1
|
Archambault SD, Abu-Qamar O, Biery D, Yaghy A, Weber B, Waheed NK. Retinal optical coherence tomography angiography (OCTA) biomarkers of cardiovascular disease: a review article. Eye (Lond) 2025:10.1038/s41433-025-03780-8. [PMID: 40369287 DOI: 10.1038/s41433-025-03780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 05/16/2025] Open
Abstract
This review article systematically assesses existing literature on studies employing retinal optical coherence tomography angiography (OCTA) metrics as surrogate biomarkers for cardiovascular disease. A comprehensive, literature review of published peer-reviewed research was conducted within PubMed utilizing the following medical subject headings (MeSH) terms: "optical coherence tomography", "cardiovascular diseases", "retina", and "retinal vessels". A total of 840 articles were reviewed and selectively filtered with ultimately 50 articles being included. This review article elucidates key findings, identifies limitations, and pinpoints gaps within these investigations. Additionally, this article delineates constraints related to OCTA technology and image processing that presently hinder the widespread adoption of this promising technology.
Collapse
Affiliation(s)
| | - Omar Abu-Qamar
- Department of Ophthalmology, Tufts Medical Center, Boston, MA, USA
| | - David Biery
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonio Yaghy
- Department of Ophthalmology, Tufts Medical Center, Boston, MA, USA
| | - Brittany Weber
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nadia K Waheed
- Department of Ophthalmology, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
2
|
Tornifoglio B, Hughes C, Digeronimo F, Guendouz Y, Johnston RD, Lally C. Imaging the microstructure of the arterial wall - ex vivo to in vivo potential. Acta Biomater 2025:S1742-7061(25)00346-0. [PMID: 40348073 DOI: 10.1016/j.actbio.2025.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Microstructural imaging enables researchers to visualise changes in the arterial wall, allowing for (i) a deeper understanding of the role of specific components in arterial mechanics, (ii) the observation of cellular responses, (iii) insights into pathological alterations in tissue microstructure, and/or (iv) advancements in tissue engineering aimed at replicating healthy native tissue. In this prospective review, we present various imaging modalities spanning from ex vivo to in vivo applications within arterial tissue. The pros, cons, and sensitivities of these modalities are highlighted. By consolidating the latest advancements in microstructural imaging of arterial tissue, the authors aim for this paper to serve as a guide for researchers designing experiments at various stages. Furthermore, the integration of non-invasive, non-destructive imaging techniques into studies provides an additional layer of microstructural information, enhancing scientific findings, improving our understanding of disease, and potentially enabling earlier or more effective diagnostic capabilities. STATEMENT OF SIGNIFICANCE: Imaging the specific microstructural components of the arterial wall provides critical insights into vascular biology, mechanics, and pathology. It enables the visualisation of key structural components and their roles in arterial function, supports the analysis of cell-matrix interactions, and reveals microarchitectural changes associated with disease progression. This level of specificity also informs the design of biomimetic materials and scaffolds in tissue engineering, facilitating the replication of native arterial properties. By synthesising recent developments in microstructural imaging techniques, this paper serves as a reference for investigators designing experiments across a range of vascular research applications. Moreover, the incorporation of non-invasive, non-destructive imaging methods offers a means to acquire detailed microstructural data without compromising tissue integrity. This enhances the interpretability and translational potential of findings, deepens our understanding of vascular disease mechanisms, and may ultimately contribute to the development of earlier and more precise diagnostic approaches.
Collapse
Affiliation(s)
- B Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland.
| | - C Hughes
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - F Digeronimo
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Y Guendouz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - R D Johnston
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland.
| |
Collapse
|
3
|
Sasi GS, Chauvet AAP. Using Optical Coherence Tomography in Plant Biology Research: Review and Prospects. SENSORS (BASEL, SWITZERLAND) 2025; 25:2467. [PMID: 40285157 PMCID: PMC12030826 DOI: 10.3390/s25082467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Visualizing the microscopic structure of plants in vivo, non-invasively, and in real-time is the Holy Grail of botany. Optical coherence tomography (OCT) has all the characteristics necessary to achieve this feat. Indeed, OCT provides volumetric images of the internal structure of plants without the need for histological preparation. With its micrometric resolution, OCT is commonly used in medicine, primarily in ophthalmology. But it is seldom used in the field of botany. The aim of the present work is thus to review the latest technical development in the field of OCT and to highlight its current use in botany, in order to promote the technique and further advance research in the field of botany.
Collapse
|
4
|
Gutiérrez-Medina B. Making sense of blobs, whorls, and shades: methods for label-free, inverse imaging in bright-field optical microscopy. Biophys Rev 2025; 17:335-345. [PMID: 40376420 PMCID: PMC12075049 DOI: 10.1007/s12551-025-01301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/06/2025] [Indexed: 05/18/2025] Open
Abstract
Despite its long history and widespread use, conventional bright-field optical microscopy has received recent attention as an excellent option to perform accurate, label-free, imaging of biological objects. As with any imaging system, bright-field produces an ill-defined representation of the specimen, in this case characterized by intertwined phase and amplitude in image formation, invisibility of phase objects at exact focus, and both positive and negative contrast present in images. These drawbacks have prevented the application of bright-field to the accurate imaging of unlabeled specimens. To address these challenges, a variety of methods using hardware, software or both have been developed, with the goal of providing solutions to the inverse imaging problem set in bright-field. We revise the main operating principles and characteristics of bright-field microscopy, followed by a discussion of the solutions (and potential limitations) to reconstruction in two dimensions (2D). We focus on methods based on conventional optics, including defocusing microscopy, transport of intensity, ptychography and deconvolution. Advances to achieving three-dimensional (3D) bright-field imaging are presented, including methods that exploit multi-view reconstruction, physical modeling, deep learning and conventional digital image processing. Among these techniques, optical sectioning in bright-field microscopy (OSBM) constitutes a direct approach that captures z-image stacks using a standard microscope and applies digital filters in the spatial domain, yielding inverse-imaging solutions in 3D. Finally, additional techniques that expand the capabilities of bright-field are discussed. Label-free, inverse imaging in conventional optical microscopy thus emerges as a powerful biophysical tool for accurate 2D and 3D imaging of biological samples.
Collapse
Affiliation(s)
- Braulio Gutiérrez-Medina
- Division of Advanced Materials, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico
| |
Collapse
|
5
|
Song B, Liang R. Integrating artificial intelligence with smartphone-based imaging for cancer detection in vivo. Biosens Bioelectron 2025; 271:116982. [PMID: 39616900 PMCID: PMC11789447 DOI: 10.1016/j.bios.2024.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
Cancer is a major global health challenge, accounting for nearly one in six deaths worldwide. Early diagnosis significantly improves survival rates and patient outcomes, yet in resource-limited settings, the scarcity of medical resources often leads to late-stage diagnosis. Integrating artificial intelligence (AI) with smartphone-based imaging systems offers a promising solution by providing portable, cost-effective, and widely accessible tools for early cancer detection. This paper introduces advanced smartphone-based imaging systems that utilize various imaging modalities for in vivo detection of different cancer types and highlights the advancements of AI for in vivo cancer detection in smartphone-based imaging. However, these compact smartphone systems face challenges like low imaging quality and restricted computing power. The use of advanced AI algorithms to address the optical and computational limitations of smartphone-based imaging systems provides promising solutions. AI-based cancer detection also faces challenges. Transparency and reliability are critical factors in gaining the trust and acceptance of AI algorithms for clinical application, explainable and uncertainty-aware AI breaks the black box and will shape the future AI development in early cancer detection. The challenges and solutions for improving AI accuracy, transparency, and reliability are general issues in AI applications, the AI technologies, limitations, and potentials discussed in this paper are applicable to a wide range of biomedical imaging diagnostics beyond smartphones or cancer-specific applications. Smartphone-based multimodal imaging systems and deep learning algorithms for multimodal data analysis are also growing trends, as this approach can provide comprehensive information about the tissue being examined. Future opportunities and perspectives of AI-integrated smartphone imaging systems will be to make cutting-edge diagnostic tools more affordable and accessible, ultimately enabling early cancer detection for a broader population.
Collapse
Affiliation(s)
- Bofan Song
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Rongguang Liang
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
6
|
Wańczura P, Mytych W, Bartusik-Aebisher D, Leksa D, Truszkiewicz A, Aebisher D. Visualization of Atherosclerotic Plaques Paired with Joheksol 350 (Omnipaque). Biomedicines 2025; 13:399. [PMID: 40002812 PMCID: PMC11853480 DOI: 10.3390/biomedicines13020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cardiovascular disease is one of the leading causes of death around the globe. Atherosclerosis, a chronic inflammatory blood vessel disease that takes years to develop, is its primary cause. Instability and further plaque buildup are caused by chronic inflammation, which creates the conditions for possible rupture. The visualization of arterial lesions in situ can enhance understanding of atherosclerosis progression and potentially improve experimental therapies. Conventional histology methods for assessing atherosclerotic lesions are robust but are destructive and may prevent further tissue analysis. Objectives: The objective of the current study was to evaluate a novel, nondestructive method for the visualization and characterization of atherosclerotic lesions. Methods and Results: Thus, we tested the hypothesis that MRI paired with an iodine-based radiopaque stain would effectively characterize atherosclerotic plaques in a manner comparable to routine histology while maintaining sample integrity and providing whole-volume data.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of Sciences, The Rzeszów University, 35-310 Rzeszów, Poland
| | - Wiktoria Mytych
- English Division Science Club, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Dawid Leksa
- Rzeszów Center for Vascular and Endovascular Surgery, 35-310 Rzeszów, Poland;
| | - Adrian Truszkiewicz
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
7
|
Boostani M, Bozsányi S, Suppa M, Cantisani C, Lőrincz K, Bánvölgyi A, Holló P, Wikonkál NM, Huss WJ, Brady KL, Paragh G, Kiss N. Novel imaging techniques for tumor margin detection in basal cell carcinoma: a systematic scoping review of FDA and EMA-approved imaging modalities. Int J Dermatol 2025; 64:287-301. [PMID: 39358676 PMCID: PMC11771686 DOI: 10.1111/ijd.17496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Mohs micrographic surgery (MMS) is the gold standard for removing basal cell carcinomas (BCCs) due to its ability to guarantee 100% margin evaluation through frozen section histopathology, offering the highest cure rate among current treatments. However, noninvasive imaging technologies have emerged as promising alternatives to clinical assessment for defining presurgical margins. This systematic scoping review examines the efficacy of these imaging modalities, focusing on those approved for clinical use by the United States Food and Drug Administration (FDA) or the European Medicines Agency (EMA). A systematic search of EMBASE, Scopus, PubMed, and the Cochrane Public Library databases identified 11 relevant studies out of 2123 records, encompassing 644 lesions across five imaging techniques. The findings suggest that dermoscopy, high-frequency ultrasound (HFUS), optical coherence tomography (OCT), line-field optical coherence tomography (LC-OCT), and reflectance confocal microscopy (RCM) show potential in detecting BCC margins, which could enhance MMS by providing better preoperative planning, informing patients of expected defect size, aiding in reconstruction decisions, and reducing overall procedure costs. This review discusses the benefits and limitations of each technique, offering insights into how these innovations could influence the future of BCC management. Emerging imaging techniques could enhance MMS by improving BCC margin assessment and reducing costs. Their adoption will depend on price and ease of use.
