1
|
McQuillin A, Ophoff RA. Genomics of Bipolar Disorder: What the Clinician Needs to Know. Psychiatr Clin North Am 2025; 48:331-341. [PMID: 40348421 DOI: 10.1016/j.psc.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Bipolar disorder (BD) affects approximately 2% of the global population, characterized by alternating episodes of mania or hypomania, and depression. It comprises two main types: bipolar I disorder, marked by severe manic episodes, and bipolar II disorder, defined by milder hypomanic episodes. Individuals often experience rapid cycling and significant comorbidities, leading to decreased productivity and increased mortality rates. Early diagnosis and intervention are crucial for better outcomes. Both genetic and environmental factors contribute to BD's etiology, with genetic research promising improved diagnosis, novel therapeutic targets, and societal understanding that may help destigmatize the disorder.
Collapse
Affiliation(s)
- Andrew McQuillin
- Neuroscience Mental Health Department, Division of Psychiatry, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Li R, Taliun SAG, Liao K, Flickinger M, Sobell JL, Genovese G, Locke AE, Chiu RR, LeFaive J, Wang J, Martins T, Chapman S, Neumann A, Handsaker RE, Arnett DK, Barnes KC, Boerwinkle E, Braff D, Cade BE, Fornage M, Gibbs RA, Hoth KF, Hou L, Kooperberg C, Loos RJ, Metcalf GA, Montgomery CG, Morrison AC, Qin ZS, Redline S, Reiner AP, Rich SS, Rotter JI, Taylor KD, Viaud-Martinez KA, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Genomic Psychiatry Cohort investigators, Bigdeli TB, Gabriel S, Zollner S, Smith AV, Abecasis G, McCarroll S, Pato MT, Pato CN, Boehnke M, Knowles J, Kang HM, Ophoff RA, Ernst J, Scott LJ. Whole genome sequence-based association analysis of African American individuals with bipolar disorder and schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.27.24319111. [PMID: 39763555 PMCID: PMC11703280 DOI: 10.1101/2024.12.27.24319111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
In studies of individuals of primarily European genetic ancestry, common and low-frequency variants and rare coding variants have been found to be associated with the risk of bipolar disorder (BD) and schizophrenia (SZ). However, less is known for individuals of other genetic ancestries or the role of rare non-coding variants in BD and SZ risk. We performed whole genome sequencing of African American individuals: 1,598 with BD, 3,295 with SZ, and 2,651 unaffected controls (InPSYght study). We increased power by incorporating 14,812 jointly called psychiatrically unscreened ancestry-matched controls from the Trans-Omics for Precision Medicine (TOPMed) Program for a total of 17,463 controls. To identify variants and sets of variants associated with BD and/or SZ, we performed single-variant tests, gene-based tests for singleton protein truncating variants, and rare and low-frequency variant annotation-based tests with conservation and universal chromatin states and sliding windows. We found suggestive evidence of BD association with single-variants on chromosome 18 and of lower BD risk associated with rare and low-frequency variants on chromosome 11 in a region with multiple BD GWAS loci, using a sliding window approach. We also found that chromatin and conservation state tests can be used to detect differential calling of variants in controls sequenced at different centers and to assess the effectiveness of sequencing metric covariate adjustments. Our findings reinforce the need for continued whole genome sequencing in additional samples of African American individuals and more comprehensive functional annotation of non-coding variants.
Collapse
Affiliation(s)
- Runjia Li
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- These authors contributed equally: Runjia Li, Sarah A. Gagliano Taliun
| | - Sarah A. Gagliano Taliun
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute Research Centre, Montreal, Quebec, Canada
- These authors contributed equally: Runjia Li, Sarah A. Gagliano Taliun
- Senior authors
| | - Kevin Liao
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Genomics plc, Oxford, UK
| | - Matthew Flickinger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Janet L. Sobell
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam E. Locke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Rebeca Rothwell Chiu
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathon LeFaive
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jiongming Wang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Taylor Martins
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Arizona Department of Health Services, Phoenix, AZ, USA
| | - Sinéad Chapman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert E. Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Gentics, Harvard Medical School, Boston, MA, USA
| | - Donna K. Arnett
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Kathleen C. Barnes
- Departments of Medicine & Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric Boerwinkle
- Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - David Braff
- Department of Psychiatry, University of California, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Brian E. Cade
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Richard A. Gibbs
- Baylor College of Medicine Human Genome Sequencing Center, Department of Molecular and Human Genetics, Houston, TX, USA
| | - Karin F. Hoth
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ruth J.F. Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ginger A. Metcalf
- Baylor College of Medicine Human Genome Sequencing Center, Department of Molecular and Human Genetics, Houston, TX, USA
| | | | - Alanna C. Morrison
- Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Zhaohui S. Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Stephen S. Rich
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | - Tim B. Bigdeli
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, USA
| | - Stacey Gabriel
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sebastian Zollner
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Albert V. Smith
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Goncalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Steve McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 260, Boston, MA, USA
| | - Michele T. Pato
- Department of Psychiatry, Rutgers University, New Brunswick, NJ, USA
| | - Carlos N. Pato
- Department of Psychiatry, Rutgers University, New Brunswick, NJ, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - James Knowles
- Human Genetics Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Roel A. Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- Senior authors
| | - Jason Ernst
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
- Computer Science Department, University of California, Los Angeles, CA, USA
- Senior authors
| | - Laura J. Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Senior authors
| |
Collapse
|
3
|
Keady J, Charnigo R, Shaykin JD, Prantzalos ER, Xia M, Denehy E, Bumgardner C, Miller J, Ortinski P, Bardo MT, Turner JR. Behavioral and genetic markers of susceptibility to escalate fentanyl intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.06.627259. [PMID: 39713469 PMCID: PMC11661085 DOI: 10.1101/2024.12.06.627259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background The "loss of control" over drug consumption, present in opioid use disorder (OUD) and known as escalation of intake, is well-established in preclinical rodent models. However, little is known about how antecedent behavioral characteristics, such as valuation of hedonic reinforcers prior to drug use, may impact the trajectory of fentanyl intake over time. Moreover, it is unclear if distinct escalation phenotypes may be driven by genetic markers predictive of OUD susceptibility. Methods Male and female Sprague-Dawley rats (n=63) were trained in a sucrose reinforcement task using a progressive ratio schedule. Individual differences in responsivity to sucrose were hypothesized to predict escalation of fentanyl intake. Rats underwent daily 1-h acquisition sessions for i.v. fentanyl self-administration (2.5 μg/kg; FR1) for 7 days, followed by 21 6-h escalation sessions, then tissue from prefrontal cortex was collected for RNA sequencing and qPCR. Latent growth curve and group-based trajectory modeling were used, respectively, to evaluate the association between sucrose reinforcement and fentanyl self-administration and to identify whether distinct escalation phenotypes can be linked to gene expression patterns. Results Sucrose breakpoints were not predictive of fentanyl acquisition nor change during escalation, but did predict fentanyl intake on the first day of extended access to fentanyl. Permutation analyses did not identify associations between behavior and single gene expression when evaluated overall, or between our ascertained phenotypes. However, weighted genome correlation network analysis (WGCNA) and gene set enrichment analysis (GSEA) determined several gene modules linked to escalated fentanyl intake, including genes coding for voltage-gated potassium channels, calcium channels, and genes involved in excitatory synaptic signaling. Transcription factor analyses identified EZH2 and JARID2 as potential transcriptional regulators associated with escalated fentanyl intake. Genome-wide association study (GWAS) term categories were also generated and positively associated with terms relating to substance use disorders. Discussion Escalation of opioid intake is largely distinct from motivation for natural reward, such as sucrose. Further, the gene networks associated with fentanyl escalation suggest that engagement of select molecular pathways distinguish individuals with "addiction prone" behavioral endophenotypes, potentially representing druggable targets for opioid use disorder. Our extended in silico identification of SNPs and transcription factors associated with the "addiction prone" high escalating rats highlights the importance of integrating findings from translational preclinical models. Through a precision medicine approach, our results may aid in the development of patient-centered treatment options for those with OUD.
Collapse
Affiliation(s)
- Jack Keady
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Richard Charnigo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Jakob D Shaykin
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
- Department of Psychology, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Emily R Prantzalos
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Mengfan Xia
- Department of Neuroscience, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Emily Denehy
- Department of Psychology, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Cody Bumgardner
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Justin Miller
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
| | - Pavel Ortinski
- Department of Neuroscience, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| | - Jill R Turner
- College of Pharmacy, University of Kentucky, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Allen O, Coombes BJ, Pazdernik V, Gisabella B, Hartley J, Biernacka JM, Frye MA, Markota M, Pantazopoulos H. Differential serum levels of CACNA1C, circadian rhythm and stress response molecules in subjects with bipolar disorder: Associations with genetic and clinical factors. J Affect Disord 2024; 367:148-156. [PMID: 39233237 PMCID: PMC11496001 DOI: 10.1016/j.jad.2024.08.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Many patients with bipolar disorder (BD) do not respond to or have difficulties tolerating lithium and/or other mood stabilizing agents. There is a need for personalized treatments based on biomarkers in guiding treatment options. The calcium voltage-gated channel CACNA1C is a promising candidate for developing personalized treatments. CACNA1C is implicated in BD by genome-wide association studies and several lines of evidence suggest that targeting L-type calcium channels could be an effective treatment strategy. However, before such individualized treatments can be pursued, biomarkers predicting treatment response need to be developed. METHODS As a first step in testing the hypothesis that CACNA1C genotype is associated with serum levels of CACNA1C, we conducted ELISA measures on serum samples from 100 subjects with BD and 100 control subjects. RESULTS We observed significantly higher CACNA1C (p < 0.01) protein levels in subjects with BD. The risk single nucleotide polymorpshism (SNP) (rs11062170) showed functional significance as subjects homozygous for the risk allele (CC) had significantly greater CACNA1C protein levels compared to subjects with one (p = 0.013) or no copies (p = 0.009). We observed higher somatostatin (SST) (p < 0.003) protein levels and lower levels of the clock protein aryl hydrocarbon receptor nuclear translocator-like (ARTNL) (p < 0.03) and stress signaling factor corticotrophin releasing hormone (CRH) (p < 0.001) in BD. SST and period 2 (PER2) protein levels were associated with both alcohol dependence and lithium response. CONCLUSIONS Our findings represent the first evidence for increased serum levels of CACNA1C in BD. Along with altered levels of SST, ARNTL, and CRH our findings suggest CACNA1C is associated with circadian rhythm and stress response disturbances in BD.
Collapse
Affiliation(s)
- Obie Allen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Brandon J Coombes
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Vanessa Pazdernik
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA; Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joshua Hartley
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joanna M Biernacka
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Matej Markota
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA; Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
5
|
Petersen M, Reyes-Vigil F, Campo M, Brusés JL. Classical cadherins evolutionary constraints in primates is associated with their expression in the central nervous system. PLoS One 2024; 19:e0313428. [PMID: 39570883 PMCID: PMC11581309 DOI: 10.1371/journal.pone.0313428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Classical cadherins (CDH) comprise a family of single-pass transmembrane glycoproteins that contribute to tissue morphogenesis by regulating cell-cell adhesion, cytoskeletal dynamics, and cell signaling. CDH are grouped into type I (CDH 1, 2, 3, 4 and 15) and type II (CDH 5, 6, 7, 8, 9, 10, 11, 12, 18, 20, 22 and 24), based on the folding of the cadherin binding domain involved in trans-dimer formation. CDH are exclusively found in metazoans, and the origin and expansion of the gene family coincide with the emergence of multicellularity and vertebrates respectively. This study examined the evolutionary changes of CDH orthologs in primates and the factors that influence selective pressure to investigate the varying constraints exerted among CDH. Pairwise comparisons of the number of amino acid substitutions and of the ratio of non-synonymous substitutions per non-synonymous sites (dN) over synonymous substitutions per synonymous sites (dS), show that CDH2, CDH4, and most type II CDH have been under significantly higher negative selective pressure as compared to CDH1, CDH3, CDH5 and CDH19. Evaluation of gene essentiality as determined by the effect of germline deletion on animal viability, morphogenic phenotype, and reproductive fitness, show no correlation with the with extent of negative selection observed on CDH. Spearman's correlation analysis shows a positive correlation between CDH expression levels (E) in mouse and human tissues and their rate of evolution (R), as observed in most proteins expressed on the cell surface. However, CDH expression in the CNS show a significant E-R negative correlation, indicating that the strong negative selection exerted on CDH2, CDH4, and most type II CDH is associated with their expression in the CNS. CDH participate in a variety of cellular processes in the CNS including neuronal migration and functional assembly of neural circuits, which could profoundly influence animal fitness. Therefore, our findings suggest that the unusually high negative selective pressure exerted on CDH2, CDH4 and most type II CDH is due to their role in CNS formation and function and may have contributed to shape the evolution of the CNS in primates.
