1
|
Gudem M, Yadav A, Vijayan A. Mechanism of Chemiluminescence in the Air Afterglow Reaction. J Phys Chem A 2025. [PMID: 40340417 DOI: 10.1021/acs.jpca.5c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Chemiluminescent emission resulting from the thermal reaction between nitric oxide and atomic oxygen to yield NO2 is known as an air afterglow. The product forms in both the ground (2A1) and excited (2B2) states, with the latter being responsible for the chemiluminescence. Despite the reaction being recognized for several decades, the underlying mechanism, particularly the formation of the 2B2 state of NO2, remains unclear. The ground- and excited-state PESs describing the NO-O reaction have been explored using multireference electronic structure methods (CASSCF combined with XMS-CASPT2 energy corrections). Our results suggest that the formation of NO2 in two distinct electronic states involves a ridge-mediated bifurcation of the ground-state pathway. Additionally, a thermally accessible excited-state channel has been identified on the excited-state PES. Molecular orbital analysis along the bifurcated pathways has been performed to elucidate how a single reactant transforms into a product with two distinct electronic natures. Surface-hopping-based nonadiabatic dynamics simulations reveal that the excited-state pathway plays a significant role in generating the NO2 in the 2B2 state. Energetic analysis of computed MEPs indicates that the NO2 in the excited state forms in the vibronic states associated with the 2A1 and 2B2 states, which undergo dipole-allowed radiative emission. The resulting frequencies are in good agreement with the observed broad chemiluminescent spectrum. The mechanism of the air afterglow reaction is strikingly different from that of cycloperoxides, the sole class of chemiluminescent systems studied in depth to date. This study provides new fundamental insights into the chemiluminescence phenomenon.
Collapse
Affiliation(s)
- Mahesh Gudem
- Department of Chemistry, Indian Institute of Technology Dharwad, Chikkamalligawad, Dharwad, Karnataka 580011, India
| | - Annu Yadav
- Department of Chemistry, Indian Institute of Technology Dharwad, Chikkamalligawad, Dharwad, Karnataka 580011, India
| | - Anjana Vijayan
- Department of Chemistry, Indian Institute of Technology Dharwad, Chikkamalligawad, Dharwad, Karnataka 580011, India
| |
Collapse
|
2
|
Liu W, Lu D, Jia S, Yang Y, Meng F, Du Y, Yang Y, Yuan L, Nan Y. Molecular mechanism of Gancao Xiexin Decoction regulating EMT and suppressing hepatic metastasis of gastric cancer via the TGF-β1/SMAD pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119430. [PMID: 39900270 DOI: 10.1016/j.jep.2025.119430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastric cancer (GC) is a highly malignant tumor of the digestive tract, posing a significant menace to human health. Gancao Xiexin Decoction (GCXXD), being a traditional Chinese medicine (TCM), has a good effect on inhibiting the proliferation and metastasis of GC. However, its mechanisms still need further investigation. AIM OF STUDY To investigate the mechanism by which GCXXD inhibits GC metastasis through network pharmacology, and to verify through in vivo and in vitro experiments. MATERIALS AND METHODS The TCMSP and GEO databases, in combination with UPLC-MS/MS techniques, were employed to identify the hub genes, active ingredients, and critical pathways of GCXXD in the treatment of GC. Subsequently, molecular docking was conducted on both the hub genes and the core components. Finally, based on the results of the bioinformatics analysis, the role of GCXXD in inhibiting liver metastasis of GC was elucidated through in vivo and in vitro experiments, including scratch assays, Transwell assays, HE staining, immunohistochemistry, in vivo live imaging, qRT-PCR, and Western blotting. RESULTS Utilizing UPLC-MS/MS and network pharmacology, we identified 20 active ingredients and 5 hub targets in the treatment of GC by GCXXD. Through KEGG analyses, GCXXD treatment of GC could through the TGF-beta pathway. In vivo and in vitro experiments, GCXXD downregulated the mRNA and protein expression level of hub genes involved in the TGF-β1/SMAD pathway and the EMT process. Additionally, GCXXD significantly reduced the incidence of liver metastases in GC. CONCLUSION GCXXD inhibited EMT via blocking the TGF-β1/SMAD pathway, which suppressed GC cell growth and liver metastasis. This study provides data to support the treatment of liver metastasis in GC with TCM and holds significant importance for the research and development of new anticancer drugs.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shumin Jia
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yating Yang
- The Second Hospital of Chinese Medicine of BAO JI City, Baoji, 721300, Xian, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
3
|