Collapse
Affiliation(s)
- Mehdi Boostani
- Department of Dermatology, Venereology and DermatooncologySemmelweis UniversityBudapestHungary
| | - Szabolcs Bozsányi
- Department of Dermatology, Venereology and DermatooncologySemmelweis UniversityBudapestHungary
- Department of DermatologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Mariano Suppa
- Groupe d'Imagerie Cutanée Non‐Invasive (GICNI) of the Société Française de Dermatologie (SFD)ParisFrance
- Department of DermatologyHôpital Erasme, Université Libre de BruxellesBrusselsBelgium
- Department of DermatologyInstitut Jules Bordet, Université Libre de BruxellesBrusselsBelgium
| | | | - Kende Lőrincz
- Department of Dermatology, Venereology and DermatooncologySemmelweis UniversityBudapestHungary
| | - András Bánvölgyi
- Department of Dermatology, Venereology and DermatooncologySemmelweis UniversityBudapestHungary
| | - Péter Holló
- Department of Dermatology, Venereology and DermatooncologySemmelweis UniversityBudapestHungary
| | - Norbert M. Wikonkál
- Department of Dermatology, Venereology and DermatooncologySemmelweis UniversityBudapestHungary
| | - Wendy J. Huss
- Department of DermatologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Kimberly L. Brady
- Department of DermatologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Gyorgy Paragh
- Department of DermatologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Norbert Kiss
- Department of Dermatology, Venereology and DermatooncologySemmelweis UniversityBudapestHungary
| |
Collapse
|
8
|
Remtulla R, Samet A, Kulbay M, Akdag A, Hocini A, Volniansky A, Kahn Ali S, Qian CX. A Future Picture: A Review of Current Generative Adversarial Neural Networks in Vitreoretinal Pathologies and Their Future Potentials. Biomedicines 2025; 13:284. [PMID: 40002698 PMCID: PMC11852121 DOI: 10.3390/biomedicines13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Machine learning has transformed ophthalmology, particularly in predictive and discriminatory models for vitreoretinal pathologies. However, generative modeling, especially generative adversarial networks (GANs), remains underexplored. GANs consist of two neural networks-the generator and discriminator-that work in opposition to synthesize highly realistic images. These synthetic images can enhance diagnostic accuracy, expand the capabilities of imaging technologies, and predict treatment responses. GANs have already been applied to fundus imaging, optical coherence tomography (OCT), and fluorescein autofluorescence (FA). Despite their potential, GANs face challenges in reliability and accuracy. This review explores GAN architecture, their advantages over other deep learning models, and their clinical applications in retinal disease diagnosis and treatment monitoring. Furthermore, we discuss the limitations of current GAN models and propose novel applications combining GANs with OCT, OCT-angiography, fluorescein angiography, fundus imaging, electroretinograms, visual fields, and indocyanine green angiography.
Collapse
Affiliation(s)
- Raheem Remtulla
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3SE, Canada; (R.R.); (M.K.)
| | - Adam Samet
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3SE, Canada; (R.R.); (M.K.)
| | - Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3SE, Canada; (R.R.); (M.K.)
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada
| | - Arjin Akdag
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Adam Hocini
- Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Anton Volniansky
- Department of Psychiatry, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Shigufa Kahn Ali
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Centre Universitaire d’Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Cynthia X. Qian
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Centre Universitaire d’Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
9
|
Wang R, Cai J, Gao Y, Tang Y, Gao H, Qin L, Cai H, Yang F, Ren Y, Luo C, Feng S, Yin H, Zhang M, Luo C, Gong Q, Xiao X, Chen Q. Retinal biomarkers for the risk of Alzheimer's disease and frontotemporal dementia. Front Aging Neurosci 2025; 16:1513302. [PMID: 39868381 PMCID: PMC11759267 DOI: 10.3389/fnagi.2024.1513302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose Differentiating between Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be challenging due to overlapping cognitive and behavioral manifestations. Evidence regarding non-invasive and early-stage biomarkers remains limited. Our aim was to identify retinal biomarkers for the risk of AD and FTD in populations without dementia and explore underlying brain structural mechanisms. Methods We included a total of 3,0573 UK Biobank participants without dementia, ocular disorders, and diabetes who underwent baseline retinal optical coherence tomography (OCT) imaging. Cox proportional hazards models were used to estimate the associations between macular OCT parameters and the risk of AD and FTD. Mediation analysis was used to explore the underlying mechanisms affected by brain structures. Results The mean age at recruitment was 55.27, and 46.10% of the participants were male. During a mean follow-up of 9.15 ± 2.59 years, 148 patients with AD and eight patients with FTD were identified. Reduced thickness of the ganglion cell-inner plexiform layer (GC-IPL) at baseline was associated with an increased risk of AD (HR, 1.033; 95% CI, 1.001-1.066; P = 0.044), while thinner retinal pigment epithelial in the inner superior subfield at baseline was associated with an elevated risk of FTD (HR, 1.409; 95% CI, 1.060-1.871; P = 0.018). Structurally abnormal visual pathways, including cortical and subcortical gray matter volumes, as well as white matter integrity, mediated the association between the GC-IPL thickness and AD risk. Conclusion Our findings provide preliminary empirical support for a relationship between prodromal changes in retinal layers and a higher risk of AD or FTD, suggesting that macular OCT may serve as a non-invasive, sensitive biomarker of high-risk years before the onset of dementia.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiajie Cai
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuzhu Gao
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Tang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Linyuan Qin
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hanlin Cai
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Yang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yimeng Ren
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Caimei Luo
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyu Feng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongbo Yin
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunyan Luo
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiong Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Wall K, Arend LP, von der Emde L, Saßmannshausen M, Holz FG, Ach T. Characterization of the Disorganization of the Inner Retinal Layers in Diabetics Using Increased Axial Resolution Optical Coherence Tomography. Transl Vis Sci Technol 2025; 14:12. [PMID: 39804658 PMCID: PMC11737467 DOI: 10.1167/tvst.14.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose To compare a novel high-resolution optical coherence tomography (OCT) with improved axial resolution (High-Res OCT) with conventional spectral-domain OCT (SD-OCT) with regard to their capacity to characterize the disorganization of the retinal inner layers (DRIL) in diabetic maculopathy. Methods Diabetic patients underwent multimodal retinal imaging (SD-OCT, High-Res OCT, and color fundus photography). Best-corrected visual acuity and diabetes characteristics were recorded. DR was graded using the international clinical diabetic retinopathy severity scale (DRSS). In each OCT B-scan, retinal layers were segmented and the loss of discernibility was annotated. DRIL areas were analyzed in en face projection using FIJI plugins. The Wilcoxon test and regression models were used for statistical analysis. Results In 93 eyes of 93 patients (mean age, 61.8 ± 12.9 years) DRIL was identified in 48 eyes. DRIL was most frequent in the central subfield (27%). In DRIL eyes, DRSS was significantly higher (4.43 ± 1.01 vs. 2.12 ± 1.66; P < 0.001), BCVA was significantly worse (0.34 ± 0.38 vs. 0.13 ± 0.22; P < 0.001), and the loss of discernibility of the individual inner retinal layers was significantly smaller in High-Res OCT compared with SD-OCT (0.21 ± 0.29 vs. 1.21 ± 1.21 mm2; P < 0.001). The discernibility loss was greatest in the retinal nerve fiber layer and ganglion cell layer. Conclusions DRIL occurs in eyes with advanced diabetic retinopathy, with a characteristic spread: from the inner toward the outer retina. High-Res OCT shows significantly smaller DRIL areas compared with SD-OCT, because of a more precise delineation of the inner retinal layers. Translational Relevance Using OCT with increased axial resolution could enhance our understanding of DRIL development and progression, providing deeper insights into pathophysiological aspects, including malperfusion in the inner capillary plexus.
Collapse
Affiliation(s)
- Katharina Wall
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Lilith P. Arend
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Leon von der Emde
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | | | - Frank G. Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Olivares Ordoñez MA, Smith RC, Yiu G, Liu YA. Retinal Microstructural and Microvascular Changes in Alzheimer Disease: A Review. Int Ophthalmol Clin 2025; 65:59-67. [PMID: 39710907 PMCID: PMC11817161 DOI: 10.1097/iio.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
"The eyes are a window to the brain," prompting the investigation of whether retinal biomarkers can indicate Alzheimer disease (AD) and cognitive impairment. AD is a neurodegenerative condition with a lengthy preclinical phase where pathologic changes in the central nervous system (CNS) occur before clinical symptoms. Mild cognitive impairment (MCI) often precedes AD. As part of the CNS, the retina exhibits similar pathologic changes related to AD as those seen in the brains of patients with MCI. Noninvasive imaging technologies such as optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) allow high-resolution visualization of the retina, providing an opportunity to screen and monitor AD noninvasively. In this review, we summarize the relationship between AD and retinal pathology detected by OCT and OCTA. The most common findings in patients with AD include peripapillary retinal nerve fiber layer thinning, decreased macular thickness, an enlarged foveal avascular zone, and decreased vascular densities in the superficial and deep capillary plexuses. These retinal changes correlate with magnetic resonance imaging (MRI) findings of cerebral atrophy, positron emission tomography (PET) findings of increased amyloid load, and neuropsychological testing results suggesting cognitive dysfunction. We conclude that retinal microstructural and microvascular abnormalities may serve as biomarkers for the early detection and clinical monitoring of AD and as tools for evaluating potential treatment effects. Future studies should focus on standardizing protocols for in vivo ophthalmic imaging to measure retinal pathology in AD and MCI.
Collapse
Affiliation(s)
| | | | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Yin Allison Liu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
- Department of Neurology, University of California, Davis, Sacramento, CA
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA
| |
Collapse
|
12
|
Du K, Shah S, Bollepalli SC, Ibrahim MN, Gadari A, Sutharahan S, Sahel JA, Chhablani J, Vupparaboina KK. Inter-rater reliability in labeling quality and pathological features of retinal OCT scans: A customized annotation software approach. PLoS One 2024; 19:e0314707. [PMID: 39693322 DOI: 10.1371/journal.pone.0314707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES Various imaging features on optical coherence tomography (OCT) are crucial for identifying and defining disease progression. Establishing a consensus on these imaging features is essential, particularly for training deep learning models for disease classification. This study aims to analyze the inter-rater reliability in labeling the quality and common imaging signatures of retinal OCT scans. METHODS 500 OCT scans obtained from CIRRUS HD-OCT 5000 devices were displayed at 512x1024x128 resolution on a customizable, in-house annotation software. Each patient's eye was represented by 16 random scans. Two masked reviewers independently labeled the quality and specific pathological features of each scan. Evaluated features included overall image quality, presence of fovea, and disease signatures including subretinal fluid (SRF), intraretinal fluid (IRF), drusen, pigment epithelial detachment (PED), and hyperreflective material. The raw percentage agreement and Cohen's kappa (κ) coefficient were used to evaluate concurrence between the two sets of labels. RESULTS Our analysis revealed κ = 0.60 for the inter-rater reliability of overall scan quality, indicating substantial agreement. In contrast, there was slight agreement in determining the cause of poor image quality (κ = 0.18). The binary determination of presence and absence of retinal disease signatures showed almost complete agreement between reviewers (κ = 0.85). Specific retinal pathologies, such as the foveal location of the scan (0.78), IRF (0.63), drusen (0.73), and PED (0.87), exhibited substantial concordance. However, less agreement was found in identifying SRF (0.52), hyperreflective dots (0.41), and hyperreflective foci (0.33). CONCLUSIONS Our study demonstrates significant inter-rater reliability in labeling the quality and retinal pathologies on OCT scans. While some features show stronger agreement than others, these standardized labels can be utilized to create automated machine learning tools for diagnosing retinal diseases and capturing valuable pathological features in each scan. This standardization will aid in the consistency of medical diagnoses and enhance the accessibility of OCT diagnostic tools.
Collapse
Affiliation(s)
- Katherine Du
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Stavan Shah
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Sandeep Chandra Bollepalli
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Mohammed Nasar Ibrahim
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Adarsh Gadari
- Department of Computer Science, University of North Carolina at Greensboro, Greensboro, NC, United States of America
| | - Shan Sutharahan
- Department of Computer Science, University of North Carolina at Greensboro, Greensboro, NC, United States of America
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Kiran Kumar Vupparaboina
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| |
Collapse
|
13
|
Sagiv C, Hadar O, Najjar A, Pahnke J. Artificial intelligence in surgical pathology - Where do we stand, where do we go? EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:109541. [PMID: 39694737 DOI: 10.1016/j.ejso.2024.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Surgical and neuropathologists continuously search for new and disease-specific features, such as independent predictors of tumor prognosis or determinants of tumor entities and sub-entities. This is a task where artificial intelligence (AI)/machine learning (ML) systems could significantly contribute to help with tumor outcome prediction and the search for new diagnostic or treatment stratification biomarkers. AI systems are increasingly integrated into routine pathology workflows to improve accuracy, reproducibility, productivity and to reveal difficult-to-see features in complicated histological slides, including the quantification of important markers for tumor grading and staging. In this article, we review the infrastructure needed to facilitate digital and computational pathology. We address the barriers for its full deployment in the clinical setting and describe the use of AI in intraoperative or postoperative settings were frozen or formalin-fixed, paraffin-embedded materials are used. We also summarize quality assessment issues of slide digitization, new spatial biology approaches, and the determination of specific gene-expression from whole slide images. Finally, we highlight new innovative and future technologies, such as large language models, optical biopsies, and mass spectrometry imaging.
