mechanisms of regular tea consumption. Meta-data supplemented with recent observational studies were first analyzed to assess the association between tea consumption and depression risk. The literature reported risk ratios (RR) were 0.69 with 95% confidence intervals of 0.62-0.77. Next, we thoroughly reviewed human trials, mouse models, and in vitro experiments to determine the predominant mechanisms underlying the observed linear relationship between tea consumption and reduced risk of depression. Current theories on the neurobiology of depression were utilized to map tea-mediated mechanisms of antidepressant activity onto an integrated framework of depression pathology. The major nodes within the network framework of depression included hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, inflammation, weakened monoaminergic systems, reduced neurogenesis/neuroplasticity, and poor microbiome diversity affecting the gut-brain axis. We detailed how each node has subsystems within them, including signaling pathways, specific target proteins, or transporters that interface with compounds in tea, mediating their antidepressant effects. A major pathway was found to be the ERK/CREB/BDNF signaling pathway, up-regulated by a number of compounds in tea including teasaponin, L-theanine, EGCG and combinations of tea catechins and their metabolites. Black tea theaflavins and EGCG are potent anti-inflammatory agents via down-regulation of NF-κB signaling. Multiple compounds in tea are effective modulators of dopaminergic activity and the gut-brain axis. Taken together, our findings show that constituents found in all major tea types, predominantly L-theanine, polyphenols and polyphenol metabolites, are capable of functioning through multiple pathways simultaneously to collectively reduce the risk of depression.
Collapse
Affiliation(s)
- Dylan O'Neill Rothenberg
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| | - Lingyun Zhang
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
25
|
Wang JQ, Mao L. The ERK Pathway: Molecular Mechanisms and Treatment of Depression. Mol Neurobiol 2019; 56:6197-6205. [PMID: 30737641 DOI: 10.1007/s12035-019-1524-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/01/2019] [Indexed: 11/30/2022]
Abstract
Major depressive disorder is a chronic debilitating mental illness. Its pathophysiology at cellular and molecular levels is incompletely understood. Increasing evidence supports a pivotal role of the mitogen-activated protein kinase (MAPK), in particular the extracellular signal-regulated kinase (ERK) subclass of MAPKs, in the pathogenesis, symptomatology, and treatment of depression. In humans and various chronic animal models of depression, the ERK signaling was significantly downregulated in the prefrontal cortex and hippocampus, two core areas implicated in depression. Inhibiting the ERK pathway in these areas caused depression-like behavior. A variety of antidepressants produced their behavioral effects in part via normalizing the downregulated ERK activity. In addition to ERK, the brain-derived neurotrophic factor (BDNF), an immediate upstream regulator of ERK, the cAMP response element-binding protein (CREB), a transcription factor downstream to ERK, and the MAPK phosphatase (MKP) are equally vulnerable to depression. While BDNF and CREB were reduced in their activity in the prefrontal cortex and hippocampus of depressed animals, MKP activity was enhanced in parallel. Chronic antidepressant treatment readily reversed these neurochemical changes. Thus, ERK signaling in the depression-implicated brain regions was disrupted during the development of depression, which contributes to the long-lasting and transcription-dependent neuroadaptations critical for enduring depression-like behavior and the therapeutic effect of antidepressants.
Collapse
Affiliation(s)
- John Q Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Rm. M3-213, Kansas City, MO, USA. .,Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO, USA.
| | - Limin Mao
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Rm. M3-213, Kansas City, MO, USA
| |
Collapse
|
26
|
Barfield ET, Gourley SL. Prefrontal cortical trkB, glucocorticoids, and their interactions in stress and developmental contexts. Neurosci Biobehav Rev 2018; 95:535-558. [PMID: 30477984 PMCID: PMC6392187 DOI: 10.1016/j.neubiorev.2018.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The tropomyosin/tyrosine receptor kinase B (trkB) and glucocorticoid receptor (GR) regulate neuron structure and function and the hormonal stress response. Meanwhile, disruption of trkB and GR activity (e.g., by chronic stress) can perturb neuronal morphology in cortico-limbic regions implicated in stressor-related illnesses like depression. Further, several of the short- and long-term neurobehavioral consequences of stress depend on the developmental timing and context of stressor exposure. We review how the levels and activities of trkB and GR in the prefrontal cortex (PFC) change during development, interact, are modulated by stress, and are implicated in depression. We review evidence that trkB- and GR-mediated signaling events impact the density and morphology of dendritic spines, the primary sites of excitatory synapses in the brain, highlighting effects in adolescents when possible. Finally, we review the role of neurotrophin and glucocorticoid systems in stress-related metaplasticity. We argue that better understanding the long-term effects of developmental stressors on PFC trkB, GR, and related factors may yield insights into risk for chronic, remitting depression and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Molecular and Systems Pharmacology Program, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
27
|
Abstract
The brain undergoes several changes at structural, molecular, and cellular levels leading to alteration in its functions and these processes are primarily maintained by proteostasis in cells. However, an imbalance in proteostasis due to the abnormal accumulation of protein aggregates induces endoplasmic reticulum (ER) stress. This event, in turn, activate the unfolded protein response; however, in most neurodegenerative conditions and brain injury, an uncontrolled unfolded protein response elicits memory dysfunction. Although the underlying signaling mechanism for impairment of memory function following induction of ER stress remains elusive, recent studies have highlighted that inactivation of a transcription factor, CREB, which is essential for synaptic function and memory formation, plays an essential role for ER stress-induced synaptic and memory dysfunction. In this review, current studies and most updated view on how ER stress affects memory function in both physiological and pathological conditions will be highlighted.
