1
|
Lucassen PJ, Korosi A, de Rooij SR, Smit AB, Van Dam AM, Daskalakis NP, Van Kesteren RE, Verheijen MHG, Lesuis SL, Kessels HW, Krugers HJ. How Can Early Stress Influence Later Alzheimer's Disease Risk? Possible Mediators and Underlying Mechanisms. Biol Psychiatry 2025; 97:372-381. [PMID: 39577793 DOI: 10.1016/j.biopsych.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Alzheimer's disease (AD) is a progressive, age-related neurodegenerative disorder to which genetic mutations and risk factors contribute. Evidence is increasing that environmental and lifestyle-related factors, such as exercise, nutrition, education, and exposure to (early-life) stress modify the onset, incidence, and progression of AD. Here, we discuss recent preclinical findings on putative substrates that can explain or contribute to the effects of stress early in life on the risk of developing AD. We focus in particular on stress hormones, neural networks, synapses, mitochondria, nutrient and lipid metabolism, adult neurogenesis, engram cell ensembles, and neuroinflammation. We discuss the idea that stress exposure early in life can alter these processes, either combined or in isolation, thereby reducing the capacity of the brain to resist deleterious consequences of, for example, amyloid-β accumulation, thereby accelerating cognitive decline and progression of Alzheimer-related changes in model systems of the disease. A better understanding of whether experiences early in life also modify trajectories of cognitive decline and pathology in AD and how the substrates discussed translate to humans may help develop novel preventive and/or therapeutic strategies to mitigate the consequences of stressors early in life and increase resilience to developing dementia.
Collapse
Affiliation(s)
- Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anne-Marie Van Dam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Nikolaos P Daskalakis
- Neurogenomics and Translational Bioinformatics Laboratory, McLean Hospital, Harvard University, Boston, Massachusetts
| | - Ronald E Van Kesteren
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sylvie L Lesuis
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Helmut W Kessels
- Department of Cellular & Computational Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024; 16:2181-2217. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
3
|
Anwar MM, Pérez-Martínez L, Pedraza-Alva G. Exploring the Significance of Microglial Phenotypes and Morphological Diversity in Neuroinflammation and Neurodegenerative Diseases: From Mechanisms to Potential Therapeutic Targets. Immunol Invest 2024; 53:891-946. [PMID: 38836373 DOI: 10.1080/08820139.2024.2358446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Studying various microglial phenotypes and their functions in neurodegenerative diseases is crucial due to the intricate nature of their phenomics and their vital immunological role. Microglia undergo substantial phenomic changes, encompassing morphological, transcriptional, and functional aspects, resulting in distinct cell types with diverse structures, functions, properties, and implications. The traditional classification of microglia as ramified, M1 (proinflammatory), or M2 (anti-inflammatory) phenotypes is overly simplistic, failing to capture the wide range of recently identified microglial phenotypes in various brain regions affected by neurodegenerative diseases. Altered and activated microglial phenotypes deviating from the typical ramified structure are significant features of many neurodegenerative conditions. Understanding the precise role of each microglial phenotype is intricate and sometimes contradictory. This review specifically focuses on elucidating recent modifications in microglial phenotypes within neurodegenerative diseases. Recognizing the heterogeneity of microglial phenotypes in diseased states can unveil novel therapeutic strategies for targeting microglia in neurodegenerative diseases. Moreover, the exploration of the use of healthy isolated microglia to mitigate disease progression has provided an innovative perspective. In conclusion, this review discusses the dynamic landscape of mysterious microglial phenotypes, emphasizing the need for a nuanced understanding to pave the way for innovative therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Leonor Pérez-Martínez
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Yan L, Li H, Qian Y, Zhang J, Cong S, Zhang X, Wu L, Wang Y, Wang M, Yu T. Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer's disease intervention through the brain-gut-microbiota axis? Front Aging Neurosci 2024; 16:1334887. [PMID: 38476661 PMCID: PMC10927744 DOI: 10.3389/fnagi.2024.1334887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is an emerging non-invasive technique designed to stimulate branches of the vagus nerve distributed over the body surface. Studies suggest a correlation between the brain-gut-microbiota (BGM) axis and the pathogenesis of Alzheimer's disease (AD). The BGM axis represents a complex bidirectional communication system, with the vagus nerve being a crucial component. Therefore, non-invasive electrical stimulation of the vagus nerve might have the potential to modify-most of the time probably in a non-physiological way-the signal transmission within the BGM axis, potentially influencing the progression or symptoms of AD. This review explores the interaction between percutaneous vagus nerve stimulation and the BGM axis, emphasizing its potential effects on AD. It examines various aspects, such as specific brain regions, gut microbiota composition, maintenance of intestinal environmental homeostasis, inflammatory responses, brain plasticity, and hypothalamic-pituitary-adrenal (HPA) axis regulation. The review suggests that tVNS could serve as an effective strategy to modulate the BGM axis and potentially intervene in the progression or treatment of Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Junfeng Zhang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuemin Zhang
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Wu
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
5
|
Ochi S, Yamada K, Saito T, Saido TC, Iinuma M, Azuma K, Kubo KY. Effects of early tooth loss on chronic stress and progression of neuropathogenesis of Alzheimer's disease in adult Alzheimer's model AppNL-G-F mice. Front Aging Neurosci 2024; 16:1361847. [PMID: 38469162 PMCID: PMC10925668 DOI: 10.3389/fnagi.2024.1361847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Alzheimer's disease (AD), the most common neurodegenerative disease, is characterized by accumulated amyloid-β (Aβ) plaques, aggregated phosphorylated tau protein, gliosis-associated neuroinflammation, synaptic dysfunction, and cognitive impairment. Many cohort studies indicate that tooth loss is a risk factor for AD. The detailed mechanisms underlying the association between AD and tooth loss, however, are not yet fully understood. Methods We explored the involvement of early tooth loss in the neuropathogenesis of the adult AppNL-G-F mouse AD model. The maxillary molars were extracted bilaterally in 1-month-old male mice soon after tooth eruption. Results Plasma corticosterone levels were increased and spatial learning memory was impaired in these mice at 6 months of age. The cerebral cortex and hippocampus of AD mice with extracted teeth showed an increased accumulation of Aβ plaques and phosphorylated tau proteins, and increased secretion of the proinflammatory cytokines, including interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), accompanied by an increased number of microglia and astrocytes, and decreased synaptophysin expression. AD mice with extracted teeth also had a shorter lifespan than the control mice. Discussion These findings revealed that long-term tooth loss is a chronic stressor, activating the recruitment of microglia and astrocytes; exacerbating neuroinflammation, Aβ deposition, phosphorylated tau accumulation, and synaptic dysfunction; and leading to spatial learning and memory impairments in AD model mice.
Collapse
Affiliation(s)
- Suzuko Ochi
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kumiko Yamada
- Department of Health and Nutrition, Faculty of Health Science, Nagoya Women's University, Nagoya, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mitsuo Iinuma
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kin-Ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, Nagoya, Japan
| |
Collapse
|
6
|
Hodes GE, Bangasser D, Sotiropoulos I, Kokras N, Dalla C. Sex Differences in Stress Response: Classical Mechanisms and Beyond. Curr Neuropharmacol 2024; 22:475-494. [PMID: 37855285 PMCID: PMC10845083 DOI: 10.2174/1570159x22666231005090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Debra Bangasser
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications NCSR “Demokritos”, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Zegarra-Valdivia JA, Pignatelli J, Nuñez A, Torres Aleman I. The Role of Insulin-like Growth Factor I in Mechanisms of Resilience and Vulnerability to Sporadic Alzheimer's Disease. Int J Mol Sci 2023; 24:16440. [PMID: 38003628 PMCID: PMC10671249 DOI: 10.3390/ijms242216440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Despite decades of intense research, disease-modifying therapeutic approaches for Alzheimer's disease (AD) are still very much needed. Apart from the extensively analyzed tau and amyloid pathological cascades, two promising avenues of research that may eventually identify new druggable targets for AD are based on a better understanding of the mechanisms of resilience and vulnerability to this condition. We argue that insulin-like growth factor I (IGF-I) activity in the brain provides a common substrate for the mechanisms of resilience and vulnerability to AD. We postulate that preserved brain IGF-I activity contributes to resilience to AD pathology as this growth factor intervenes in all the major pathological cascades considered to be involved in AD, including metabolic impairment, altered proteostasis, and inflammation, to name the three that are considered to be the most important ones. Conversely, disturbed IGF-I activity is found in many AD risk factors, such as old age, type 2 diabetes, imbalanced diet, sedentary life, sociality, stroke, stress, and low education, whereas the Apolipoprotein (Apo) E4 genotype and traumatic brain injury may also be influenced by brain IGF-I activity. Accordingly, IGF-I activity should be taken into consideration when analyzing these processes, while its preservation will predictably help prevent the progress of AD pathology. Thus, we need to define IGF-I activity in all these conditions and develop a means to preserve it. However, defining brain IGF-I activity cannot be solely based on humoral or tissue levels of this neurotrophic factor, and new functionally based assessments need to be developed.
Collapse
Affiliation(s)
- Jonathan A. Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- School of Medicine, Universidad Señor de Sipán, Chiclayo 14000, Peru
| | - Jaime Pignatelli
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Cajal Institute (CSIC), 28002 Madrid, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain;
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Zhang H, Liu X, Li B, Zhang Y, Gao H, Zhao X, Leng K, Song Z. Krill oil treatment ameliorates lipid metabolism imbalance in chronic unpredicted mild stress-induced depression-like behavior in mice. Front Cell Dev Biol 2023; 11:1180483. [PMID: 37564375 PMCID: PMC10411196 DOI: 10.3389/fcell.2023.1180483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
The pathology of depression involves various factors including the interaction between genes and the environment. The deficiency of n-3 polyunsaturated fatty acids (n-3 PUFAs) in the brain and depressive symptoms are closely related. Krill oil contains abundant amounts of n-3 PUFAs incorporated in phosphatidylcholine. However, the effect of krill oil treatment on depression-like behaviors induced by chronic stress and its molecular mechanism in the brain remain poorly understood. Here, we used a chronic unpredictable mild stress (CUMS) model to evaluate the effect of krill oil on depression-like behaviors and explored its molecular mechanism through lipid metabolomics and mRNA profiles in the whole brain. We observed that CUMS-induced depression-like behaviors were ameliorated by krill oil supplementation in mice. The metabolism of glycerophospholipids and sphingolipids was disrupted by CUMS treatment, which were ameliorated after krill oil supplementation. Further analysis found that differently expressed genes after krill oil supplementation were mainly enriched in the membrane structures and neuroactive ligand-receptor interaction pathway, which may be responsible for the amelioration of CUMS-induced depression-like behaviors. Altogether, our results uncovered the relationship between lipid metabolism and CUMS, and provided new strategies for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Xiaofang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Bo Li
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Yi Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Hua Gao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Xianyong Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhenhua Song
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| |
Collapse
|
9
|
Dioli C, Papadimitriou G, Megalokonomou A, Marques C, Sousa N, Sotiropoulos I. Chronic Stress, Depression, and Alzheimer's Disease: The Triangle of Oblivion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:303-315. [PMID: 37525058 DOI: 10.1007/978-3-031-31978-5_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Chronic stress and high levels of the main stress hormones, and glucocorticoids (GC), are implicated in susceptibility to brain pathologies such as depression and Alzheimer's disease (AD), as they promote neural plasticity damage and glial reactivity, which can lead to dendritic/synaptic loss, reduced neurogenesis, mood deficits, and impaired cognition. Moreover, depression is implicated in the development of AD with chronic stress being a potential link between both disorders via common neurobiological underpinnings. Hereby, we summarize and discuss the clinical and preclinical evidence related to the detrimental effect of chronic stress as a precipitator of AD through the activation of pathological mechanisms leading to the accumulation of amyloid β (Aβ) and Tau protein. Given that the modern lifestyle increasingly exposes individuals to high stress loads, it is clear that understanding the mechanistic link(s) between chronic stress, depression, and AD pathogenesis may facilitate the treatment of AD and other stress-related disorders.