Collapse
Affiliation(s)
- Chen Sagiv
- DeePathology Ltd., HaTidhar 5, P. O. Box 2622, Ra'anana, IL-4365104, Israel.
| | - Ofir Hadar
- DeePathology Ltd., HaTidhar 5, P. O. Box 2622, Ra'anana, IL-4365104, Israel
| | - Abderrahman Najjar
- Department of Pathology, Rabin Medical Center (RMC), Ze'ev Jabotinsky 39, Petah Tikva, IL-4941492, Israel
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372, Oslo, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538, Lübeck, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, LV-1004, Rīga, Latvia; Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, IL-6997801, Israel.
| |
Collapse
|
14
|
Qiu X, Gammon ST, Rasmussen C, Pisaneschi F, Kim CBY, Ver Hoeve J, Millward SW, Barnett EM, Nork TM, Kaufman PL, Piwnica-Worms D. In vivo scanning laser fundus and high-resolution OCT imaging of retinal ganglion cell injury in a non-human primate model with an activatable fluorescent-labeled TAT peptide probe. PLoS One 2024; 19:e0313579. [PMID: 39642160 PMCID: PMC11623487 DOI: 10.1371/journal.pone.0313579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/26/2024] [Indexed: 12/08/2024] Open
Abstract
The optical imaging agent TcapQ488 has enabled imaging of retinal ganglion cell (RGC) injury in vivo in rodents and has potential as an effective diagnostic probe for early detection and intervention monitoring in glaucoma patients. In the present study, we investigated TcapQ488 in non-human primates (NHPs) to identify labeling efficacy and early signals of injured RGC, to determine species-dependent changes in RGC probe uptake and clearance, and to determine dose-limiting toxicities. Doses of 3, 6, and 12 nmol of TcapQ488 were delivered intravitreally to normal healthy NHP eyes and eyes that had undergone hemiretinal endodiathermy axotomy (HEA) in the inferior retina. Post-injection fundus fluorescence imaging using a Spectralis imaging platform (Heidelberg Engineering) documented TcapQ488 activation in RGC cell bodies. Optical coherence tomography (OCT), slit-lamp examinations, intraocular pressure measurements, and visual electrophysiology testing were performed to monitor probe tolerability. For comparison, a negative control, non-cleavable, non-quenched probe (dTcap488, 6 nmol), was delivered intravitreally to a normal healthy eye. In normal healthy eyes, intravitreal injection of 3 nmol of TcapQ488 was well-tolerated, while 12 nmol of TcapQ488 to the healthy eye caused extensive probe activation in the ganglion cell layer (GCL) and eventual retinal nerve fiber layer thinning. In HEA eyes, the HEA procedure followed by intravitreal TcapQ488 (3 nmol) injection resulted in probe activation within cell bodies in the GCL, confined to the HEA-treated inferior retina, indicating cell injury and slow axonal transport in the GCL. However, in contrast to rodents, a vitreal haze that lasted 2-12 weeks obscured rapid high-resolution imaging of the fundus. By contrast, intravitreal TcapQ488 injection prior to the HEA procedure led to minimal probe labeling in the GCL. The results of the dTcap488 control experiments indicated that fast axonal transport carried the probe out of the retina after cell body uptake. No evidence of pan-retinal toxicity or loss of retino-cortical function was detected in any of the three NHPs tested. Overall, these data provide evidence of TcapQ488 activation, without toxicity, in NHP HEA eyes that had been intravitreally injected with 3 nmol of the probe. Compared to rodents, unexpectedly rapid axonal transport in the NHPs reduced the capacity to visualize RGC cell bodies and axons through the backdrop of an intravitreal haze. Nonetheless, although intravitreal clearance rates did not scale to NHPs, HEA-induced reductions in axonal transport enhanced probe visualization in the cell body.
Collapse
Affiliation(s)
- Xudong Qiu
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Carol Rasmussen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Charlene B. Y. Kim
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - James Ver Hoeve
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Steven W. Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Edward M. Barnett
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - T. Michael Nork
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul L. Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
15
|
Pitre NN, Moses JB, Fisher M, Kuwabara Y, Salavatian S, Watkins SC, Tzeng E, Velankar SS. The morphology of internal elastic lamina corrugations in arteries under physiological conditions. Morphologie 2024; 108:100902. [PMID: 39180804 DOI: 10.1016/j.morpho.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND In elastic and resistance arteries, an elastin-rich membrane, the Internal Elastic Lamina (IEL), separates the tunica intima from the underlying tunica media. The IEL often appears wrinkled or corrugated in histological images. These corrugations are sometimes ascribed to vessel contraction ex vivo, and to fixation artifacts, and therefore regarded as not physiologically relevant. We examine whether the IEL remains corrugated even under physiological conditions. METHODS The diameters of carotid arteries of anesthetized pigs were measured by ultrasound. The arteries were then excised, inflated within a conical sleeve, fixed, and imaged by confocal microscopy. The conical sleeve allows fixing each artery across a wide range of diameters, which bracket its ultrasound diameter. Thus the study was designed to quantify how corrugations change with diameter for a single artery, and test whether corrugations exist when the fixed artery matches the ultrasound diameter. RESULTS At diameters below the ultrasound diameter (i.e. when the artery was constricted as compared to ultrasound conditions), the IEL corrugations were found to decrease significantly with increasing diameter, but not fully flatten at the ultrasound diameter. The contour length of the IEL was found to be roughly 10% larger than the circumference of the artery measured by ultrasound. Since ultrasound was conducted with the animal under general anesthesia which induces vasodilation, the physiological diameter is likely to be smaller than the ultrasound diameter, and hence the arteries are likely to have a higher level of corrugation under physiological conditions. For arterial cross sections constricted below the ultrasound diameter, the IEL contour length decreased roughly with the square root of the diameter. CONCLUSION The primary conclusions of this study are: a) the IEL is corrugated when the artery is constricted and flattens as the artery diameter increases; b) the IEL is corrugated under physiological conditions and has a contour length at least 10% more than the physiological arterial diameter; and c) the IEL despite being relatively stiffer than the surrounding arterial layers, does not behave like an inextensible membrane.
Collapse
Affiliation(s)
- N N Pitre
- Department of Bioengineering, University of Pittsburgh, 15261 Pittsburgh, PA, USA
| | - J B Moses
- Department of Surgery, University of Pittsburgh, 15261 Pittsburgh, PA, USA
| | - M Fisher
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, 15261 Pittsburgh, PA, USA
| | - Y Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, 15261 Pittsburgh, PA, USA
| | - S Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, 15261 Pittsburgh, PA, USA
| | - S C Watkins
- Department of Cell Biology, University of Pittsburgh, 15261 Pittsburgh, PA, USA
| | - E Tzeng
- Department of Surgery, University of Pittsburgh, 15261 Pittsburgh, PA, USA
| | - S S Velankar
- Department of Chemical Engineering, University of Pittsburgh, 15261 Pittsburgh, PA, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 15261 Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, 15261 Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Algarin YA, Pulumati A, Tan J, Zeitouni NC. Advances in non-invasive imaging for dermatofibrosarcoma protuberans: A review. Australas J Dermatol 2024; 65:610-620. [PMID: 39361531 PMCID: PMC11629142 DOI: 10.1111/ajd.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
Dermatofibrosarcoma protuberans (DFSP) is a rare soft tissue sarcoma characterized by an asymmetric, infiltrative growth pattern and a high risk of local recurrence. This study aims to evaluate the effectiveness of various imaging modalities in the assessment and management of DFSP. Nine imaging modalities were reviewed including: Ultrasound (US), High-Frequency Doppler Ultrasound (HFUS), Computed tomography (CT), Positron emission tomography-computed tomography (PET-CT), and Magnetic Resonance Imaging (MRI), High-resolution-MRI (HR-MRI), Magnetic Resonance Spectroscopy (MRS), Optical Coherence Tomography (OCT), and Dermatoscopy. Imaging is mainly used for preoperative assessment and surgical planning, not routine diagnosis. US is effective for initial evaluations, demonstrating superior ability in detecting muscle invasion and defining tumour boundaries (sensitivity - 81.8%, specificity - 100%). MRI is valuable for preoperative evaluation, surgical planning, and monitoring DFSP recurrence. It more accurately assesses tumour depth than palpation, with a sensitivity of 67% and specificity of 100%, but was inferior when compared to US. CT is utilized in cases of suspected bone involvement or pulmonary metastasis. For advanced or recurrent DFSP, PET-CT helps manage treatment responses and imatinib therapy. Emerging technologies like MRS and OCT show potential in improving diagnostic accuracy and defining surgical margins, though more data are needed. US, MRI, and CT are the primary imaging modalities for DFSP. Emerging technologies like HR-MRI, PET-CT, MRS, and OCT hold promise for refining diagnostic and management strategies. Integrating multiple technologies could enhance management, particularly in atypical or aggressive cases. Further studies are required to refine imaging protocols and improve DFSP outcomes.
Collapse
Affiliation(s)
| | - Anika Pulumati
- University of Missouri‐Kansas City School of MedicineKansas CityMissouriUSA
| | - Jiali Tan
- Albany Medical CollegeAlbanyNew YorkUSA
| | - Nathalie C. Zeitouni
- Medical Dermatology SpecialistsUniversity of Arizona COM PhoenixPhoenixArizonaUSA
| |
Collapse
|
17
|
Worix A, Keswani RN. Advanced Techniques in Therapeutic and Inflammatory Bowel Disease Colonoscopy. Gastroenterol Clin North Am 2024; 53:587-602. [PMID: 39489577 DOI: 10.1016/j.gtc.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Colonoscopy is an essential diagnostic and therapeutic tool in the management of colorectal disease. This review explores the recent advances of colonoscopy that have revolutionized patient care in the era of minimally invasive medicine. Key areas of focus include innovations in imaging, advanced endoscopic resection techniques, and nonsurgical management of strictures. Advances in therapeutic endoscopy are especially evident in inflammatory bowel disease. As the landscape of colonoscopy continues to evolve, it will continue to play a central role in modern medicine, shaping the future of patient care, and therapeutic interventions.
Collapse
Affiliation(s)
- Alexander Worix
- Hospital Medicine, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Rajesh N Keswani
- Division of Gastroenterology, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
18
|
Remmelink MJ, Rip Y, Nieuwenhuijzen JA, Ket JCF, Oddens JR, de Reijke TM, de Bruin DM. Advanced optical imaging techniques for bladder cancer detection and diagnosis: a systematic review. BJU Int 2024; 134:890-905. [PMID: 39015996 DOI: 10.1111/bju.16471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
OBJECTIVES To systematically assess the current available literature concerning advanced optical imaging methods for the detection and diagnosis of bladder cancer (BCa), focusing particularly on the sensitivity and specificity of these techniques. METHODS First a scoping search was performed to identify all available optical techniques for BCa detection and diagnosis. The optical imaging techniques used for detecting BCa are: the Storz professional image enhancement system (IMAGE1 S), narrow-band imaging (NBI), photoacoustic imaging (PAI), autofluorescence imaging (AFI), photodynamic diagnosis (PDD), and scanning fibre endoscopy (SFE). The staging and grading techniques for BCa are: optical coherence tomography (OCT), confocal laser endomicroscopy (CLE), Raman spectroscopy, endocytoscopy, and non-linear optical microscopy (NLO). Then a systematic literature search was conducted using MEDLINE, EMBASE and Web of Science from inception to 21 November 2023. Articles were screened and selected by two independent reviewers. Inclusion criteria were: reporting on both the sensitivity and specificity of a particular technique and comparison to histopathology, and in the case of a detection technique comparison to white light cystoscopy (WLC). RESULTS Out of 6707 articles, 189 underwent full-text review, resulting in 52 inclusions. No articles met criteria for IMAGE1 S, PAI, SFE, Raman spectroscopy, and endocytoscopy. All detection techniques showed higher sensitivity than WLC, with NBI leading (87.8-100%). Overall, detection technique specificity was comparable to WLC, with PDD being most specific (23.3-100%). CLE and OCT varied in sensitivity and specificity, with OCT showing higher specificity for BCa diagnosis, notably for carcinoma in situ (97-99%) compared to CLE (62.5-81.3%). NLO demonstrated high sensitivity and specificity (90-97% and 77-100%, respectively) based on limited data from two small ex vivo studies. CONCLUSIONS Optical techniques with the most potential are PDD for detecting and OCT for staging and grading BCa. Further research is crucial to validate their integration into routine practice and explore the value of other imaging techniques.