Collapse
Affiliation(s)
- Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Yankina MA, Saik OV, Ivanisenko VA, Demenkov PS, Khusnutdinova EK. Evaluation of Prioritization Methods of Extrinsic Apoptotic Signaling Pathway Genes for Retrieval of the New Candidates Associated with Major Depressive Disorder. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418110170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Dwivedi Y. MicroRNAs in depression and suicide: Recent insights and future perspectives. J Affect Disord 2018; 240:146-154. [PMID: 30071418 PMCID: PMC6108934 DOI: 10.1016/j.jad.2018.07.075] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023]
Abstract
Suicide is a major public health concern. A significant proportion of depressed individuals show suicidal ideation. The currently available medications are not optimal and a large number of depressed/suicidal patients do not respond to these medications. Thus, there is an urgent need to fully understand the neurobiological mechanisms associated with depression and suicidal behavior and to find novel targets for therapeutic interventions. In this regard, microRNAs (miRNAs), member of small non-coding RNA family, have emerged as an invaluable tool not only to understand disease pathogenesis but also to precisely pinpoint the targets that can be developed as drugs. In this review, these aspects have been discussed in a comprehensive and critical manner.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue, Birmingham, AL 35294, USA.
| |
Collapse
|
30
|
Ramos-Hryb AB, Cunha MP, Pazini FL, Lieberknecht V, Prediger RDS, Kaster MP, Rodrigues ALS. Ursolic acid affords antidepressant-like effects in mice through the activation of PKA, PKC, CAMK-II and MEK1/2. Pharmacol Rep 2017; 69:1240-1246. [PMID: 29128805 DOI: 10.1016/j.pharep.2017.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/25/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ursolic acid has been shown to display antidepressant-like effects in mice through the modulation of monoaminergic systems. In this study, we sought to investigate the involvement of signaling pathways on the antidepressant-like effects of ursolic acid. METHODS Mice were treated orally with ursolic acid (0.1mg/kg) and, 45min later they received the followings inhibitors by intracerebroventricular route: H-89 (PKA inhibitor, 1μg/mouse), KN-62 (CAMK-II inhibitor, 1μg/mouse), chelerythrine (PKC inhibitor, 1μg/mouse), U0126 (MEK1/2 inhibitor, 5μg/mouse), PD98059 (MEK1/2 inhibitor, 5μg/mouse), wortmannin (PI3K irreversible inhibitor, 0.1μg/mouse) or LY294002 (PI3K inhibitor, 10 nmol/mouse). Immobility time of mice was registered in the tail suspension test (TST). RESULTS The anti-immobility effect of ursolic acid in the TST was abolished by the treatment of mice with H-89, KN-62, chelerythrine, U0126 or PD98059, but not with wortmannin or LY294002. CONCLUSIONS These results suggest that activation of PKA, PKC, CAMK-II, MEK1/2 may underlie the antidepressant-like effects of ursolic acid.