Collapse
Affiliation(s)
- Chrysoula Dioli
- Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | - Carlos Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- Institute of Biosciences and Applications, NCSR Demokritos, Athens, Greece.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
10
|
Marcolini S, Rojczyk P, Seitz-Holland J, Koerte IK, Alosco ML, Bouix S. Posttraumatic Stress and Traumatic Brain Injury: Cognition, Behavior, and Neuroimaging Markers in Vietnam Veterans. J Alzheimers Dis 2023; 95:1427-1448. [PMID: 37694363 PMCID: PMC10578246 DOI: 10.3233/jad-221304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are common in Veterans and linked to behavioral disturbances, increased risk of cognitive decline, and Alzheimer's disease. OBJECTIVE We studied the synergistic effects of PTSD and TBI on behavioral, cognitive, and neuroimaging measures in Vietnam war Veterans. METHODS Data were acquired at baseline and after about one-year from male Veterans categorized into: PTSD, TBI, PTSD+TBI, and Veteran controls without PTSD or TBI. We applied manual tractography to examine white matter microstructure of three fiber tracts: uncinate fasciculus (N = 91), cingulum (N = 87), and inferior longitudinal fasciculus (N = 95). ANCOVAs were used to compare Veterans' baseline behavioral and cognitive functioning (N = 285), white matter microstructure, amyloid-β (N = 230), and tau PET (N = 120). Additional ANCOVAs examined scores' differences from baseline to follow-up. RESULTS Veterans with PTSD and PTSD+TBI, but not Veterans with TBI only, exhibited poorer behavioral and cognitive functioning at baseline than controls. The groups did not differ in baseline white matter, amyloid-β, or tau, nor in behavioral and cognitive functioning, and tau accumulation change. Progression of white matter abnormalities of the uncinate fasciculus in Veterans with PTSD compared to controls was observed; analyses in TBI and PTSD+TBI were not run due to insufficient sample size. CONCLUSIONS PTSD and PTSD+TBI negatively affect behavioral and cognitive functioning, while TBI does not contribute independently. Whether progressive decline in uncinate fasciculus microstructure in Veterans with PTSD might account for cognitive decline should be further studied. Findings did not support an association between PTSD, TBI, and Alzheimer's disease pathology based on amyloid and tau PET.
Collapse
Affiliation(s)
- Sofia Marcolini
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Philine Rojczyk
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Johanna Seitz-Holland
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K. Koerte
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Germany
| | - Michael L. Alosco
- Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Software Engineering and Information Technology, École de Technologie Supe´rieure, Montre´al, Canada
| | | |
Collapse
|
11
|
Sulkava S, Haukka J, Sulkava R, Laatikainen T, Paunio T. Association Between Psychological Distress and Incident Dementia in a Population-Based Cohort in Finland. JAMA Netw Open 2022; 5:e2247115. [PMID: 36520436 PMCID: PMC9856411 DOI: 10.1001/jamanetworkopen.2022.47115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IMPORTANCE Symptoms of psychological distress have shown association with subsequent dementia, but the nature of association remains unclear. OBJECTIVE To examine the association of psychological distress with etiological risk of dementia and incidence of dementia in presence of competing risk of death. DESIGN, SETTING, AND PARTICIPANTS This cohort study consisted of population-based cross-sectional National FINRISK Study surveys collected in 1972, 1977, 1982, 1987, 1992, 1997, 2002, and 2007 in Finland with register-based follow-up; and the cohort was linked to Finnish Health Register data for dementia and mortality for each participant until December 31, 2017. Participants included individuals without dementia who had complete exposure data. Data were analyzed from May 2019 to April 2022. EXPOSURES Self-reported symptoms of psychological distress: stress (more than other people), depressive mood, exhaustion, and nervousness (often, sometimes, never). MAIN OUTCOMES AND MEASURES Incident all-cause dementia, ascertained through linkage to national health registers. Poisson cause-specific hazard model (emphasizing etiological risk) and Fine-Gray subdistribution hazard model (emphasizing effect on incidence) considering dementia and death without dementia as competing risks. Covariates of age, sex, baseline year, follow-up time, educational level, body mass index, smoking, diabetes, systolic blood pressure, cholesterol, and physical activity. Sensitivity analysis was performed to reduce reverse causation bias by excluding individuals with follow-up less than 10 years. RESULTS Among 67 688 participants (34 968 [51.7%] women; age range, 25 to 74 years; mean [SD] age, 45.4 years), 7935 received a diagnosis of dementia over a mean follow-up of 25.4 years (range, 10 to 45 years). Psychological distress was significantly associated with all-cause dementia in a multivariable Poisson model, with incidence rate ratios from 1.17 (95% CI, 1.08-1.26) for exhaustion to 1.24 (95% CI, 1.11-1.38) for stress, and remained significant in sensitivity analyses. A Fine-Gray model showed significant associations (with hazard ratios from 1.08 [95% CI, 1.01-1.17] for exhaustion to 1.12 [95% CI, 1.00-1.25] for stress) for symptoms other than depressive mood (hazard ratio, 1.08 [95% CI, 0.98-1.20]). All the symptoms showed significant associations with competing risk of death in both models. CONCLUSIONS AND RELEVANCE In this cohort study, psychological distress symptoms were significantly associated with increased risk of all-cause dementia in the model emphasizing etiological risk. Associations with real incidence of dementia were diminished by the competing risk of death.
Collapse
Affiliation(s)
- Sonja Sulkava
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Psychiatry and SleepWell Research Programme, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Jari Haukka
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Raimo Sulkava
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Amia Memory Clinics, Helsinki, Finland
| | - Tiina Laatikainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Joint Municipal Authority for North Karelia Social and Health Services (Siun Sote), Joensuu, Finland
| | - Tiina Paunio
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Psychiatry and SleepWell Research Programme, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Shade RD, Ross JA, Van Bockstaele EJ. Targeting the cannabinoid system to counteract the deleterious effects of stress in Alzheimer’s disease. Front Aging Neurosci 2022; 14:949361. [PMID: 36268196 PMCID: PMC9577232 DOI: 10.3389/fnagi.2022.949361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder characterized histologically in postmortem human brains by the presence of dense protein accumulations known as amyloid plaques and tau tangles. Plaques and tangles develop over decades of aberrant protein processing, post-translational modification, and misfolding throughout an individual’s lifetime. We present a foundation of evidence from the literature that suggests chronic stress is associated with increased disease severity in Alzheimer’s patient populations. Taken together with preclinical evidence that chronic stress signaling can precipitate cellular distress, we argue that chronic psychological stress renders select circuits more vulnerable to amyloid- and tau- related abnormalities. We discuss the ongoing investigation of systemic and cellular processes that maintain the integrity of protein homeostasis in health and in degenerative conditions such as Alzheimer’s disease that have revealed multiple potential therapeutic avenues. For example, the endogenous cannabinoid system traverses the central and peripheral neural systems while simultaneously exerting anti-inflammatory influence over the immune response in the brain and throughout the body. Moreover, the cannabinoid system converges on several stress-integrative neuronal circuits and critical regions of the hypothalamic-pituitary-adrenal axis, with the capacity to dampen responses to psychological and cellular stress. Targeting the cannabinoid system by influencing endogenous processes or exogenously stimulating cannabinoid receptors with natural or synthetic cannabis compounds has been identified as a promising route for Alzheimer’s Disease intervention. We build on our foundational framework focusing on the significance of chronic psychological and cellular stress on the development of Alzheimer’s neuropathology by integrating literature on cannabinoid function and dysfunction within Alzheimer’s Disease and conclude with remarks on optimal strategies for treatment potential.
Collapse
Affiliation(s)
- Ronnie D. Shade
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Jennifer A. Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
- *Correspondence: Jennifer A. Ross,
| | - Elisabeth J. Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Rab35 and glucocorticoids regulate APP and BACE1 trafficking to modulate Aβ production. Cell Death Dis 2021; 12:1137. [PMID: 34876559 PMCID: PMC8651661 DOI: 10.1038/s41419-021-04433-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
Chronic stress and elevated glucocorticoids (GCs), the major stress hormones, are risk factors for Alzheimer’s disease (AD) and promote AD pathomechanisms, including overproduction of toxic amyloid-β (Aβ) peptides and intraneuronal accumulation of hyperphosphorylated Tau protein. The latter is linked to downregulation of the small GTPase Rab35, which mediates Tau degradation via the endolysosomal pathway. Whether Rab35 is also involved in Aβ overproduction remains an open question. Here, we find that hippocampal Rab35 levels are decreased not only by stress/GC but also by aging, another AD risk factor. Moreover, we show that Rab35 negatively regulates Aβ production by sorting amyloid precursor protein (APP) and β-secretase (BACE1) out of the endosomal network, where they interact to produce Aβ. Interestingly, Rab35 coordinates distinct intracellular trafficking steps for BACE1 and APP, mediated by its effectors OCRL and ACAP2, respectively. Finally, we demonstrate that Rab35 overexpression prevents the amyloidogenic trafficking of APP and BACE1 induced by high GC levels. These studies identify Rab35 as a key regulator of APP processing and suggest that its downregulation may contribute to stress-related and AD-related amyloidogenesis.
Collapse
|
14
|
Hesperidin Preserves Cognitive Functions and Hippocampus Histological Architecture in Albino Wistar Rats Subjected to Stress Through Enhancement of Brain-Derived Neurotrophic Factor. Neurotox Res 2021; 40:179-185. [PMID: 34826046 DOI: 10.1007/s12640-021-00433-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Hesperidin (HSD) is a natural compound with antioxidant potential. On the other hand, chronic stress had been linked to impaired cognitive functions as it affects many neurotransmitters and brain regions such as the hippocampus. The current study was conducted to examine the effect of HSD on learning and memory after chronic mild stress. Albino Wistar rats were subjected to chronic mild stress with HSD administered as supplements. HSD was found to decrease hippocampal amyloid beta and malondialdehyde levels, in addition, to preserve cognitive functions together with preserving hippocampus histological architecture. In conclusion, the present study sheds the light on the potential of HSD to ameliorate the deleterious effects of chronic mild stress on cognitive functions through brain-derived neurotrophic factor enhancement and reduction in Aβ formation in addition to activation of the antioxidant pathway.