Collapse
Affiliation(s)
- Max Petersen
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Fredy Reyes-Vigil
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Marc Campo
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| | - Juan L. Brusés
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy University, Dobbs Ferry, New York, United States of America
| |
Collapse
|
6
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O'Donovan SM. Transcriptomic Analysis of the Amygdala in Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder Reveals Differentially Altered Metabolic Pathways. Schizophr Bull 2024:sbae193. [PMID: 39526318 DOI: 10.1093/schbul/sbae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS The amygdala, crucial for mood, anxiety, fear, and reward regulation, shows neuroanatomical and molecular divergence in psychiatric disorders like schizophrenia, bipolar disorder and major depression. This region is also emerging as an important regulator of metabolic and immune pathways. The goal of this study is to address the paucity of molecular studies in the human amygdala. We hypothesize that diagnosis-specific gene expression alterations contribute to the unique pathophysiological profiles of these disorders. STUDY DESIGN We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and nonpsychiatrically ill control subjects (n = 15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. STUDY RESULTS We identified altered expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. CONCLUSION Our findings suggest metabolic pathways, including downregulation of energy metabolism pathways in SCZ and upregulation of energy metabolism pathways in MDD, are uniquely altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 70112, United States
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Mahmoud A Eladawi
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, United States
- Promedica Neuroscience Institute, Toledo, OH 43606, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Sinead M O'Donovan
- Department of Biological Sciences, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
7
|
Nasir Hashmi A, Sabina Raja M, Taj R, Ahmed Dharejo R, Agha Z, Qamar R, Azam M. Association of 11 variants of the dopaminergic and cognitive pathways genes with major depression, schizophrenia and bipolar disorder in the Pakistani population. Int J Neurosci 2024; 134:1172-1184. [PMID: 37642370 DOI: 10.1080/00207454.2023.2251661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Background: The dopaminergic pathways control neural signals that modulate mood and behaviour along and have a vital role in the aetiology of major depression (MDD), schizophrenia (SHZ) and bipolar disorder (BD). Genome-wide association studies (GWAS) have reported several dopaminergic and cognitive pathway genes association with these disorders however, no such comprehensive data was available regarding the Pakistani population.Objective: The present study was conducted to analyse the 11 genetic variants of dopaminergic and cognitive system genes in MDD, SHZ, and BD in the Pakistani population.Methods: A total of 1237 subjects [MDD n = 479; BD n = 222; SHZ n = 146; and controls n = 390], were screened for 11 genetic variants through polymerase chain reaction (PCR) techniques. Univariant followed by multivariant logistic regression analysis was applied to determine the genetic association.Results: Significant risk associations were observed for rs4532 and rs1799732 with MDD; and rs1006737 and rs2238056 with BD. However, after applying multiple test corrections rs4532 and rs1799732 association did not remain significant for MDD. Moreover, a protective association was found for three variants; DRD4-120bp, rs10033951 and rs2388334 in the current cohort.Conclusions: The present study revealed the risk association of single nucleotide polymorphisms (SNPs) rs1006737 and rs2238056 with BD and the protective effect of the DRD4-120bp variant in MDD and BD, of rs2388334 in BD and of rs10033951 in MDD, BD, and SHZ in the current Pakistani cohort. Thus, the study is valuable in understanding the genetic basis of MDD, BD and SHZ in the Pakistani population, which may pave the way for future functional studies.
Collapse
Affiliation(s)
- Aisha Nasir Hashmi
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan
| | - Merlyn Sabina Raja
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rizwan Taj
- Department of Psychiatry, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Raees Ahmed Dharejo
- Department of Psychiatry, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Zehra Agha
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan
| | - Raheel Qamar
- Science and Technology Sector, ICESCO, Rabat, Morocco
- Pakistan Academy of Science, Islamabad, Pakistan
| | - Maleeha Azam
- Translational Genomics Laboratory, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
8
|
Nunes EJ, Kebede N, Rajadhyaksha AM, Addy NA. L-type calcium channel regulation of depression, anxiety and anhedonia-related behavioral phenotypes following chronic stress exposure. Neuropharmacology 2024; 257:110031. [PMID: 38871116 PMCID: PMC11334593 DOI: 10.1016/j.neuropharm.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Exposure to chronic and unpredictable stressors can precipitate mood-related disorders in humans, particularly in individuals with pre-existing mental health challenges. L-type calcium channels (LTCCs) have been implicated in numerous neuropsychiatric disorders, as LTCC encoding genes have been identified as candidate risk factors for neuropsychiatric illnesses. In these sets of experiments, we sought to examine the ability of LTCC blockade to alter depression, anxiety, and anhedonic-related behavioral responses to chronic unpredictable stress (CUS) exposure in female and male rats. Rats first underwent either 21 days of CUS or no exposure to chronic stressors, serving as home cage controls (HCC). Then rats were examined for anhedonia-related behavior, anxiety and depression-like behavioral responses as measured by the sucrose preference test (SPT), elevated plus maze (EPM), and forced swim test (FST). CUS exposed females and males showed anhedonic and anxiogenic-like behavioral responses on the SPT and EPM, respectively, when compared to HCCs. In female and male rats, systemic administration of the LTCC blocker isradipine (0.4 mg/kg and 1.2 mg/kg, I.P.) attenuated the CUS-induced decrease in sucrose preference and reversed the CUS-induced decrease in open arm time. In the FST, systemic isradipine decreased immobility time across all groups, consistent with an antidepressant-like response. However, there were no significant differences in forced swim test immobility time between HCC and CUS exposed animals. Taken together, these data point to a role of LTCCs in the regulation of mood disorder-related behavioral phenotype responses to chronic stress exposure.
Collapse
Affiliation(s)
- Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Nardos Kebede
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Anjali M Rajadhyaksha
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Schill DJ, Attili D, DeLong CJ, McInnis MG, Johnson CN, Murphy GG, O’Shea KS. Human-Induced Pluripotent Stem Cell (iPSC)-Derived GABAergic Neuron Differentiation in Bipolar Disorder. Cells 2024; 13:1194. [PMID: 39056776 PMCID: PMC11275104 DOI: 10.3390/cells13141194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Bipolar disorder (BP) is a recurring psychiatric condition characterized by alternating episodes of low energy (depressions) followed by manias (high energy). Cortical network activity produced by GABAergic interneurons may be critical in maintaining the balance in excitatory/inhibitory activity in the brain during development. Initially, GABAergic signaling is excitatory; with maturation, these cells undergo a functional switch that converts GABAA channels from depolarizing (excitatory) to hyperpolarizing (inhibitory), which is controlled by the intracellular concentration of two chloride transporters. The earliest, NKCC1, promotes chloride entry into the cell and depolarization, while the second (KCC2) stimulates movement of chloride from the neuron, hyperpolarizing it. Perturbations in the timing or expression of NKCC1/KCC2 may affect essential morphogenetic events including cell proliferation, migration, synaptogenesis and plasticity, and thereby the structure and function of the cortex. We derived induced pluripotent stem cells (iPSC) from BP patients and undiagnosed control (C) individuals, then modified a differentiation protocol to form GABAergic interneurons, harvesting cells at sequential stages of differentiation. qRT-PCR and RNA sequencing indicated that after six weeks of differentiation, controls transiently expressed high levels of NKCC1. Using multi-electrode array (MEA) analysis, we observed that BP neurons exhibit increased firing, network bursting and decreased synchrony compared to C. Understanding GABA signaling in differentiation may identify novel approaches and new targets for treatment of neuropsychiatric disorders such as BP.
Collapse
Affiliation(s)
- Daniel J. Schill
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Durga Attili
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Cynthia J. DeLong
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Melvin G. McInnis
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Johnson
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - K. Sue O’Shea
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
10
|
Copenhaver AE, LeGates TA. Sex-Specific Mechanisms Underlie Long-Term Potentiation at Hippocampus→Medium Spiny Neuron Synapses in the Medial Shell of the Nucleus Accumbens. J Neurosci 2024; 44:e0100242024. [PMID: 38806250 PMCID: PMC11223474 DOI: 10.1523/jneurosci.0100-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp→NAc synapses is rewarding, and mice can establish learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigated sex differences in the mechanisms underlying Hipp→NAc LTP using whole-cell electrophysiology and pharmacology. We observed similarities in basal synaptic strength between males and females and found that LTP occurs postsynaptically with similar magnitudes in both sexes. However, key sex differences emerged as LTP in males required NMDA receptors (NMDAR), whereas LTP in females utilized an NMDAR-independent mechanism involving L-type voltage-gated Ca2+ channels (VGCCs) and estrogen receptor α (ERα). We also uncovered sex-similar features as LTP in both sexes depended on CaMKII activity and occurred independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders.
Collapse
Affiliation(s)
- Ashley E Copenhaver
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
| | - Tara A LeGates
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
11
|
Lawn T, Giacomel A, Martins D, Veronese M, Howard M, Turkheimer FE, Dipasquale O. Normative modelling of molecular-based functional circuits captures clinical heterogeneity transdiagnostically in psychiatric patients. Commun Biol 2024; 7:689. [PMID: 38839931 PMCID: PMC11153627 DOI: 10.1038/s42003-024-06391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Advanced methods such as REACT have allowed the integration of fMRI with the brain's receptor landscape, providing novel insights transcending the multiscale organisation of the brain. Similarly, normative modelling has allowed translational neuroscience to move beyond group-average differences and characterise deviations from health at an individual level. Here, we bring these methods together for the first time. We used REACT to create functional networks enriched with the main modulatory, inhibitory, and excitatory neurotransmitter systems and generated normative models of these networks to capture functional connectivity deviations in patients with schizophrenia, bipolar disorder (BPD), and ADHD. Substantial overlap was seen in symptomatology and deviations from normality across groups, but these could be mapped into a common space linking constellations of symptoms through to underlying neurobiology transdiagnostically. This work provides impetus for developing novel biomarkers that characterise molecular- and systems-level dysfunction at the individual level, facilitating the transition towards mechanistically targeted treatments.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alessio Giacomel
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Matthew Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Research & Development Advanced Applications, Olea Medical, La Ciotat, France.
| |
Collapse
|
12
|
Zhang X, Valeri J, Eladawi MA, Gisabella B, Garrett MR, Vallender EJ, McCullumsmith R, Pantazopoulos H, O’Donovan SM. Differentially Altered Metabolic Pathways in the Amygdala of Subjects with Schizophrenia, Bipolar Disorder and Major Depressive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.17.24305854. [PMID: 38699334 PMCID: PMC11065019 DOI: 10.1101/2024.04.17.24305854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background and hypothesis A growing number of studies implicate a key role for metabolic processes in psychiatric disorders. Recent studies suggest that ketogenic diet may be therapeutically effective for subgroups of people with schizophrenia (SCZ), bipolar disorder (BPD) and possibly major depressive disorder (MDD). Despite this promise, there is currently limited information regarding brain energy metabolism pathways across these disorders, limiting our understanding of how brain metabolic pathways are altered and who may benefit from ketogenic diets. We conducted gene expression profiling on the amygdala, a key region involved in in the regulation of mood and appetitive behaviors, to test the hypothesis that amygdala metabolic pathways are differentially altered between these disorders. Study Design We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and non-psychiatrically ill control subjects (n=15/group), together with our bioinformatic 3-pod analysis consisting of full transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and iLINCS perturbagen analysis. Study Results We identified differential expression of metabolic pathways in each disorder. Subjects with SCZ displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In comparison, we observed upregulation of mitochondrial respiration pathways in subjects with MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate metabolism. Several pathways associated with brain metabolism including immune system processes and calcium ion transport were also differentially altered between diagnosis groups. Conclusion Our findings suggest metabolic pathways are differentially altered in the amygdala in these disorders, which may impact approaches for therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Michael R. Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Robert McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH
- Promedica Neuroscience Institute, Toledo, OH
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | | |
Collapse
|
13
|
Allen O, Coombes BJ, Pazdernik V, Gisabella B, Hartley J, Biernacka JM, Frye MA, Markota M, Pantazopoulos H. Differential Serum Levels of CACNA1C, Circadian Rhythm and Stress Response Molecules in Subjects with Bipolar Disorder: Associations with Genetic and Clinical Factors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.11.24305678. [PMID: 38645236 PMCID: PMC11030295 DOI: 10.1101/2024.04.11.24305678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Many patients with bipolar disorder (BD) do not respond to or have difficulties tolerating lithium and/or other mood stabilizing agents. There is a need for personalized treatments based on biomarkers in guiding treatment options. The calcium voltage-gated channel CACNA1C is a promising candidate for developing personalized treatments. CACNA1C is implicated in BD by genome-wide association studies and several lines of evidence suggest that targeting L-type calcium channels could be an effective treatment strategy. However, before such individualized treatments can be pursued, biomarkers predicting treatment response need to be developed. Methods As a first step in testing the hypothesis that CACNA1C genotype is associated with serum levels of CACNA1C, we conducted ELISA measures on serum samples from 100 subjects with BD and 100 control subjects. Results We observed significantly higher CACNA1C (p<0.01) protein levels in subjects with BD. The risk SNP (rs11062170) showed functional significance as subjects homozygous for the risk allele (CC) had significantly greater CACNA1C protein levels compared to subjects with one (p=0.013) or no copies (p=0.009). We observed higher somatostatin (SST) (p<0.003) protein levels and lower levels of the clock protein ARTNL (p<0.03) and stress signaling factor corticotrophin releasing hormone (CRH) (p<0.001) in BD. SST and PER2 protein levels were associated with both alcohol dependence and lithium response. Conclusions Our findings represent the first evidence for increased serum levels of CACNA1C in BD. Along with altered levels of SST, ARNTL, and CRH our findings suggest CACNA1C is associated with circadian rhythm and stress response disturbances in BD.