Um‐e‐Kalsoom, Wang S, Qu J, Liu L. Innovative optical imaging strategies for monitoring immunotherapy in the tumor microenvironments. Cancer Med 2024; 13:e70155. [PMID: 39387259 PMCID: PMC11465031 DOI: 10.1002/cam4.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a critical role in cancer progression and response to immunotherapy. Immunotherapy targeting the immune system has emerged as a promising treatment modality, but challenges in understanding the TME limit its efficacy. Optical imaging strategies offer noninvasive, real-time insights into the interactions between immune cells and the TME. OBJECTIVE This review assesses the progress of optical imaging technologies in monitoring immunotherapy within the TME and explores their potential applications in clinical trials and personalized cancer treatment. METHODS This is a comprehensive literature review based on the advances in optical imaging modalities including fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI). These modalities were analyzed for their capacity to provide high-resolution, real-time imaging of immune cell dynamics, tumor vasculature, and other critical components of the TME. RESULTS Optical imaging techniques have shown significant potential in tracking immune cell infiltration, assessing immune checkpoint inhibitors, and visualizing drug delivery within the TME. Technologies like FLI and BLI are pivotal in tracking immune responses in preclinical models, while PAI provides functional imaging with deeper tissue penetration. The integration of these modalities with immunotherapy holds promise for improving treatment monitoring and outcomes. CONCLUSION Optical imaging is a powerful tool for understanding the complexities of the TME and optimizing immunotherapy. Further advancements in imaging technologies, combined with nanomaterial-based approaches, could pave the way for enhanced diagnostic accuracy and therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Um‐e‐Kalsoom
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Shiqi Wang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| |
Collapse
|
4
|
Mizuta K, Gallagher S, Wang A, Chang N, Morinaga S, Sato M, Kang BM, Hoffman RM. Non-Invasive Direct Visualization of Luciferase-Luciferin Emitted Light Producing True Images from an Orthotopic Lung Cancer Xenograft Model in Nude Mice Using an Ultra-sensitive Low-light Camera and Optics. In Vivo 2024; 38:2122-2125. [PMID: 39187316 PMCID: PMC11363753 DOI: 10.21873/invivo.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM In vivo imaging with luciferase-luciferin has been limited by the inability to visualize the low emitted light, with the signal quantified only by photon counting using a cumbersome highly-cooled CCD camera in a dark room. In the present study, we demonstrate direct visualization of the luciferase-luciferin signal from an orthotopic lung cancer in a nude-mouse xenograft model with a sensitive low-light camera and optics. MATERIALS AND METHODS Mouse Lewis-lung carcinoma cells expressing luciferase (LL/2-Luc2) were injected transcutaneously into the lung of a nude mouse. One week later after cell injection, luciferase imaging for emission at 560 nm was performed using the UVP Biospectrum Advanced system after i.v. injection of D-luciferin potassium salt. The intensity of the visualized light was measured and quantified with the instrument. RESULTS A week following the implantation of LL/2-Luc2 cells in nude mice, the luciferase-luciferin signal from LL/2-Luc2 tumors in the lung was sufficiently visible through the skin to produce true images. At fifteen minutes, the intensity peaked and then progressively dropped due to clearance of luciferin from the tumor. CONCLUSION Using the UVP Biospectrum Advanced system we demonstrated non-invasive visualization of true images from luciferase-luciferin signals from an orthotopic lung-cancer mouse model. The luciferase-luciferin emitted light was directly visible through the skin which is a major improvement over previous photon counting to detect the luciferase-luciferin signal.
Collapse
Affiliation(s)
- Kohei Mizuta
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | | | | | | | - Sei Morinaga
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Motokazu Sato
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Byung Mo Kang
- AntiCancer Inc., San Diego, CA, U.S.A
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, U.S.A.;
- Department of Surgery, University of California San Diego, San Diego, CA, U.S.A
| |
Collapse
|
5
|
Rajamani AS, Rammohan A, J KS, Hakeem AR, Sai VVR, Vij M, Rela M. Point-of-care device for the noninvasive assessment of hepatic macrosteatosis in liver donors. J Gastrointest Surg 2024; 28:799-804. [PMID: 38570233 DOI: 10.1016/j.gassur.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Quantification of macrosteatosis (MS) in the liver is important given that it has shown to directly correlate with adverse post-liver transplant (LT) outcomes. With advances in medical technology and an implicit understanding of pathology, noninvasive methods of quantitatively assessing MS are in various stages of development. Each of these methods is based on the physical principles of differences between a fat-laden hepatocyte and a normal one. METHODS In this regard, after a proof-of-concept study on a prototype for a simple, real-time, handheld device using the principle of diffuse reflectance spectroscopy, this study presents an upgraded point-of-care (POC) device for the noninvasive assessment of hepatic MS in liver donors. RESULTS The device was validated on cohort of donor livers and showed a sensitivity (0.0021 V/% fat) and highly correlated (r = 0.9868, P < .0001) with gold-standard liver biopsy. Results showed that this upgraded POC device provides a reliable method for the noninvasive assessment of hepatic MS, which is crucial for selecting suitable donor livers for LT. CONCLUSION The device has the potential to be an invaluable apparatus at the hands of the organ-retrieving surgeon. It is noninvasive, portable (handheld), and economic; provides real-time readings of the percentage of MS; and can be efficaciously handled by any member of the organ-retrieving team.