Collapse
|
15
|
Puigoriol-Illamola D, Companys-Alemany J, McGuire K, Homer NZM, Leiva R, Vázquez S, Mole DJ, Griñán-Ferré C, Pallàs M. Inhibition of 11β-HSD1 Ameliorates Cognition and Molecular Detrimental Changes after Chronic Mild Stress in SAMP8 Mice. Pharmaceuticals (Basel) 2021; 14:ph14101040. [PMID: 34681264 PMCID: PMC8540242 DOI: 10.3390/ph14101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Impaired glucocorticoid (GC) signaling is a significant factor in aging, stress, and neurodegenerative diseases such as Alzheimer's disease. Therefore, the study of GC-mediated stress responses to chronic moderately stressful situations, which occur in daily life, is of huge interest for the design of pharmacological strategies toward the prevention of neurodegeneration. To address this issue, SAMP8 mice were exposed to the chronic mild stress (CMS) paradigm for 4 weeks and treated with RL-118, an 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor. The inhibition of this enzyme is linked with a reduction in GC levels and cognitive improvement, while CMS exposure has been associated with reduced cognitive performance. The aim of this project was to assess whether RL-118 treatment could reverse the deleterious effects of CMS on cognition and behavioral abilities and to evaluate the molecular mechanisms that compromise healthy aging in SAMP8 mice. First, we confirmed the target engagement between RL-118 and 11β-HSD1. Additionally, we showed that DNA methylation, hydroxymethylation, and histone phosphorylation were decreased by CMS induction, and increased by RL-118 treatment. In addition, CMS exposure caused the accumulation of reactive oxygen species (ROS)-induced damage and increased pro-oxidant enzymes-as well as pro-inflammatory mediators-through the NF-κB pathway and astrogliosis markers, such as GFAP. Of note, these modifications were reversed by 11β-HSD1 inhibition. Remarkably, although CMS altered mTORC1 signaling, autophagy was increased in the SAMP8 RL-118-treated mice. We also showed an increase in amyloidogenic processes and a decrease in synaptic plasticity and neuronal remodeling markers in mice under CMS, which were consequently modified by RL-118 treatment. In conclusion, 11β-HSD1 inhibition through RL-118 ameliorated the detrimental effects induced by CMS, including epigenetic and cognitive disturbances, indicating that GC-excess attenuation shows potential as a therapeutic strategy for age-related cognitive decline and AD.
Collapse
Affiliation(s)
- Dolors Puigoriol-Illamola
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
| | - Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
| | - Kris McGuire
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (K.M.); (D.J.M.)
| | - Natalie Z. M. Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK;
| | - Rosana Leiva
- Medicinal Chemistry Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.L.); (S.V.)
| | - Santiago Vázquez
- Medicinal Chemistry Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.L.); (S.V.)
| | - Damian J. Mole
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (K.M.); (D.J.M.)
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-4024531
| |
Collapse
|
16
|
Monteiro-Fernandes D, Silva JM, Soares-Cunha C, Dalla C, Kokras N, Arnaud F, Billiras R, Zhuravleva V, Waites C, Bretin S, Sousa N, Sotiropoulos I. Allosteric modulation of AMPA receptors counteracts Tau-related excitotoxic synaptic signaling and memory deficits in stress- and Aβ-evoked hippocampal pathology. Mol Psychiatry 2021; 26:5899-5911. [PMID: 32467647 DOI: 10.1038/s41380-020-0794-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Despite considerable progress in the understanding of its neuropathology, Alzheimer's disease (AD) remains a complex disorder with no effective treatment that counteracts the memory deficits and the underlying synaptic malfunction triggered by the accumulation of amyloid beta (Aβ) and Tau protein. Mounting evidence supports a precipitating role for chronic environmental stress and glutamatergic excitotoxicity in AD, suggesting that targeting of glutamate receptor signaling may be a promising approach against both stress and AD pathologies. In light of the limited cognitive benefit of the direct antagonism of NMDA receptors in AD, we here focus on an alternative way to modify glutamatergic signaling through positive allosteric modulation of AMPA receptors, by the use of a PAM-AMPA compound. Using non-transgenic animal model of Aβ oligomer injection as well as the combined stress and Aβ i.c.v. infusion, we demonstrate that positive allosteric modulation of AMPA receptors by PAM-AMPA treatment reverted memory, but not mood, deficits. Furthermore, PAM-AMPA treatment reverted stress/Aβ-driven synaptic missorting of Tau and associated Fyn/GluN2B-driven excitotoxic synaptic signaling accompanied by recovery of neurotransmitter levels in the hippocampus. Our findings suggest that positive allosteric modulation of AMPA receptors restores synaptic integrity and cognitive performance in stress- and Aβ-evoked hippocampal pathology. As the prevalence of AD is increasing at an alarming rate, novel therapeutic targeting of glutamatergic signaling should be further explored against the early stages of AD synaptic malfunction with the goal of attenuating further synaptic damage before it becomes irreversible.
Collapse
Affiliation(s)
- Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Margarida Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - François Arnaud
- Pôle Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Rodolphe Billiras
- Pôle Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Viktoriya Zhuravleva
- Neurobiology and Behavior Graduate Program, Columbia University, New York, NY, USA
| | - Clarissa Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Sylvie Bretin
- Pôle Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
17
|
Bakhtiari-Dovvombaygi H, Izadi S, Zare M, Asgari Hassanlouei E, Dinpanah H, Ahmadi-Soleimani SM, Beheshti F. Vitamin D3 administration prevents memory deficit and alteration of biochemical parameters induced by unpredictable chronic mild stress in rats. Sci Rep 2021; 11:16271. [PMID: 34381124 PMCID: PMC8357828 DOI: 10.1038/s41598-021-95850-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the effects of vitamin D3 (Vit D) administration on memory function, hippocampal level of amyloid-beta (Aβ), brain-derived neurotrophic factor (BDNF) and oxidative stress status in a rat model of unpredictable chronic mild stress (UCMS). Vit D was intraperitoneally administered at doses of 100, 1000, and 10,000 IU/kg. Animals were subjected to UCMS for a total period of 4 weeks. Memory function was assessed using morris water maze (MWM) and passive avoidance (PA) tests. Biochemical markers were measured to reveal the status of oxidative stress and antioxidant defense system. In addition, the levels of Aβ and BDNF were measured in hippocampal region. In the UCMS group, latency to find the platform was greater and the time spent in target quadrant (MWM test) as well as the latency to enter the dark compartment (PA test), were less than the vehicle group. Hippocampal malondialdehyde (MDA) and Aβ concentrations in the UCMS group were higher than the vehicle group. Hippocampal level of thiol and BDNF plus the activities of catalase and superoxide dismutase (SOD) were reduced in UCMS group compared to the control subjects (i.e. vehicle group). Interestingly, Vit D treatment supplementation reversed the mentioned effects of UCMS. Our findings indicated that Vit D administration improves UCMS-induced impairment of learning and memory through prevention of adverse effects on Aβ, BDNF and oxidative stress parameters.
Collapse
Affiliation(s)
- Hossein Bakhtiari-Dovvombaygi
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Saeed Izadi
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mostafa Zare
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Hossein Dinpanah
- Department of Emergency Medicine, 9 Dey Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran. .,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran. .,Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
18
|
Lange RT, Merritt VC, Brickell TA, Dalgard CL, Soltis AR, Hershaw J, Lippa SM, Gill J, French LM. Apolipoprotein E e4 is associated with worse self-reported neurobehavioral symptoms following uncomplicated mild traumatic brain injury in U.S. military service members. Behav Brain Res 2021; 415:113491. [PMID: 34333069 DOI: 10.1016/j.bbr.2021.113491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/24/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022]
Abstract
Past research has found a relationship between the apolipoprotein E (APOE) e4 allele and worse neurobehavioral functioning following mild traumatic brain injury (MTBI) in civilian populations. The purpose of this study was to examine this relationship in service members and veterans (SMVs) following MTBI. Participants were 151 SMVs (103 uncomplicated MTBI; 48 Injured Controls [IC]) prospectively enrolled in the DVBIC-TBICoE 15-Year Longitudinal TBI Study. Participants completed a battery of self-reported neurobehavioral symptom measures on average 76.2 months post-injury (SD = 31.8). APOE genotyping was undertaken using non-fasting blood samples. Participants were classified into four subgroups based on injury (MTBI vs. IC) and APOE e4 allele status (e4 present/absent). In the IC group, there were no significant differences across APOE e4 status subgroups for all measures. In the MTBI group, participants with the APOE e4 allele had significantly worse scores on measures of depression, pain, anxiety, grief, positive well-being, social participation, and resilience compared to those without the e4 allele (d = .44 to d = .69). When comparing the number of 'clinically elevated' neurobehavioral measures simultaneously, the MTBI/e4 present subgroup consistently had a higher number of elevated measures compared to the MTBI/e4 absent, IC/e4 present, and IC/e4 absent subgroups. The APOE e4 allele was associated with poorer neurobehavioral outcome in SMVs in the chronic phase of recovery following MTBI. APOE e4 could be incorporated into screening tools to predict SMVs at risk for poor long-term neurobehavioral outcome in an effort to provide early intervention to improve long-term clinical outcome.
Collapse
Affiliation(s)
- Rael T Lange
- Traumatic Brain Injury Center of Excellence, 1335 E W Hwy, Silver Spring, MD, 20910, United States; Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda, MD, 20814, United States; National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, United States; University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Contractor, General Dynamics Information Technology, 3150 Fairview Park Dr, Falls Church, VA, 22042, United States; Centre of Excellence on Post-traumatic Stress Disorder, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada.
| | - Victoria C Merritt
- VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, United States; University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States.
| | - Tracey A Brickell
- Traumatic Brain Injury Center of Excellence, 1335 E W Hwy, Silver Spring, MD, 20910, United States; Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda, MD, 20814, United States; National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, United States; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, United States; Contractor, General Dynamics Information Technology, 3150 Fairview Park Dr, Falls Church, VA, 22042, United States; Centre of Excellence on Post-traumatic Stress Disorder, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada.
| | - Clifton L Dalgard
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, United States; The American Genome Center, 4301 Jones Bridge Rd, Bethesda, MD, 20814, United States.
| | - Anthony R Soltis
- Henry M Jackson Foundation, 6720A Rockledge Dr, Bethesda, MD, 20817, United States; PRIMER, 4301 Jones Bridge Rd, Bethesda, MD, 20814, United States.
| | - Jamie Hershaw
- Traumatic Brain Injury Center of Excellence, 1335 E W Hwy, Silver Spring, MD, 20910, United States; Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda, MD, 20814, United States; National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, United States; Contractor, General Dynamics Information Technology, 3150 Fairview Park Dr, Falls Church, VA, 22042, United States.
| | - Sara M Lippa
- Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda, MD, 20814, United States; National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, United States.