Collapse
Affiliation(s)
- Obie Allen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Brandon J. Coombes
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Vanessa Pazdernik
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua Hartley
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joanna M. Biernacka
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Matej Markota
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
14
|
Horesh N, Pelov I, Pogodin I, Zannadeh H, Rosen H, Mikhrina AL, Dvela-Levitt M, Sampath VP, Lichtstein D. Involvement of the Na +, K +-ATPase α1 Isoform and Endogenous Cardiac Steroids in Depression- and Manic-like Behaviors. Int J Mol Sci 2024; 25:1644. [PMID: 38338921 PMCID: PMC10855204 DOI: 10.3390/ijms25031644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood, and its treatment is unsatisfactory. Na+, K+-ATPase is a major plasma membrane transporter and signal transducer. The catalytic α subunit of this enzyme is the binding site for cardiac steroids. Three α isoforms of the Na+, K+-ATPase are present in the brain. Previous studies have supported the involvement of the Na+, K+-ATPase and endogenous cardiac steroids (ECS) in the etiology of BD. Decreased brain ECS has been found to elicit anti-manic and anti-depressive-like behaviors in mice and rats. However, the identity of the specific α isoform involved in these behavioral effects is unknown. Here, we demonstrated that decreasing ECS through intracerebroventricular (i.c.v.) administration of anti-ouabain antibodies (anti-Ou-Ab) decreased the activity of α1+/- mice in forced swimming tests but did not change the activity in wild type (wt) mice. This treatment also affected exploratory and anxiety behaviors in α1+/- but not wt mice, as measured in open field tests. The i.c.v. administration of anti-Ou-Ab decreased brain ECS and increased brain Na+, K+-ATPase activity in wt and α1+/- mice. The serum ECS was lower in α1+/- than wt mice. In addition, a study in human participants demonstrated that serum ECS significantly decreased after treatment. These results suggest that the Na+, K+-ATPase α1 isoform is involved in depressive- and manic-like behaviors and support that the Na+, K+-ATPase/ECS system participates in the etiology of BD.
Collapse
Affiliation(s)
- Noa Horesh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Ilana Pelov
- Jerusalem Mental Health Center, Eitanim Psychiatric Hospital, Jerusalem 91060, Israel;
| | - Ilana Pogodin
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Hiba Zannadeh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel;
| | - Anastasiia Leonidovna Mikhrina
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - Moran Dvela-Levitt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel;
| | - Vishnu Priya Sampath
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (N.H.); (I.P.); (H.Z.); (A.L.M.); (V.P.S.)
| |
Collapse
|
15
|
Copenhaver AE, LeGates TA. Sex-specific mechanisms underlie long-term potentiation at hippocampus-nucleus accumbens synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575709. [PMID: 38293132 PMCID: PMC10827060 DOI: 10.1101/2024.01.15.575709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary in order to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp-NAc synapses is rewarding, and that mice can make learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigate sex differences in the mechanisms underlying Hipp-NAc LTP using whole-cell electrophysiology and pharmacology. We found that males and females display similar magnitudes of Hipp-NAc LTP which occurs postsynaptically. However, LTP in females requires L-type voltage-gated Ca 2+ channels (VGCC) for postsynaptic Ca 2+ influx, while males rely on NMDA receptors (NMDAR). Additionally, females require estrogen receptor α (ERα) activity for LTP while males do not. These differential mechanisms converge as LTP in both sexes depends on CAMKII activity and occurs independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral excitatory pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders. SIGNIFICANCE STATEMENT Strengthening of Hipp-NAc synapses drives reward-related behaviors. Male and female mice have similar magnitudes of long-term potentiation (LTP) and both sexes have a predicted postsynaptic locus of plasticity. Despite these similarities, we illustrate here that sex-specific molecular mechanisms are used to elicit LTP. Given the bidirectional relationship between Hipp-NAc synaptic strength in mediating reward-related behaviors, the use of distinct molecular mechanisms may explain sex differences observed in stress susceptibility or response to rewarding stimuli. Discovery and characterization of convergent sex differences provides mechanistic insight into the sex-specific function of Hipp-NAc circuitry and has widespread implications for circuits mediating learning and reward-related behavior.
Collapse
|
16
|
Sandeep P, Sharma P, Luhach K, Dhiman N, Kharkwal H, Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol Cell Neurosci 2023; 127:103905. [PMID: 37972804 DOI: 10.1016/j.mcn.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.
Collapse
Affiliation(s)
- Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
17
|
Yıldırım H, Efe Daşkan B, Aksöz E, Şen F, Çelebi M. Regional expression differences of SERT and TSPAN8 in hippocampus, cerebellum and cortex of wild-type young, adult and middle-aged rats. Gene 2023; 885:147706. [PMID: 37572802 DOI: 10.1016/j.gene.2023.147706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Changes in gene expression with aging are associated with a decline in physical and cognitive abilities. Here, we investigated the changes in mRNA and protein expression of TSPAN8 and SERT in the different parts of the brain for different age group rats. Our protein analysis revealed that aging mainly triggers SERT gene expression in the cerebellum and hippocampus, showing that an increase in mRNA expression correlates with protein expression. For TSPAN8, age-dependent protein increase was observed in the hippocampus and highest expression was observed for adult and middle-aged rats.
Collapse
Affiliation(s)
- Hatice Yıldırım
- Balikesir University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Cagis Campus, Balikesir, Turkey.
| | - Burcu Efe Daşkan
- Balikesir University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Cagis Campus, Balikesir, Turkey
| | - Elif Aksöz
- Balikesir University, Faculty of Medicine, Department of Medical Pharmacology, Cagis Campus, Balikesir, Turkey
| | - Fazilet Şen
- Balikesir University, Faculty of Medicine, Department of Medical Pharmacology, Cagis Campus, Balikesir, Turkey
| | - Murat Çelebi
- Balikesir University Savastepe Vocational School, Department of Veterinary Medicine, Savastepe Balikesir, Turkey
| |
Collapse
|
18
|
Collender P, Bozack AK, Veazie S, Nwanaji-Enwerem JC, Van Der Laan L, Kogut K, Riddell C, Eskenazi B, Holland N, Deardorff J, Cardenas A. Maternal adverse childhood experiences (ACEs) and DNA methylation of newborns in cord blood. Clin Epigenetics 2023; 15:162. [PMID: 37845746 PMCID: PMC10577922 DOI: 10.1186/s13148-023-01581-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Adverse childhood experiences (ACEs) increase the risk of poor health outcomes later in life. Psychosocial stressors may also have intergenerational health effects by which parental ACEs are associated with mental and physical health of children. Epigenetic programming may be one mechanism linking parental ACEs to child health. This study aimed to investigate epigenome-wide associations of maternal preconception ACEs with DNA methylation patterns of children. In the Center for the Health Assessment of Mothers and Children of Salinas study, cord blood DNA methylation was measured using the Illumina HumanMethylation450 BeadChip. Preconception ACEs, which occurred during the mothers' childhoods, were collected using a standard ACE questionnaire including 10 ACE indicators. Maternal ACE exposures were defined in this study as (1) the total number of ACEs; (2) the total number of ACEs categorized as 0, 1-3, and > 4; and (3) individual ACEs. Associations of ACE exposures with differential methylated positions, regions, and CpG modules determined using weighted gene co-expression network analysis were evaluated adjusting for covariates. RESULTS Data on maternal ACEs and cord blood DNA methylation were available for 196 mother/newborn pairs. One differential methylated position was associated with maternal experience of emotional abuse (cg05486260/FAM135B gene; q value < 0.05). Five differential methylated regions were significantly associated with the total number of ACEs, and 36 unique differential methylated regions were associated with individual ACEs (Šidák p value < 0.05). Fifteen CpG modules were significantly correlated with the total number of ACEs or individual ACEs, of which 8 remained significant in fully adjusted models (p value < 0.05). Significant modules were enriched for pathways related to neurological and immune development and function. CONCLUSIONS Maternal ACEs prior to conception were associated with cord blood DNA methylation of offspring at birth. Although there was limited overlap between differential methylated regions and CpGs in modules associated with ACE exposures, statistically significant regions and networks were related to genes involved in neurological and immune function. Findings may provide insights to pathways linking psychosocial stressors to health. Further research is needed to understand the relationship between changes in DNA methylation and child health.
Collapse
Affiliation(s)
- Phillip Collender
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
| | - Anne K Bozack
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Research Park, 1701 Page Mill Road, Stanford, CA, 94304, USA
| | - Stephanie Veazie
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Jamaji C Nwanaji-Enwerem
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lars Van Der Laan
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Katherine Kogut
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
| | - Corinne Riddell
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Research Park, 1701 Page Mill Road, Stanford, CA, 94304, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Docherty AR. Pleiotropic CACNA1C Variants and Neuronal Function in Psychosis. Schizophr Bull 2023; 49:1095-1096. [PMID: 37431924 PMCID: PMC10483443 DOI: 10.1093/schbul/sbad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Affiliation(s)
- Anna R Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Huntsman Mental Health Institute, Salt Lake City, UT, USA
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
20
|
Wang Z, Lin X, Luo X, Xiao J, Zhang Y, Xu J, Wang S, Zhao F, Wang H, Zheng H, Zhang W, Lin C, Tan Z, Cao L, Wang Z, Tan Y, Chen W, Cao Y, Guo X, Pittenger C, Luo X. Pleiotropic Association of CACNA1C Variants With Neuropsychiatric Disorders. Schizophr Bull 2023; 49:1174-1184. [PMID: 37306960 PMCID: PMC10483336 DOI: 10.1093/schbul/sbad073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Neuropsychiatric disorders are highly heritable and have overlapping genetic underpinnings. Single nucleotide polymorphisms (SNPs) in the gene CACNA1C have been associated with several neuropsychiatric disorders, across multiple genome-wide association studies. METHOD A total of 70,711 subjects from 37 independent cohorts with 13 different neuropsychiatric disorders were meta-analyzed to identify overlap of disorder-associated SNPs within CACNA1C. The differential expression of CACNA1C mRNA in five independent postmortem brain cohorts was examined. Finally, the associations of disease-sharing risk alleles with total intracranial volume (ICV), gray matter volumes (GMVs) of subcortical structures, cortical surface area (SA), and average cortical thickness (TH) were tested. RESULTS Eighteen SNPs within CACNA1C were nominally associated with more than one neuropsychiatric disorder (P < .05); the associations shared among schizophrenia, bipolar disorder, and alcohol use disorder survived false discovery rate correction (five SNPs with P < 7.3 × 10-4 and q < 0.05). CACNA1C mRNA was differentially expressed in brains from individuals with schizophrenia, bipolar disorder, and Parkinson's disease, relative to controls (three SNPs with P < .01). Risk alleles shared by schizophrenia, bipolar disorder, substance dependence, and Parkinson's disease were significantly associated with ICV, GMVs, SA, or TH (one SNP with P ≤ 7.1 × 10-3 and q < 0.05). CONCLUSION Integrating multiple levels of analyses, we identified CACNA1C variants associated with multiple psychiatric disorders, and schizophrenia and bipolar disorder were most strongly implicated. CACNA1C variants may contribute to shared risk and pathophysiology in these conditions.