Collapse
Affiliation(s)
- Allwyn S Rajamani
- Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India; Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chengalpattu, India
| | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chennai, India.
| | - Kuzhandai Shamlee J
- Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Abdul R Hakeem
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - V V Raghavendra Sai
- Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Mukul Vij
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chennai, India
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chennai, India
| |
Collapse
|
6
|
Dunuweera AN, Dunuweera SP, Ranganathan K. A Comprehensive Exploration of Bioluminescence Systems, Mechanisms, and Advanced Assays for Versatile Applications. Biochem Res Int 2024; 2024:8273237. [PMID: 38347947 PMCID: PMC10861286 DOI: 10.1155/2024/8273237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Bioluminescence has been a fascinating natural phenomenon of light emission from living creatures. It happens when the enzyme luciferase facilitates the oxidation of luciferin, resulting in the creation of an excited-state species that emits light. Although there are many bioluminescent systems, few have been identified. D-luciferin-dependent systems, coelenterazine-dependent systems, Cypridina luciferin-based systems, tetrapyrrole-based luciferins, bacterial bioluminescent systems, and fungal bioluminescent systems are natural bioluminescent systems. Since different bioluminescence systems, such as various combinations of luciferin-luciferase pair reactions, have different light emission wavelengths, they benefit industrial applications such as drug discovery, protein-protein interactions, in vivo imaging in small animals, and controlling neurons. Due to the expression of luciferase and easy permeation of luciferin into most cells and tissues, bioluminescence assays are applied nowadays with modern technologies in most cell and tissue types. It is a versatile technique in a variety of biomedical research. Furthermore, there are some investigated blue-sky research projects, such as bioluminescent plants and lamps. This review article is mainly based on the theory of diverse bioluminescence systems and their past, present, and future applications.
Collapse
Affiliation(s)
| | | | - K. Ranganathan
- Department of Botany, University of Jaffna, Jaffna 40000, Sri Lanka
| |
Collapse
|
7
|
Luís Â, Amaral L, Domingues F, Pereira L, Cascalheira JF. Action of Curcumin on Glioblastoma Growth: A Systematic Review with Meta-Analysis of Animal Model Studies. Biomedicines 2024; 12:268. [PMID: 38397870 PMCID: PMC10886523 DOI: 10.3390/biomedicines12020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Gliomas are aggressive brain tumors with poor prognosis even after surgical removal and radio-chemotherapy, stressing the urgency to find alternative therapies. Several preclinical studies evaluating the anticancer effect of curcumin in animal models of glioma are reported, but a systematic review with meta-analysis of these studies, considering the different experimental conditions used, has not been made up to this date. A search in different databases (Pubmed, Web of Science, Scopus, and SciELO) following the PRISMA statement was conducted during November 2023 to systematically identify articles assessing the effect of curcumin in murine xenograft models of glioma and identified 15 articles, which were subdivided into 24 studies. Tumor volume before and after treatment with curcumin or vehicle was extracted and the efficacy of curcumin was evaluated by performing a random effects meta-analysis of the data. Publication bias and the impact of different experimental conditions on curcumin efficacy were assessed. Treatment with curcumin decreased tumor volume. Comparing curcumin with control groups, the overall weighted standardized difference in means was -2.079 (95% CI: -2.816 to -1.341; p-value < 0.001). The curcumin effect was observed for different animal models, types of glioma cells, administration routes, and curcumin formulations. Publication bias was identified but does not invalidate curcumin's effectiveness. The findings suggest the potential therapeutic efficacy of curcumin against glioma.
Collapse
Affiliation(s)
- Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (F.D.); (J.F.C.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal
- Grupo de Revisões Sistemáticas (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Leonor Amaral
- Unidade de Saúde Familiar de Santa Joana, Av. de Dom Afonso V, 3810-203 Aveiro, Portugal;
| | - Fernanda Domingues
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (F.D.); (J.F.C.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Luísa Pereira
- Grupo de Revisões Sistemáticas (GRUBI), Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Departamento de Matemática, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal
- Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - José Francisco Cascalheira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (F.D.); (J.F.C.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
8
|
Ware TMB, Luwor RB, Zhu HJ. A New Systemic Disease Mouse Model for Glioblastoma Capable of Single-Tumour-Cell Detection. Cells 2024; 13:192. [PMID: 38275817 PMCID: PMC10814551 DOI: 10.3390/cells13020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Glioblastoma is characterised by extensive infiltration into the brain parenchyma, leading to inevitable tumor recurrence and therapeutic failure. Future treatments will need to target the specific biology of tumour recurrence, but our current understanding of the underlying mechanisms is limited. Significantly, there is a lack of available methods and models that are tailored to the examination of tumour recurrence. METHODS NOD-SCID mice were orthotopically implanted with luciferase-labelled donor U87MG or MU20 glioblastoma cells. Four days later, an unlabelled recipient tumor was implanted on the contralateral side. The mice were euthanised at a humane end-point and tissue and blood samples were collected for ex vivo analyses. RESULTS The ex vivo analyses of the firefly-labelled MU20 tumours displayed extensive invasion at the primary tumour margins, whereas the firefly-labelled U87MG tumours exhibited expansive phenotypes with no evident invasions at the tumour margins. Luciferase signals were detected in the contralateral unlabelled recipient tumours for both the U87MG and MU20 tumours compared to the non-implanted control brain. Remarkably, tumour cells were uniformly detected in all tissue samples of the supratentorial brain region compared to the control tissue, with single tumour cells detected in some tissue samples. Circulating tumour cells were also detected in the blood samples of most of the xenografted mice. Moreover, tumour cells were detected in the lungs of all of the mice, a probable event related to haematogenous dissemination. Similar results were obtained when the U87MG cells were alternatively labelled with gaussian luciferase. CONCLUSIONS These findings describe a systemic disease model for glioblastoma which can be used to investigate recurrence biology and therapeutic efficacy towards recurrence.