Collapse
Affiliation(s)
- Ana B Ramos-Hryb
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vicente Lieberknecht
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Rui D S Prediger
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
31
|
Eliwa H, Belzung C, Surget A. Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action? Biochem Pharmacol 2017; 141:86-99. [DOI: 10.1016/j.bcp.2017.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023]
|
32
|
Kwon SH, Han JK, Choi M, Kwon YJ, Kim SJ, Yi EH, Shin JC, Cho IH, Kim BH, Jeong Kim S, Ye SK. Dysfunction of Microglial STAT3 Alleviates Depressive Behavior via Neuron-Microglia Interactions. Neuropsychopharmacology 2017; 42:2072-2086. [PMID: 28480882 PMCID: PMC5561349 DOI: 10.1038/npp.2017.93] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/22/2022]
Abstract
Neuron-microglia interactions have a crucial role in maintaining the neuroimmune system. The balance of neuroimmune system has emerged as an important process in the pathophysiology of depression. However, how neuron-microglia interactions contribute to major depressive disorders has been poorly understood. Herein, we demonstrated that microglia-derived synaptic changes induced antidepressive-like behavior by using microglia-specific signal transducer and activator of transcription 3 (STAT3) knockout (KO) (STAT3fl/fl;LysM-Cre+/-) mice. We found that microglia-specific STAT3 KO mice showed antidepressive-like behavior in the forced swim, tail suspension, sucrose preference, and open-field tests. Surprisingly, the secretion of macrophage colony-stimulating factor (M-CSF) was increased from neuronal cells in the brains of STAT3fl/fl;LysM-Cre+/- mice. Moreover, the phosphorylation of antidepressant-targeting mediators and brain-derived neurotrophic factor expression were increased in the brains of STAT3fl/fl;LysM-Cre+/- mice as well as in neuronal cells in response to M-CSF stimulation. Importantly, the miniature excitatory postsynaptic current frequency in the medial prefrontal cortex was increased in STAT3fl/fl;LysM-Cre+/- mice and in the M-CSF treatment group. Collectively, microglial STAT3 regulates depression-related behaviors via neuronal M-CSF-mediated synaptic activity, suggesting that inhibition of microglial STAT3 might be a new therapeutic strategy for depression.
Collapse
Affiliation(s)
- Sun-Ho Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea,Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea,Biomedical Science Project (BK21[PLUS]), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Kyu Han
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Brain and Cognitive Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Moonseok Choi
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Jin Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Yi
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Byung-Hak Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea,Biomedical Science Project (BK21[PLUS]), Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea,Biomedical Science Project (BK21[PLUS]), Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Brain and Cognitive Sciences, Seoul National University Graduate School, Seoul, Republic of Korea,Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea. Tel: +82 2 740 8229, Fax: +82 2 763 9667, E-mail:
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea,Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea,Biomedical Science Project (BK21[PLUS]), Seoul National University College of Medicine, Seoul, Republic of Korea,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea. Tel: +82 2 740 8281, Fax: +82 2 745 7996, E-mail:
| |
Collapse
|
33
|
Labonté B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, Scarpa JR, Moy G, Loh YHE, Cahill M, Lorsch ZS, Hamilton PJ, Calipari ES, Hodes GE, Issler O, Kronman H, Pfau M, Obradovic ALJ, Dong Y, Neve RL, Russo S, Kazarskis A, Tamminga C, Mechawar N, Turecki G, Zhang B, Shen L, Nestler EJ. Sex-specific transcriptional signatures in human depression. Nat Med 2017; 23:1102-1111. [PMID: 28825715 DOI: 10.1038/nm.4386] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/17/2017] [Indexed: 02/08/2023]
Abstract
Major depressive disorder (MDD) is a leading cause of disease burden worldwide. While the incidence, symptoms and treatment of MDD all point toward major sex differences, the molecular mechanisms underlying this sexual dimorphism remain largely unknown. Here, combining differential expression and gene coexpression network analyses, we provide a comprehensive characterization of male and female transcriptional profiles associated with MDD across six brain regions. We overlap our human profiles with those from a mouse model, chronic variable stress, and capitalize on converging pathways to define molecular and physiological mechanisms underlying the expression of stress susceptibility in males and females. Our results show a major rearrangement of transcriptional patterns in MDD, with limited overlap between males and females, an effect seen in both depressed humans and stressed mice. We identify key regulators of sex-specific gene networks underlying MDD and confirm their sex-specific impact as mediators of stress susceptibility. For example, downregulation of the female-specific hub gene Dusp6 in mouse prefrontal cortex mimicked stress susceptibility in females, but not males, by increasing ERK signaling and pyramidal neuron excitability. Such Dusp6 downregulation also recapitulated the transcriptional remodeling that occurs in prefrontal cortex of depressed females. Together our findings reveal marked sexual dimorphism at the transcriptional level in MDD and highlight the importance of studying sex-specific treatments for this disorder.