Collapse
Affiliation(s)
- Zuxing Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Provincial Cancer Hospital, the Teaching Hospital of Fujian Medical University, Fuzhou, Fujian 350014, China
| | - Xinqun Luo
- Department of Neurosurgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Jun Xiao
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin 300180, China
| | - Jianying Xu
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, Guangdong 519000, China
| | - Shibin Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Fen Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Huifen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Hangxiao Zheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Wei Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Chen Lin
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Zewen Tan
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| | - Wenzhong Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
| | - Yuping Cao
- Department of Psychiatry, Second Xiangya Hospital, Central South University; China National Clinical Research Center on Mental Disorders, China National Technology Institute on Mental Disorders, Changsha, Hunan 410011, China
| | - Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of medicine, Shanghai 200030, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, US
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, US
| | - Xingguang Luo
- Beijing Huilongguan Hospital, Peking University Huilongguan School of Clinical Medicine, Beijing 100096, China
| |
Collapse
|
21
|
Llucià-Carol L, Muiño E, Cullell N, Cárcel-Márquez J, Lledós M, Gallego-Fabrega C, Martin-Campos J, Martí-Fàbregas J, Aguilera-Simón A, Planas AM, DeDiego ML, de Felipe Mimbrera A, Masjuan J, García-Madrona S, Segura T, González-Villar E, Serrano-Heras G, Domínguez Mayoral A, Menéndez-Valladares P, Montaner J, Migeotte I, Rahmouni S, Darcis G, Bernardo D, Rojo S, Schulte EC, Protzer U, Fricke L, Winter C, Niemi MEK, Cordioli M, Delgado P, Fernández-Cadenas I. Genetic Architecture of Ischaemic Strokes after COVID-19 Shows Similarities with Large Vessel Strokes. Int J Mol Sci 2023; 24:13452. [PMID: 37686257 PMCID: PMC10487930 DOI: 10.3390/ijms241713452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
We aimed to analyse whether patients with ischaemic stroke (IS) occurring within eight days after the onset of COVID-19 (IS-COV) are associated with a specific aetiology of IS. We used SUPERGNOVA to identify genome regions that correlate between the IS-COV cohort (73 IS-COV cases vs. 701 population controls) and different aetiological subtypes. Polygenic risk scores (PRSs) for each subtype were generated and tested in the IS-COV cohort using PRSice-2 and PLINK to find genetic associations. Both analyses used the IS-COV cohort and GWAS from MEGASTROKE (67,162 stroke patients vs. 454,450 population controls), GIGASTROKE (110,182 vs. 1,503,898), and the NINDS Stroke Genetics Network (16,851 vs. 32,473). Three genomic regions were associated (p-value < 0.05) with large artery atherosclerosis (LAA) and cardioembolic stroke (CES). We found four loci targeting the genes PITX2 (rs10033464, IS-COV beta = 0.04, p-value = 2.3 × 10-2, se = 0.02), previously associated with CES, HS6ST1 (rs4662630, IS-COV beta = -0.04, p-value = 1.3 × 10-3, se = 0.01), TMEM132E (rs12941838 IS-COV beta = 0.05, p-value = 3.6 × 10-4, se = 0.01), and RFFL (rs797989 IS-COV beta = 0.03, p-value = 1.0 × 10-2, se = 0.01). A statistically significant PRS was observed for LAA. Our results suggest that IS-COV cases are genetically similar to LAA and CES subtypes. Larger cohorts are needed to assess if the genetic factors in IS-COV cases are shared with the general population or specific to viral infection.
Collapse
Affiliation(s)
- Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (L.L.-C.); (M.L.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (L.L.-C.); (M.L.)
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (L.L.-C.); (M.L.)
- Department of Neurology, Hospital Universitari MútuaTerrassa, Fundació Docència i Recerca MútuaTerrassa, 08221 Terrassa, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (L.L.-C.); (M.L.)
| | - Miquel Lledós
- Stroke Pharmacogenomics and Genetics, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (L.L.-C.); (M.L.)
| | - Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (L.L.-C.); (M.L.)
| | - Jesús Martin-Campos
- Stroke Pharmacogenomics and Genetics, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (L.L.-C.); (M.L.)
| | - Joan Martí-Fàbregas
- Department of Neurology, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Ana Aguilera-Simón
- Department of Neurology, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Anna M. Planas
- Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Alicia de Felipe Mimbrera
- Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón Y Cajal, 28034 Madrid, Spain
| | - Jaime Masjuan
- Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón Y Cajal, 28034 Madrid, Spain
| | - Sebastián García-Madrona
- Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón Y Cajal, 28034 Madrid, Spain
| | - Tomás Segura
- Department of Neurology, University Hospital of Albacete, 02006 Albacete, Spain
| | | | - Gemma Serrano-Heras
- Department of Neurology, University Hospital of Albacete, 02006 Albacete, Spain
| | - Ana Domínguez Mayoral
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 410113 Seville, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Paloma Menéndez-Valladares
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 410113 Seville, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Joan Montaner
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 410113 Seville, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Isabelle Migeotte
- Fonds de la Recherche Scientifique (FNRS), 1000 Brussels, Belgium
- Centre de Génétique Humaine, Hopital Erasme, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Souad Rahmouni
- Fonds de la Recherche Scientifique (FNRS), 1000 Brussels, Belgium
- Department of Biomedical and Preclinical Sciences, Faculty of Medicine, GIGA-Insitute, University of Liege, 4000 Liège, Belgium
| | - Gilles Darcis
- Fonds de la Recherche Scientifique (FNRS), 1000 Brussels, Belgium
- CHU of Liege, 4000 Liège, Belgium
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia del Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
| | - Silvia Rojo
- Department of Microbiology, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y León (SACYL), 47003 Valladolid, Spain
| | - Eva C. Schulte
- Institute of Virology, Technical University Munich/Helmholtz Zentrum München, 81377 Munich, Germany
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich University, 80336 Munich, Germany
- Department of Psychiatry, University Hospital, LMU Munich University, 80336 Munich, Germany
- Institute of Human Genetics, University Hospital Bonn, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University Munich/Helmholtz Zentrum München, 81377 Munich, Germany
| | - Lisa Fricke
- Department of Internal Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany;
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technische Universität München (TUM), 81675 Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technische Universität München, 81675 Munich, Germany
| | - Mari E. K. Niemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (M.E.K.N.)
| | - Mattia Cordioli
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (M.E.K.N.)
| | - Pilar Delgado
- Department of Neurology, Hospital Universitari de la Vall d’Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; (L.L.-C.); (M.L.)
| |
Collapse
|
22
|
Hara T, Owada Y, Takata A. Genetics of bipolar disorder: insights into its complex architecture and biology from common and rare variants. J Hum Genet 2023; 68:183-191. [PMID: 35614313 DOI: 10.1038/s10038-022-01046-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Bipolar disorder (BD) is a common mental disorder characterized by recurrent mood episodes, which causes major socioeconomic burdens globally. Though its disease pathogenesis is largely unknown, the high heritability of BD indicates strong contributions from genetic factors. In this review, we summarize the recent achievements in the genetics of BD, particularly those from genome-wide association study (GWAS) of common variants and next-generation sequencing analysis of rare variants. These include the identification of dozens of robust disease-associated loci, deepening of our understanding of the biology of BD, objective description of correlations with other psychiatric disorders and behavioral traits, formulation of methods for predicting disease risk and drug response, and the discovery of a single gene associated with bipolar disorder and schizophrenia spectrum with a large effect size. On the other hand, the findings to date have not yet made a clear contribution to the improvement of clinical psychiatry of BD. We overview the remaining challenges as well as possible paths to resolve them, referring to studies of other major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tomonori Hara
- Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Atsushi Takata
- Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
23
|
Nunes EJ, Addy NA. L-type calcium channel regulation of dopamine activity in the ventral tegmental area to nucleus accumbens pathway: Implications for substance use, mood disorders and co-morbidities. Neuropharmacology 2023; 224:109336. [PMID: 36414149 PMCID: PMC11215796 DOI: 10.1016/j.neuropharm.2022.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022]
Abstract
L-type calcium channels (LTCCs), including the Cav1.2 and Cav1.3 LTCC subtypes, are important regulators of calcium entry into neurons, which mediates neurotransmitter release and synaptic plasticity. Cav1.2 and Cav1.3 are encoded by the CACNA1C and CACNA1D genes, respectively. These genes are implicated in substance use disorders and depression in humans, as demonstrated by genetic-wide association studies (GWAS). Pre-clinical models have also revealed a critical role of LTCCs on drug and mood related behavior, including the co-morbidity of substance use and mood disorders. Moreover, LTCCs have been shown to regulate the neuronal firing of dopamine (DA) neurons as well as drug and stress-induced plasticity within the ventral tegmental area (VTA) to nucleus accumbens (NAc) pathway. Thus, LTCCs are interesting targets for the treatment of neuropsychiatric diseases. In this review, we provide a brief introduction to voltage-gated calcium channels, specifically focusing on the LTCCs. We place particular emphasis on the ability of LTCCs to regulate DA neuronal activity and downstream signaling in the VTA to NAc pathway, and how such processes mediate substance use and mood disorder-related behavioral responses. We also discuss the bi-directional control of VTA LTCCs on drug and mood-related behaviors in pre-clinical models, with implications for co-morbid psychiatric diagnosis. We conclude with a section on the clinical implications of LTCC blockers, many which are already FDA approved as cardiac medications. Thus, pre-clinical and clinical work should examine the potential of LTCC blockers to be repurposed for neuropsychiatric illness. This article is part of the Special Issue on 'L-type calcium channel mechanisms in neuropsychiatric disorders'.
Collapse
Affiliation(s)
- Eric J. Nunes
- Department of Psychiatry, Yale School of Medicine
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine
- Yale Tobacco Center of Regulatory Science, Yale School of Medicine
- Department of Cellular and Molecular Physiology, Yale School of Medicine
- Interdepartmental Neuroscience Program, Yale University
- Wu Tsai Institute, Yale University
| |
Collapse
|
24
|
Abstract
The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.
Collapse
Affiliation(s)
- Kevin G Herold
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John W Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivy E Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Chemical Element Profiling in the Sera and Brain of Bipolar Disorders Patients and Healthy Controls. Int J Mol Sci 2022; 23:ijms232214362. [PMID: 36430840 PMCID: PMC9692593 DOI: 10.3390/ijms232214362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Bipolar Disorder (BD) is a severe recurrent affective mood disorder characterized by a wide range of lifelong mood swings, varying between depressive and manic states. BD affects more than 1% of the world's population irrespective of nationality, ethnic origin, or socioeconomic status and is one of the main causes of disability among young people, leading to cognitive and functional impairment and raised mortality, particularly death by suicide. Trace elements play a vital role in many biochemical and physiological processes. Compelling evidence shows that element toxicity might play a crucial role in the onset and progression of neurodegenerative disorders, but their involvement in mood disorders has been scarcely studied. In the present investigation, we determined the concentration of 26 elements in the serum of BD patients before and after treatment and in postmortem brain samples from BD patients and compared them with matched controls. The only element that was reduced significantly in the serum following treatment was vanadium (V). Furthermore, the concentration of Al, B, Cu, K, Mg and V were significantly lower in the pre-frontal cortex of BD patients compared with those of the controls. A comparison of Spearman's rank correlation coefficients between the elements in the serum and brain of BD patients and control groups pointed to boron and aluminum as being involved in the disease. These results suggest that there is a disturbance in the elements' homeostasis and the inter-elements' relationship in the brain of BD patients and advocate a thorough examination of the possible involvement of chemical elements in different stages of the disease.
Collapse
|
26
|
Vanadium in Bipolar Disorders-Reviving an Old Hypothesis. Int J Mol Sci 2022; 23:ijms232213901. [PMID: 36430373 PMCID: PMC9697979 DOI: 10.3390/ijms232213901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Bipolar disorder (BD) is a severe and common chronic mental illness. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Our previous studies supported the notion that alterations in Na+, K+-ATPase activity were involved in the etiology of BD. As various chemical elements inhibit Na+, K+-ATPase, we determined the concentration of 26 elements in the serum of BD patients before and after treatment and in postmortem brain samples from BD patients, and compared them with matched controls. The only element that was reduced significantly in the serum following treatment was vanadium (V). Furthermore, the concentration of V was significantly lower in the pre-frontal cortex of BD patients compared with that of the controls. Intracerebroventricular administration of V in mice elicited anxiolytic and depressive activities, concomitantly inhibited brain Na+, K+-ATPase activity, and increased extracellular signal-regulated kinase phosphorylation. A hypothesis associating V with BD was set forth decades ago but eventually faded out. Our results are in accord with the hypothesis and advocate for a thorough examination of the possible involvement of chemical elements, V in particular, in BD.