Collapse
Affiliation(s)
- Thomas M. B. Ware
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (T.M.B.W.); (R.B.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Rodney B. Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (T.M.B.W.); (R.B.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Federation University, Ballarat, VIC 3350, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (T.M.B.W.); (R.B.L.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| |
Collapse
|
9
|
Gudem M, Kowalewski M. Cavity-Modified Chemiluminescent Reaction of Dioxetane. J Phys Chem A 2023; 127:9483-9494. [PMID: 37845803 PMCID: PMC10658626 DOI: 10.1021/acs.jpca.3c05664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Chemiluminescence is a thermally activated chemical process that emits a photon of light by forming a fraction of products in the electronic excited state. A well-known example of this spectacular phenomenon is the emission of light in the firefly beetle, where the formation of a four-membered cyclic peroxide compound and subsequent dissociation produce a light-emitting product. The smallest cyclic peroxide, dioxetane, also exhibits chemiluminescence but with a low quantum yield as compared to that of firefly dioxetane. Employing the strong light-matter coupling has recently been found to be an alternative strategy to modify the chemical reactivity. In the presence of an optical cavity, the molecular degrees of freedom greatly mix with the cavity mode to form hybrid cavity-matter states called polaritons. These newly generated hybrid light-matter states manipulate the potential energy surfaces and significantly change the reaction dynamics. Here, we theoretically investigate the effects of a strong light-matter interaction on the chemiluminescent reaction of dioxetane using the extended Jaynes-Cummings model. The cavity couplings corresponding to the electronic and vibrational degrees of freedom have been included in the interaction Hamiltonian. We explore how the cavity alters the ground- and excited-state path energy barriers and reaction rates. Our results demonstrate that the formation of excited-state products in the dioxetane decomposition process can be either accelerated or suppressed, depending on the molecular orientation with respect to the cavity polarization.
Collapse
Affiliation(s)
- Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106
91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106
91 Stockholm, Sweden
| |
Collapse
|
10
|
Bausart M, Bozzato E, Joudiou N, Koutsoumpou X, Manshian B, Préat V, Gallez B. Mismatch between Bioluminescence Imaging (BLI) and MRI When Evaluating Glioblastoma Growth: Lessons from a Study Where BLI Suggested "Regression" while MRI Showed "Progression". Cancers (Basel) 2023; 15:cancers15061919. [PMID: 36980804 PMCID: PMC10047859 DOI: 10.3390/cancers15061919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Orthotopic glioblastoma xenografts are paramount for evaluating the effect of innovative anti-cancer treatments. In longitudinal studies, tumor growth (or regression) of glioblastoma can only be monitored by noninvasive imaging. For this purpose, bioluminescence imaging (BLI) has gained popularity because of its low cost and easy access. In the context of the development of new nanomedicines for treating glioblastoma, we were using luciferase-expressing GL261 cell lines. Incidentally, using BLI in a specific GL261 glioblastoma model with cells expressing both luciferase and the green fluorescent protein (GL261-luc-GFP), we observed an apparent spontaneous regression. By contrast, the magnetic resonance imaging (MRI) analysis revealed that the tumors were actually growing over time. For other models (GL261 expressing only luciferase and U87 expressing both luciferase and GFP), data from BLI and MRI correlated well. We found that the divergence in results coming from different imaging modalities was not due to the tumor localization nor the penetration depth of light but was rather linked to the instability in luciferase expression in the viral construct used for the GL261-luc-GFP model. In conclusion, the use of multi-modality imaging prevents possible errors in tumor growth evaluation, and checking the stability of luciferase expression is mandatory when using BLI as the sole imaging modality.
Collapse
Affiliation(s)
- Mathilde Bausart
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Elia Bozzato
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Xanthippi Koutsoumpou
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, Katholiek Universiteit Leuven (KULeuven), 3000 Leuven, Belgium
| | - Bella Manshian
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, Katholiek Universiteit Leuven (KULeuven), 3000 Leuven, Belgium
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance (REMA) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
11
|
Niwa K, Kubota H, Enomoto T, Ichino Y, Ohmiya Y. Quantitative Analysis of Bioluminescence Optical Signal. BIOSENSORS 2023; 13:223. [PMID: 36831989 PMCID: PMC9953788 DOI: 10.3390/bios13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Bioluminescence is light emission based on the luciferin-luciferase enzymatic reaction in living organisms. Optical signals from bioluminescence (BL) reactions are available for bioanalysis and bioreporters for gene expression, in vitro, in vivo, and ex vivo bioimaging, immunoassay, and other applications. Although there are numerous bioanalysis methods based on BL signal measurements, the BL signal is measured as a relative value, and not as an absolute value. Recently, some approaches have been established to completely quantify the BL signal, resulting in, for instance, the redetermination of the quantum yield of the BL reaction and counting the photon number of the BL signal at the single-cell level. Reliable and reproducible understanding of biological events in the bioanalysis and bioreporter fields can be achieved by means of standardized absolute optical signal measurements, which is described in an International Organization for Standardization (ISO) document.