Collapse
Affiliation(s)
- Benoit Labonté
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Olivia Engmann
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Immanuel Purushothaman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Caroline Menard
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Junshi Wang
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunfeng Tan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph R Scarpa
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory Moy
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yong-Hwee E Loh
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Cahill
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zachary S Lorsch
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter J Hamilton
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erin S Calipari
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Georgia E Hodes
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Orna Issler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hope Kronman
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madeline Pfau
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aleksandar L J Obradovic
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Scott Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Kazarskis
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carol Tamminga
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Naguib Mechawar
- Department of Psychiatry, McGill University, Montreal, Québec, Canada.,McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montreal, Québec, Canada.,McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Li Shen
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
34
|
Phillips C. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plast 2017; 2017:7260130. [PMID: 28928987 PMCID: PMC5591905 DOI: 10.1155/2017/7260130] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons in key brain circuits involved in emotional and cognitive function. Convergent evidence indicates that neuroplastic mechanisms involving BDNF are deleteriously altered in major depressive disorder (MDD) and animal models of stress. Herein, clinical and preclinical evidence provided that stress-induced depressive pathology contributes to altered BDNF level and function in persons with MDD and, thereby, disruptions in neuroplasticity at the regional and circuit level. Conversely, effective therapeutics that mitigate depressive-related symptoms (e.g., antidepressants and physical activity) optimize BDNF in key brain regions, promote neuronal health and recovery of function in MDD-related circuits, and enhance pharmacotherapeutic response. A greater knowledge of the interrelationship between BDNF, depression, therapeutic mechanisms of action, and neuroplasticity is important as it necessarily precedes the derivation and deployment of more efficacious treatments.
Collapse
|
35
|
Altered miRNA expression network in locus coeruleus of depressed suicide subjects. Sci Rep 2017; 7:4387. [PMID: 28663595 PMCID: PMC5491496 DOI: 10.1038/s41598-017-04300-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 12/19/2022] Open
Abstract
Norepinephrine (NE) is produced primarily by neurons in the locus coeruleus (LC). Retrograde and ultrastructural examinations reveal that the core of the LC and its surrounding region receives afferent projections from several brain areas which provide multiple neurochemical inputs to the LC with changes in LC neuronal firing, making it a highly coordinated event. Although NE and mediated signaling systems have been studied in relation to suicide and psychiatric disorders that increase the risk of suicide including depression, less is known about the corresponding changes in molecular network within LC. In this study, we examined miRNA networks in the LC of depressed suicide completers and healthy controls. Expression array revealed differential regulation of 13 miRNAs. Interaction between altered miRNAs and target genes showed dense interconnected molecular network. Functional clustering of predicated target genes yielded stress induced disorders that collectively showed the complex nature of suicidal behavior. In addition, 25 miRNAs were pairwise correlated specifically in the depressed suicide group, but not in the control group. Altogether, our study revealed for the first time the involvement of LC based dysregulated miRNA network in disrupting cellular pathways associated with suicidal behavior.
Collapse
|
36
|
Identification of MicroRNA-124-3p as a Putative Epigenetic Signature of Major Depressive Disorder. Neuropsychopharmacology 2017; 42:864-875. [PMID: 27577603 PMCID: PMC5312059 DOI: 10.1038/npp.2016.175] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/08/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) is predicted to be the second leading cause of global disease burden by 2030. A large number of MDD patients do not respond to the currently available medication because of its poorly understood etiology. Recently, studies of microRNAs (miRNAs), which act as a molecular switch of gene expression, have shown promise in identifying a molecular network that could provide significant clues to various psychiatric illnesses. Using an in vitro system, a rodent depression model, and a human postmortem brain, we investigated the role of a brain-enriched, neuron-specific miRNA, miR-124-3p, whose expression is highly dysregulated in stressed rodents, and identified a set of target genes involved in stress response and neural plasticity. We also found that miR-124-3p is epigenetically regulated and its interaction with the RNA-induced silencing complex (RISC) is compromised in MDD. Using blood serum, we found similar dysregulation of miR-124-3p in antidepressant-free MDD subjects. Altogether, our study demonstrates potential contribution of miR-124-3p in the pathophysiology of MDD and suggests that this miRNA may serve as a novel target for drug development and a biomarker for MDD pathogenesis.