Collapse
|
27
|
The neuroprotective and neuroplastic potential of glutamatergic therapeutic drugs in bipolar disorder. Neurosci Biobehav Rev 2022; 142:104906. [DOI: 10.1016/j.neubiorev.2022.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
28
|
Harrison PJ, Husain SM, Lee H, Los Angeles AD, Colbourne L, Mould A, Hall NAL, Haerty W, Tunbridge EM. CACNA1C (Ca V1.2) and other L-type calcium channels in the pathophysiology and treatment of psychiatric disorders: Advances from functional genomics and pharmacoepidemiology. Neuropharmacology 2022; 220:109262. [PMID: 36154842 DOI: 10.1016/j.neuropharm.2022.109262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
A role for voltage-gated calcium channels (VGCCs) in psychiatric disorders has long been postulated as part of a broader involvement of intracellular calcium signalling. However, the data were inconclusive and hard to interpret. We review three areas of research that have markedly advanced the field. First, there is now robust genomic evidence that common variants in VGCC subunit genes, notably CACNA1C which encodes the L-type calcium channel (LTCC) CaV1.2 subunit, are trans-diagnostically associated with psychiatric disorders including schizophrenia and bipolar disorder. Rare variants in these genes also contribute to the risk. Second, pharmacoepidemiological evidence supports the possibility that calcium channel blockers, which target LTCCs, might have beneficial effects on the onset or course of these disorders. This is especially true for calcium channel blockers that are brain penetrant. Third, long-range sequencing is revealing the repertoire of full-length LTCC transcript isoforms. Many novel and abundant CACNA1C isoforms have been identified in human and mouse brain, including some which are enriched compared to heart or aorta, and predicted to encode channels with differing functional and pharmacological properties. These isoforms may contribute to the molecular mechanisms of genetic association to psychiatric disorders. They may also enable development of therapeutic agents that can preferentially target brain LTCC isoforms and be of potential value for psychiatric indications.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK.
| | - Syed M Husain
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Hami Lee
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | | | - Lucy Colbourne
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Arne Mould
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Nicola A L Hall
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK; School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
29
|
Hanks SC, Forer L, Schönherr S, LeFaive J, Martins T, Welch R, Gagliano Taliun SA, Braff D, Johnsen JM, Kenny EE, Konkle BA, Laakso M, Loos RFJ, McCarroll S, Pato C, Pato MT, Smith AV, Boehnke M, Scott LJ, Fuchsberger C. Extent to which array genotyping and imputation with large reference panels approximate deep whole-genome sequencing. Am J Hum Genet 2022; 109:1653-1666. [PMID: 35981533 PMCID: PMC9502057 DOI: 10.1016/j.ajhg.2022.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/20/2022] [Indexed: 01/02/2023] Open
Abstract
Understanding the genetic basis of human diseases and traits is dependent on the identification and accurate genotyping of genetic variants. Deep whole-genome sequencing (WGS), the gold standard technology for SNP and indel identification and genotyping, remains very expensive for most large studies. Here, we quantify the extent to which array genotyping followed by genotype imputation can approximate WGS in studies of individuals of African, Hispanic/Latino, and European ancestry in the US and of Finnish ancestry in Finland (a population isolate). For each study, we performed genotype imputation by using the genetic variants present on the Illumina Core, OmniExpress, MEGA, and Omni 2.5M arrays with the 1000G, HRC, and TOPMed imputation reference panels. Using the Omni 2.5M array and the TOPMed panel, ≥90% of bi-allelic single-nucleotide variants (SNVs) are well imputed (r2 > 0.8) down to minor-allele frequencies (MAFs) of 0.14% in African, 0.11% in Hispanic/Latino, 0.35% in European, and 0.85% in Finnish ancestries. There was little difference in TOPMed-based imputation quality among the arrays with >700k variants. Individual-level imputation quality varied widely between and within the three US studies. Imputation quality also varied across genomic regions, producing regions where even common (MAF > 5%) variants were consistently not well imputed across ancestries. The extent to which array genotyping and imputation can approximate WGS therefore depends on reference panel, genotype array, sample ancestry, and genomic location. Imputation quality by variant or genomic region can be queried with our new tool, RsqBrowser, now deployed on the Michigan Imputation Server.
Collapse
Affiliation(s)
- Sarah C Hanks
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jonathon LeFaive
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Taylor Martins
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Welch
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sarah A Gagliano Taliun
- Department of Medicine and Department of Neurosciences, Université de Montréal, Montreal, QC, Canada; Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | - David Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jill M Johnsen
- Research Institute, Bloodworks, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eimear E Kenny
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara A Konkle
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ruth F J Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Carlos Pato
- Departments of Psychiatry, Rutgers University, Robert Wood Johnson Medical School and New Jersey Medical School, New Brunswick, NJ, USA
| | - Michele T Pato
- Departments of Psychiatry, Rutgers University, Robert Wood Johnson Medical School and New Jersey Medical School, New Brunswick, NJ, USA
| | - Albert V Smith
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Christian Fuchsberger
- Institute for Biomedicine (Affiliated with the University of Lübeck), Eurac Research, Bolzano, Italy.
| |
Collapse
|
30
|
Carnovale C, Perrotta C, Baldelli S, Cattaneo D, Montrasio C, Barbieri SS, Pompilio G, Vantaggiato C, Clementi E, Pozzi M. Antihypertensive drugs and brain function: mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res 2022; 119:647-667. [PMID: 35895876 PMCID: PMC10153433 DOI: 10.1093/cvr/cvac110] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
A bidirectional relationship exists between hypertension and psychiatric disorders, including unipolar and bipolar depression, anxiety, post-traumatic stress disorder (PTSD), psychosis, schizophrenia, mania, and dementia/cognitive decline. Repurposing of antihypertensive drugs to treat mental disorders is thus being explored. A systematic knowledge of the mechanisms of action and clinical consequences of the use of antihypertensive agents on neuropsychiatric functions has not been achieved yet. In this article, we review the putative role of antihypertensive agents in psychiatric disorders, discuss the targets and mechanisms of action, and examine how and to what extent specific drug classes/molecules may trigger, worsen, or mitigate psychiatric symptoms. In addition, we review pharmacokinetics (brain penetration of drugs) and pharmacogenetics data that add important information to assess risks and benefits of antihypertensive drugs in neuropsychiatric settings. The scientific literature shows robust evidence of a positive effect of α1 blockers on PTSD symptoms, nightmares and sleep quality, α2 agonists on core symptoms, executive function and quality of life in Attention-Deficit/Hyperactivity Disorder, PTSD, Tourette's syndrome, and β blockers on anxiety, aggression, working memory, and social communication. Renin-angiotensin system modulators exert protective effects on cognition, depression, and anxiety, and the loop diuretic bumetanide reduced the core symptoms of autism in a subset of patients. There is no evidence of clear benefits of calcium channel blockers in mood disorders in the scientific literature. These findings are mainly from preclinical studies; clinical data are still insufficient or of anecdotal nature, and seldom systematic. The information herewith provided can support a better therapeutic approach to hypertension, tailored to patients with, or with high susceptibility to, psychiatric illness. It may prompt clinical studies exploring the potential benefit of antihypertensive drugs in selected patients with neuropsychiatric comorbidities that include outcomes of neuropsychiatric interest and specifically assess undesirable effects or interactions.
Collapse
Affiliation(s)
- Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart axis: cellular and molecular mechanisms - Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine - Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy.,Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
31
|
Catalytic Antibodies in Bipolar Disorder: Serum IgGs Hydrolyze Myelin Basic Protein. Int J Mol Sci 2022; 23:ijms23137397. [PMID: 35806400 PMCID: PMC9267049 DOI: 10.3390/ijms23137397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
The pathogenesis of bipolar affective disorder is associated with immunological imbalances, a general pro-inflammatory status, neuroinflammation, and impaired white matter integrity. Myelin basic protein (MBP) is one of the major proteins in the myelin sheath of brain oligodendrocytes. For the first time, we have shown that IgGs isolated from sera of bipolar patients can effectively hydrolyze human myelin basic protein (MBP), unlike other test proteins. Several stringent criteria were applied to assign the studied activity to serum IgG. The level of MBP-hydrolyzing activity of IgG from patients with bipolar disorder was statistically significantly 1.6-folds higher than that of healthy individuals. This article presents a detailed characterization of the catalytic properties of MBP-hydrolyzing antibodies in bipolar disorder, including the substrate specificity, inhibitory analysis, pH dependence of hydrolysis, and kinetic parameters of IgG-dependent MBP hydrolysis, providing the heterogeneity of polyclonal MBP-hydrolyzing IgGs and their difference from canonical proteases. The ability of serum IgG to hydrolyze MBP in bipolar disorder may become an additional link between the processes of myelin damage and inflammation.
Collapse
|
32
|
Appetitive 50 kHz calls in a pavlovian conditioned approach task in Cacna1c haploinsufficient rats. Physiol Behav 2022; 250:113795. [PMID: 35351494 DOI: 10.1016/j.physbeh.2022.113795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022]
Abstract
We have previously shown that rats emit high-frequency 50 kHz ultrasonic vocalizations (USV) during sign- and goal-tracking in a common Pavlovian conditioned approach task. Such 50 kHz calls are probably related to positive affect and are associated with meso-limbic dopamine function. In humans, the CACNA1C gene, encoding for the α1C subunit of the L-type voltage-gated calcium channel CaV1.2, is implicated in several mental disorders, including mood disorders associated with altered dopamine signaling. In the present study, we investigated sign- and goal-tracking behavior and the emission of 50 kHz USV in Cacna1c haploinsufficent rats in a task where food pellet delivery is signaled by an appearance of an otherwise inoperable lever. Over the course of this Pavlovian training, these rats not only increased their approach to the reward site, but also their rates of pressing the inoperable lever. During subsequent extinction tests, where reward delivery was omitted, extinction patterns differed between reward site (i.e. magazine entries) and lever, since magazine entries quickly declined whereas behavior towards the lever transiently increased. Based on established criteria to define sign- or goal-tracking individuals, no CACNA1C rat met a sign-tracking criterion, since around 42% of rats tested where goal-trackers and the other 58% fell into an intermediate range. Regarding USV, we found that the CACNA1C rats emitted 50 kHz calls with a clear subject-dependent pattern; also, most of them were of a flat subtype and occurred mainly during initial habituation phases without cues or rewards. Compared, to previously published wildtype controls, Cacna1c haploinsufficent rats displayed reduced numbers of appetitive 50 kHz calls. Moreover, similar to wildtype littermate controls, 50 kHz call emission in Cacna1c haploinsufficent rats was intra-individually stable over training days and was negatively associated with goal-tracking. Together, these findings provide evidence in support of 50 kHz calls as trait marker. The finding that Cacna1c haploinsufficent rats show reductions of 50 kHz calls accompanied with more goal-tracking, is consistent with the assumption of altered dopamine signaling in these rats, a finding which supports their applicability in models of mental disorders.
Collapse
|
33
|
Scotti-Muzzi E, Chile T, Vallada H, Otaduy MCG, Soeiro-de-Souza MG. Association between CACNA1C gene rs100737 polymorphism and glutamatergic neurometabolites in bipolar disorder. Eur Neuropsychopharmacol 2022; 59:26-35. [PMID: 35544990 DOI: 10.1016/j.euroneuro.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
Abnormalities in Ca2+ homeostasis in Bipolar Disorders (BD) have been associated with impairments in glutamatergic receptors and voltage-gated calcium channels. Increased anterior cingulate cortex (ACC) glutamatergic neurometabolites have been consistently disclosed in BD by proton magnetic resonance spectroscopy (1H-MRS). A single nucleotide polymorphism (SNP) in the CACNA1C gene (rs1006737), which encodes the alpha 1-C subunit of the L-type calcium channel, has been associated with BD and is reported to modulate intra-cellular Ca2+. Thus, this study aimed to explore the association of the CACNA1C genotype with ACC glutamatergic metabolites measured by 1H-MRS in both BD and HC subjects. A total of 194 subjects (121 euthymic BD type I patients and 73 healthy controls (HC) were genotyped for CACNA1C rs1006737, underwent a 3-Tesla 1H-MRS imaging examination and ACC glutamatergic metabolite were assessed. We found overall increased glutamatergic metabolites in AA carriers in BD. Specifically, higher Glx/Cr was observed in subjects with the AA genotype compared to both AG and GG in the overall sample (BD + HC). Also, female individuals in the BD group with AA genotype were found to have higher Glx/Cr compared to those with other genotypes. CACNA1C AA carriers in use of anticonvulsant medication had higher estimated Glutamine (Glx-Glu) than the other genotypes. Thus, this study suggest an association between calcium channel genetics and increased glutamatergic metabolites in BD, possibly playing a synergic role in intracellular Ca2+ overload and excitotoxicity.
Collapse
Affiliation(s)
- Estêvão Scotti-Muzzi
- Department of Psychiatry, University of São Paulo (FMUSP), Institute of Psychiatry, CEAPESQ, PROGRUDA, School of Medicine, Dr. Ovidio Pires de Campos s / n. Clinic Hospital, São Paulo 05403-010, Brazil.
| | - Thais Chile
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), Brazil
| | - Homero Vallada
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), Brazil
| | - Maria Concepción Garcia Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | - Márcio Gerhardt Soeiro-de-Souza
- Department of Psychiatry, University of São Paulo (FMUSP), Institute of Psychiatry, CEAPESQ, PROGRUDA, School of Medicine, Dr. Ovidio Pires de Campos s / n. Clinic Hospital, São Paulo 05403-010, Brazil
| |
Collapse
|
34
|
Lanzetti S, Di Biase V. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives. Molecules 2022; 27:1312. [PMID: 35209100 PMCID: PMC8879281 DOI: 10.3390/molecules27041312] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.