Collapse
Affiliation(s)
- Marinka J Remmelink
- Department of Urology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Yael Rip
- Department of Biomedical Engineering and Physics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Jakko A Nieuwenhuijzen
- Cancer Center Amsterdam, Treatment and Quality of Life, Amsterdam, The Netherlands
- Department of Urology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes C F Ket
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jorg R Oddens
- Department of Urology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Theo M de Reijke
- Department of Urology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Daniel M de Bruin
- Department of Urology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Li J, Ayi Z, Lu G, Rao H, Yang F, Li J, Sun J, Lu J, Hu X, Zhang S, Hui X. Research progress on the use of the optical coherence tomography system for the diagnosis and treatment of central nervous system tumors. IBRAIN 2024; 11:3-18. [PMID: 40103695 PMCID: PMC11911102 DOI: 10.1002/ibra.12184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 03/20/2025]
Abstract
In central nervous system (CNS) surgery, the accurate identification of tumor boundaries, achieving complete resection of the tumor, and safeguarding healthy brain tissue remain paramount challenges. Despite the expertise of neurosurgeons, the infiltrative nature of the tumors into the surrounding brain tissue often hampers intraoperative differentiation between tumorous and non-tumorous tissue, thus hindering total tumor removal. Optical coherence tomography (OCT), with its unique advantages of high-resolution imaging, efficient image acquisition, real-time intraoperative detection, and radiation-free and noninvasive properties, offers accurate diagnostic capabilities and invaluable intraoperative guidance for minimally invasive CNS tumor diagnosis and treatment. Various OCT systems have been employed in neurological tumor research, including polarization-sensitive OCT systems, orthogonal polarization OCT systems, Doppler OCT systems, and OCT angiography systems. In addition, OCT-based diagnostic and therapeutic techniques have been explored for the surgical resection of CNS tumors. This review aims to compile and evaluate the research progress surrounding the principles of OCT systems and their applications in CNS tumors, providing insights into potential future research avenues and clinical applications.
Collapse
Affiliation(s)
- Jiuhong Li
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Ziba Ayi
- West China School of MedicineSichuan UniversityChengduChina
| | - Gonggong Lu
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Haibo Rao
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Feilong Yang
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Jing Li
- Chengdu Incrpeak Optoelectronics Technology Co., Ltd.ChengduChina
| | - Jiachen Sun
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Junlin Lu
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Xulin Hu
- Clinical Medical College & Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduChina
| | - Si Zhang
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Xuhui Hui
- Department of Neurosurgery/Department of Cardiovascular SurgeryWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
20
|
Kotb A, Hafeji Z, Jesry F, Lintern N, Pathak S, Smith AM, Lutchman KRD, de Bruin DM, Hurks R, Heger M, Khaled YS. Intra-Operative Tumour Detection and Staging in Pancreatic Cancer Surgery: An Integrative Review of Current Standards and Future Directions. Cancers (Basel) 2024; 16:3803. [PMID: 39594758 PMCID: PMC11592681 DOI: 10.3390/cancers16223803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Surgical resection for pancreatic ductal adenocarcinoma (PDAC) entails the excision of the primary tumour and regional lymphadenectomy. This traditional strategy is challenged by the high rate of early recurrence, suggesting inadequate disease staging. Novel methods of intra-operative staging are needed to allow surgical resection to be tailored to the disease's biology. METHODS A search of published articles on the PubMed and Embase databases was performed using the terms 'pancreas' OR 'pancreatic' AND 'intra-operative staging/detection' OR 'guided surgery'. Articles published between January 2000 and June 2023 were included. Technologies that offered intra-operative staging and tailored treatment were curated and summarised in the following integrative review. RESULTS lymph node (LN) mapping and radioimmunoguided surgery have shown promising results but lacked practicality to facilitate real-time intra-operative staging for PDAC. Fluorescence-guided surgery (FGS) offers high contrast and sensitivity, enabling the identification of cancerous tissue and positive LNs with improved precision following intravenous administration of a fluorescent agent. The unique properties of optical coherence tomography and ultrasound elastography lend themselves to be platforms for virtual biopsy intra-operatively. CONCLUSIONS Accurate intra-operative staging of PDAC, localisation of metastatic LNs, and identification of extra-pancreatic disease remain clinically unmet needs under current detection methods and staging standards. Tumour-specific FGS combined with other diagnostic and therapeutic modalities could improve tumour detection and staging in patients with PDAC.
Collapse
Affiliation(s)
- Ahmed Kotb
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Zaynab Hafeji
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Fadel Jesry
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Nicole Lintern
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Samir Pathak
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| | - Andrew M. Smith
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| | - Kishan R. D. Lutchman
- Department of Surgery, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Daniel M. de Bruin
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Rob Hurks
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Yazan S. Khaled
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
21
|
Runsewe OI, Srivastava SK, Sharma S, Chaudhury P, Tang WHW. Optical coherence tomography angiography in cardiovascular disease. Prog Cardiovasc Dis 2024; 87:60-72. [PMID: 39442597 PMCID: PMC11611605 DOI: 10.1016/j.pcad.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Endothelial dysfunction and microvascular remodeling underly the development and progression of a host of cardiovascular disease (CVD). However, current methods to assess coronary epicardial microvascular function are invasive, time-intensive, and costly. Optical coherence tomography angiography (OCTA) is an established technology within ophthalmology that provides a quick, noninvasive assessment of vascular structures within the retina. As a growing body of evidence reveals strong associations between the retinal changes on OCTA and the development and progression of CVD, OCTA may indeed be a surrogate test for end-organ dysfunction. OCTA has potential to enhance diagnostic performance, refine cardiovascular risk assessment, strengthen prognostication, and ultimately, improve patient care. We explore the current literature on OCTA in cardiovascular diseases to summarize the clinical utility of retinal OCTA imaging and discuss next-generation cardiovascular applications.
Collapse
Affiliation(s)
- Oluwapeyibomi I Runsewe
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States of America
| | - Sunil K Srivastava
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Sumit Sharma
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Pulkit Chaudhury
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| |
Collapse
|
22
|
Saccomano G, Pinamonti M, Longo E, Marcuzzo T, Tromba G, Dreossi D, Brun F. The potential of x-ray virtual histology in the diagnosis of skin tumors. Skin Res Technol 2024; 30:e13801. [PMID: 39363439 PMCID: PMC11449805 DOI: 10.1111/srt.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Histopathological analysis represents the gold standard in clinical practice for diagnosing skin neoplasms. While the current diagnostic workflow has specialized in producing robust and accurate results, interpreting tissue architecture and malignant cellular morphology correctly remains one of the greatest challenges for pathologists. This paper aims to explore the prospect of applying x-ray virtual histology to human skin tumor excisions and correlating it with the histological validation. MATERIALS AND METHODS Seven skin biopsies containing intriguing melanoma types and pigmented skin lesions were scanned using x-ray Computed micro-Tomography (μCT) and then sectioned for conventional histology assessment. RESULTS The tissue microarchitecture reconstructed by μCT offers detailed insights into diagnosing the malignancy or benignity of the skin lesions. Three-dimensional reconstruction via x-ray virtual histology reveals infiltrative patterns in basal cell carcinoma and evaluated invasiveness in melanoma. The technology enables the identification of pagetoid distributions of neoplastic cells and the assessment of melanoma depth in three dimensions. CONCLUSION Although the proposed approach is not intended to replace conventional histology, the non-destructive nature of the sample and the clarity provided by virtual inspection demonstrate the promising impact of μCT as a valid support method prior to conventional histological sectioning. Indeed, μCT images can suggest the optimal sectioning position before using a microtome, as is commonly performed in histological practice. Moreover, the three-dimensional nature of the proposed approach paves the way for a more accurate assessment of significant prognostic factors in melanoma, such as Breslow thickness, by considering the whole micro-volume rather than a two-dimensional observation.
Collapse
Affiliation(s)
- Giulia Saccomano
- Elettra‐Sincrotrone Trieste S.C.p.A.BasovizzaItaly
- Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
| | - Maurizio Pinamonti
- Department of Medical, Surgical and Health SciencesUniversity Hospital of TriesteTriesteItaly
| | - Elena Longo
- Elettra‐Sincrotrone Trieste S.C.p.A.BasovizzaItaly
| | - Thomas Marcuzzo
- Department of Medical, Surgical and Health SciencesUniversity Hospital of TriesteTriesteItaly
| | | | | | - Francesco Brun
- Department of Engineering and ArchitectureUniversity of TriesteTriesteItaly
| |
Collapse
|
23
|
Hwang DG, Kang W, Park SM, Jang J. Biohybrid printing approaches for cardiac pathophysiological studies. Biosens Bioelectron 2024; 260:116420. [PMID: 38805890 DOI: 10.1016/j.bios.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Bioengineered hearts, which include single cardiomyocytes, engineered heart tissue, and chamber-like models, generate various biosignals, such as contractility, electrophysiological, and volume-pressure dynamic signals. Monitoring changes in these signals is crucial for understanding the mechanisms of disease progression and developing potential treatments. However, current methodologies face challenges in the continuous monitoring of bioengineered hearts over extended periods and typically require sacrificing the sample post-experiment, thereby limiting in-depth analysis. Thus, a biohybrid system consisting of living and nonliving components was developed. This system primarily features heart tissue alongside nonliving elements designed to support or comprehend its functionality. Biohybrid printing technology has simplified the creation of such systems and facilitated the development of various functional biohybrid systems capable of measuring or even regulating multiple functions, such as pacemakers, which demonstrates its versatility and potential applications. The future of biohybrid printing appears promising, with the ongoing exploration of its capabilities and potential directions for advancement.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea
| | - Wonok Kang
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jinah Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, 37563, Republic of Korea; Department of Convergence IT Engineering (POSTECH), Pohang, 37666, Republic of Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
24
|
Kaya Ş, Kaya MK. Assessment of RNFL and macular changes in the eye related to multiple substance use using OCT. Psychiatry Res Neuroimaging 2024; 345:111889. [PMID: 39278198 DOI: 10.1016/j.pscychresns.2024.111889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Substance use is a chronic and recurrent public healthcare concern increasing in the world, causing negative outcomes. Two or more substance use is common among people who have substance use disorders and who receive treatment. For this reason, the present study aimed to measure Retinal Nerve Fiber Layer (RNFL), Mean Macular Thickness (MMT), Central Macular Thickness (CMT) in patients who have Multiple substance use disorder (MSUD) using Optical Coherence Tomography (OCT), considering that it will contribute to the literature. Among the inpatients who were rehabilitated in Elazig Mental Hospital Alcohol and Substance Addiction Treatment Center, 75 people who were diagnosed with MSUD according to DSM-5 and met the criteria, and 51 control groups were included in the study. RNFL, MMT and CMT measurements of both eyes of all participants were made by using the OCT. Total RNFL measurement were significantly thicker than the control group (p < 0.001). MMT and CMT of the eyes of the patient were thinner than the control group (p = 0.009, p < 0.001). The findings provide important contributions to the literature data and in light of these findings, it can be recommended to consider visual findings and possible neurodegeneration when evaluating patients in the addiction group and planning their treatment.