Collapse
|
37
|
Zhou Y, Gu X, Wen F, Chen J, Wei W, Zhang ZH, He Y, Xie L. Association of KRAS gene mutations with depression in older metastatic colorectal cancer patients. Int Psychogeriatr 2016; 28:2019-2028. [PMID: 27468967 DOI: 10.1017/s1041610216001125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cancer patients with depression or anxiety have poor survival, and the interaction between mental and physical problems in older patients may exacerbate this problem. K-ras oncogene (KRAS) mutation may play a role in the development of psychosocial distress and may be associated with poor survival of metastatic colorectal cancer (mCRC) patients. This study investigated the association between KRAS gene mutations and psychosocial morbidity to explore the possible cancer/psychosis relationship in older mCRC patients. METHODS In this study, 62 newly diagnosed mCRC patients were recruited and completed the Hospital Anxiety and Depression Scale (HADS). Demographic data were also collected, and clinicopathological data were retrieved from medical records. KRAS mutations were assessed via PCR analysis of tissue specimens from the patients. RESULTS The results showed that 28 of the 62 participants (45.2%) had positive screens for possible depression, and 45 of the 62 participants (72.6%) had positive screens for anxiety. The KRAS mutation rate was 40.3% (25/62), and 19 of the 25 patients with KRAS mutations (76.0%) had probable depression, whereas only 24.3% of the patients with wild-type KRAS were probably depressed (p < 0.05). The KRAS mutation was associated with higher HADS depression scores, independent of gender and performance status (p < 0.05), but not with higher HADS anxiety or total scores. CONCLUSIONS KRAS mutations were associated with depression severity and higher rates of probable depression in older mCRC patients. Depression should be assessed and treated as early as possible in older mCRC patients with the KRAS mutation. Further studies are needed to verify our current findings using a larger sample size.
Collapse
Affiliation(s)
- Yi Zhou
- The Department of Gynecology & Obstetrics,Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital,Chengdu,China
| | - Xiaohui Gu
- Department of Geriatrics,Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital,Chengdu,China
| | - Feng Wen
- The Department of Medical Oncology,Cancer Center,State Key Laboratory of Biotherapy,West China Hospital,Sichuan University,Chengdu,China
| | - Jing Chen
- Oncology Department,Sichuan Cancer Hospital,Chengdu,China
| | - Wen Wei
- Oncology Department,Sichuan Cancer Hospital,Chengdu,China
| | - Zhi-Hui Zhang
- Oncology Department,Sichuan Cancer Hospital,Chengdu,China
| | - Yanting He
- The Department of Medical Oncology,Cancer Center,State Key Laboratory of Biotherapy,West China Hospital,Sichuan University,Chengdu,China
| | - Lan Xie
- The Department of Gynecology & Obstetrics,Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital,Chengdu,China
| |
Collapse
|
38
|
Yuan LL, Wauson E, Duric V. Kinase-mediated signaling cascades in mood disorders and antidepressant treatment. J Neurogenet 2016; 30:178-184. [PMID: 27785950 PMCID: PMC5590647 DOI: 10.1080/01677063.2016.1245303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/29/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Kinase-mediated signaling cascades regulate a number of different molecular mechanisms involved in cellular homeostasis, and are viewed as one of the most common intracellular processes that are robustly dysregulated in the pathophysiology of mood disorders such as depression. Newly emerged, rapid acting antidepressants are able to achieve therapeutic improvement, possibly in part, through stimulating activity of kinase-dependent signaling pathways. Thus, advancements in our understanding of how kinases may contribute to development and treatment of depression seem crucial. However, current investigations are limited to a single or small number of kinases and are unable to detect novel kinases. Here, we review fast developing kinome profiling approaches that allow identification of multiple kinases and kinase network connections simultaneously, analyze technical limitation and challenges, and discuss their future applications to mood disorders and antidepressant treatment.
Collapse
Affiliation(s)
- Li-Lian Yuan
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, USA
| | - Eric Wauson
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, USA
| | - Vanja Duric
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
39
|
Resveratrol reverses chronic restraint stress-induced depression-like behaviour: Involvement of BDNF level, ERK phosphorylation and expression of Bcl-2 and Bax in rats. Brain Res Bull 2016; 125:134-43. [DOI: 10.1016/j.brainresbull.2016.06.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
|
40
|
Treadway MT. The Neurobiology of Motivational Deficits in Depression--An Update on Candidate Pathomechanisms. Curr Top Behav Neurosci 2016; 27:337-355. [PMID: 26475160 DOI: 10.1007/7854_2015_400] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Anhedonia has long been recognized as a central feature of major depression, yet its neurobiological underpinnings remain poorly understood. While clinical definitions of anhedonia have historically emphasized reductions in pleasure and positive emotionality, there has been growing evidence that motivation may be substantially impaired as well. Here, we review recent evidence suggesting that motivational deficits may reflect an important dimension of symptomatology that is discrete from traditional definitions of anhedonia in terms of both behavior and pathophysiology. In summarizing this work, we highlight two candidate neurobiological mechanisms--elevated inflammation and reduced synaptic plasticity--that may underlie observed reductions in motivation and reinforcement learning in depression.