Collapse
Affiliation(s)
| | - Valentina Di Biase
- Institute of Pharmacology, Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Peter-Mayr Strasse 1, A-6020 Innsbruck, Austria;
| |
Collapse
|
35
|
Abstract
BACKGROUND To date, besides genome-wide association studies, a variety of other genetic analyses (e.g. polygenic risk scores, whole-exome sequencing and whole-genome sequencing) have been conducted, and a large amount of data has been gathered for investigating the involvement of common, rare and very rare types of DNA sequence variants in bipolar disorder. Also, non-invasive neuroimaging methods can be used to quantify changes in brain structure and function in patients with bipolar disorder. AIMS To provide a comprehensive assessment of genetic findings associated with bipolar disorder, based on the evaluation of different genomic approaches and neuroimaging studies. METHOD We conducted a PubMed search of all relevant literatures from the beginning to the present, by querying related search strings. RESULTS ANK3, CACNA1C, SYNE1, ODZ4 and TRANK1 are five genes that have been replicated as key gene candidates in bipolar disorder pathophysiology, through the investigated studies. The percentage of phenotypic variance explained by the identified variants is small (approximately 4.7%). Bipolar disorder polygenic risk scores are associated with other psychiatric phenotypes. The ENIGMA-BD studies show a replicable pattern of lower cortical thickness, altered white matter integrity and smaller subcortical volumes in bipolar disorder. CONCLUSIONS The low amount of explained phenotypic variance highlights the need for further large-scale investigations, especially among non-European populations, to achieve a more complete understanding of the genetic architecture of bipolar disorder and the missing heritability. Combining neuroimaging data with genetic data in large-scale studies might help researchers acquire a better knowledge of the engaged brain regions in bipolar disorder.
Collapse
Affiliation(s)
- Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, USA
| |
Collapse
|
36
|
Abstract
Bipolar disorder (BD) is a complex group of neuropsychiatric disorders, typically comprising both manic and depressive episodes. The underlying neuropathology of BD is not established, but a consistent feature is progressive thinning of cortical grey matter (GM) and white matter (WM) in specific pathways, due to loss of subpopulations of neurons and astrocytes, with accompanying disturbance of connectivity. Dysregulation of astrocyte homeostatic functions are implicated in BD, notably regulation of glutamate, calcium signalling, circadian rhythms and metabolism. Furthermore, the beneficial therapeutic effects of the frontline treatments for BD are due at least in part to their positive actions on astrocytes, notably lithium, valproic acid (VPA) and carbamazepine (CBZ), as well as antidepressants and antipsychotics that are used in the management of this disorder. Treatments for BD are ineffective in a large proportion of cases, and astrocytes represent new therapeutic targets that can also serve as biomarkers of illness progression and treatment responsiveness in BD.
Collapse
|
37
|
Keegan NP, Fletcher S. A spotter's guide to SNPtic exons: The common splice variants underlying some SNP-phenotype correlations. Mol Genet Genomic Med 2021; 10:e1840. [PMID: 34708937 PMCID: PMC8801146 DOI: 10.1002/mgg3.1840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cryptic exons are typically characterised as deleterious splicing aberrations caused by deep intronic mutations. However, low-level splicing of cryptic exons is sometimes observed in the absence of any pathogenic mutation. Five recent reports have described how low-level splicing of cryptic exons can be modulated by common single-nucleotide polymorphisms (SNPs), resulting in phenotypic differences amongst different genotypes. METHODS We sought to investigate whether additional 'SNPtic' exons may exist, and whether these could provide an explanatory mechanism for some of the genotype-phenotype correlations revealed by genome-wide association studies. We thoroughly searched the literature for reported cryptic exons, cross-referenced their genomic coordinates against the dbSNP database of common SNPs, then screened out SNPs with no reported phenotype associations. RESULTS This method discovered five probable SNPtic exons in the genes APC, FGB, GHRL, MYPBC3 and OTC. For four of these five exons, we observed that the phenotype associated with the SNP was compatible with the predicted splicing effect of the nucleotide change, whilst the fifth (in GHRL) likely had a more complex splice-switching effect. CONCLUSION Application of our search methods could augment the knowledge value of future cryptic exon reports and aid in generating better hypotheses for genome-wide association studies.
Collapse
Affiliation(s)
- Niall Patrick Keegan
- Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Perth, Western Australia, Australia.,Perron Institute, Perth, Western Australia, Australia
| | - Sue Fletcher
- Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Perth, Western Australia, Australia.,University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
38
|
O'Connell KS, Coombes BJ. Genetic contributions to bipolar disorder: current status and future directions. Psychol Med 2021; 51:2156-2167. [PMID: 33879273 PMCID: PMC8477227 DOI: 10.1017/s0033291721001252] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a highly heritable mental disorder and is estimated to affect about 50 million people worldwide. Our understanding of the genetic etiology of BD has greatly increased in recent years with advances in technology and methodology as well as the adoption of international consortiums and large population-based biobanks. It is clear that BD is also highly heterogeneous and polygenic and shows substantial genetic overlap with other psychiatric disorders. Genetic studies of BD suggest that the number of associated loci is expected to substantially increase in larger future studies and with it, improved genetic prediction of the disorder. Still, a number of challenges remain to fully characterize the genetic architecture of BD. First among these is the need to incorporate ancestrally-diverse samples to move research away from a Eurocentric bias that has the potential to exacerbate health disparities already seen in BD. Furthermore, incorporation of population biobanks, registry data, and electronic health records will be required to increase the sample size necessary for continued genetic discovery, while increased deep phenotyping is necessary to elucidate subtypes within BD. Lastly, the role of rare variation in BD remains to be determined. Meeting these challenges will enable improved identification of causal variants for the disorder and also allow for equitable future clinical applications of both genetic risk prediction and therapeutic interventions.
Collapse
Affiliation(s)
- Kevin S. O'Connell
- Division of Mental Health and Addiction, NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo University Hospital, 0407Oslo, Norway
| | - Brandon J. Coombes
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
39
|
Al-Juffali N. Critical Developmental Windows of Voltage-Gated Cation Channel Expression in Psychiatric Disorders. Biol Psychiatry 2021; 90:e31-e32. [PMID: 34446155 DOI: 10.1016/j.biopsych.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Noura Al-Juffali
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom.
| |
Collapse
|
40
|
Yang D, Chen J, Cheng X, Cao B, Chang H, Li X, Yang C, Wu Q, Sun J, Manry D, Pan Y, Dong Y, Li J, Xu T, Cao L. SERINC2 increases the risk of bipolar disorder in the Chinese population. Depress Anxiety 2021; 38:985-995. [PMID: 34288243 DOI: 10.1002/da.23186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although common variants in a large collection of patients are associated with increased risk for bipolar disorder (BD), studies have only been able to predict 25%-45% of risks, suggesting that lots of variants that contribute to the risk for BD haven't been identified. Our study aims to identify novel BD risk genes. METHODS We performed whole-exome sequencing of 27 individuals from 6 BD multi-affected Chinese families to identify candidate variants. Targeted sequencing of one of the novel risk genes, SERINC2, in additional sporadic 717 BD patients and 312 healthy controls (HC) validated the association. Magnetic resonance imaging (MRI) were performed to evaluate the effect of the variant to brain structures from 213 subjects (4 BD subjects from a multi-affected family, 130 sporadic BD subjects and 79 HC control). RESULTS BD pedigrees had an increased burden of uncommon variants in extracellular matrix (ECM) and calcium ion binding. By large-scale sequencing we identified a novel recessive BD risk gene, SERINC2, which plays a role in synthesis of sphingolipid and phosphatidylserine (PS). MRI image results show the homozygous nonsense variant in SERINC2 affects the volume of white matter in cerebellum. CONCLUSIONS Our study identified SERINC2 as a risk gene of BD in the Chinese population.
Collapse
Affiliation(s)
- Dong Yang
- Team for Growth Control and Size Innovative Research, Westlake University, Hangzhou, Zhejiang, China.,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jianshan Chen
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiongchao Cheng
- Department of Clinical Psychology, Nanning Fifth People's Hospital, Nanning, Guangxi, China
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Chang
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xuan Li
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chanjuan Yang
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuxia Wu
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Sun
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Diane Manry
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yukun Pan
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Yeda Research Institute of Gene and Cell Therapy, Taizhou, Zhejiang, China
| | - Yongli Dong
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jiaojiao Li
- Team for Growth Control and Size Innovative Research, Westlake University, Hangzhou, Zhejiang, China.,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Tian Xu
- Team for Growth Control and Size Innovative Research, Westlake University, Hangzhou, Zhejiang, China.,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.,Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Liping Cao
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Mullins N, Forstner AJ, O'Connell KS, Coombes B, Coleman JRI, Qiao Z, Als TD, Bigdeli TB, Børte S, Bryois J, Charney AW, Drange OK, Gandal MJ, Hagenaars SP, Ikeda M, Kamitaki N, Kim M, Krebs K, Panagiotaropoulou G, Schilder BM, Sloofman LG, Steinberg S, Trubetskoy V, Winsvold BS, Won HH, Abramova L, Adorjan K, Agerbo E, Al Eissa M, Albani D, Alliey-Rodriguez N, Anjorin A, Antilla V, Antoniou A, Awasthi S, Baek JH, Bækvad-Hansen M, Bass N, Bauer M, Beins EC, Bergen SE, Birner A, Bøcker Pedersen C, Bøen E, Boks MP, Bosch R, Brum M, Brumpton BM, Brunkhorst-Kanaan N, Budde M, Bybjerg-Grauholm J, Byerley W, Cairns M, Casas M, Cervantes P, Clarke TK, Cruceanu C, Cuellar-Barboza A, Cunningham J, Curtis D, Czerski PM, Dale AM, Dalkner N, David FS, Degenhardt F, Djurovic S, Dobbyn AL, Douzenis A, Elvsåshagen T, Escott-Price V, Ferrier IN, Fiorentino A, Foroud TM, Forty L, Frank J, Frei O, Freimer NB, Frisén L, Gade K, Garnham J, Gelernter J, Giørtz Pedersen M, Gizer IR, Gordon SD, Gordon-Smith K, Greenwood TA, Grove J, Guzman-Parra J, Ha K, Haraldsson M, Hautzinger M, Heilbronner U, Hellgren D, Herms S, Hoffmann P, Holmans PA, Huckins L, Jamain S, Johnson JS, Kalman JL, et alMullins N, Forstner AJ, O'Connell KS, Coombes B, Coleman JRI, Qiao Z, Als TD, Bigdeli TB, Børte S, Bryois J, Charney AW, Drange OK, Gandal MJ, Hagenaars SP, Ikeda M, Kamitaki N, Kim M, Krebs K, Panagiotaropoulou G, Schilder BM, Sloofman LG, Steinberg S, Trubetskoy V, Winsvold BS, Won HH, Abramova L, Adorjan K, Agerbo E, Al Eissa M, Albani D, Alliey-Rodriguez N, Anjorin A, Antilla V, Antoniou A, Awasthi S, Baek JH, Bækvad-Hansen M, Bass N, Bauer M, Beins EC, Bergen SE, Birner A, Bøcker Pedersen C, Bøen E, Boks MP, Bosch R, Brum M, Brumpton BM, Brunkhorst-Kanaan N, Budde M, Bybjerg-Grauholm J, Byerley W, Cairns M, Casas M, Cervantes P, Clarke TK, Cruceanu C, Cuellar-Barboza A, Cunningham J, Curtis D, Czerski PM, Dale AM, Dalkner N, David FS, Degenhardt F, Djurovic S, Dobbyn AL, Douzenis A, Elvsåshagen T, Escott-Price V, Ferrier IN, Fiorentino A, Foroud TM, Forty L, Frank J, Frei O, Freimer NB, Frisén L, Gade K, Garnham J, Gelernter J, Giørtz Pedersen M, Gizer IR, Gordon SD, Gordon-Smith K, Greenwood TA, Grove J, Guzman-Parra J, Ha K, Haraldsson M, Hautzinger M, Heilbronner U, Hellgren D, Herms S, Hoffmann P, Holmans PA, Huckins L, Jamain S, Johnson JS, Kalman JL, Kamatani Y, Kennedy JL, Kittel-Schneider S, Knowles JA, Kogevinas M, Koromina M, Kranz TM, Kranzler HR, Kubo M, Kupka R, Kushner SA, Lavebratt C, Lawrence J, Leber M, Lee HJ, Lee PH, Levy SE, Lewis C, Liao C, Lucae S, Lundberg M, MacIntyre DJ, Magnusson SH, Maier W, Maihofer A, Malaspina D, Maratou E, Martinsson L, Mattheisen M, McCarroll SA, McGregor NW, McGuffin P, McKay JD, Medeiros H, Medland SE, Millischer V, Montgomery GW, Moran JL, Morris DW, Mühleisen TW, O'Brien N, O'Donovan C, Olde Loohuis LM, Oruc L, Papiol S, Pardiñas AF, Perry A, Pfennig A, Porichi E, Potash JB, Quested D, Raj T, Rapaport MH, DePaulo JR, Regeer EJ, Rice JP, Rivas F, Rivera M, Roth J, Roussos P, Ruderfer DM, Sánchez-Mora C, Schulte EC, Senner F, Sharp S, Shilling PD, Sigurdsson E, Sirignano L, Slaney C, Smeland OB, Smith DJ, Sobell JL, Søholm Hansen C, Soler Artigas M, Spijker AT, Stein DJ, Strauss JS, Świątkowska B, Terao C, Thorgeirsson TE, Toma C, Tooney P, Tsermpini EE, Vawter MP, Vedder H, Walters JTR, Witt SH, Xi S, Xu W, Yang JMK, Young AH, Young H, Zandi PP, Zhou H, Zillich L, Adolfsson R, Agartz I, Alda M, Alfredsson L, Babadjanova G, Backlund L, Baune BT, Bellivier F, Bengesser S, Berrettini WH, Blackwood DHR, Boehnke M, Børglum AD, Breen G, Carr VJ, Catts S, Corvin A, Craddock N, Dannlowski U, Dikeos D, Esko T, Etain B, Ferentinos P, Frye M, Fullerton JM, Gawlik M, Gershon ES, Goes FS, Green MJ, Grigoroiu-Serbanescu M, Hauser J, Henskens F, Hillert J, Hong KS, Hougaard DM, Hultman CM, Hveem K, Iwata N, Jablensky AV, Jones I, Jones LA, Kahn RS, Kelsoe JR, Kirov G, Landén M, Leboyer M, Lewis CM, Li QS, Lissowska J, Lochner C, Loughland C, Martin NG, Mathews CA, Mayoral F, McElroy SL, McIntosh AM, McMahon FJ, Melle I, Michie P, Milani L, Mitchell PB, Morken G, Mors O, Mortensen PB, Mowry B, Müller-Myhsok B, Myers RM, Neale BM, Nievergelt CM, Nordentoft M, Nöthen MM, O'Donovan MC, Oedegaard KJ, Olsson T, Owen MJ, Paciga SA, Pantelis C, Pato C, Pato MT, Patrinos GP, Perlis RH, Posthuma D, Ramos-Quiroga JA, Reif A, Reininghaus EZ, Ribasés M, Rietschel M, Ripke S, Rouleau GA, Saito T, Schall U, Schalling M, Schofield PR, Schulze TG, Scott LJ, Scott RJ, Serretti A, Shannon Weickert C, Smoller JW, Stefansson H, Stefansson K, Stordal E, Streit F, Sullivan PF, Turecki G, Vaaler AE, Vieta E, Vincent JB, Waldman ID, Weickert TW, Werge T, Wray NR, Zwart JA, Biernacka JM, Nurnberger JI, Cichon S, Edenberg HJ, Stahl EA, McQuillin A, Di Florio A, Ophoff RA, Andreassen OA. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet 2021; 53:817-829. [PMID: 34002096 PMCID: PMC8192451 DOI: 10.1038/s41588-021-00857-4] [Show More Authors] [Citation(s) in RCA: 828] [Impact Index Per Article: 207.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.