Collapse
Affiliation(s)
- Şüheda Kaya
- Elazig Fethi Sekin City Hospital, Elazig 23200, Turkey.
| | - Mehmet Kaan Kaya
- Ophthalmology Clinic, Universal Eye Hospital, Elazig 23040, Turkey
| |
Collapse
|
25
|
Kasat PR, Kashikar SV, Parihar P, Sachani P, Shrivastava P, Mapari SA, Pradeep U, Bedi GN, Bhangale PN. Advances in Imaging for Metastatic Epidural Spinal Cord Compression: A Comprehensive Review of Detection, Diagnosis, and Treatment Planning. Cureus 2024; 16:e70110. [PMID: 39449880 PMCID: PMC11501474 DOI: 10.7759/cureus.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Metastatic epidural spinal cord compression (MESCC) is a critical oncologic emergency caused by the invasion of metastatic tumors into the spinal epidural space, leading to compression of the spinal cord. If not promptly diagnosed and treated, MESCC can result in irreversible neurological deficits, including paralysis, significantly impacting the patient's quality of life. Early detection and timely intervention are crucial to prevent permanent damage. Imaging modalities play a pivotal role in the diagnosis, assessment of disease extent, and treatment planning for MESCC. Magnetic resonance imaging (MRI) is the current gold standard due to its superior ability to visualize the spinal cord, epidural space, and metastatic lesions. However, recent advances in imaging technologies have enhanced the detection and management of MESCC. Innovations such as functional MRI, diffusion-weighted imaging (DWI), and hybrid techniques like positron emission tomography-computed tomography (PET-CT) and PET-MRI have improved the accuracy of diagnosis, particularly in detecting early metastatic changes and guiding therapeutic interventions. This review provides a comprehensive analysis of the evolution of imaging techniques for MESCC, focusing on their roles in detection, diagnosis, and treatment planning. It also discusses the impact of these advances on clinical outcomes and future research directions in imaging modalities for MESCC. Understanding these advancements is critical for optimizing the management of MESCC and improving patient prognosis.
Collapse
Affiliation(s)
- Paschyanti R Kasat
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Shivali V Kashikar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratapsingh Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratiksha Sachani
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Priyal Shrivastava
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Smruti A Mapari
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Utkarsh Pradeep
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Gautam N Bedi
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Paritosh N Bhangale
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
26
|
Ham BS. Intensity-Product-Based Optical Sensing to Beat the Diffraction Limit in an Interferometer. SENSORS (BASEL, SWITZERLAND) 2024; 24:5041. [PMID: 39124088 PMCID: PMC11315043 DOI: 10.3390/s24155041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The classically defined minimum uncertainty of the optical phase is known as the standard quantum limit or shot-noise limit (SNL), originating in the uncertainty principle of quantum mechanics. Based on the SNL, the phase sensitivity is inversely proportional to K, where K is the number of interfering photons or statistically measured events. Thus, using a high-power laser is advantageous to enhance sensitivity due to the K gain in the signal-to-noise ratio. In a typical interferometer, however, the resolution remains in the diffraction limit of the K = 1 case unless the interfering photons are resolved as in quantum sensing. Here, a projection measurement method in quantum sensing is adapted for classical sensing to achieve an additional K gain in the resolution. To understand the projection measurements, several types of conventional interferometers based on N-wave interference are coherently analyzed as a classical reference and numerically compared with the proposed method. As a result, the Kth-order intensity product applied to the N-wave spectrometer exceeds the diffraction limit in classical sensing and the Heisenberg limit in quantum sensing, where the classical N-slit system inherently satisfies the Heisenberg limit of π/N in resolution.
Collapse
Affiliation(s)
- Byoung S. Ham
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; ; Tel.: +82-62-715-3502
- Qu-Lidar, Gwangju 61005, Republic of Korea
| |
Collapse
|
27
|
Ahmed S, Son T, Yao X. Polarization-resolved analysis of outer retinal bands: investigating ballistic and multiply scattered photons using full-field swept-source optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:4749-4763. [PMID: 39346986 PMCID: PMC11427207 DOI: 10.1364/boe.523202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Precise interpretation of the anatomical origins of outer retinal optical coherence tomography (OCT) presents technical challenges owing to the delicate nature of the retina. To address this challenge, our study introduces a novel polarization-sensitive full-field swept-source OCT (FF-SS-OCT) that provides parallel-polarization and cross-polarization OCT measurements, predominantly capturing ballistically reflected photons and multiply scattered photons, respectively. Notably, parallel-polarization OCT unveils layer-like structures more effectively, including the inner plexiform layer (IPL) sub-layers, outer plexiform layer (OPL) sub-layers (in rod-dominant regions), and rod/cone outer segment (OS) tips, compared to cross-polarization OCT, where such sub-layers are not visible. Through a comparative analysis of parallel-polarization and cross-polarization OCT images of the outer retina, we discovered that the 2nd outer retinal OCT band results from contributions from both the ellipsoid zone (EZ) and the inner segment/outer segment (IS/OS) junction. Similarly, the 3rd outer retinal OCT band appears to reflect contributions from both the interdigitation zone (IZ) and photoreceptor OS tips. This polarization-sensitive approach advances our understanding of the origins of outer retinal OCT signals and proposes potential new biomarkers for assessing retinal health and diseases.
Collapse
Affiliation(s)
- Shaiban Ahmed
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Chapelle AC, Rakic JM, Plant GT. Utility of ganglion cells for the evaluation of anterior visual pathway pathology: a review. Acta Neurol Belg 2024; 124:1113-1123. [PMID: 38538906 DOI: 10.1007/s13760-024-02522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 07/25/2024]
Abstract
The management of optic neuropathy is fundamental to neuro-ophthalmic practice. Following the invention of the ophthalmoscope, clinicians, for a century or more, relied upon fundus examination in the evaluation of optic neuropathy. However, the advent of optical coherence tomography, based on the principle of backscattering of light and interferometry, has revolutionized the analysis of optic nerve and retinal disorders. Optical coherence tomography has proven of particular value in the measurement, at the micron level, of the peripapillary retinal nerve fibre layer and the ganglion cell layer. These measurements have proven critical in the differential diagnosis and monitoring of optic neuropathy. Specifically, thinning of the peripapillary nerve fibre layer provides evidence of axonal loss affecting any sector of the optic nerve. Thinning of the macular ganglion cell layer, on the other hand, shows a more precise correlation with visual deficits due to retrograde degeneration following optic nerve damage, although limited to central retina. In daily practise, optical coherence tomography is of great value in assessing the diagnosis, prognosis and response to treatment in optic neuropathy. Particular advances have been made, for example, in the assessment of optic neuritis, papilloedema and chiasmal compression which have translated to everyday practice. As with any other imaging technology the clinician must have a clear understanding of acquisition artefacts. A further issue is the relatively limited normative database in sub-populations such as the young and individuals with a refractive error > + 5 or < -5 dioptres.
Collapse
Affiliation(s)
- Anne-Catherine Chapelle
- Department of Ophthalmology, Central University Hospital of Liège, University of Liège, Avenue de L'hôpital, 4000, Liège, Belgium.
| | - Jean-Marie Rakic
- Department of Ophthalmology, Central University Hospital of Liège, University of Liège, Avenue de L'hôpital, 4000, Liège, Belgium
| | - Gordon Terence Plant
- Department of Neurodegeneration and Rehabilitation, Faculty of Brain Sciences, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
29
|
Xu Z, Li Y, Fu Q, Wang C, Yu Y, Fang X, Zhu W, Wu X, Wei R. Retinal structural thicknesses reflect clinically relevant microstructural white matter abnormalities in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2024; 88:105713. [PMID: 38905991 DOI: 10.1016/j.msard.2024.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Thinning of retinal thickness seen on optical coherence tomography (OCT) is frequent in patients with neuromyelitis optica spectrum disorder (NMOSD). We explored the association between OCT metrics, MRI measurements and clinical outcomes in NMOSD. METHODS 44 NMOSD and 60 controls underwent OCT and MR imaging. Mean peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell complex (GCC) thicknesses were measured. Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) was used to measure the white matter microstructural integrity. In NMOSD patients, Expanded Disability Status Scale (EDSS) was used to quantify disability. Visual acuity (VA) was also performed for all participants. RESULTS pRNFL thickness was positively associated with mean diffusivity in left posterior thalamic radiation (pp = 0.010) and axial kurtosis in inferior cerebellar peduncle (p = 0.023). Similarly, GCC thickness in NMOSD patients was positively associated with fractional anisotropy in right superior longitudinal fascicules (p = 0. 041) and axial kurtosis of left cerebellar peduncle (p = 0.011). CONCLUSIONS In NMOSD, pRNFL and GCC reflect integrity of clinically relevant white matter structures underlying the value of OCT metrics as markers of neuronaxonal loss and disability.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, PR China
| | - Yulin Li
- Department of Emergency Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, PR China
| | - Qinghui Fu
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, PR China
| | - Caimu Wang
- Intensive Care Unit, Ninghai First Hospital, 142 Taoyuan middle road, Ninghai, Zhejiang 315600, PR China
| | - Yongwei Yu
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, PR China
| | - Xing Fang
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, PR China
| | - Wenli Zhu
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, PR China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, PR China.
| | - Ruili Wei
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, NO. 79 Qingchun Road, Hangzhou, Zhejiang, 310003, PR China.
| |
Collapse
|
30
|
Ge GR, Song W, Giannetto MJ, Rolland JP, Nedergaard M, Parker KJ. Mouse brain elastography changes with sleep/wake cycles, aging, and Alzheimer's disease. Neuroimage 2024; 295:120662. [PMID: 38823503 PMCID: PMC11409907 DOI: 10.1016/j.neuroimage.2024.120662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
Understanding the physiological processes in aging and how neurodegenerative disorders affect cognitive function is a high priority for advancing human health. One specific area of recently enabled research is the in vivo biomechanical state of the brain. This study utilized reverberant optical coherence elastography, a high-resolution elasticity imaging method, to investigate stiffness changes during the sleep/wake cycle, aging, and Alzheimer's disease in murine models. Four-dimensional scans of 44 wildtype mice, 13 mice with deletion of aquaporin-4 water channel, and 12 mice with Alzheimer-related pathology (APP/PS1) demonstrated that (1) cortical tissue became softer (on the order of a 10% decrease in shear wave speed) when young wildtype mice transitioned from wake to anesthetized, yet this effect was lost in aging and with mice overexpressing amyloid-β or lacking the water channel AQP4. (2) Cortical stiffness increased with age in all mice lines, but wildtype mice exhibited the most prominent changes as a function of aging. The study provides novel insight into the brain's biomechanics, the constraints of fluid flow, and how the state of brain activity affects basic properties of cortical tissues.