Collapse
|
41
|
Altered ERK1/2 Signaling in the Brain of Learned Helpless Rats: Relevance in Vulnerability to Developing Stress-Induced Depression. Neural Plast 2015; 2016:7383724. [PMID: 26839717 PMCID: PMC4709739 DOI: 10.1155/2016/7383724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/08/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022] Open
Abstract
Extracellular signal-regulated kinase 1/2- (ERK1/2-) mediated cellular signaling plays a major role in synaptic and structural plasticity. Although ERK1/2 signaling has been shown to be involved in stress and depression, whether vulnerability to develop depression is associated with abnormalities in ERK1/2 signaling is not clearly known. The present study examined ERK1/2 signaling in frontal cortex and hippocampus of rats that showed vulnerability (learned helplessness, (LH)) or resiliency (non-learned helplessness, (non-LH)) to developing stress-induced depression. In frontal cortex and hippocampus of LH rats, we found that mRNA and protein expressions of ERK1 and ERK2 were significantly reduced, which was associated with their reduced activation and phosphorylation in cytosolic and nuclear fractions, where ERK1 and ERK2 target their substrates. In addition, ERK1/2-mediated catalytic activities and phosphorylation of downstream substrates RSK1 (cytosolic and nuclear) and MSK1 (nuclear) were also lower in the frontal cortex and hippocampus of LH rats without any change in their mRNA or protein expression. None of these changes were evident in non-LH rats. Our study indicates that ERK1/2 signaling is differentially regulated in LH and non-LH rats and suggests that abnormalities in ERK1/2 signaling may be crucial in the vulnerability to developing depression.
Collapse
|
42
|
Chaudhury D, Liu H, Han MH. Neuronal correlates of depression. Cell Mol Life Sci 2015; 72:4825-48. [PMID: 26542802 PMCID: PMC4709015 DOI: 10.1007/s00018-015-2044-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder effecting approximately 121 million people worldwide and recent reports from the World Health Organization (WHO) suggest that it will be the leading contributor to the global burden of diseases. At present, the most commonly used treatment strategies are still based on the monoamine hypothesis that has been the predominant theory in the last 60 years. Clinical observations show that only a subset of depressed patients exhibits full remission when treated with classical monoamine-based antidepressants together with the fact that patients exhibit multiple symptoms suggest that the pathophysiology leading to mood disorders may differ between patients. Accumulating evidence indicates that depression is a neural circuit disorder and that onset of depression may be located at different regions of the brain involving different transmitter systems and molecular mechanisms. This review synthesises findings from rodent studies from which emerges a role for different, yet interconnected, molecular systems and associated neural circuits to the aetiology of depression.
Collapse
Affiliation(s)
- Dipesh Chaudhury
- Division of Science, Experimental Research Building, Office 106, New York University Abu Dhabi (NYUAD), Saadiyat Island Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - He Liu
- Division of Science, Experimental Research Building, Office 106, New York University Abu Dhabi (NYUAD), Saadiyat Island Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ming-Hu Han
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
43
|
Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology. Transl Psychiatry 2015; 5:e682. [PMID: 26575223 PMCID: PMC5068767 DOI: 10.1038/tp.2015.175] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 12/24/2022] Open
Abstract
Stress plays a major role in inducing depression, which may arise from interplay between complex cascades of molecular and cellular events that influence gene expression leading to altered connectivity and neural plasticity. In recent years, microRNAs (miRNAs) have carved their own niche owing to their innate ability to induce disease phenotype by regulating expression of a large number of genes in a cohesive and coordinated manner. In this study, we examined whether miRNAs and associated gene networks have a role in chronic corticosterone (CORT; 50 mg kg(-1) × 21 days)-mediated depression in rats. Rats given chronic CORT showed key behavioral features that resembled depression phenotype. Expression analysis revealed differential regulation of 26 miRNAs (19 upregulated, 7 downregulated) in prefrontal cortex of CORT-treated rats. Interaction between altered miRNAs and target genes showed dense interconnected molecular network, in which multiple genes were predicated to be targeted by the same miRNA. A majority of altered miRNAs showed binding sites for glucocorticoid receptor element, suggesting that there may be a common regulatory mechanism of miRNA regulation by CORT. Functional clustering of predicated target genes yielded disorders such as developmental, inflammatory and psychological that could be relevant to depression. Prediction analysis of the two most prominently affected miRNAs miR-124 and miR-218 resulted into target genes that have been shown to be associated with depression and stress-related disorders. Altogether, our study suggests miRNA-mediated novel mechanism by which chronic CORT may be involved in depression pathophysiology.