Collapse
Affiliation(s)
- Kazuki Niwa
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
| | | | | | - Yoshiro Ichino
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
| | - Yoshihiro Ohmiya
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8563, Japan
- Osaka Institute of Technology (OIT), Osaka 535-8585, Japan
| |
Collapse
|
12
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Davenne T, Percier P, Larbanoix L, Moser M, Leo O, Meylan E, Goriely S, Gérard P, Wauthoz N, Laurent S, Amighi K, Rosière R. Inhaled dry powder cisplatin increases antitumour response to anti-PD1 in a murine lung cancer model. J Control Release 2023; 353:317-326. [PMID: 36470334 DOI: 10.1016/j.jconrel.2022.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Despite advances in targeted therapies and immunotherapy in lung cancer, chemotherapy remains the backbone of treatment in most patients at different stages of the disease. Inhaled chemotherapy is a promising strategy to target lung tumours and to limit the induced severe systemic toxicities. Cisplatin dry powder for inhalation (CIS-DPI) was tested as an innovative way to deliver cisplatin locally via the pulmonary route with minimal systemic toxicities. In vivo, CIS-DPI demonstrated a dose-dependent antiproliferative activity in the M109 orthotopic murine lung tumour model and upregulated the immune checkpoint PD-L1 on lung tumour cells. Combination of CIS-DPI with the immune checkpoint inhibitor anti-PD1 showed significantly reduced tumour size, increased the number of responders and prolonged median survival over time in comparison to the anti-PD1 monotherapy. Furthermore, the CIS-DPI and anti-PD1 combination induced an intra-tumour recruitment of conventional dendritic cells and tumour infiltrating lymphocytes, highlighting an anti-tumour immune response. This study demonstrates that combining CIS-DPI with anti-PD1 is a promising strategy to improve lung cancer therapy.
Collapse
Affiliation(s)
- Tamara Davenne
- InhaTarget Therapeutics, Rue Antoine de Saint-Exupéry 2, Gosselies, Belgium; Laboratory of Immunobiology, U-CRI, Université Libre de Bruxelles (ULB) Gosselies, Belgium; Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, ULB, Brussels, Belgium.
| | - Pauline Percier
- InhaTarget Therapeutics, Rue Antoine de Saint-Exupéry 2, Gosselies, Belgium.
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons, Gosselies, Belgium.
| | - Muriel Moser
- Laboratory of Immunobiology, U-CRI, Université Libre de Bruxelles (ULB) Gosselies, Belgium.
| | - Oberdan Leo
- Laboratory of Immunobiology, U-CRI, Université Libre de Bruxelles (ULB) Gosselies, Belgium.
| | - Etienne Meylan
- Laboratory of Immunobiology, U-CRI, Université Libre de Bruxelles (ULB) Gosselies, Belgium; Lung Cancer and Immuno-Oncology Laboratory, Bordet Cancer Research Laboratories, Institut Jules Bordet, ULB, Anderlecht, Belgium.
| | - Stanislas Goriely
- Laboratory of Immunobiology, U-CRI, Université Libre de Bruxelles (ULB) Gosselies, Belgium.
| | - Pierre Gérard
- InhaTarget Therapeutics, Rue Antoine de Saint-Exupéry 2, Gosselies, Belgium
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, ULB, Brussels, Belgium.
| | - Sophie Laurent
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons, Gosselies, Belgium.
| | - Karim Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, ULB, Brussels, Belgium.
| | - Rémi Rosière
- InhaTarget Therapeutics, Rue Antoine de Saint-Exupéry 2, Gosselies, Belgium; Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, ULB, Brussels, Belgium.
| |
Collapse
|
14
|
Boccalatte F, Mina R, Aroldi A, Leone S, Suryadevara CM, Placantonakis DG, Bruno B. Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors. Cancers (Basel) 2022; 14:5108. [PMID: 36291891 PMCID: PMC9600451 DOI: 10.3390/cancers14205108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells in solid tumors have so far yielded limited results, in terms of therapeutic effects, as compared to the dramatic results observed for hematological malignancies. Many factors involve both the tumor cells and the microenvironment. The lack of specific target antigens and severe, potentially fatal, toxicities caused by on-target off-tumor toxicities constitute major hurdles. Furthermore, the tumor microenvironment is usually characterized by chronic inflammation, the presence of immunosuppressive molecules, and immune cells that can reduce CAR T cell efficacy and facilitate antigen escape. Nonetheless, solid tumors are under investigation as possible targets despite their complexity, which represents a significant challenge. In preclinical mouse models, CAR T cells are able to efficiently recognize and kill several tumor xenografts. Overall, in the next few years, there will be intensive research into optimizing novel cell therapies to improve their effector functions and keep untoward effects in check. In this review, we provide an update on the state-of-the-art CAR T cell therapies in solid tumors, focusing on the preclinical studies and preliminary clinical findings aimed at developing optimal strategies to reduce toxicity and improve efficacy.