Collapse
Affiliation(s)
- Gary R Ge
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael J Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jannick P Rolland
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA; Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Center for Visual Science, University of Rochester, 361 Meliora Hall, Rochester, NY 14627, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200-N, Denmark.
| | - Kevin J Parker
- Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Electrical and Computer Engineering, University of Rochester, 500 Computer Studies Building, Rochester, NY 14627, USA; Department of Imaging Sciences (Radiology), University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
31
|
Zhang T, Liao J, Zhang Y, Huang Z, Li C. Robust Ultrafast Projection Pipeline for Structural and Angiography Imaging of Fourier-Domain Optical Coherence Tomography. Diagnostics (Basel) 2024; 14:1509. [PMID: 39061645 PMCID: PMC11275292 DOI: 10.3390/diagnostics14141509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The current methods to generate projections for structural and angiography imaging of Fourier-Domain optical coherence tomography (FD-OCT) are significantly slow for prediagnosis improvement, prognosis, real-time surgery guidance, treatments, and lesion boundary definition. This study introduced a robust ultrafast projection pipeline (RUPP) and aimed to develop and evaluate the efficacy of RUPP. RUPP processes raw interference signals to generate structural projections without the need for Fourier Transform. Various angiography reconstruction algorithms were utilized for efficient projections. Traditional methods were compared to RUPP using PSNR, SSIM, and processing time as evaluation metrics. The study used 22 datasets (hand skin: 9; labial mucosa: 13) from 8 volunteers, acquired with a swept-source optical coherence tomography system. RUPP significantly outperformed traditional methods in processing time, requiring only 0.040 s for structural projections, which is 27 times faster than traditional summation projections. For angiography projections, the best RUPP variation took 0.15 s, making it 7518 times faster than the windowed eigen decomposition method. However, PSNR decreased by 41-45% and SSIM saw reductions of 25-74%. RUPP demonstrated remarkable speed improvements over traditional methods, indicating its potential for real-time structural and angiography projections in FD-OCT, thereby enhancing clinical prediagnosis, prognosis, surgery guidance, and treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Chunhui Li
- Centre for Medical Engineering and Technology (CMET), School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK; (T.Z.); (J.L.); (Y.Z.); (Z.H.)
| |
Collapse
|
32
|
Lipkowitz G, Saccone MA, Panzer MA, Coates IA, Hsiao K, Ilyn D, Kronenfeld JM, Tumbleston JR, Shaqfeh ESG, DeSimone JM. Growing three-dimensional objects with light. Proc Natl Acad Sci U S A 2024; 121:e2303648121. [PMID: 38950359 PMCID: PMC11252790 DOI: 10.1073/pnas.2303648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/07/2024] [Indexed: 07/03/2024] Open
Abstract
Vat photopolymerization (VP) additive manufacturing enables fabrication of complex 3D objects by using light to selectively cure a liquid resin. Developed in the 1980s, this technique initially had few practical applications due to limitations in print speed and final part material properties. In the four decades since the inception of VP, the field has matured substantially due to simultaneous advances in light delivery, interface design, and materials chemistry. Today, VP materials are used in a variety of practical applications and are produced at industrial scale. In this perspective, we trace the developments that enabled this printing revolution by focusing on the enabling themes of light, interfaces, and materials. We focus on these fundamentals as they relate to continuous liquid interface production (CLIP), but provide context for the broader VP field. We identify the fundamental physics of the printing process and the key breakthroughs that have enabled faster and higher-resolution printing, as well as production of better materials. We show examples of how in situ print process monitoring methods such as optical coherence tomography can drastically improve our understanding of the print process. Finally, we highlight areas of recent development such as multimaterial printing and inorganic material printing that represent the next frontiers in VP methods.
Collapse
Affiliation(s)
- Gabriel Lipkowitz
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | - Max A. Saccone
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Radiology, Stanford University, Stanford, CA94305
| | | | - Ian A. Coates
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Kaiwen Hsiao
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Radiology, Stanford University, Stanford, CA94305
| | - Daniel Ilyn
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | | | | | - Eric S. G. Shaqfeh
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Joseph M. DeSimone
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Radiology, Stanford University, Stanford, CA94305
| |
Collapse
|
33
|
Lian W, Chen C, Wang J, Li J, Liu C, Zhu X. Application of optical coherence tomography in cardiovascular diseases: bibliometric and meta-analysis. Front Cardiovasc Med 2024; 11:1414205. [PMID: 39045003 PMCID: PMC11263217 DOI: 10.3389/fcvm.2024.1414205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Significance Since the advent of Optical Coherence Tomography (OCT) two decades ago, there has been substantial advancement in our understanding of intravascular biology. Identifying culprit lesion pathology through OCT could precipitate a paradigm shift in the treatment of patients with Acute Coronary Syndrome. Given the technical prowess of OCT in the realm of cardiology, bibliometric analysis can reveal trends and research focal points in the application of OCT for cardiovascular diseases. Concurrently, meta-analyses provide a more comprehensive evidentiary base, supporting the clinical efficacy of OCT-guided Percutaneous Coronary Intervention (PCI). Design This study employs a dual approach of Bibliometric and Meta-analysis. Methods Relevant literature from 2003 to 2023 was extracted from the Web of Science Core Collection (WoSCC) and analyzed using VOSviewer, CiteSpace, and R for publication patterns, countries, institutions, authors, and research hotspots. The study compares OCT-guided and coronary angiography-guided PCI in treating adult coronary artery disease through randomized controlled trials (RCTs) and observational studies. The study has been reported in the line with PRISMA and AMSTAR Guidelines. Results Adhering to inclusion and exclusion criteria, 310 publications were incorporated, demonstrating a continual rise in annual output. Chinese researchers contributed the most studies, while American research wielded greater influence. Analysis of trends indicated that research on OCT and angiography-guided PCI has become a focal topic in recent cohort studies and RCTs. In 11 RCTs (n = 5,277), OCT-guided PCI was not significantly associated with a reduction in the risk of Major Adverse Cardiac Events (MACE) (Odds ratio 0.84, 95% CI 0.65-1.10), cardiac death (0.61, 0.36-1.02), all-cause death (0.7, 0.49-1.02), myocardial infarction (MI) (0.88, 0.69-1.13), target lesion revascularization (TLR) (0.94, 0.7-1.27), target vessel revascularization (TVR) (1.04, 0.76-1.43), or stent thrombosis (0.72, 0.38-1.38). However, in 7 observational studies (n = 4,514), OCT-guided PCI was associated with a reduced risk of MACE (0.66, 0.48-0.91) and TLR (0.39, 0.22-0.68). Conclusion Our comprehensive review of OCT in cardiovascular disease literature from 2004 to 2023, encompassing country and institutional origins, authors, and publishing journals, suggests that OCT-guided PCI does not demonstrate significant clinical benefits in RCTs. Nevertheless, pooled results from observational studies indicate a reduction in MACE and TLR.
Collapse
Affiliation(s)
- Wenjing Lian
- Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Cong Chen
- Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jie Wang
- Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Chao Liu
- Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
34
|
Kumar MJ, Kotak PS, Acharya S, Nelakuditi M, Parepalli A. A Comprehensive Review of Ocular Manifestations in Systemic Diseases. Cureus 2024; 16:e65693. [PMID: 39211636 PMCID: PMC11358114 DOI: 10.7759/cureus.65693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Ocular manifestations often serve as critical indicators of underlying systemic diseases, providing valuable diagnostic and prognostic information. This comprehensive review aims to elucidate the complex interplay between ocular symptoms and systemic conditions, emphasising the importance of early recognition and interdisciplinary collaboration in patient management. The review encompasses various systemic diseases, including cardiovascular, autoimmune, infectious, neurological, endocrine, hematologic, genetic, dermatologic, gastrointestinal, hepatic, renal, and connective tissue disorders, highlighting their specific ocular manifestations. Diagnostic approaches, including ophthalmologic examination techniques, imaging modalities, and laboratory tests, are discussed to enhance diagnostic accuracy. Furthermore, the review outlines current management and treatment strategies, emphasising the need for a multidisciplinary approach to care. Emerging therapies and future research directions are also explored, underscoring the necessity of continued innovation in this field. This review aims to improve clinical practices, promote integrative healthcare, and ultimately enhance patient outcomes by providing a detailed overview of ocular manifestations in systemic diseases.
Collapse
Affiliation(s)
- M Jayanth Kumar
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Palash S Kotak
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Manikanta Nelakuditi
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Avinash Parepalli
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
35
|
Luengnaruemitchai G, Sangchocanonta S, Munthuli A, Phienphanich P, Puangarom S, Jariyakosol S, Hirunwiwatkul P, Tantibundhit C. Automated Alzheimer's, Mild Cognitive Impairment, and Normal Aging Screening using Polar Transformation of Optic Disc and Central Zone of Fundus Images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40038980 DOI: 10.1109/embc53108.2024.10782014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Detecting Mild Cognitive Impairment (MCI) is crucial for mitigating the risk of Alzheimer's disease (AD), a leading global cause of death. However, the current gold standard for AD and MCI detection relies on specialized equipment often limited to large testing centers, particularly in low-resource settings like Thailand. Our previous work aimed to create a cost-effective MCI and AD screening method using fundus images but struggled to differentiate between AD and MCI. Henceforth, we developed the proposed methodology, utilizing DenseNet-121 on polar-transformed and zone-selected fundus images, which significantly enhances AD and MCI classification, achieving 83% accuracy, 90% sensitivity, 77% specificity, 87% precision, and an F-1 score of 88%. Moreover, the model's Grad-Cam++ heatmap highlights vasculature differences, particularly in tortuosity and thickness, between AD and MCI fundus images. Combined with our previous work, we created a fully automated pipeline model for MCI, AD, and Normal aging classification, which is inexpensive, fast, and non-invasive with an overall 3-class accuracy of 88%.
Collapse
|
36
|
Fünfer K, Mozaffari M, Mayer O, Schlingmann S, Welzel J, Schuh S. One-Stop Shop: Diagnosis and Treatment of Basal Cell Carcinoma in One Step. J Clin Med 2024; 13:3830. [PMID: 38999395 PMCID: PMC11242514 DOI: 10.3390/jcm13133830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Monitoring the tumor margins of basal cell carcinomas is still a challenge in everyday clinical practice. Usually, the clinical margins of the tumor are marked by the naked eye or, even better, with dermoscopy before surgery and then examined in detail after the operation using histological examination. In order to achieve tumor freedom, several surgical steps are sometimes necessary, meaning that patients spend longer periods in hospital and the healthcare system is burdened more as a result. One way to improve this is the one-stop shop method, which requires precise diagnostics and margin marking before and during surgery so that tumor freedom can be achieved after just one surgery. For this reason, the current status of the diagnosis and treatment of basal cell carcinomas before and after surgery is to be examined following extensive literature research using devices and methods that have already been tested in order to determine how a simplified process of tumor margin control of basal cell carcinomas can be made possible both in vivo and ex vivo.
Collapse
Affiliation(s)
- Kristina Fünfer
- Department of Dermatology and Allergology, University Hospital, 86179 Augsburg, Germany
| | - Marco Mozaffari
- Department of Dermatology and Allergology, University Hospital, 86179 Augsburg, Germany
| | - Oliver Mayer
- Department of Dermatology and Allergology, University Hospital, 86179 Augsburg, Germany
| | - Sophia Schlingmann
- Department of Dermatology and Allergology, University Hospital, 86179 Augsburg, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital, 86179 Augsburg, Germany
| | - Sandra Schuh
- Department of Dermatology and Allergology, University Hospital, 86179 Augsburg, Germany
| |
Collapse
|
37
|
Fan B, Yang S, Wang L, Xu M. Spatially Resolved Defect Characterization and Fidelity Assessment for Complex and Arbitrary Irregular 3D Printing Based on 3D P-OCT and GCode. SENSORS (BASEL, SWITZERLAND) 2024; 24:3636. [PMID: 38894427 PMCID: PMC11175316 DOI: 10.3390/s24113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
To address the challenges associated with achieving high-fidelity printing of complex 3D bionic models, this paper proposes a method for spatially resolved defect characterization and fidelity assessment. This approach is based on 3D printer-associated optical coherence tomography (3D P-OCT) and GCode information. This method generates a defect characterization map by comparing and analyzing the target model map from GCode information and the reconstructed model map from 3D P-OCT. The defect characterization map enables the detection of defects such as material accumulation, filament breakage and under-extrusion within the print path, as well as stringing outside the print path. The defect characterization map is also used for defect visualization, fidelity assessment and filament breakage repair during secondary printing. Finally, the proposed method is validated on different bionic models, printing paths and materials. The fidelity of the multilayer HAP scaffold with gradient spacing increased from 0.8398 to 0.9048 after the repair of filament breakage defects. At the same time, the over-extrusion defects on the nostril and along the high-curvature contours of the nose model were effectively detected. In addition, the finite element analysis results verified that the 60-degree filling model is superior to the 90-degree filling model in terms of mechanical strength, which is consistent with the defect detection results. The results confirm that the proposed method based on 3D P-OCT and GCode can achieve spatially resolved defect characterization and fidelity assessment in situ, facilitating defect visualization and filament breakage repair. Ultimately, this enables high-fidelity printing, encompassing both shape and function.