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, 10 Center Dr, Bethesda, MD, 20814, United States.
| | - Louis M French
- Traumatic Brain Injury Center of Excellence, 1335 E W Hwy, Silver Spring, MD, 20910, United States; Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda, MD, 20814, United States; National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, United States; Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, United States.
| |
Collapse
|
19
|
Ali AA, Abd El-Fattah AI, Abu-Elfotuh K, Elariny HA. Natural antioxidants enhance the power of physical and mental activities versus risk factors inducing progression of Alzheimer's disease in rats. Int Immunopharmacol 2021; 96:107729. [PMID: 33971493 DOI: 10.1016/j.intimp.2021.107729] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/02/2021] [Accepted: 04/25/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease that is exacerbated by social isolation (SI) and protein malnutrition (PM). Antioxidants, physical and mental activities (Ph&M) can maintain cognitive functions and protect against dementia. OBJECTIVE To investigate the impact of Epigallocatechin-3-gallate (EGCG), Vitamin E (VE), Vitamin C (VC), and Selenium (Se), in enhancing the potential effect of Ph&M versus SI&PM as risk factors in the progression of AD in rats. METHODS Aluminum chloride (70 mg/kg, I.P for 5 weeks) was used to induce AD in rats that either normally fed or socially isolated and protein malnourished (SI&PM). Simultaneously, rats were weekly exposed to Ph&M either alone or in combination with EGCG (10 mg/kg, I.P), VC (400 mg/kg, P.O), VE (100 mg/kg, P.O), and Se (1 mg/kg, P.O). RESULTS The combination protocol of EGCG, VE, VC, and Se together with Ph&M significantly increased brain monoamines, superoxide dismutase (SOD), total antioxidant capacity (TAC) and brain-derived neurotrophic factor (BDNF) in AD, SI&PM and SI&PM/AD groups. Additionally, this regimen significantly mitigated brain acetylcholine esterase (ACHE), β-amyloid (Aβ), Tau protein, β-secretase, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and Interleukin 1β (IL-1β) as well as DNA fragmentation. These biochemical findings were supported by the histopathological examinations of brain tissue. CONCLUSION The combination protocol of antioxidants with Ph&M activities mitigated SI&PM-induced progressive risk of AD.
Collapse
Affiliation(s)
- Azza A Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | - Karema Abu-Elfotuh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hemat A Elariny
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
20
|
Poumeaud F, Mircher C, Smith PJ, Faye PA, Sturtz FG. Deciphering the links between psychological stress, depression, and neurocognitive decline in patients with Down syndrome. Neurobiol Stress 2021; 14:100305. [PMID: 33614867 PMCID: PMC7879042 DOI: 10.1016/j.ynstr.2021.100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/27/2022] Open
Abstract
The relationships between psychological stress and cognitive functions are still to be defined despite some recent progress. Clinically, we noticed that patients with Down syndrome (DS) may develop rapid neurocognitive decline and Alzheimer's disease (AD) earlier than expected, often shortly after a traumatic life event (bereavement over the leave of a primary caregiver, an assault, modification of lifestyle, or the loss of parents). Of course, individuals with DS are naturally prone to develop AD, given the triplication of chromosome 21. However, the relatively weak intensity of the stressful event and the rapid pace of cognitive decline after stress in these patients have to be noticed. It seems DS patients react to stress in a similar manner normal persons react to a very intense stress, and thereafter develop a state very much alike post-traumatic stress disorders. Unfortunately, only a few studies have studied stress-induced regression in patients with DS. Thus, we reviewed the biochemical events involved in psychological stress and found some possible links with cognitive impairment and AD. Interestingly, these links could probably be also applied to non-DS persons submitted to an intense stress. We believe these links should be further explored as a better understanding of the relationships between stress and cognition could help in many situations including individuals of the general population.
Collapse
Affiliation(s)
- François Poumeaud
- Univ. Limoges, Peripheral Neuropathies, EA6309, F-87000, Limoges, France
| | - Clotilde Mircher
- Institut Jérôme Lejeune, 37 Rue des Volontaires, F-75015, Paris, France
| | - Peter J. Smith
- University of Chicago, 950 E. 61st Street, SSC Suite 207, Chicago, IL, 60637, USA
| | - Pierre-Antoine Faye
- Univ. Limoges, Peripheral Neuropathies, EA6309, F-87000, Limoges, France
- CHU Limoges, Department of Biochemistry and Molecular Biology, F-87000, Limoges, France
| | - Franck G. Sturtz
- Univ. Limoges, Peripheral Neuropathies, EA6309, F-87000, Limoges, France
- CHU Limoges, Department of Biochemistry and Molecular Biology, F-87000, Limoges, France
| |
Collapse
|
21
|
Tsakiri EN, Gumeni S, Manola MS, Trougakos IP. Amyloid toxicity in a Drosophila Alzheimer's model is ameliorated by autophagy activation. Neurobiol Aging 2021; 105:137-147. [PMID: 34062489 DOI: 10.1016/j.neurobiolaging.2021.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the prevailing form of dementia. Protein degradation and antioxidant pathways have a critical role in preventing the accumulation of protein aggregation; thus, failure of proteostasis in neurons along with redox imbalance mark AD. Herein, we exploited an AD Drosophila model expressing human amyloid precursor (hAPP) and beta-secretase 1 (hBACE1) proteins, to better understand the role of proteostatic or antioxidant pathways in AD. Ubiquitous expression of hAPP, hBACE1 in flies caused more severe degenerative phenotypes versus neuronal targeted expression; it also, suppressed proteasome activity, increased oxidative stress and significantly enhanced stress-sensitivity. Overexpression of Prosβ5 proteasomal subunit or Nrf2 transcription factor in AD Drosophila flies partially restored proteasomal activity but did not rescue hAPP, hBACE1 induced neurodegeneration. On the other hand, expression of autophagy-related Atg8a in AD flies decelerated neurodegeneration, increased stress-resistance, and improved flies' health-/lifespan. Overall, our data suggest that the noxious effects of amyloid-beta aggregates can be alleviated by enhanced autophagy, thus dietary or pharmacological interventions that target autophagy should be considered in AD therapeutic approaches.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Maria S Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece.
| |
Collapse
|
22
|
Watermeyer T, Robb C, Gregory S, Udeh-Momoh C. Therapeutic implications of hypothalamic-pituitaryadrenal-axis modulation in Alzheimer's disease: A narrative review of pharmacological and lifestyle interventions. Front Neuroendocrinol 2021; 60:100877. [PMID: 33045258 DOI: 10.1016/j.yfrne.2020.100877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
With disease-modifying treatments for Alzheimer's disease (AD) still elusive, the search for alternative intervention strategies has intensified. Growing evidence suggests that dysfunction in hypothalamic-pituitaryadrenal-axis (HPAA) activity may contribute to the development of AD pathology. The HPAA, may therefore offer a novel target for therapeutic action. This review summarises and critically evaluates animal and human studies investigating the effects of pharmacological and non-pharmacological intervention on HPAA modulation alongside cognitive performance. The interventions discussed include glucocorticoid receptor antagonists and 11β-hydroxysteroid dehydrogenase inhibitors as well as lifestyle treatments such as physical activity, diet, sleep and contemplative practices. Pharmacological HPAA modulators improve pathology and cognitive deficit in animal AD models, but human pharmacological trials are yet to provide definitive support for such benefits. Lifestyle interventions may offer promising strategies for HPAA modification and cognitive health, but several methodological caveats across these studies were identified. Directions for future research in AD studies are proposed.
Collapse
Affiliation(s)
- Tamlyn Watermeyer
- Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle, UK; Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Catherine Robb
- Ageing Epidemiology Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK
| | - Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Chinedu Udeh-Momoh
- Ageing Epidemiology Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London, UK; Translational Health Sciences, School of Clinical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
23
|
Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut Microbiota and Dysbiosis in Alzheimer's Disease: Implications for Pathogenesis and Treatment. Mol Neurobiol 2020; 57:5026-5043. [PMID: 32829453 PMCID: PMC7541367 DOI: 10.1007/s12035-020-02073-3] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Jiguo Gao
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Mingqin Zhu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.,Departments of Laboratory Medicine and Pathology, Neurology and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Kangding Liu
- Department of Neurology, First Hospital of Jilin University, Jilin University, Xinmin Street 71, Changchun, 130021, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83, Beijing, 100085, China.
| |
Collapse
|
24
|
Ledezma C, Coria-Lucero C, Delsouc MB, Casais M, Della Vedova C, Ramirez D, Devia CM, Delgado SM, Navigatore-Fonzo L, Anzulovich AC. Effect of an Intracerebroventricular Injection of Aggregated Beta-amyloid (1-42) on Daily Rhythms of Oxidative Stress Parameters in the Prefrontal Cortex. Neuroscience 2020; 458:99-107. [PMID: 32827572 DOI: 10.1016/j.neuroscience.2020.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
Accumulation of amyloid peptides in the brain plays a key role in the pathogenesis of Alzheimer's disease (AD). Aggregated beta-amyloid (Aβ) peptide increases intracellular reactive oxygen species associated to a deficient antioxidant defense system. Prefrontal cortex plays a key role in memory and learning and is especially susceptible to oxidative stress. The objective of this work was to investigate the effects of an intracerebroventricular (i.c.v.) injection of Aβ (1-42) on 24 h patterns of oxidative stress parameters and antioxidant defenses in the rat prefrontal cortex. Four-month-old male Holtzman rats were divided into two groups defined as: control (CO) and Aβ-injected (Aβ). Rats were maintained under12 h-light:12 h-dark conditions and received water and food ad libitum. Tissues samples were isolated every 6 h during a 24 h period. Interestingly, we found that an i.c.v. injection of Aβ(1-42) increased lipid peroxidation, reduced total antioxidant capacity level, phase-shifted the daily peak of reduced glutathione, and had a differential effect on the oscillating catalase and glutathione peroxidase specific activity. Thus, elevated levels of Aβ aggregates-a pathogenic hallmark of AD, caused altered temporal patterns of the cellular redox state in prefrontal cortex rat. These findings might contribute, at least in part, to the understanding of the molecular and biochemical basis of redox changes caused by circadian rhythms alterations observed in AD patients.
Collapse
Affiliation(s)
- Carina Ledezma
- Laboratorio de Cronobiología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina
| | - Cinthia Coria-Lucero
- Laboratorio de Cronobiología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina
| | - María Belén Delsouc
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina
| | - Marilina Casais
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina
| | - Cecilia Della Vedova
- Instituto de Química de San Luis (INQUISAL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina
| | - Darío Ramirez
- Laboratorio de Medicina Experimental & Traduccional (LME&T), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina
| | - Cristina Mabel Devia
- Laboratorio de Cronobiología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina
| | - Silvia Marcela Delgado
- Laboratorio de Cronobiología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina.
| | - Lorena Navigatore-Fonzo
- Laboratorio de Cronobiología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina.
| | - Ana Cecilia Anzulovich
- Laboratorio de Cronobiología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, Ejército de Los Andes 950, CP D5700HHW San Luis, Argentina.
| |
Collapse
|
25
|
Chen K, Tang Y, Zhao X, Hou C, Li G, Zhang B. Association of IL1R2 rs34043159 with sporadic Alzheimer's disease in southern Han Chinese. Eur J Neurol 2020; 27:1844-1847. [PMID: 32402117 DOI: 10.1111/ene.14319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE The objective of the study was to investigate the relationship between IL1R2 rs34043159 and Alzheimer's disease (AD) in the Chinese population. METHODS A total of 500 AD patients and 500 healthy controls were recruited. The SNaPshot technique was used to detect IL1R2 rs34043159. RESULTS The dominant and recessive models of IL1R2 rs34043159 were associated with AD with or without adjustment of age, gender and education [dominant model, P = 0.019, odds ratio (OR) 1.42, 95% confidence interval (CI) 1.06-1.89, adjusted; recessive model, P = 0.011, OR 0.69, 95% CI 0.51-0.92, adjusted]. The recessive model of IL1R2 rs34043159 was associated with early-onset AD (EOAD) with or without adjustment of age, gender and education (recessive model, P = 0.038, OR 0.60, 95% CI 0.37-0.97, adjusted). The additive model was associated with late-onset AD (LOAD) (P = 0.041). The dominant model of IL1R2 rs34043159 was associated with LOAD with or without adjustment of age, gender and education (dominant model, P = 0.005, OR 1.68, 95% CI 1.17-2.44, adjusted). CONCLUSION An association between the dominant and recessive model of IL1R2 rs34043159 and AD was found. The recessive model of IL1R2 rs34043159 was associated with EOAD. The additive and dominant models of IL1R2 rs34043159 were associated with LOAD.