Collapse
Affiliation(s)
- Francesco Boccalatte
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Roberto Mina
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, MB, Italy
| | - Sarah Leone
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Carter M. Suryadevara
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G. Placantonakis
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center/Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Benedetto Bruno
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| |
Collapse
|
15
|
Application of Genetically Encoded Molecular Imaging Probes in Tumor Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5473244. [PMID: 36101803 PMCID: PMC9440812 DOI: 10.1155/2022/5473244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/05/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
In recent years, imaging technology has made rapid progress to improve the sensitivity of tumor diagnostic. With the development of genetic engineering and synthetic biology, various genetically encoded molecular imaging probes have also been extensively developed. As a biomedical imaging method with excellent detectable sensitivity and spatial resolution, genetically encoded molecular imaging has great application potential in the visualization of cellular and molecular functions during tumor development. Compared to chemosynthetic dyes and nanoparticles with an imaging function, genetically encoded molecular imaging probes can more easily label specific cells or proteins of interest in tumor tissues and have higher stability and tissue contrast in vivo. Therefore, genetically encoded molecular imaging probes have attracted increasing attention from researchers in engineering and biomedicine. In this review, we aimed to introduce the genetically encoded molecular imaging probes and further explained their applications in tumor imaging.
Collapse
|
16
|
Rapic S, Samuel T, Lindsay PE, Ansell S, Weersink RA, DaCosta RS. Assessing the Accuracy of Bioluminescence Image-Guided Stereotactic Body Radiation Therapy of Orthotopic Pancreatic Tumors Using a Small Animal Irradiator. Radiat Res 2022; 197:626-637. [PMID: 35192719 DOI: 10.1667/rade-21-00161.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
Stereotactic body radiation therapy (SBRT) has shown promising results in the treatment of pancreatic cancer and other solid tumors. However, wide adoption of SBRT remains limited largely due to uncertainty about the treatment's optimal fractionation schedules to elicit maximal tumor response while limiting the dose to adjacent structures. A small animal irradiator in combination with a clinically relevant oncological animal model could address these questions. Accurate delivery of X rays to animal tumors may be hampered by suboptimal image-guided targeting of the X-ray beam in vivo. Integration of bioluminescence imaging (BLI) into small animal irradiators in addition to standard cone-beam computed tomography (CBCT) imaging improves target identification and high-precision therapy delivery to deep tumors with poor soft tissue contrast, such as pancreatic tumors. Using bioluminescent BxPC3 pancreatic adenocarcinoma human cells grown orthotopically in mice, we examined the performance of a small animal irradiator equipped with both CBCT and BLI in delivering targeted, hypo-fractionated, multi-beam SBRT. Its targeting accuracy was compared with magnetic resonance imaging (MRI)-guided targeting based on co-registration between CBCT and corresponding sequential magnetic resonance scans, which offer greater soft tissue contrast compared with CT alone. Evaluation of our platform's BLI-guided targeting accuracy was performed by quantifying in vivo changes in bioluminescence signal after treatment as well as staining of ex vivo tissues with γH2AX, Ki67, TUNEL, CD31 and CD11b to assess SBRT treatment effects. Using our platform, we found that BLI-guided SBRT enabled more accurate delivery of X rays to the tumor resulting in greater cancer cell DNA damage and proliferation inhibition compared with MRI-guided SBRT. Furthermore, BLI-guided SBRT allowed higher animal throughput and was more cost effective to use in the preclinical setting than MRI-guided SBRT. Taken together, our preclinical platform could be employed in translational research of SBRT of pancreatic cancer.
Collapse
Affiliation(s)
- Sara Rapic
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Timothy Samuel
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Patricia E Lindsay
- Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Steve Ansell
- Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Robert A Weersink
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto
| | - Ralph S DaCosta
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Gringmuth M, Walther J, Greiser S, Toussaint M, Schwalm B, Kool M, Kortmann RD, Glasow A, Patties I. Enhanced Survival of High-Risk Medulloblastoma-Bearing Mice after Multimodal Treatment with Radiotherapy, Decitabine, and Abacavir. Int J Mol Sci 2022; 23:ijms23073815. [PMID: 35409174 PMCID: PMC8998934 DOI: 10.3390/ijms23073815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Children with high-risk SHH/TP53-mut and Group 3 medulloblastoma (MB) have a 5-year overall survival of only 40%. Innovative approaches to enhance survival while preventing adverse effects are urgently needed. We investigated an innovative therapy approach combining irradiation (RT), decitabine (DEC), and abacavir (ABC) in a patient-derived orthotopic SHH/TP53-mut and Group 3 MB mouse model. MB-bearing mice were treated with DEC, ABC and RT. Mouse survival, tumor growth (BLI, MRT) tumor histology (H/E), proliferation (Ki-67), and endothelial (CD31) staining were analyzed. Gene expression was examined by microarray and RT-PCR (Ki-67, VEGF, CD31, CD15, CD133, nestin, CD68, IBA). The RT/DEC/ABC therapy inhibited tumor growth and enhanced mouse survival. Ki-67 decreased in SHH/TP53-mut MBs after RT, DEC, RT/ABC, and RT/DEC/ABC therapy. CD31 was higher in SHH/TP53-mut compared to Group 3 MBs and decreased after RT/DEC/ABC. Microarray analyses showed a therapy-induced downregulation of cell cycle genes. By RT-PCR, no therapy-induced effect on stem cell fraction or immune cell invasion/activation could be shown. We showed for the first time that RT/DEC/ABC therapy improves survival of orthotopic SHH/TP53-mut and Group 3 MB-bearing mice without inducing adverse effects suggesting the potential for an adjuvant application of this multimodal therapy approach in the human clinic.