Collapse
Affiliation(s)
- Niamh Mullins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| | - Kevin S O'Connell
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Brandon Coombes
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
| | - Zhen Qiao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas D Als
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Tim B Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Sigrid Børte
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander W Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ole Kristian Drange
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Østmarka, Division of Mental Health Care, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Michael J Gandal
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Saskia P Hagenaars
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
| | - Masashi Ikeda
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Nolan Kamitaki
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Minsoo Kim
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristi Krebs
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Brian M Schilder
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura G Sloofman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Vassily Trubetskoy
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | - Bendik S Winsvold
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Liliya Abramova
- Russian Academy of Medical Sciences, Mental Health Research Center, Moscow, Russian Federation
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Esben Agerbo
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Mariam Al Eissa
- Division of Psychiatry, University College London, London, UK
| | - Diego Albani
- Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
- Northwestern University, Chicago, IL, USA
| | - Adebayo Anjorin
- Psychiatry, Berkshire Healthcare NHS Foundation Trust, Bracknell, UK
| | - Verneri Antilla
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
| | - Ji Hyun Baek
- Department of Psychiatry, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - Marie Bækvad-Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Nicholas Bass
- Division of Psychiatry, University College London, London, UK
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva C Beins
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Sarah E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Carsten Bøcker Pedersen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Erlend Bøen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Marco P Boks
- Psychiatry, Brain Center UMC Utrecht, Utrecht, the Netherlands
| | - Rosa Bosch
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Murielle Brum
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ben M Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Jonas Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - William Byerley
- Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Murray Cairns
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Miquel Casas
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pablo Cervantes
- Mood Disorders Program, Department of Psychiatry, McGill University Health Center, Montreal, Quebec, Canada
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Cristiana Cruceanu
- Mood Disorders Program, Department of Psychiatry, McGill University Health Center, Montreal, Quebec, Canada
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alfredo Cuellar-Barboza
- Department of Psychiatry, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Julie Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David Curtis
- Centre for Psychiatry, Queen Mary University of London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Piotr M Czerski
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, Departments of Neurosciences, Radiology, and Psychiatry, University of California, San Diego, CA, USA
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Friederike S David
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amanda L Dobbyn
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Athanassios Douzenis
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Torbjørn Elvsåshagen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Valentina Escott-Price
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - I Nicol Ferrier
- Academic Psychiatry, Newcastle University, Newcastle upon Tyne, UK
| | | | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Liz Forty
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Oleksandr Frei
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nelson B Freimer
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Louise Frisén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Gade
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Julie Garnham
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Marianne Giørtz Pedersen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Ian R Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Scott D Gordon
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jakob Grove
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - José Guzman-Parra
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | - Kyooseob Ha
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Martin Hautzinger
- Department of Psychology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Dennis Hellgren
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Peter A Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Laura Huckins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stéphane Jamain
- Neuropsychiatrie Translationnelle, Inserm U955, Créteil, France
- Faculté de Santé, Université Paris Est, Créteil, France
| | - Jessica S Johnson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - James A Knowles
- Cell Biology, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | | | - Maria Koromina
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Thorsten M Kranz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ralph Kupka
- Psychiatry, Altrecht, Utrecht, the Netherlands
- Psychiatry, GGZ inGeest, Amsterdam, the Netherlands
- Psychiatry, VU Medisch Centrum, Amsterdam, the Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob Lawrence
- Psychiatry, North East London NHS Foundation Trust, Ilford, UK
| | - Markus Leber
- Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - Phil H Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Catrin Lewis
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Calwing Liao
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Susanne Lucae
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Martin Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Donald J MacIntyre
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Adam Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Dolores Malaspina
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini Maratou
- Clinical Biochemistry Laboratory, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Martinsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mattheisen
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nathaniel W McGregor
- Systems Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Peter McGuffin
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - James D McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, France
| | - Helena Medeiros
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - Sarah E Medland
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jennifer L Moran
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics (NICOG), National University of Ireland Galway, Galway, Ireland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Niamh O'Brien
- Division of Psychiatry, University College London, London, UK
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Loes M Olde Loohuis
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Lilijana Oruc
- Medical Faculty, School of Science and Technology, University Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Antonio F Pardiñas
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Amy Perry
- Psychological Medicine, University of Worcester, Worcester, UK
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Evgenia Porichi
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Digby Quested
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark H Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eline J Regeer
- Outpatient Clinic for Bipolar Disorder, Altrecht, Utrecht, the Netherlands
| | - John P Rice
- Department of Psychiatry, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Fabio Rivas
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | - Margarita Rivera
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Neurosciences, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Julian Roth
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas M Ruderfer
- Medicine, Psychiatry, Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cristina Sánchez-Mora
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Sally Sharp
- Division of Psychiatry, University College London, London, UK
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Engilbert Sigurdsson
- Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, Department of Psychiatry, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Olav B Smeland
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Janet L Sobell
- Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christine Søholm Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Maria Soler Artigas
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - John S Strauss
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Claudio Toma
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and CSIC, Madrid, Spain
| | - Paul Tooney
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Evangelia-Eirini Tsermpini
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Helmut Vedder
- Psychiatry, Psychiatrisches Zentrum Nordbaden, Wiesloch, Germany
| | - James T R Walters
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Simon Xi
- Computational Sciences Center of Emphasis, Pfizer Global Research and Development, Cambridge, MA, USA
| | - Wei Xu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Mei Kay Yang
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - Hannah Young
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University Medical Faculty, Umeå, Sweden
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Institute of Clinical Medicine and Diakonhjemmet Hospital, University of Oslo, Oslo, Norway
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gulja Babadjanova
- Institute of Pulmonology, Russian State Medical University, Moscow, Russian Federation
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Frank Bellivier
- Université de Paris, INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, UMRS 1144, Paris, France
- APHP Nord, DMU Neurosciences, Département de Psychiatrie et de Médecine Addictologique, GHU Saint Louis-Lariboisière-Fernand Widal, Paris, France
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | | | - Michael Boehnke
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Aarhus, Denmark
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Stanley Catts
- University of Queensland, Brisbane, Queensland, Australia
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Nicholas Craddock
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Dimitris Dikeos
- 1st Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Tõnu Esko
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of Endocrinology, Children's Hospital Boston, Boston, MA, USA
| | - Bruno Etain
- Université de Paris, INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, UMRS 1144, Paris, France
- APHP Nord, DMU Neurosciences, Département de Psychiatrie et de Médecine Addictologique, GHU Saint Louis-Lariboisière-Fernand Widal, Paris, France
| | - Panagiotis Ferentinos
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- 2nd Department of Psychiatry, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Mark Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Micha Gawlik
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa J Green
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Joanna Hauser
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Frans Henskens
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kyung Sue Hong
- Department of Psychiatry, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, South Korea
| | - David M Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nakao Iwata
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Assen V Jablensky
- University of Western Australia, Nedlands, Western Australia, Australia
| | - Ian Jones
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Lisa A Jones
- Psychological Medicine, University of Worcester, Worcester, UK
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Psychiatry, Brain Center UMC Utrecht, Utrecht, the Netherlands
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - George Kirov
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Marion Leboyer
- Neuropsychiatrie Translationnelle, Inserm U955, Créteil, France
- Faculté de Santé, Université Paris Est, Créteil, France
- Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR Maudsley BRC, King's College London, London, UK
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, USA
| | - Jolanta Lissowska
- Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Nicholas G Martin
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Carol A Mathews
- Department of Psychiatry and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Fermin Mayoral
- Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain
| | | | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Francis J McMahon
- Human Genetics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - Ingrid Melle
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Division of Mental Health and Addiction, University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Patricia Michie
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Gunnar Morken
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Psychiatry, St Olavs University Hospital, Trondheim, Norway
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Risskov, Denmark
| | - Preben Bo Mortensen
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Bryan Mowry
- University of Queensland, Brisbane, Queensland, Australia
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- University of Liverpool, Liverpool, UK
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Benjamin M Neale
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research/Psychiatry, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Merete Nordentoft
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Services in the Capital Region of Denmark, Mental Health Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Michael C O'Donovan
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Ketil J Oedegaard
- Division of Psychiatry, Haukeland Universitetssjukehus, Bergen, Norway
- Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Tomas Olsson
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet at Karolinska University Hospital, Solna, Sweden
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sara A Paciga
- Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Groton, CT, USA
| | | | - Carlos Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - Michele T Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, NY, USA
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Roy H Perlis
- Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Clinical Research, Massachusetts General Hospital, Boston, MA, USA
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | - Josep Antoni Ramos-Quiroga
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marta Ribasés
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitari Vall d´Hebron, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addictions, Vall d´Hebron Research Institut (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephan Ripke
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Takeo Saito
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Ulrich Schall
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Laura J Scott
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Rodney J Scott
- University of Newcastle, Newcastle, New South Wales, Australia
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jordan W Smoller
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eystein Stordal
- Department of Psychiatry, Hospital Namsos, Namsos, Norway
- Department of Neuroscience, Norges Teknisk Naturvitenskapelige Universitet Fakultet for Naturvitenskap og Teknologi, Trondheim, Norway
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Arne E Vaaler
- Department of Psychiatry, Sankt Olavs Hospital Universitetssykehuset i Trondheim, Trondheim, Norway
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - John B Vincent
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Thomas W Weickert
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - John-Anker Zwart
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - John I Nurnberger
- Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eli A Stahl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | | | - Arianna Di Florio
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roel A Ophoff
- Department of Psychiatry and Biobehavioral Science, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
- NORMENT, University of Oslo, Oslo, Norway.
| |
Collapse
|
42
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
43
|
Aranda S, Jiménez E, Martorell L, Muntané G, Vieta E, Vilella E. A systematic review on genome-wide association studies exploring comorbidity in bipolar disorder. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
44
|
de Agustín-Durán D, Mateos-White I, Fabra-Beser J, Gil-Sanz C. Stick around: Cell-Cell Adhesion Molecules during Neocortical Development. Cells 2021; 10:118. [PMID: 33435191 PMCID: PMC7826847 DOI: 10.3390/cells10010118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell-cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.