Collapse
|
44
|
Feng P, Akladious AA, Hu Y, Raslan Y, Feng J, Smith PJ. 7,8-Dihydroxyflavone reduces sleep during dark phase and suppresses orexin A but not orexin B in mice. J Psychiatr Res 2015; 69:110-9. [PMID: 26343602 DOI: 10.1016/j.jpsychires.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) binds to Tropomyosin-receptor-kinase B (TrkB) receptors that regulate synaptic strength and plasticity in the mammalian nervous system. 7,8-Dihydroxyflavone (DHF) is a recently identified small molecule Trk B agonist that has been reported to ameliorate depression, attenuate the fear response, improve memory consolidation, and exert neuroprotective effects. Poor and disturbed sleep remains a symptom of major depressive disorder and most current antidepressants affect sleep. Therefore, we conducted sleep/wake recordings and concomitant measurement of brain orexins, endogenous peptides that suppress sleep, in mice for this study. Baseline polysomnograph recording was performed for 24 h followed by treatment with either 5 mg/kg of DHF or vehicle at the beginning of the dark phase. Animals were sacrificed the following day, one hour after the final treatment with DHF. Orexin A and B were quantified using ELISA and radioimmunoassay, respectively. Total sleep was significantly decreased in the DHF group, 4 h after drug administration in the dark phase, when compared with vehicle-treated animals. This difference was due to a significant decrease of non-rapid eye movement sleep, but not rapid eye movement sleep. DHF increased power of alpha and sigma bands but suppressed power of gamma band during sleep in dark phase. Interestingly, hypothalamic levels of orexin A were also significantly decreased in the DHF group (97 pg/mg) when compared with the vehicle-treated group (132 pg/mg). However, no significant differences of orexin B were observed between groups. Additionally, no change was found in immobility tests.
Collapse
Affiliation(s)
- Pingfu Feng
- Louis Stokes Cleveland DVA Medical Center, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | | | - Yufen Hu
- Louis Stokes Cleveland DVA Medical Center, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yousef Raslan
- Louis Stokes Cleveland DVA Medical Center, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - James Feng
- Louis Stokes Cleveland DVA Medical Center, USA
| | - Phillip J Smith
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
45
|
Zhao J, Qi XR, Gao SF, Lu J, van Wamelen DJ, Kamphuis W, Bao AM, Swaab DF. Different stress-related gene expression in depression and suicide. J Psychiatr Res 2015; 68:176-185. [PMID: 26228417 DOI: 10.1016/j.jpsychires.2015.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/05/2015] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Suicide occurs in some, but not all depressed patients. So far, it remains unknown whether the studied stress-related candidate genes change in depression, suicide or both. The prefrontal cortex (PFC) is involved in, among other things, impulse control and inhibitory behavior and plays an important role in both suicide and depression. METHODS We have employed qPCR to study 124 anterior cingulate cortex (ACC) and dorsolateral PFC (DLPFC) brain samples, obtained from two brain banks, from: i) young depressed patients (average age 43 years) who committed suicide (MDD-S) and depressed patients who died from causes other than suicide (MDD-NS) and from ii) elderly depressed patients (average age 75 years) who did not commit suicide (DEP). Both cohorts were individually matched with non-psychiatric non-suicide control subjects. We determined the transcript levels of hypothalamic-pituitary-adrenal axis-regulating molecules (corticotropin-releasing hormone (CRH), CRH receptors, CRH binding protein, mineralocorticoid receptor/glucocorticoid receptor), transcription factors that regulate CRH expression, CRH-stimulating cytokines, chaperone proteins, retinoid signaling, brain-derived neurotrophic factor and tropomyosin-related kinase B, cytochrome proteins, nitric oxide synthase (NOS) and monoamines. RESULTS In the MDD-S group, expression levels of CRH and neuronal NOS-interacting DHHC domain-containing protein with dendritic mRNA (NIDD) were increased. Other changes were only present in the DEP group, i.e. decreased NIDD, and increased and 5-hydroxytryptamine receptor 1A (5-HT1A) expression levels. Changes were found to be more pronounced in the anterior cingulate cortex than in the dorsolateral PFC. CONCLUSION Depressed patients who committed suicide have different gene expression patterns than depressed patients who died of causes other than suicide.