Collapse
Affiliation(s)
- K Chen
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Y Tang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - X Zhao
- Department of Neurology, Suzhou Ninth People's Hospital, Jiangsu Province, Shanghai, China
| | - C Hou
- Department of Interventional Medicine, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - G Li
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| | - B Zhang
- Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
26
|
Marchant NL, Lovland LR, Jones R, Pichet Binette A, Gonneaud J, Arenaza‐Urquijo EM, Chételat G, Villeneuve S. Repetitive negative thinking is associated with amyloid, tau, and cognitive decline. Alzheimers Dement 2020; 16:1054-1064. [DOI: 10.1002/alz.12116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/25/2020] [Accepted: 04/18/2020] [Indexed: 01/05/2023]
Affiliation(s)
| | - Lise R. Lovland
- Division of PsychiatryUniversity College London London United Kingdom
| | - Rebecca Jones
- Division of PsychiatryUniversity College London London United Kingdom
| | - Alexa Pichet Binette
- Studies on Prevention of Alzheimer's Disease (StOP‐AD) CentreDouglas Mental Health University Institute Montreal Quebec Canada
- McGill Integrated Program in NeuroscienceMcGill University Montreal Quebec Canada
| | - Julie Gonneaud
- Studies on Prevention of Alzheimer's Disease (StOP‐AD) CentreDouglas Mental Health University Institute Montreal Quebec Canada
- McGill Integrated Program in NeuroscienceMcGill University Montreal Quebec Canada
| | - Eider M. Arenaza‐Urquijo
- Normandie Univ, UNICAEN, INSERM, U1237PhIND “Physiopathology and Imaging of Neurological Disorders”, Cyceron Caen 14000 France
- Barcelonaβeta Brain Research CenterPasqual Maragall Foundation Barcelona Spain
| | - Gael Chételat
- Normandie Univ, UNICAEN, INSERM, U1237PhIND “Physiopathology and Imaging of Neurological Disorders”, Cyceron Caen 14000 France
| | - Sylvia Villeneuve
- Studies on Prevention of Alzheimer's Disease (StOP‐AD) CentreDouglas Mental Health University Institute Montreal Quebec Canada
- McGill Integrated Program in NeuroscienceMcGill University Montreal Quebec Canada
| | | |
Collapse
|
27
|
Sex Hormone Depletion Augments Glucocorticoid Induction of Tau Hyperphosphorylation in Male Rat Brain. Neuroscience 2020; 454:140-150. [PMID: 32512138 DOI: 10.1016/j.neuroscience.2020.05.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/23/2022]
Abstract
Steroid hormones secreted by the gonads (sex steroids) and adrenal glands (glucocorticoids, GC) are known to influence brain structure and function. While levels of sex steroids wane in late adulthood, corticosteroid levels tend to rise in many individuals due to age-related impairments in their feedback on central mechanisms regulating adrenal function. These fluctuations in sex and adrenal steroid secretion may be relevant to age-related neurodegenerative disorders such as Alzheimer's disease (AD) in which hyperphosphorylation of Tau protein is a key pathological event. We here report that both, long-term GC deprivation (by adrenalectomy) and exogenous GC administration with natural or synthetic glucocorticoid receptor ligands (corticosterone and dexamethasone, respectively) induce Tau hyperphosphorylation in the hippocampus and frontocortical regions at epitopes associated with disruption of cytoskeletal and synaptic function. Interestingly, we observed that the changes in Tau induced by manipulation of the GC milieu of male rats were exacerbated by testosterone depletion (by orchiectomy). While this finding supports previous suggestions of a neuroprotective role of male sex hormones, this is the first study to address interactions between adrenal and sex steroids on Tau hyperphosphorylation and accumulation that are known to endanger neuronal function and plasticity. These results are particularly important for understanding the mechanisms that can precipitate AD because, besides being modulated by age, GC are elevated by stress, a phenomenon now established as a trigger of deficits in neural plasticity and survival, cognitive behaviour and AD-like Tau pathology.
Collapse
|
28
|
Newhouse A, Chemali Z. Neuroendocrine Disturbances in Neurodegenerative Disorders: A Scoping Review. PSYCHOSOMATICS 2020; 61:105-115. [PMID: 31918850 DOI: 10.1016/j.psym.2019.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neurodegenerative diseases cause progressive irreversible neuronal loss that has broad downstream effects. The neuroendocrine system regulates homeostasis of circuits that control critical functions such as the stress response, metabolism, reproduction, fluid balance, and glucose control. These systems are frequently disrupted in neurodegenerative disorders yet often overlooked in clinical practice. OBJECTIVE This review aims to gather the available data regarding these disturbances in Alzheimer's disease, Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis, and Huntington's disease and also to demonstrate the volume of literature in these individual arenas. METHODS Using the scoping review framework, a literature search was performed in PubMed to identify relevant articles published within the past 30 years (January 1988 to November 2018). The search criteria produced a total of 2022 articles, 328 of which were identified as relevant to this review. RESULTS Several major themes emerged from this review. These neuroendocrine disturbances may be a precursor to the illness, a part of the primary pathophysiology, or a direct consequence of the disease or independent of it. They have the potential to further understanding of the disease, exacerbate the underlying pathology, or provide therapeutic benefit. CONCLUSIONS By synthesizing the data from a systems' perspective, we aim to broaden how clinicians think about these illnesses and provide care.
Collapse
Affiliation(s)
- Amy Newhouse
- Departments of Psychiatry and Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Zeina Chemali
- Harvard Medical School, Boston, MA; Departments of Psychiatry and Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Microglia, Lifestyle Stress, and Neurodegeneration. Immunity 2020; 52:222-240. [PMID: 31924476 DOI: 10.1016/j.immuni.2019.12.003] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed a revolution in our understanding of microglia biology, including their major role in the etiology and pathogenesis of neurodegenerative diseases. Technological advances have enabled the identification of microglial signatures in health and disease, including the development of new models to investigate and manipulate human microglia in vivo in the context of disease. In parallel, genetic association studies have identified several gene risk factors associated with Alzheimer's disease that are specifically or highly expressed by microglia in the central nervous system (CNS). Here, we discuss evidence for the effect of stress, diet, sleep patterns, physical activity, and microbiota composition on microglia biology and consider how lifestyle might influence an individual's predisposition to neurodegenerative diseases. We discuss how different lifestyles and environmental factors might regulate microglia, potentially leading to increased susceptibility to neurodegenerative disease, and we highlight the need to investigate the contribution of modern environmental factors on microglia modulation in neurodegeneration.
Collapse
|
30
|
Dominguez S, Rodriguez G, Fazelinia H, Ding H, Spruce L, Seeholzer SH, Dong H. Sex Differences in the Phosphoproteomic Profiles of APP/PS1 Mice after Chronic Unpredictable Mild Stress. J Alzheimers Dis 2020; 74:1131-1142. [PMID: 32144982 PMCID: PMC9843707 DOI: 10.3233/jad-191009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Approximately two-thirds of those suffering with Alzheimer's disease (AD) are women, however, the biological mechanisms underlying this sex divergence of AD prevalence remain unknown. Previous research has shown sex-specific biochemical differences that bias female mice toward pro-AD signaling on the phosphoproteomic level via corticotropin releasing factor (CRF) receptor 1 activation after CRF overexpression. Here we aimed to determine if chronic stress would induce a similar response in AD mouse models. We stressed 4-month-old APP/PS1 mice using a chronic unpredictable mild stress (CUMS) paradigm for up to 1 month. Following CUMS and behavioral assessments, we quantified whole protein and phosphoprotein levels in the cortex of stressed and non-stressed APP/PS1 mice using mass spectrometry-based proteomics. While there were no statistically significant differences at the total protein and peptide abundance levels, we found 909 and 841 statistically significant phosphopeptides between stressed and unstressed females and males, respectively, using a false discovery rate of 5%. Of these significant phosphopeptides, only 301 were the same in males and females. These results indicate that while both males and females undergo protein phosphorylation changes following stress, the peptides that are phosphorylated differ between sexes. We then used Metacore analysis to determine which biological pathways were affected. We found that several pathways were changed differently between male and female mice including NMDA receptor trafficking, cytoskeleton organization, and tau pathology. The differing biological pathways affected between males and females in response to chronic stress may help us to better understand why women are at a higher risk of AD.