Collapse
Affiliation(s)
- Marieke Gringmuth
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
| | - Jenny Walther
- Fraunhofer Center for Microelectronic and Optical Systems for Biomedicine, Herman-Hollerith-Straße 3, 99099 Erfurt, Germany; (J.W.); (S.G.)
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Sebastian Greiser
- Fraunhofer Center for Microelectronic and Optical Systems for Biomedicine, Herman-Hollerith-Straße 3, 99099 Erfurt, Germany; (J.W.); (S.G.)
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, Permoserstraße 15, 04318 Leipzig, Germany;
| | - Benjamin Schwalm
- Hopp Children’s Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; (B.S.); (M.K.)
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marcel Kool
- Hopp Children’s Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; (B.S.); (M.K.)
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Rolf-Dieter Kortmann
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
| | - Annegret Glasow
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
| | - Ina Patties
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
- Correspondence:
| |
Collapse
|
18
|
The Establishment of a Noninvasive Bioluminescence-Specific Viral Encephalitis Model by Pseudorabies Virus-Infected NF-κBp-Luciferase Mice. Vet Sci 2022; 9:vetsci9030113. [PMID: 35324841 PMCID: PMC8950139 DOI: 10.3390/vetsci9030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Encephalitis is a rare brain inflammation that is most commonly caused by a viral infection. In this study, we first use an in vivo imaging system (IVIS) to determine whether NF-κBp-luciferase expression could be detected in the brain of pseudorabies virus (PRV)-infected NF-κBp-luciferase mice and to evaluate proinflammatory mediators in a well-described mouse model of PRV encephalitis. In in vitro studies, we used murine microglia (BV-2) cells to demonstrate the PRV-induced encephalitis model entailing the activation of microglia cells. The results indicate that PRV-induced neuroinflammation responses through the induction of IL-6, TNF-α, COX-2, and iNOS expression occurred via the regulation of NF-κB expression in BV-2 cells. In in vivo studies, compared with MOCK controls, the mice infected with neurovirulent PRV exhibited significantly elevated NF-κB transcription factor activity and luciferase protein expression only in the brain by IVIS. Mild focal necrosis was also observed in the brain. Further examination revealed biomarkers of inflammation, including inducible cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), and tumor necrosis factor (TNF)-α and interleukin (IL)-6, both of which constituted proinflammatory cytokines. PRV infection stimulated inflammation and COX-2 and iNOS expression of IL-6 and TNF-α. The presented results herein suggest that PRV induces iNOS and COX-2 expression in the brain of NF-κBp–luciferase mice via NF-κB activation. In conclusion, we used NF-κBp-luciferase mice to establish a specific virus-induced encephalitis model via PRV intranasal infection. In the future, this in vivo model will provide potential targets for the development of new therapeutic strategies focusing on NF-κB inflammatory biomarkers and the development of drugs for viral inflammatory diseases.
Collapse
|
19
|
Wilson AN, Chen B, Liu X, Kurie JM, Kim J. A Method for Orthotopic Transplantation of Lung Cancer in Mice. Methods Mol Biol 2022; 2374:231-242. [PMID: 34562257 PMCID: PMC9262117 DOI: 10.1007/978-1-0716-1701-4_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Preclinical mouse models of lung cancer have been vital experimental tools to elucidate cancer biology and test novel therapeutic regimens. Two main models are most commonly used-genetically engineered mouse models and xenograft transplantation models. The most common xenograft model employs subcutaneous transplantation of tumor cells. However, the subcutaneous space is a foreign environment to lung cancer cells and does not appropriately model the tumor-stromal interactions of endogenous lung cancers. Here, we present an orthotopic mouse model of lung cancer that utilizes direct injection of cancer cells into the lung parenchyma that allows many potential studies including interactions of lung fibroblast Hedgehog pathway activity and tumor epithelia. The protocol describes this procedure and its potential applications for lung cancer research.