Collapse
Affiliation(s)
- J Zhao
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - X-R Qi
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - S-F Gao
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - J Lu
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - D J van Wamelen
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - W Kamphuis
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - A-M Bao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - D F Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Ketamine and suicidal ideation in depression: Jumping the gun? Pharmacol Res 2015; 99:23-35. [DOI: 10.1016/j.phrs.2015.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
|
47
|
Borges G, Berrocoso E, Mico JA, Neto F. ERK1/2: Function, signaling and implication in pain and pain-related anxio-depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:77-92. [PMID: 25708652 DOI: 10.1016/j.pnpbp.2015.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/31/2015] [Accepted: 02/15/2015] [Indexed: 12/15/2022]
Abstract
Despite the increasing knowledge regarding pain modulation, the understanding of the mechanisms behind a complex and pathologic chronic pain condition is still insufficient. These knowledge gaps might result in ineffective therapeutic approaches to relieve painful sensations. As a result, severe untreated chronic pain frequently triggers the onset of new disorders such as depression and/or anxiety, and therefore, both the diagnosis and treatment of patients suffering from chronic pain become seriously compromised, prompting a self-perpetuating cycle of symptomatology. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are molecules strongly implicated in the somatic component of pain at the spinal cord level and have been emerging as mediators of the emotional-affective component as well. Although these molecules might represent good biomarkers, their use as pharmacological targets is still open to discussion as paradoxical information has been obtained. Here we review the current scientific literature regarding ERK1/2 signaling in the modulation of pain, depression and anxiety, including the emotional-affective spheres of the pain experience.
Collapse
Affiliation(s)
- Gisela Borges
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, 11510 Cádiz, Spain
| | - Juan Antonio Mico
- Neuropsycopharmacology and Psychobiology Research Group, Department of Neuroscience (Pharmacology and Psychiatry), University of Cádiz, 11003 Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Fani Neto
- Departamento de Biologia Experimental, Centro de Investigação Médica da Faculdade de Medicina da Universidade do Porto (CIM-FMUP), 4200-319 Porto, Portugal; Grupo de Morfofisiologia do Sistema Nervoso, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.
| |
Collapse
|
48
|
Wang CH, Zhang XL, Li Y, Wang GD, Wang XK, Dong J, Ning QF. Role of hippocampus mitogen-activated protein kinase phosphatase-1 mRNA expression and DNA methylation in the depression of the rats with chronic unpredicted stress. Cell Mol Neurobiol 2015; 35:473-82. [PMID: 25410305 PMCID: PMC11486271 DOI: 10.1007/s10571-014-0141-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/14/2014] [Indexed: 01/09/2023]
Abstract
Stressful life events especially the chronic unpredictable stress are the obvious precipitating factors of depression. The biological information transduction in cells plays an important role in the molecular biology mechanism of depression. Mitogen-activated protein kinase phosphatase-1 (MKP-1) regulates the cell physiological activity and involves in the adjustment of neural plasticity, function, and survival. This experiment tried to explore the possible effects of MKP-1 in hippocampus on depression of rats by determining the expression of MKP-1 mRNA and DNA methylation in MKP-1 gene promoter. The animal model was established by chronic unpredictable stress, and evaluated by open-field test and weight changes. All the rats were divided into the sham stimulation, the physiological saline, and the fluoxetine (1.25, 2.50, and 5.00 mg/kg) groups randomly. The expression of MKP-1 mRNA in the hippocampus was measured by RT-PCR and the methylation of MKP-1 promoter DNA was detected by COBRA. The chronic unpredicted stress (1) increased the animal movement scores in open-field test, and fluoxetine could prevent this increasement; (2) increased the body weight, and fluoxetine could not prevent this increasement; and (3) increased MKP-1 mRNA expression in the hippocampus, and fluoxetine could prevent it. However, fluoxetine did not influence the DNA methylation of MKP-1 gene promoter in the hippocampus during the chronic unpredicted stress. MKP-1 in the hippocampus might be involved in the etiology of depression, and DNA methylation of MKP-1 gene promoter in the hippocampus did not related with the depression.
Collapse
Affiliation(s)
- Chang-Hong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan China
| | - Xiao-Li Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan China
| | - Yan Li
- Department of Child and Adolescent, Public Health College, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001 Henan China
| | - Guo-Dong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan China
| | - Xin-Kai Wang
- Basic Medical College, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Jiao Dong
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan China
| | - Qiu-Fen Ning
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002 Henan China
| |
Collapse
|
49
|
Kudryashova IV. Neurodegenerative changes in depression: Excitotoxicity or a deficit of trophic factors? NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Wang M, Zhou W, Zhou X, Zhuang F, Chen Q, Li M, Ma T, Gu S. Antidepressant-like effects of alarin produced by activation of TrkB receptor signaling pathways in chronic stress mice. Behav Brain Res 2015; 280:128-40. [DOI: 10.1016/j.bbr.2014.11.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
|