Collapse
Affiliation(s)
- Sky Dominguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hossein Fazelinia
- Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hua Ding
- Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn Spruce
- Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steven H. Seeholzer
- Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Correspondence to: Hongxin Dong, MD, PhD, Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
31
|
Canet G, Pineau F, Zussy C, Hernandez C, Hunt H, Chevallier N, Perrier V, Torrent J, Belanoff JK, Meijer OC, Desrumaux C, Givalois L. Glucocorticoid receptors signaling impairment potentiates amyloid-β oligomers-induced pathology in an acute model of Alzheimer's disease. FASEB J 2019; 34:1150-1168. [PMID: 31914623 DOI: 10.1096/fj.201900723rrr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 02/01/2023]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis occurs early in Alzheimer's disease (AD), associated with elevated circulating glucocorticoids (GC) and glucocorticoid receptors (GR) signaling impairment. However, the precise role of GR in the pathophysiology of AD remains unclear. Using an acute model of AD induced by the intracerebroventricular injection of amyloid-β oligomers (oAβ), we analyzed cellular and behavioral hallmarks of AD, GR signaling pathways, processing of amyloid precursor protein, and enzymes involved in Tau phosphorylation. We focused on the prefrontal cortex (PFC), particularly rich in GR, early altered in AD and involved in HPA axis control and cognitive functions. We found that oAβ impaired cognitive and emotional behaviors, increased plasma GC levels, synaptic deficits, apoptosis and neuroinflammatory processes. Moreover, oAβ potentiated the amyloidogenic pathway and enzymes involved both in Tau hyperphosphorylation and GR activation. Treatment with a selective GR modulator (sGRm) normalized plasma GC levels and all behavioral and biochemical parameters analyzed. GR seems to occupy a central position in the pathophysiology of AD. Deregulation of the HPA axis and a feed-forward effect on PFC GR sensitivity could participate in the etiology of AD, in perturbing Aβ and Tau homeostasis. These results also reinforce the therapeutic potential of sGRm in AD.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Fanny Pineau
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Charleine Zussy
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Célia Hernandez
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA, USA
| | - Nathalie Chevallier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Véronique Perrier
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Joan Torrent
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | | | - Onno C Meijer
- Einthoven Laboratory, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherine Desrumaux
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia (MMDN) Laboratory, INSERM U1198, Team Environmental Impact in Alzheimer's Disease and Related Disorders (EiAlz), Montpellier, France.,University of Montpellier, Montpellier, France.,EPHE, Paris, France
| |
Collapse
|
32
|
Metabolic effects induced by chronic stress in the amygdala of diabetic rats: A study based on ex vivo 1H NMR spectroscopy. Brain Res 2019; 1723:146377. [DOI: 10.1016/j.brainres.2019.146377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 02/02/2023]
|
33
|
James KA, Grace LK, Pan CY, Combrinck MI, Thomas KGF. Psychosocial stress associated with memory performance in older South African adults. AGING NEUROPSYCHOLOGY AND COGNITION 2019; 27:553-566. [PMID: 31419919 DOI: 10.1080/13825585.2019.1645809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Older adults with past or current chronic stress exposure perform poorly on memory assessments and are at higher risk for Alzheimer's disease (AD). In low- or middle-income countries, many older adults are, or have been, exposed to stress-provoking events. Few published studies examine such populations, however, and few take multiple measures of stress. In a sample of South African older adults with mild-to-moderate AD (n = 65) and healthy controls (n = 69), we assessed relations between stress (psychosocial and physiological), memory performance, and patient status. Participants, all aged > 60, were administered the Perceived Stress Scale (a questionnaire assessing subjective psychosocial stress) and the Cambridge Cognitive Examination-Revised (CAMCOG-R; a test battery measuring performance across several cognitive domains). We measured their salivary cortisol concentrations as a proxy for physiological stress. Patients reported significantly higher levels of psychosocial stress than controls, p = .008. Logistic regression showed that psychosocial stress, but not cortisol, predicted AD patient status. CAMCOG-R Memory subscale scores were significantly associated with psychosocial stress, r = -.18, p = .040, but not with cortisol levels. These findings are the first on the topic to emerge from a low-or middle-income country. We replicated findings from previous studies conducted in high-income countries, with data supporting predictions derived from the glucocorticoid cascade/neurotoxicity hypothesis. The results suggest that clinical interventions focused on increasing resilience of older adults to effects of chronic stress may help protect against declining memory performance and reduce the risk for AD.
Collapse
Affiliation(s)
- Katharine A James
- ACSENT Laboratory, Department of Psychology, University of Cape Town, Rondebosch, South Africa.,Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Rondebosch, South Africa
| | - Laurian K Grace
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Rondebosch, South Africa
| | - Chen Ying Pan
- ACSENT Laboratory, Department of Psychology, University of Cape Town, Rondebosch, South Africa
| | - Marc I Combrinck
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kevin G F Thomas
- ACSENT Laboratory, Department of Psychology, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
34
|
Pattinson CL, Gill JM, Lippa SM, Brickell TA, French LM, Lange RT. Concurrent Mild Traumatic Brain Injury and Posttraumatic Stress Disorder Is Associated With Elevated Tau Concentrations in Peripheral Blood Plasma. J Trauma Stress 2019; 32:546-554. [PMID: 31291489 PMCID: PMC6690750 DOI: 10.1002/jts.22418] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/22/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
Abstract
Concurrent mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) are common in U.S. military service members and veterans. Tau and amyloid-beta-42 (Aβ42) are proteins that have been linked to cognitive impairment, neurological hallmarks of Alzheimer's disease, and may also relate to recovery from mTBI. However, the role of these proteins in the maintenance or resolution of chronic symptoms has not yet been determined. Participants in the current study were 102 service members and veterans who had sustained an mTBI (n = 84) or injured controls (IC) without TBI (n = 18). They were categorized into three groups based on the presence or absence of mTBI and PTSD: IC/PTSD-Absent (n = 18), mTBI/PTSD-Absent (n = 63), and mTBI/PTSD-Present (n = 21). Concentrations of tau and Aβ42 in peripheral blood plasma were measured using SimoaTM , an ultrasensitive technology, and compared across groups. Tau concentrations were highest in the mTBI/PTSD-Present group, F(2, 99) = 4.33, p = .016, compared to the other two groups. Linear multiple regression was conducted to determine the independent effects of PTSD and mTBI on tau concentrations, controlling for gender and sleep medication. PTSD was a significant and independent predictor of tau concentrations, β = .25, p = .009, ηp 2 = .26. Aβ42 concentrations did not differ between the groups. The results indicated that PTSD was associated with an elevation of tau in peripheral blood and suggest that there may be increased biological effects of PTSD in this young cohort of service members and veterans following mTBI.
Collapse
Affiliation(s)
- Cassandra L. Pattinson
- National Institutes of Health, National Institute of Nursing Research, Bethesda, Maryland, USA
| | - Jessica M. Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, Maryland, USA
| | - Sara M. Lippa
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Tracey A. Brickell
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Louis M. French
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rael T. Lange
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA,University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Cortese A, Delgado-Morales R, Almeida OFX, Romberg C. The Arctic/Swedish APP mutation alters the impact of chronic stress on cognition in mice. Eur J Neurosci 2019; 50:2773-2785. [PMID: 31231836 PMCID: PMC6852344 DOI: 10.1111/ejn.14500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
Abstract
Chronic stress is a major risk factor for developing Alzheimer's disease (AD) and promotes the processing of amyloid precursor protein (APP) to β-amyloid (Aβ). However, the precise relationship of stress and disease-typical cognitive decline is presently not well understood. The aim of this study was to investigate how early life stress may affect cognition in adult mice with and without soluble Aβ pathology typical for the early stages of the disease. We focussed on sustained attention and response control, aspects of cognition mediated by the prefrontal cortex that are consistently impaired both in early AD and after chronic stress exposure. Young wild-type mice as well as transgenic arcAβ mice overexpressing the hAPParc/swe transgene were exposed to a chronic unpredictable stress paradigm (age 3-8 weeks). At 15 weeks, these mice were tested on the 5-choice serial reaction time task, a test of sustained attention and executive control. We found that, expectedly, chronic stress increased impulsive choices and impaired sustained attention in wild-type mice. However, the same treatment reduced impulsivity and did not interfere with sustained attention in arcAβ mice. These findings suggest an unexpected interaction between chronic stress and Aβ whereby Aβ-pathology caused by the hAPParc/swe mutation prevented and/or reversed stress-induced cognitive changes through mechanisms that deserve further investigation. They also indicate that Aβ, in modest amounts, may have a beneficial role for cognitive stability, for example by protecting neural networks from the impact of further physiological or behavioural stress.
Collapse
Affiliation(s)
- Aurelio Cortese
- Max-Planck-Institute for Psychiatry, Munich, Germany.,Computational Neuroscience Laboratories, ATR Institute International, Kyoto, Japan
| | | | | | | |
Collapse
|
36
|
Moosecker S, Gomes P, Dioli C, Yu S, Sotiropoulos I, Almeida OFX. Activated PPARγ Abrogates Misprocessing of Amyloid Precursor Protein, Tau Missorting and Synaptotoxicity. Front Cell Neurosci 2019; 13:239. [PMID: 31263400 PMCID: PMC6584807 DOI: 10.3389/fncel.2019.00239] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes increases the risk for dementia, including Alzheimer’s disease (AD). Pioglitazone (Pio), a pharmacological agonist of the peroxisome proliferator-activated receptor γ (PPARγ), improves insulin sensitivity and has been suggested to have potential in the management of AD symptoms, albeit through mostly unknown mechanisms. We here investigated the potential of Pio to counter synaptic malfunction and loss, a characteristic of AD pathology and its accompanying cognitive deficits. Results from experiments on primary mouse neuronal cultures and a human neural cell line (SH-SY5Y) show that Pio treatment attenuates amyloid β (Aβ)-triggered the pathological (mis-) processing of amyloid precursor protein (APP) and inhibits Aβ-induced accumulation and hyperphosphorylation of Tau. These events are accompanied by increased glutamatergic receptor 2B subunit (GluN2B) levels that are causally linked with neuronal death. Further, Pio treatment blocks Aβ-triggered missorting of hyperphosphorylated Tau to synapses and the subsequent loss of PSD95-positive synapses. These latter effects of Pio are PPARγ-mediated since they are blocked in the presence of GW9662, a selective PPARγ inhibitor. Collectively, these data show that activated PPARγ buffer neurons against APP misprocessing, Tau hyperphosphorylation and its missorting to synapses and subsequently, synaptic loss. These first insights into the mechanisms through which PPARγ influences synaptic loss make a case for further exploration of the potential usefulness of PPARγ agonists in the prevention and treatment of synaptic pathology in AD.
Collapse
Affiliation(s)
- Susanne Moosecker
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Patrícia Gomes
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Chrysoula Dioli
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Shuang Yu
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Osborne F X Almeida
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
37
|
Martini AC, Forner S, Trujillo-Estrada L, Baglietto-Vargas D, LaFerla FM. Past to Future: What Animal Models Have Taught Us About Alzheimer's Disease. J Alzheimers Dis 2019; 64:S365-S378. [PMID: 29504540 DOI: 10.3233/jad-179917] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) impairs memory and causes significant cognitive deficits. The disease course is prolonged, with a poor prognosis, and thus exacts an enormous economic and social burden. Over the past two decades, genetically engineered mouse models have proven indispensable for understanding AD pathogenesis, as well as for discovering new therapeutic targets. Here we highlight significant studies from our laboratory that have helped advance the AD field by elucidating key pathogenic processes operative in AD and exploring a variety of aspects of the disease which may yield novel therapeutic strategies for combatting this burdensome disease.
Collapse
Affiliation(s)
- Alessandra C Martini
- Institute for Memory Impairments andNeurological Disorders, University of California, Irvine, CA, USA
| | - Stefania Forner
- Institute for Memory Impairments andNeurological Disorders, University of California, Irvine, CA, USA
| | - Laura Trujillo-Estrada
- Institute for Memory Impairments andNeurological Disorders, University of California, Irvine, CA, USA
| | - David Baglietto-Vargas
- Institute for Memory Impairments andNeurological Disorders, University of California, Irvine, CA, USA
| | - Frank M LaFerla
- Institute for Memory Impairments andNeurological Disorders, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
38
|
Exposure to a single immobilization or lipopolysaccharide challenge increases expression of genes implicated in the development of Alzheimer's disease in the mice brain cortex. Endocr Regul 2019; 53:100-109. [PMID: 31517627 DOI: 10.2478/enr-2019-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Despite extensive research efforts, mechanisms participating on development of Alzheimer's disease (AD) are covered only partially. Data from the last decades indicate that various stressors, as etiological factors, may play a role of in the AD. Therefore, we investigated the effect of two acute stressors, immobilization (IMO) and lipopolysaccharide (LPS), on the AD-related neuropathology. METHODS Adult C57BL/6J mice males were exposed to a single IMO stress or a single intraperitoneal injection of LPS (250 µg/kg body weight). After terminating the experiments, the brains were removed and their cortices isolated. Gene expression of pro-inflammatory cytokines, as well as expression of genes implicated in the AD neuropathology were determined. In addition, mediators related to the activation of the microglia, monocytes, and perivascular macrophages were determined in brain cortices, as well. RESULTS In comparison with the control animals, we found increased gene expression of proinflammatory mediators in mice brain cortex in both IMO and LPS groups. In stressed animals, we also showed an increased expression of genes related to the AD neuropathology, as well as positive correlations between genes implicated in AD development and associated neuroinflammation. CONCLUSIONS Our data indicate that acute exposure to a strong IMO stressor, composed of the combined physical and psychological challenges, induces similar inflammatory and other ADrelated neuropathological changes as the immune LPS treatment. Our data also indicate that cytokines are most likely released from the peripheral immune cells, as we detected myeloid cells activity, without any microglia response. We hypothesize that stress induces innate immune response in the brain that consequently potentiate the expression of genes implicated in the AD-related neuropathology.