Collapse
Affiliation(s)
- Bowen Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
| | - Shanshan Yang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou 310018, China
| | - Ling Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou 310018, China
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou 310018, China
| |
Collapse
|
38
|
Goswami N, Anastasio MA, Popescu G. Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: a review-part II. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22714. [PMID: 39070593 PMCID: PMC11283205 DOI: 10.1117/1.jbo.29.s2.s22714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024]
Abstract
Significance Quantitative phase imaging (QPI) is a non-invasive, label-free technique that provides intrinsic information about the sample under study. Such information includes the structure, function, and dynamics of the sample. QPI overcomes the limitations of conventional fluorescence microscopy in terms of phototoxicity to the sample and photobleaching of the fluorophore. As such, the application of QPI in estimating the three-dimensional (3D) structure and dynamics is well-suited for a range of samples from intracellular organelles to highly scattering multicellular samples while allowing for longer observation windows. Aim We aim to provide a comprehensive review of 3D QPI and related phase-based measurement techniques along with a discussion of methods for the estimation of sample dynamics. Approach We present information collected from 106 publications that cover the theoretical description of 3D light scattering and the implementation of related measurement techniques for the study of the structure and dynamics of the sample. We conclude with a discussion of the applications of the reviewed techniques in the biomedical field. Results QPI has been successfully applied to 3D sample imaging. The scattering-based contrast provides measurements of intrinsic quantities of the sample that are indicative of disease state, stage of growth, or overall dynamics. Conclusions We reviewed state-of-the-art QPI techniques for 3D imaging and dynamics estimation of biological samples. Both theoretical and experimental aspects of various techniques were discussed. We also presented the applications of the discussed techniques as applied to biomedicine and biology research.
Collapse
Affiliation(s)
- Neha Goswami
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Mark A. Anastasio
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| |
Collapse
|
39
|
Prairie ML, Gencturk M, McClelland CM, Marka NA, Jiang Z, Folkertsma M, Lee MS. Establishing Optic Nerve Diameter Threshold Sensitive and Specific for Optic Atrophy Diagnosis. Clin Neuroradiol 2024; 34:373-378. [PMID: 38172261 DOI: 10.1007/s00062-023-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE To determine a potential threshold optic nerve diameter (OND) that could reliably differentiate healthy nerves from those affected by optic atrophy (OA) and to determine correlations of OND in OA with retinal nerve fiber layer (RNFL) thickness, visual acuity (VA), and visual field mean deviation (VFMD). METHODS This was a retrospective case control study. Magnetic resonance (MR) images were reviewed from individuals with OA aged 18 years or older with vision loss for more than 6 months and an OA diagnosis established by a neuro-ophthalmologist. Individuals without OA who underwent MR imaging of the orbit for other purposes were also collected. OND was measured on coronal T2-weighted images in the midorbital section, 1cm posterior to the optic disc. Measurements of mean RNFL thickness, VA and VFMD were also collected. RESULTS In this study 47 OA subjects (63% women, 78 eyes) and 75 normal subjects (42.7% women, 127 eyes) were assessed. Healthy ONDs (mean 2.73 ± 0.24 mm) were significantly greater than OA nerve diameters (mean 1.94 ± 0.32 mm; P < 0.001). A threshold OND of ≤2.3 mm had a sensitivity of 0.92 and a specificity of 0.93 in predicting OA. Mean RNFL (r = 0.05, p = 0.68), VA (r = 0.17, p = 0.14), and VFMD (r = 0.18, p = 0.16) were not significantly associated with OND. CONCLUSION ONDs are significantly reduced in patients with OA compared with healthy nerves. A threshold OND of ≤2.3 mm is highly sensitive and specific for a diagnosis of OA. OND was not significantly correlated with RNFL thickness, VA, or VFMD.
Collapse
Affiliation(s)
- Michael L Prairie
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Mehmet Gencturk
- Department of Neuroradiology, University of Minnesota, Minneapolis, MN, USA
| | - Collin M McClelland
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas A Marka
- Department of Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ziou Jiang
- Department of Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mark Folkertsma
- Department of Neuroradiology, University of Minnesota, Minneapolis, MN, USA
| | - Michael S Lee
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
40
|
Lu X, Zhou C, Delima RS, Lees EW, Soni A, Dvorak DJ, Ren S, Ji T, Bahi A, Ko F, Berlinguette CP. Visualization of CO 2 electrolysis using optical coherence tomography. Nat Chem 2024; 16:979-987. [PMID: 38429344 DOI: 10.1038/s41557-024-01465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
Electrolysers offer an appealing technology for conversion of CO2 into high-value chemicals. However, there are few tools available to track the reactions that occur within electrolysers. Here we report an electrolysis optical coherence tomography platform to visualize the chemical reactions occurring in a CO2 electrolyser. This platform was designed to capture three-dimensional images and videos at high spatial and temporal resolutions. We recorded 12 h of footage of an electrolyser containing a porous electrode separated by a membrane, converting a continuous feed of liquid KHCO3 to reduce CO2 into CO at applied current densities of 50-800 mA cm-2. This platform visualized reactants, intermediates and products, and captured the strikingly dynamic movement of the cathode and membrane components during electrolysis. It also linked CO production to regions of the electrolyser in which CO2 was in direct contact with both membrane and catalyst layers. These results highlight how this platform can be used to track reactions in continuous flow electrochemical reactors.
Collapse
Affiliation(s)
- Xin Lu
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Zhou
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Materials Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Roxanna S Delima
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric W Lees
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Abhishek Soni
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Dvorak
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shaoxuan Ren
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Tengxiao Ji
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Addie Bahi
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank Ko
- Department of Materials Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Wu J, Ma Q, Zhou X, Wei Y, Liu Z, Kang H. Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning. Biomed Phys Eng Express 2024; 10:045026. [PMID: 38718764 DOI: 10.1088/2057-1976/ad488f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Evaluation of skin recovery is an important step in the treatment of burns. However, conventional methods only observe the surface of the skin and cannot quantify the injury volume. Optical coherence tomography (OCT) is a non-invasive, non-contact, real-time technique. Swept source OCT uses near infrared light and analyzes the intensity of light echo at different depths to generate images from optical interference signals. To quantify the dynamic recovery of skin burns over time, laser induced skin burns in mice were evaluated using deep learning of Swept source OCT images. A laser-induced mouse skin thermal injury model was established in thirty Kunming mice, and OCT images of normal and burned areas of mouse skin were acquired at day 0, day 1, day 3, day 7, and day 14 after laser irradiation. This resulted in 7000 normal and 1400 burn B-scan images which were divided into training, validation, and test sets at 8:1.5:0.5 ratio for the normal data and 8:1:1 for the burn data. Normal images were manually annotated, and the deep learning U-Net model (verified with PSPNe and HRNet models) was used to segment the skin into three layers: the dermal epidermal layer, subcutaneous fat layer, and muscle layer. For the burn images, the models were trained to segment just the damaged area. Three-dimensional reconstruction technology was then used to reconstruct the damaged tissue and calculate the damaged tissue volume. The average IoU value and f-score of the normal tissue layer U-Net segmentation model were 0.876 and 0.934 respectively. The IoU value of the burn area segmentation model reached 0.907 and f-score value reached 0.951. Compared with manual labeling, the U-Net model was faster with higher accuracy for skin stratification. OCT and U-Net segmentation can provide rapid and accurate analysis of tissue changes and clinical guidance in the treatment of burns.
Collapse
Affiliation(s)
- Jingyuan Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
- College of Life Sciences, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Qiong Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Xun Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Yu Wei
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
- College of Life Sciences, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Zhibo Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Hongxiang Kang
- Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| |
Collapse
|
42
|
Burström G, Amini M, El-Hajj VG, Arfan A, Gharios M, Buwaider A, Losch MS, Manni F, Edström E, Elmi-Terander A. Optical Methods for Brain Tumor Detection: A Systematic Review. J Clin Med 2024; 13:2676. [PMID: 38731204 PMCID: PMC11084501 DOI: 10.3390/jcm13092676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: In brain tumor surgery, maximal tumor resection is typically desired. This is complicated by infiltrative tumor cells which cannot be visually distinguished from healthy brain tissue. Optical methods are an emerging field that can potentially revolutionize brain tumor surgery through intraoperative differentiation between healthy and tumor tissues. Methods: This study aimed to systematically explore and summarize the existing literature on the use of Raman Spectroscopy (RS), Hyperspectral Imaging (HSI), Optical Coherence Tomography (OCT), and Diffuse Reflectance Spectroscopy (DRS) for brain tumor detection. MEDLINE, Embase, and Web of Science were searched for studies evaluating the accuracy of these systems for brain tumor detection. Outcome measures included accuracy, sensitivity, and specificity. Results: In total, 44 studies were included, covering a range of tumor types and technologies. Accuracy metrics in the studies ranged between 54 and 100% for RS, 69 and 99% for HSI, 82 and 99% for OCT, and 42 and 100% for DRS. Conclusions: This review provides insightful evidence on the use of optical methods in distinguishing tumor from healthy brain tissue.
Collapse
Affiliation(s)
- Gustav Burström
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Misha Amini
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Victor Gabriel El-Hajj
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Arooj Arfan
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Maria Gharios
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Ali Buwaider
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Merle S. Losch
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, 2627 Delft, The Netherlands
| | - Francesca Manni
- Department of Electrical Engineering, Eindhoven University of Technology (TU/e), 5612 Eindhoven, The Netherlands;
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
- Capio Spine Center Stockholm, Löwenströmska Hospital, 194 80 Upplands-Väsby, Sweden
- Department of Medical Sciences, Örebro University, 701 85 Örebro, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
- Capio Spine Center Stockholm, Löwenströmska Hospital, 194 80 Upplands-Väsby, Sweden
- Department of Medical Sciences, Örebro University, 701 85 Örebro, Sweden
- Department of Surgical Sciences, Uppsala University, 751 35 Uppsala, Sweden
| |
Collapse
|
43
|
Seesan T, Mukherjee P, Abd El-Sadek I, Lim Y, Zhu L, Makita S, Yasuno Y. Optical-coherence-tomography-based deep-learning scatterer-density estimator using physically accurate noise model. BIOMEDICAL OPTICS EXPRESS 2024; 15:2832-2848. [PMID: 38855681 PMCID: PMC11161371 DOI: 10.1364/boe.519743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 06/11/2024]
Abstract
We demonstrate a deep-learning-based scatterer density estimator (SDE) that processes local speckle patterns of optical coherence tomography (OCT) images and estimates the scatterer density behind each speckle pattern. The SDE is trained using large quantities of numerically simulated OCT images and their associated scatterer densities. The numerical simulation uses a noise model that incorporates the spatial properties of three types of noise, i.e., shot noise, relative-intensity noise, and non-optical noise. The SDE's performance was evaluated numerically and experimentally using two types of scattering phantom and in vitro tumor spheroids. The results confirmed that the SDE estimates scatterer densities accurately. The estimation accuracy improved significantly when compared with our previous deep-learning-based SDE, which was trained using numerical speckle patterns generated from a noise model that did not account for the spatial properties of noise.
Collapse
Affiliation(s)
- Thitiya Seesan
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Ibrahim Abd El-Sadek
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Department of Physics, Faculty of Science, Damietta University, New Damietta City 34517, Damietta, Egypt
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
44
|
Searles K, Shalabi N, Hohert G, Gharib N, Jayhooni SMH, Lane PM, Takahata K. Distal planar rotary scanner for endoscopic optical coherence tomography. Biomed Eng Lett 2024; 14:583-592. [PMID: 38645593 PMCID: PMC11026329 DOI: 10.1007/s13534-024-00353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 04/23/2024] Open
Abstract
Optical coherence tomography (OCT) is becoming a more common endoscopic imaging modality for detecting and treating disease given its high resolution and image quality. To use OCT for 3-dimensional imaging of small lumen, embedding an optical scanner at the distal end of an endoscopic probe for circumferential scanning the probing light is a promising way to implement high-quality imaging unachievable with the conventional method of revolving an entire probe. To this end, the present work proposes a hollow and planar micro rotary actuator for its use as an endoscopic distal scanner. A miniaturized design of this ferrofluid-assisted electromagnetic actuator is prototyped to act as a full 360° optical scanner, which is integrated at the tip of a fiber-optic probe together with a gradient-index lens for use with OCT. The scanner is revealed to achieve a notably improved dynamic performance that shows a maximum speed of 6500 rpm, representing 325% of the same reported with the preceding design, while staying below the thermal limit for safe in-vivo use. The scanner is demonstrated to perform real-time OCT using human fingers as live tissue samples for the imaging tests. The acquired images display no shadows from the electrical wires to the scanner, given its hollow architecture that allows the probing light to pass through the actuator body, as well as the quality high enough to differentiate the dermis from the epidermis while resolving individual sweat glands, proving the effectiveness of the prototyped scanner design for endoscopic OCT application.