Collapse
Affiliation(s)
| | | | | | - Cristina Gil-Sanz
- Neural Development Laboratory, Instituto Universitario de Biomedicina y Biotecnología (BIOTECMED) and Departamento de Biología Celular, Facultat de Biología, Universidad de Valencia, 46100 Burjassot, Spain; (D.d.A.-D.); (I.M.-W.); (J.F.-B.)
| |
Collapse
|
45
|
Shonibare DO, Patel RR, Islam AH, Metcalfe AWS, Fiksenbaum L, Freeman N, MacIntosh BJ, Kennedy JL, Goldstein BI. Neurostructural phenotypes of CACNA1C rs1006737 in adolescents with bipolar disorder and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110071. [PMID: 32800865 DOI: 10.1016/j.pnpbp.2020.110071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/05/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Investigate the effects of CACNA1C rs1006737 on cortical and subcortical neurostructural phenotypes in Caucasian bipolar disorder (BD) and healthy control (HC) adolescents. METHODS Seventy-one adolescents (14-20 years; 38BD, 33HC) underwent 3-Tesla Magnetic Resonance Imaging (MRI). Region of interest (ROI) and vertex-wise analyses examined cortical volume, surface area (SA), and thickness, as well as subcortical volume. ROIs included the ventromedial prefrontal cortex (vmPFC), ventrolateral prefrontal cortex (vlPFC), anterior cingulate cortex (ACC), putamen, and amygdala. General linear models included main effects of diagnosis and rs1006737, and an interaction term, controlling for age, sex, and total intracranial volume. RESULTS Vertex-wise analysis found significant BD-by-rs1006737 interactions for prefrontal and occipital regions such that BD A-carriers were found to have greater SA relative to BD non-carriers, while HC A-carriers had reduced SA relative to HC non-carriers. ROI analysis found an interaction in the ACC such that BD A-carriers were found to have greater SA relative to BD non-carriers, while no significant difference was found in HCs. Main effects of rs1006737 were also found on ACC SA from ROI analysis, and occipital SA from vertex-wise analysis, such that A-carriers had larger SA relative to non-carriers in both of these regions. CONCLUSIONS The current study identified neurostructural intermediate phenotypes relevant to the impact of CACNA1C rs1006737 on adolescent BD. Further investigation is warranted into the neurofunctional and neurocognitive relevance of rs1006737 associations with BD-specific elevations in regional SA.
Collapse
Affiliation(s)
- Daniel O Shonibare
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Ronak R Patel
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Alvi H Islam
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Arron W S Metcalfe
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
| | - Lisa Fiksenbaum
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Natalie Freeman
- Tanenbaum Centre for Pharmacogenetics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; Department of Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - James L Kennedy
- Institute of Medical Science, University of Toronto, Toronto, Canada; Tanenbaum Centre for Pharmacogenetics, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
46
|
Lambert JT, Su-Feher L, Cichewicz K, Warren TL, Zdilar I, Wang Y, Lim KJ, Haigh JL, Morse SJ, Canales CP, Stradleigh TW, Castillo Palacios E, Haghani V, Moss SD, Parolini H, Quintero D, Shrestha D, Vogt D, Byrne LC, Nord AS. Parallel functional testing identifies enhancers active in early postnatal mouse brain. eLife 2021; 10:69479. [PMID: 34605404 PMCID: PMC8577842 DOI: 10.7554/elife.69479] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/02/2021] [Indexed: 01/07/2023] Open
Abstract
Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type-specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain.
Collapse
Affiliation(s)
- Jason T Lambert
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Linda Su-Feher
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Karol Cichewicz
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Tracy L Warren
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Iva Zdilar
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Yurong Wang
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Kenneth J Lim
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Jessica L Haigh
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Sarah J Morse
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Tyler W Stradleigh
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Erika Castillo Palacios
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Viktoria Haghani
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Spencer D Moss
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Hannah Parolini
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Diana Quintero
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Diwash Shrestha
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Grand Rapids Research Center, Michigan State UniversityGrand RapidsUnited States
| | - Leah C Byrne
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States,Departments of Ophthalmology and Neurobiology, University of PittsburghPittsburghUnited States
| | - Alex S Nord
- Department of Psychiatry and Behavioral Sciences, University of California, DavisDavisUnited States,Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
| |
Collapse
|
47
|
Abstract
Bipolar disorder (BP) is a highly heritable disease, with heritability estimated between 60 and 85% by twin studies. The underlying genetic architecture was poorly understood for years since the available technology was limited to the candidate gene approach that did not allow to explore the contribution of multiple loci throughout the genome. BP is a complex disorder, which pathogenesis is influenced by a number of genetic variants, each with small effect size, and environmental exposures. Genome-wide association studies (GWAS) provided meaningful insights into the genetics of BP, including replicated genetic variants, and allowed the development of novel multi-marker methods for gene/pathway analysis and for estimating the genetic overlap between BP and other traits. However, the existing GWAS had also relevant limitations. Notably insufficient statistical power and lack of consideration of rare variants, which may be responsible for the relatively low heritability explained (~20% in the largest GWAS) compared to twin studies. The availability of data from large biobanks and automated phenotyping from electronic health records or digital phenotyping represent key steps for providing samples with adequate power for genetic analysis. Next-generation sequencing is becoming more and more feasible in terms of costs, leading to the rapid growth in the number of samples with whole-genome or whole-exome sequence data. These recent and unprecedented resources are of key importance for a more comprehensive understanding of the specific genetic factors involved in BP and their mechanistic action in determining disease onset and prognosis.
Collapse
Affiliation(s)
- Chiara Fabbri
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
48
|
Kidnapillai S, Bortolasci CC, Udawela M, Panizzutti B, Spolding B, Connor T, Sanigorski A, Dean OM, Crowley T, Jamain S, Gray L, Scarr E, Leboyer M, Dean B, Berk M, Walder K. The use of a gene expression signature and connectivity map to repurpose drugs for bipolar disorder. World J Biol Psychiatry 2020; 21:775-783. [PMID: 29956574 DOI: 10.1080/15622975.2018.1492734] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To create a gene expression signature (GES) to represent the biological effects of a combination of known drugs for bipolar disorder (BD) on cultured human neuronal cells (NT2-N) and rat brains, which also has evidence of differential expression in individuals with BD. To use the GES to identify new drugs for BD using Connectivity Map (CMap).Methods: NT2-N (n = 20) cells and rats (n = 8) were treated with a BD drug combination (lithium, valproate, quetiapine and lamotrigine) or vehicle for 24 and 6 h, respectively. Following next-generation sequencing, the differential expression of genes was assessed using edgeR in R. The derived GES was compared to differentially expressed genes in post-mortem brains of individuals with BD. The GES was then used in CMap analysis to identify similarly acting drugs.Results: A total of 88 genes showed evidence of differential expression in response to the drug combination in both models, and therefore comprised the GES. Six of these genes showed evidence of differential expression in post-mortem brains of individuals with BD. CMap analysis identified 10 compounds (camptothecin, chlorambucil, flupenthixol, valdecoxib, rescinnamine, GW-8510, cinnarizine, lomustine, mifepristone and nimesulide) acting similarly to the BD drug combination.Conclusions: This study shows that GES and CMap can be used as tools to repurpose drugs for BD.
Collapse
Affiliation(s)
- Srisaiyini Kidnapillai
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Chiara C Bortolasci
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Madhara Udawela
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Bruna Panizzutti
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Briana Spolding
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Timothy Connor
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Andrew Sanigorski
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Olivia M Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,Department of Psychiatry, the University of Melbourne, Parkville, Australia
| | - Tamsyn Crowley
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,Bioinformatics Core Research Facility (BCRF), Deakin University, Geelong, Australia
| | - Stéphane Jamain
- INSERM U955, Psychiatrie Translationnelle, Université Paris Est, Créteil, France
| | - Laura Gray
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Elizabeth Scarr
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Victoria, Australia
| | - Marion Leboyer
- INSERM U955, Psychiatrie Translationnelle, Université Paris Est, Créteil, France
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,Faculty of Health Arts and Design, Centre for Mental Health, Swinburne University, Victoria, Australia
| | - Michael Berk
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.,IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,Department of Psychiatry, the University of Melbourne, Parkville, Australia.,Orygen, the National, Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| |
Collapse
|
49
|
Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, Quevedo J. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. ACTA ACUST UNITED AC 2020; 42:536-551. [PMID: 32267339 PMCID: PMC7524405 DOI: 10.1590/1516-4446-2019-0732] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023]
Abstract
Bipolar disorder (BD) is a chronic mental illness characterized by changes in mood that alternate between mania and hypomania or between depression and mixed states, often associated with functional impairment. Although effective pharmacological and non-pharmacological treatments are available, several patients with BD remain symptomatic. The advance in the understanding of the neurobiology underlying BD could help in the identification of new therapeutic targets as well as biomarkers for early detection, prognosis, and response to treatment in BD. In this review, we discuss genetic, epigenetic, molecular, physiological and neuroimaging findings associated with the neurobiology of BD. Despite the advances in the pathophysiological knowledge of BD, the diagnosis and management of the disease are still essentially clinical. Given the complexity of the brain and the close relationship between environmental exposure and brain function, initiatives that incorporate genetic, epigenetic, molecular, physiological, clinical, environmental data, and brain imaging are necessary to produce information that can be translated into prevention and better outcomes for patients with BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samira S Valvassori
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Alexandre P Diaz
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth, Houston, TX, USA
| | - Camila N Lima
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Deborah Benevenuto
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Gabriel R Fries
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, UTHealth, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, UTHealth, Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, UTHealth, Houston, TX, USA
| |
Collapse
|
50
|
Zink CF, Giegerich M, Prettyman GE, Carta KE, van Ginkel M, O'Rourke MP, Singh E, Fuchs EJ, Hendrix CW, Zimmerman E, Breakey J, Marzinke MA, Hummert P, Pillai JJ, Weinberger DR, Bigos KL. Nimodipine improves cortical efficiency during working memory in healthy subjects. Transl Psychiatry 2020; 10:372. [PMID: 33139710 PMCID: PMC7606375 DOI: 10.1038/s41398-020-01066-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 02/01/2023] Open
Abstract
The L-type calcium channel gene, CACNA1C, is a validated risk gene for schizophrenia and the target of calcium channel blockers. Carriers of the risk-associated genotype (rs1006737 A allele) have increased frontal cortical activity during working memory and higher CACNA1C mRNA expression in the prefrontal cortex. The aim of this study was to determine how the brain-penetrant calcium channel blocker, nimodipine, changes brain activity during working memory and other cognitive and emotional processes. We conducted a double-blind randomized cross-over pharmacoMRI study of a single 60 mg dose of oral nimodipine solution and matching placebo in healthy men, prospectively genotyped for rs1006737. With performance unchanged, nimodipine significantly decreased frontal cortical activity by 39.1% and parietal cortical activity by 42.8% during the N-back task (2-back > 0-back contrast; PFWE < 0.05; n = 28). Higher peripheral nimodipine concentrations were correlated with a greater decrease in activation in the frontal cortex. Carriers of the risk-associated allele, A (n = 14), had a greater decrease in frontal cortical activation during working memory compared to non-risk allele carriers. No differences in brain activation were found between nimodipine and placebo for other tasks. Future studies should be conducted to test if the decreased cortical brain activity after nimodipine is associated with improved working memory performance in patients with schizophrenia, particularly those who carry the risk-associated genotype. Furthermore, changes in cortical activity during working memory may be a useful biomarker in future trials of L-type calcium channel blockers.
Collapse
Affiliation(s)
- Caroline F Zink
- Baltimore Research and Education Foundation, Baltimore, MD, United States
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Mellissa Giegerich
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Veterans Administration, San Diego, CA, United States
| | - Greer E Prettyman
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States
| | - Kayla E Carta
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Marcus van Ginkel
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Molly P O'Rourke
- Lieber Institute for Brain Development, Baltimore, MD, United States
- School of Nursing, University of Pennsylvania, Philadelphia, PA, United States
| | - Eesha Singh
- Lieber Institute for Brain Development, Baltimore, MD, United States
- College of Medicine, University of Tennessee, Memphis, TN, United States
| | - Edward J Fuchs
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Craig W Hendrix
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, United States
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eric Zimmerman
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jennifer Breakey
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Mark A Marzinke
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Pamela Hummert
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jay J Pillai
- Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kristin L Bigos
- Lieber Institute for Brain Development, Baltimore, MD, United States.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
- Department of Pharmacology and Molecular Science, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|