Collapse
|
39
|
Wang Y, Zhu T, Wang M, Zhang F, Zhang G, Zhao J, Zhang Y, Wu E, Li X. Icariin Attenuates M1 Activation of Microglia and Aβ Plaque Accumulation in the Hippocampus and Prefrontal Cortex by Up-Regulating PPARγ in Restraint/Isolation-Stressed APP/PS1 Mice. Front Neurosci 2019; 13:291. [PMID: 31001073 PMCID: PMC6455051 DOI: 10.3389/fnins.2019.00291] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background Studies have shown that psychosocial stress is involved in Alzheimer's disease (AD) pathogenesis; it induces M1 microglia polarization and production of pro-inflammatory cytokines, leading to neurotoxic outcomes and decreased β-amyloid (Aβ) clearance. Icariin has been proven to be an effective anti-inflammatory agent and to activate peroxisome proliferator-activated receptors gamma (PPARγ) which induces the M2 phenotype in the microglia. However, whether restraint/isolation stress reduces the clearance ability of microglia by priming and polarizing microglia to the M1 phenotype, and the effects of icariin in attenuating the inflammatory response and relieving the pathological changes of AD are still unclear. Methods APP/PS1 mice (male, aged 3 months) were randomly divided into a control group, a restraint/isolation stress group, and a restraint/isolation stress + icariin group. The restraint/isolation stress group was subjected to a paradigm to build a depressive animal model. Sucrose preference, open field, elevated plus maze, and Y maze test were used to assess the stress paradigm. The Morris water maze test was performed to evaluate spatial reference learning and memory. Enzyme-linked immunosorbent assay and immunohistochemistry were used to identify the microglia phenotype and Aβ accumulation. Western blotting was used to detect the expression of PPARγ in the hippocampus and prefrontal cortex (PFC). Results Restraint/isolation stress induced significant depressive-like behaviors in APP/PS1 mice at 4 months of age and memory impairment at 10 months of age, while 6 months of icariin administration relieved the memory damage. Restraint/isolation stressed mice had elevated pro-inflammatory cytokines, decreased anti-inflammatory cytokines, increased Aβ plaque accumulation and more M1 phenotype microglia in the hippocampus and PFC at 10 months of age, while 6 months of icariin administration relieved these changes. Moreover, restraint/isolation stressed mice had down-regulated PPARγ expression in the hippocampus and PFC at 10 months of age, while 6 months of icariin administration reversed the alteration, especially in the hippocampus. Conclusion Restraint/isolation stress induced depressive-like behaviors and spatial memory damage, over-expression of M1 microglia markers and more severe Aβ accumulation by suppressing PPARγ in APP/PS1 mice. Icariin can be considered a new treatment option as it induces the switch of the microglia phenotype by activating PPARγ.
Collapse
Affiliation(s)
- Yihe Wang
- School of Medicine, Shandong University, Jinan, China
| | - Tianrui Zhu
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Min Wang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Feng Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Guitao Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jing Zhao
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuanyuan Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States.,Department of Surgery and Department of Pharmaceutical Sciences, Texas A&M University Health Science Center, College Station, TX, United States.,LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Xiaohong Li
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| |
Collapse
|
40
|
Majd S, Power J, Majd Z. Alzheimer's Disease and Cancer: When Two Monsters Cannot Be Together. Front Neurosci 2019; 13:155. [PMID: 30881282 PMCID: PMC6407038 DOI: 10.3389/fnins.2019.00155] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) and cancer are among the leading causes of human death around the world. While neurodegeneration is the main feature of AD, the most important characteristic of malignant tumors is cell proliferation, placing these two diseases in opposite sides of cell division spectrum. Interestingly, AD and cancer's pathologies consist of a remarkable common feature and that is the presence of active cell cycle in both conditions. In an in vitro model of primary adult neuronal culture, we previously showed that treating cell with beta amyloid forced neurons to start a cell cycle. Instead of cell division, however, neuronal cell cycle was aborted and a massive neurodegeneration was left behind as the consequence. A high level of cell cycle entry, which is a requirement for cancer pathogenesis, was reported in clinically diagnosed cases of AD, leading to neurodegeneration. The diverse clinical manifestation of a similar etiology, have puzzled researchers for many years. In fact, the evidence showed an inverse association between AD and cancer prevalence, suggesting that switching pathogenesis toward AD protects patients against cancer and vice versa. In this mini review, we discussed the possibility of involvement of cell proliferation and survival dysregulation as the underlying mechanism of neurodegeneration in AD, and the leading event to develop both disorders' pathology. As examples, the role of phosphoinositide 3 kinase/Akt/ mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in cell cycle re-entry and blocking autophagy are discussed as potential common intracellular components between AD and cancer pathogenesis, with diverse clinical diagnosis.
Collapse
Affiliation(s)
- Shohreh Majd
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - John Power
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - Zohreh Majd
- Psychosomatische Tagesklinik, Passau, Germany
| |
Collapse
|
41
|
Westfall S, Iqbal U, Sebastian M, Pasinetti GM. Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:147-181. [DOI: 10.1016/bs.pmbts.2019.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Matos TM, Souza-Talarico JND. How stress mediators can cumulatively contribute to Alzheimer's disease An allostatic load approach. Dement Neuropsychol 2019; 13:11-21. [PMID: 31073376 PMCID: PMC6497016 DOI: 10.1590/1980-57642018dn13-010002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/17/2018] [Indexed: 11/22/2022] Open
Abstract
Allostatic load is defined as the frequent activation of the neuroendocrine, immunological, metabolic and cardiovascular systems, which makes individuals more susceptible to stress-related health problems. According to this model, physiological dysregulations start to emerge decades before diseases manifest. Consequently, stress research has shifted its attention to anticipating the degree of this dysregulation to better understand the impact of stress hormones and other biomarkers on disease progression. In view of the growing number of studies that demonstrate the influence of modifiable risk factors on cognitive decline, in addition to the effects of chronic stress mediators, the objective of the present review was to present an overview of the development of cognitive changes based on studies on stress and its mediators.
Collapse
Affiliation(s)
- Tatiane Martins Matos
- Nurse, Master of Science from the School of Nursing, University of
São Paulo (EE-USP), SP, Brazil
| | - Juliana Nery De Souza-Talarico
- Professor at the Department of Medical-Surgical Nursing, School of
Nursing, University of São Paulo (EE-USP), SP, Brazil. PhD In the Area of
Neurobiology of Stress and Cognition
| |
Collapse
|
43
|
Sotiropoulos I, Silva JM, Gomes P, Sousa N, Almeida OFX. Stress and the Etiopathogenesis of Alzheimer's Disease and Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:241-257. [PMID: 32096043 DOI: 10.1007/978-981-32-9358-8_20] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder with a complex physiopathology whose initiators are poorly defined. Accumulating clinical and experimental evidence suggests a causal role of lifetime stress in AD. This chapter summarizes current knowledge about how chronic stress and its accompanying high levels of glucocorticoid (GC) secretion, trigger the two main pathomechanisms of AD: (i) misprocessing of amyloid precursor protein (APP) and the generation of amyloid beta (Aβ) and (ii) Tau hyperphosphorylation and aggregation. Given that depression is a well-known stress-related illness, and the evidence that depression may precede AD, this chapter also explores neurobiological mechanisms that may be common to depressive and AD pathologies. This review also discusses emerging insights into the role of Tau and its malfunction in disrupting neuronal cascades and neuroplasticity and, thus triggering brain pathology.
Collapse
Affiliation(s)
- Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho - Campus de Gualtar, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho - Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patricia Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho - Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho - Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
44
|
Lesuis SL, Hoeijmakers L, Korosi A, de Rooij SR, Swaab DF, Kessels HW, Lucassen PJ, Krugers HJ. Vulnerability and resilience to Alzheimer's disease: early life conditions modulate neuropathology and determine cognitive reserve. Alzheimers Res Ther 2018; 10:95. [PMID: 30227888 PMCID: PMC6145191 DOI: 10.1186/s13195-018-0422-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a high prevalence among the elderly and a huge personal and societal impact. Recent epidemiological studies have indicated that the incidence and age of onset of sporadic AD can be modified by lifestyle factors such as education, exercise, and (early) stress exposure. Early life adversity is known to promote cognitive decline at a later age and to accelerate aging, which are both primary risk factors for AD. In rodent models, exposure to 'negative' or 'positive' early life experiences was recently found to modulate various measures of AD neuropathology, such as amyloid-beta levels and cognition at later ages. Although there is emerging interest in understanding whether experiences during early postnatal life also modulate AD risk in humans, the mechanisms and possible substrates underlying these long-lasting effects remain elusive. METHODS We review literature and discuss the role of early life experiences in determining later age and AD-related processes from a brain and cognitive 'reserve' perspective. We focus on rodent studies and the identification of possible early determinants of later AD vulnerability or resilience in relation to early life adversity/enrichment. RESULTS Potential substrates and mediators of early life experiences that may influence the development of AD pathology and cognitive decline are: programming of the hypothalamic-pituitary-adrenal axis, priming of the neuroinflammatory response, dendritic and synaptic complexity and function, overall brain plasticity, and proteins such as early growth response protein 1 (EGR1), activity regulated cytoskeleton-associated protein (Arc), and repressor element-1 silencing transcription factor (REST). CONCLUSIONS We conclude from these rodent studies that the early postnatal period is an important and sensitive phase that influences the vulnerability to develop AD pathology. Yet translational studies are required to investigate whether early life experiences also modify AD development in human studies, and whether similar molecular mediators can be identified in the sensitivity to develop AD in humans.