Collapse
Affiliation(s)
- Kyle Searles
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Nabil Shalabi
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Geoffrey Hohert
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 4E6 Canada
| | - Nirvana Gharib
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | | | - Pierre M. Lane
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 4E6 Canada
| | - Kenichi Takahata
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
45
|
Baykara S, Kazğan A, Yıldırım H, Tabara MF, Kaşıkcı HÖ, Danacı Keleş D. Retinal changes in generalized anxiety disorder patients. Int J Psychiatry Med 2024; 59:270-286. [PMID: 37870071 DOI: 10.1177/00912174231209771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
OBJECTIVE Optical coherence tomography (OCT) is a method that allows high-resolution cross-sectional imaging of biological tissues. It was suggested that changes in the cranial structure or functions would be reflected in the retina. OCT has been an important method in the diagnosis and follow-up of diseases via morphometric or quantitative retinal measurements. Free radicals, inflammatory processes, and neurotransmission disorders play a role in the etiology of generalized anxiety disorder (GAD). The study aimed to demonstrate the retinal changes in GAD patients due to neurodegeneration based on the comparison of the OCT data of the GAD patients and controls, and the differences between OCT findings of GAD patients and those of controls. METHODS The study group included 21 GAD patients. The control group included 21 individuals without any known psychiatric or organic disease, including eye diseases. RESULTS There was a statistically significant difference between the macular volumes (MV) of the GAD and control groups, the macular volume was lower in the GAD group. There were positive correlations between BDI scores and MV, GCLT, RNFLT-i, RNFLT-n, between BAE scores and (RNFLT-n), and between the CGI severity scale scores and MV, RNFLT-n, and RNFLT-t. CONCLUSION OCT analysis of the GAD patients demonstrated that MV values were lower when compared to the control group. Patients with GAD should be screened for these retinal changes. OCT, a simple, non-invasive, and relatively inexpensive method could be employed as a supplementary method in the follow-up of GAD patients.
Collapse
Affiliation(s)
- Sema Baykara
- Department of Psychiatry, Erenkoy Psychiatry and Neurology Training and Research Hospital, Istanbul, Turkey
| | - Aslı Kazğan
- Faculty of Medicine, Department of Psychiatry, Fırat University, Elazig, Turkey
| | - Hakan Yıldırım
- Faculty of Medicine, Department of Ophthalmology, Fırat University, Elazig, Turkey
| | | | - Halim Ömer Kaşıkcı
- Department of Family Medicine, Erenkoy Psychiatry and Neurology Training and Research Hospital, Istanbul, Turkey
| | | |
Collapse
|
46
|
Wang Y, Zhen L, Tan TE, Fu H, Feng Y, Wang Z, Xu X, Goh RSM, Ng Y, Calhoun C, Tan GSW, Sun JK, Liu Y, Ting DSW. Geometric Correspondence-Based Multimodal Learning for Ophthalmic Image Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1945-1957. [PMID: 38206778 DOI: 10.1109/tmi.2024.3352602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Color fundus photography (CFP) and Optical coherence tomography (OCT) images are two of the most widely used modalities in the clinical diagnosis and management of retinal diseases. Despite the widespread use of multimodal imaging in clinical practice, few methods for automated diagnosis of eye diseases utilize correlated and complementary information from multiple modalities effectively. This paper explores how to leverage the information from CFP and OCT images to improve the automated diagnosis of retinal diseases. We propose a novel multimodal learning method, named geometric correspondence-based multimodal learning network (GeCoM-Net), to achieve the fusion of CFP and OCT images. Specifically, inspired by clinical observations, we consider the geometric correspondence between the OCT slice and the CFP region to learn the correlated features of the two modalities for robust fusion. Furthermore, we design a new feature selection strategy to extract discriminative OCT representations by automatically selecting the important feature maps from OCT slices. Unlike the existing multimodal learning methods, GeCoM-Net is the first method that formulates the geometric relationships between the OCT slice and the corresponding region of the CFP image explicitly for CFP and OCT fusion. Experiments have been conducted on a large-scale private dataset and a publicly available dataset to evaluate the effectiveness of GeCoM-Net for diagnosing diabetic macular edema (DME), impaired visual acuity (VA) and glaucoma. The empirical results show that our method outperforms the current state-of-the-art multimodal learning methods by improving the AUROC score 0.4%, 1.9% and 2.9% for DME, VA and glaucoma detection, respectively.
Collapse
|
47
|
Wijesinghe RE, Kahatapitiya NS, Lee C, Han S, Kim S, Saleah SA, Seong D, Silva BN, Wijenayake U, Ravichandran NK, Jeon M, Kim J. Growing Trend to Adopt Speckle Variance Optical Coherence Tomography for Biological Tissue Assessments in Pre-Clinical Applications. MICROMACHINES 2024; 15:564. [PMID: 38793137 PMCID: PMC11122893 DOI: 10.3390/mi15050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Speckle patterns are a generic feature in coherent imaging techniques like optical coherence tomography (OCT). Although speckles are granular like noise texture, which degrades the image, they carry information that can be benefited by processing and thereby furnishing crucial information of sample structures, which can serve to provide significant important structural details of samples in in vivo longitudinal pre-clinical monitoring and assessments. Since the motions of tissue molecules are indicated through speckle patterns, speckle variance OCT (SV-OCT) can be well-utilized for quantitative assessments of speckle variance (SV) in biological tissues. SV-OCT has been acknowledged as a promising method for mapping microvasculature in transverse-directional blood vessels with high resolution in micrometers in both the transverse and depth directions. The fundamental scope of this article reviews the state-of-the-art and clinical benefits of SV-OCT to assess biological tissues for pre-clinical applications. In particular, focus on precise quantifications of in vivo vascular response, therapy assessments, and real-time temporal vascular effects of SV-OCT are primarily emphasized. Finally, SV-OCT-incorporating pre-clinical techniques with high potential are presented for future biomedical applications.
Collapse
Affiliation(s)
- Ruchire Eranga Wijesinghe
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka;
- Center for Excellence in Intelligent Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Nipun Shantha Kahatapitiya
- Department of Computer Engineering, Faculty of Engineering, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.S.K.); (U.W.)
| | - Changho Lee
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, 264, Seoyang-ro, Hwasun 58128, Republic of Korea
| | - Sangyeob Han
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Shinheon Kim
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sm Abu Saleah
- ICT Convergence Research Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Bhagya Nathali Silva
- Center for Excellence in Intelligent Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
- Faculty of Computing, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Udaya Wijenayake
- Department of Computer Engineering, Faculty of Engineering, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.S.K.); (U.W.)
| | - Naresh Kumar Ravichandran
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
48
|
Liu Y, Jiang T, Zhan Z, Wang X, Luo J, Liu C, Li J, Chen F, Peng L, Wu W. Enhanced properties of the mid-infrared superluminescent emitter with a composite waveguide. APPLIED OPTICS 2024; 63:3174-3177. [PMID: 38856463 DOI: 10.1364/ao.519659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/25/2024] [Indexed: 06/11/2024]
Abstract
This study reports on a composite structure composing tilted taper, and tilted and curved waveguides with the aim of enhancing the spectral width and output power of mid-infrared quantum cascade superluminescent emitters (QC-SLEs). The computational results indicate that a tilt angle of 10° and a curved angle of 20° can avoid the selectivity of a certain wavelength due to interference effects at tilt angles of 6° and 8°, resulting in the minimum reflectivity of 1.3×10-4 and 4.4×10-4 for each wide and narrow cavity surface. Simultaneously, the modes propagating perpendicular to the cavity surface exist the least. The corresponding experimental results show a significant enhancement in the spectral width to 168.5c m -1 and a high power output of 5.1 mW for the device. This study presents what we believe to be a novel concept for the designing of superluminescent emitters with both a broadband and high power output.
Collapse
|
49
|
Dhar D, Ghosh S, Mukherjee S, Dhara S, Chatterjee J, Das S. Assessment of chitosan-coated zinc cobalt ferrite nanoparticle as a multifunctional theranostic platform facilitating pH-sensitive drug delivery and OCT image contrast enhancement. Int J Pharm 2024; 654:123999. [PMID: 38490403 DOI: 10.1016/j.ijpharm.2024.123999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Colorectal cancer (CC) is one of the most predominant malignancies in the world, with the current treatment regimen consisting of surgery, radiation therapy, and chemotherapy. Chemotherapeutic drugs, such as 5-fluorouracil (5-FU), have gained popularity as first-line antineoplastic agents against CC but have several drawbacks, including variable absorption through the gastrointestinal tract, inconsistent liver metabolism, short half-life, toxicological reactions in several organ systems, and others. Therefore, herein, we develop chitosan-coated zinc-substituted cobalt ferrite nanoparticles (CZCFNPs) for the pH-sensitive (triggered by chitosan degradation within acidic organelles of cells) and sustained delivery of 5-FU in CC cells in vitro. Additionally, the developed nanoplatform served as an excellent exogenous optical coherence tomography (OCT) contrast agent, enabling a significant improvement in the OCT image contrast in a CC tissue phantom model with a biomimetic microvasculature. Further, this study opens up new possibilities for using OCT for the non-invasive monitoring and/or optimization of magnetic targeting capabilities, as well as real-time tracking of magnetic nanoparticle-based therapeutic platforms for biomedical applications. Overall, the current study demonstrates the development of a CZCFNP-based theranostic platform capable of serving as a reliable drug delivery system as well as a superior OCT exogenous contrast agent for tissue imaging.
Collapse
Affiliation(s)
- Dhruba Dhar
- School of Medical Sciences and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Subhadip Ghosh
- Department of Nano Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayan Mukherjee
- School of Medical Sciences and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Sciences and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Jyotirmoy Chatterjee
- School of Medical Sciences and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumen Das
- School of Medical Sciences and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
50
|
Zhang H, Ren M, Wang Y, Jin Z, Zhang S, Liu J, Fu J, Qin H. In Vivo Microwave-Induced Thermoacoustic Endoscopy for Colorectal Tumor Detection in Deep Tissue. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1619-1627. [PMID: 38113149 DOI: 10.1109/tmi.2023.3345008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Optical endoscopy, as one of the common clinical diagnostic modalities, provides irreplaceable advantages in the diagnosis and treatment of internal organs. However, the approach is limited to the characterization of superficial tissues due to the strong optical scattering properties of tissue. In this work, a microwave-induced thermoacoustic (TA) endoscope (MTAE) was developed and evaluated. The MTAE system integrated a homemade monopole sleeve antenna (diameter = 7 mm) for providing homogenized pulsed microwave irradiation to induce a TA signal in the colorectal cavity and a side-viewing focus ultrasonic transducer (diameter = 3 mm) for detecting the TA signal in the ultrasonic spectrum to construct the image. Our MTAE, system combined microwave excitation and acoustic detection; produced images with dielectric contrast and high spatial resolution at several centimeters deep in soft tissues, overcome the current limitations of the imaging depth of optical endoscopy and mechanical wave-based imaging contrast of ultrasound endoscopy, and had the ability to extract complete features for deep location tumors that could be infiltrating and invading adjacent structures. The practical feasibility of the MTAE system was evaluated i n vivo with rabbits having colorectal tumors. The results demonstrated that colorectal tumor progression could be visualized from the changes in electromagnetic parameters of the tissue via MTAE, showing its potential clinical application.
Collapse
|