Collapse
Affiliation(s)
- Sylvie L. Lesuis
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lianne Hoeijmakers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aniko Korosi
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Susanne R. de Rooij
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics & Bio informatics, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Dick F. Swaab
- The Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, KNAW, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Helmut W. Kessels
- The Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, KNAW, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Cellular and Computational Neuroscience, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
45
|
Conejero I, Navucet S, Keller J, Olié E, Courtet P, Gabelle A. A Complex Relationship Between Suicide, Dementia, and Amyloid: A Narrative Review. Front Neurosci 2018; 12:371. [PMID: 29910709 PMCID: PMC5992441 DOI: 10.3389/fnins.2018.00371] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Suicide rates are high among older adults and many conditions have been related to suicide in this population: chronic illnesses, physical disabilities, cancer, social isolation, mental disorders and neurocognitive disorders. Objectives: Among neurocognitive disorders, analysis of the relationships between dementia and suicidal behaviors led to conflicting results and some questions are still without answer. Particularly, it is not known whether (i) Alzheimer's disease (AD) increases the risk of suicidal ideation and suicide attempts (SA) or the frequency of death by suicide; (ii) the presence of suicidal ideation or SA in people older than 65 years of age is an early dementia sign; and (iii) amyloid load in frontal areas facilitates SA by modifying the decision-making pathway. Methods: Therefore, in this narrative review, we searched the PubMed database using the medical subject heading (MeSH) terms (“Suicide” AND “Depression”) OR (“Amyloid” OR “Dementia”) to identify recent (from 2000 to 2017) original studies on the links between suicidal behavior, dementia and brain amyloid load. We also explored the clinical and pathophysiological role of depression in these relationships. Results and Discussion: The findings from these studies suggest that late stage dementia could protect against suicidal ideation and SA. Conversely, the risk of complete suicide is increased during the early phase of cognitive decline. Conclusions: Serious cognitive impairment and decline of executive functions could protect against negative thoughts related to cognitive disability awareness and against suicide planning.Several factors, including brain amyloid load, could be involved in the increased suicide rate early after the diagnosis of dementia.
Collapse
Affiliation(s)
- Ismael Conejero
- Department of Psychiatry, Caremeau Hospital, University Hospital of Nîmes, Nîmes, France.,Inserm U1061, Neuropsychiatry: Epidemiological and Clinical Research, La Colombière Hospital, University of Montpellier, Montpellier, France.,Centre de Biochimie Structurale, University of Montpellier, Montpellier, France
| | - Sophie Navucet
- Department of Montpellier, Memory Resources Research Center, Gui De Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Jacques Keller
- Department of Montpellier, Memory Resources Research Center, Gui De Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Emilie Olié
- Inserm U1061, Neuropsychiatry: Epidemiological and Clinical Research, La Colombière Hospital, University of Montpellier, Montpellier, France.,Department of Psychiatric Emergency and Post-Acute Care, Lapeyronie Hospital, University of Montpellier, Montpellier, France
| | - Philippe Courtet
- Inserm U1061, Neuropsychiatry: Epidemiological and Clinical Research, La Colombière Hospital, University of Montpellier, Montpellier, France.,Department of Psychiatric Emergency and Post-Acute Care, Lapeyronie Hospital, University of Montpellier, Montpellier, France
| | - Audrey Gabelle
- Inserm U1061, Neuropsychiatry: Epidemiological and Clinical Research, La Colombière Hospital, University of Montpellier, Montpellier, France.,Department of Montpellier, Memory Resources Research Center, Gui De Chauliac Hospital, University of Montpellier, Montpellier, France
| |
Collapse
|
46
|
Targeting glucocorticoid receptors prevents the effects of early life stress on amyloid pathology and cognitive performance in APP/PS1 mice. Transl Psychiatry 2018; 8:53. [PMID: 29491368 PMCID: PMC5830444 DOI: 10.1038/s41398-018-0101-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/13/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
Exposure to chronic stress or elevated glucocorticoid hormone levels in adult life has been associated with cognitive deficits and an increased risk for Alzheimer's disease (AD). Since exposure to stress during early life enhances stress-responsiveness and lastingly affects cognition in adult life, we here investigated; (i) whether chronic early life stress (ELS) affects AD pathology and cognition in middle-aged APPswe/PS1dE9 mice, and (ii) whether it is still possible to rescue these late effects by briefly blocking glucocorticoid receptors (GRs) at a translationally relevant, middle age. Transgenic APPswe/PS1dE9 mice were subjected to ELS by housing dams and pups with limited nesting and bedding material from postnatal days 2-9 only. In 6- and 12-month-old offspring, this resulted in enhanced hippocampal amyloid-β (Aβ)-40 and -42 levels, and in reduced cognitive flexibility, that correlated well with the Aβ42 levels. In parallel, CORT levels and BACE1 levels were significantly elevated. Surprisingly, blocking GRs for only 3 days at 12 months of age reduced CORT levels, reduced hippocampal Aβ40 and -42, and β-site APP-cleaving enzyme 1 (BACE1) levels, and notably rescued the cognitive deficits in 12-month-old APPswe/PS1dE9 mice. These mouse data demonstrate that exposure to stress during the sensitive period early in life influences later amyloid pathology and cognition in genetically predisposed, mutant mice, and as such, may increase AD vulnerability. The fact that a short treatment with a GR antagonist at middle age lastingly reduced Aβ levels and rescued the cognitive deficits after ELS, highlights the therapeutic potential of this drug for reducing amyloid pathology.
Collapse
|
47
|
Hoeijmakers L, Lesuis SL, Krugers H, Lucassen PJ, Korosi A. A preclinical perspective on the enhanced vulnerability to Alzheimer's disease after early-life stress. Neurobiol Stress 2018; 8:172-185. [PMID: 29888312 PMCID: PMC5991337 DOI: 10.1016/j.ynstr.2018.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Stress experienced early in life (ES), in the form of childhood maltreatment, maternal neglect or trauma, enhances the risk for cognitive decline in later life. Several epidemiological studies have now shown that environmental and adult life style factors influence AD incidence or age-of-onset and early-life environmental conditions have attracted attention in this respect. There is now emerging interest in understanding whether ES impacts the risk to develop age-related neurodegenerative disorders, and their severity, such as in Alzheimer's disease (AD), which is characterized by cognitive decline and extensive (hippocampal) neuropathology. While this might be relevant for the identification of individuals at risk and preventive strategies, this topic and its possible underlying mechanisms have been poorly studied to date. In this review, we discuss the role of ES in modulating AD risk and progression, primarily from a preclinical perspective. We focus on the possible involvement of stress-related, neuro-inflammatory and metabolic factors in mediating ES-induced effects on later neuropathology and the associated impairments in neuroplasticity. The available studies suggest that the age of onset and progression of AD-related neuropathology and cognitive decline can be affected by ES, and may aggravate the progression of AD neuropathology. These relevant changes in AD pathology after ES exposure in animal models call for future clinical studies to elucidate whether stress exposure during the early-life period in humans modulates later vulnerability for AD.
Collapse
Affiliation(s)
| | | | | | | | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Yan Y, Dominguez S, Fisher DW, Dong H. Sex differences in chronic stress responses and Alzheimer's disease. Neurobiol Stress 2018; 8:120-126. [PMID: 29888307 PMCID: PMC5991323 DOI: 10.1016/j.ynstr.2018.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/10/2018] [Accepted: 03/17/2018] [Indexed: 11/13/2022] Open
Abstract
Clinical studies indicate that Alzheimer's disease (AD) disproportionately affects women in both disease prevalence and severity, but the mechanisms underlying this sex divergence are unknown. Though some have suggested this difference in risk is a reflection of known differences in longevity between men and women, mounting clinical and preclinical evidence supports women also having intrinsic susceptibilities towards the disease. While a number of potential risk factors have been hypothesized to affect these differences in risks, none have been definitively verified. In this review, we discuss a novel hypothesis whereby women's susceptibility to chronic stress also mediates increased risk for AD. As stress is a risk factor for AD, and women are twice as likely to develop mood disorders where stress is a major etiology, it is possible that sex dimorphisms in stress responses contribute to the increase in women with AD. In line with this, sex divergence in biochemical responses to stress have been noted along the hypothalamic-pituitary-adrenal (HPA) axis and among known molecular effectors of AD, with crosstalk between these processes also being likely. In addition, activation of the cortical corticotrophin-releasing factor receptor 1 (CRF1) signaling pathway leads to distinct female-biased increases in molecules associated with AD pathogenesis. Therefore, the different biochemical responses to stress between women and men may represent an intrinsic, sex-dependent risk factor for AD.
Collapse
Affiliation(s)
- Yan Yan
- Department of Psychiatry & Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Department of Physiology, Zunyi Medical University, Zunyi Guizhou 563099, China
| | - Sky Dominguez
- Department of Psychiatry & Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Daniel W. Fisher
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Hongxin Dong
- Department of Psychiatry & Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Department of Physiology, Zunyi Medical University, Zunyi Guizhou 563099, China
| |
Collapse
|
49
|
Bengoetxea X, de Cerain AL, Azqueta A, Ramirez MJ. Purported Interactions of Amyloid-β and Glucocorticoids in Cytotoxicity and Genotoxicity: Implications in Alzheimer's Disease. J Alzheimers Dis 2018; 54:1085-1094. [PMID: 27589535 DOI: 10.3233/jad-160636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the presence of aggregates of the amyloid-β peptide (Aβ) that are believed to be neurotoxic. One of the purposed damaging mechanisms of Aβ is oxidative insult, which eventually could damage the cellular genome. Stress and associated increases in glucocorticoids (GCs) have been described as a risk factor for the development of AD, although the purported genotoxic effects of GCs have not been fully characterized. Therefore, it is possible to speculate about purported synergistic effects of GCs on the Aβ-driven genotoxic damage. This in vitro study addresses the single and combined cyto/genotoxic effects of Aβ and GCs in SH-SY5Y cells. Cytotoxicity was determined by the MTT assay, and the genotoxic effects were studied using the comet assay. A comet assay derivation allows for measuring the presence of the FPG-sensitive sites (mainly 8-oxoguanines) in the DNA, apart from the DNA strand breaks. Treatment with Aβ (10 μM, 72 h) induced cytotoxicity (35% decrease in cell viability) and DNA strand breaks, but had no significant effect on oxidative DNA damage (FPG sites). Corticosterone showed no effect on cell viability, genotoxicity, or reparation processes. Corticosterone was unable to neither reverse nor potentiate Aβ driven effects. The present results suggest the existence of alternative mechanisms for the Aβ driven damage, not involving oxidative damage of DNA. In addition, could be suggested that the interaction between Aβ and GCs in AD does not seem to involve DNA damage.
Collapse
|
50
|
Fu Q, Wu Y. RCAN1 in the inverse association between Alzheimer's disease and cancer. Oncotarget 2017; 9:54-66. [PMID: 29416595 PMCID: PMC5787488 DOI: 10.18632/oncotarget.23094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
The inverse association between Alzheimer’s disease (AD) and cancer has been reported in several population-based studies although both of them are age-related disorders. However, molecular mechanisms of the inverse association remain elusive. Increased expression of regulator of calcineurin 1 (RCAN1) promotes the pathogenesis of AD, while it suppresses cancer growth and progression in many types of cancer. Moreover, aberrant RCAN1 expression is detected in both AD and various types of cancer. It suggests that RCAN1 may play a key role in the inverse association between AD and cancer. In this article, we aim to review the role of RCAN1 in the inverse association and discuss underlying mechanisms, providing an insight into developing a novel approach to treat AD and cancer.
Collapse
Affiliation(s)
- Qiang Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yili Wu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, Jining, Shandong, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining, Shandong, China
| |
Collapse
|