Collapse
Affiliation(s)
- Alexandra N Wilson
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Baozhi Chen
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - James Kim
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Sukhbaatar A, Kodama T. Protocols for the Evaluation of a Lymphatic Drug Delivery System Combined with Bioluminescence to Treat Metastatic Lymph Nodes. Methods Mol Biol 2022; 2524:333-346. [PMID: 35821485 DOI: 10.1007/978-1-0716-2453-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioluminescence (BL) imaging is a powerful non-invasive imaging modality widely used in a broad range of biological disciplines for many types of measurements. The applications of BL imaging in biomedicine are diverse, including tracking bacterial progression, research on gene expression patterns, monitoring tumor cell growth/regression or treatment responses, determining the location and proliferation of stem cells, and so on. It is particularly valuable when studying tissues at depths of 1 to 2 cm in mouse models during preclinical research. Here we describe the protocols for the therapeutic evaluation of a lymphatic drug delivery system (LDDS) using an in vivo BL imaging system (IVIS) for the treatment of metastatic lymph nodes (LNs) with 5-fluorouracil (5-FU). The LDDS is a method that directly injects anticancer drugs into sentinel LNs (SLNs) and delivers them to their downstream LNs. In the protocol, we show that metastases in the proper axillary LN (PALN) are induced by the injection of luciferase-expressing tumor cells into the subiliac LN (SiLN) of MXH10/Mo-lpr/lpr (MXH10/Mo/lpr) mice. 5-FU is injected using the LDDS into the accessory axillary LN (AALN) to treat tumor cells in the PALN after the tumor cell growth is confirmed in the PALN. The tumor growth and therapeutic effects are evaluated by IVIS. This method can be used to evaluate tumor growth and efficacy of anticancer drugs/particles, radiotherapy, surgery, and/or a combination of these methods in various experimental procedures in the oncology field.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan.
- Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
21
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Yang Y, Zhang M, Zhang W, Chen Y, Zhang T, Chen S, Yuan Y, Liang G, Zhang S. Sensitive sensing of alkaline phosphatase and γ-glutamyltranspeptidase activity for tumor imaging. Analyst 2022; 147:1544-1550. [DOI: 10.1039/d2an00163b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanism of bioluminescence phenomenon of the probe P-Bz-Luc in the presence of ALP or GGT.
Collapse
Affiliation(s)
- Yanyun Yang
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China
| | - Miaomiao Zhang
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China
| | - Wenting Zhang
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China
| | - Yinglu Chen
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tong Zhang
- School of Life Sciences, University of Science and Technology of China, Huangshan Road, Hefei, Anhui 230027, China
| | - Sheng Chen
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China
| | - Yue Yuan
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Gaolin Liang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China
| |
Collapse
|
23
|
Pheno-SELEX: Engineering Anti-Metastatic Aptamers through Targeting the Invasive Phenotype Using Systemic Evolution of Ligands by Exponential Enrichment. Bioengineering (Basel) 2021; 8:bioengineering8120212. [PMID: 34940365 PMCID: PMC8698736 DOI: 10.3390/bioengineering8120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Multiple methods (e.g., small molecules and antibodies) have been engineered to target specific proteins and signaling pathways in cancer. However, many mediators of the cancer phenotype are unknown and the ability to target these phenotypes would help mitigate cancer. Aptamers are small DNA or RNA molecules that are designed for therapeutic use. The design of aptamers to target cancers can be challenging. Accordingly, to engineer functionally anti-metastatic aptamers we used a modification of systemic evolution of ligands by exponential enrichment (SELEX) we call Pheno-SELEX to target a known phenotype of cancer metastasis, i.e., invasion. A highly invasive prostate cancer (PCa) cell line was established and used to identify aptamers that bound to it with high affinity as opposed to a less invasive variant to the cell line. The anti-invasive aptamer (AIA1) was found to inhibit in vitro invasion of the original highly invasive PCa cell line, as well as an additional PCa cell line and an osteosarcoma cell line. AIA1 also inhibited in vivo development of metastasis in both a PCa and osteosarcoma model of metastasis. These results indicate that Pheno-SELEX can be successfully used to identify aptamers without knowledge of underlying molecular targets. This study establishes a new paradigm for the identification of functional aptamers.
Collapse
|
24
|
Li H, Du G, Yang L, Pang L, Zhan Y. The Antitumor Effects of Britanin on Hepatocellular Carcinoma Cells and its Real-Time Evaluation by In Vivo Bioluminescence Imaging. Anticancer Agents Med Chem 2021; 20:1147-1156. [PMID: 32106805 DOI: 10.2174/1871520620666200227092623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatocellular carcinoma is cancer with many new cases and the highest mortality rate. Chemotherapy is the most commonly used method for the clinical treatment of hepatocellular carcinoma. Natural products have become clinically important chemotherapeutic drugs due to their great potential for pharmacological development. Many sesquiterpene lactone compounds have been proven to have antitumor effects on hepatocellular carcinoma. OBJECTIVE Britanin is a sesquiterpene lactone compound that can be considered for the treatment of hepatocellular carcinoma. The present study aimed to investigate the antitumor effect of britanin. METHODS BEL 7402 and HepG2 cells were used to study the cytotoxicity and antitumor effects of britanin. Preliminary studies on the nuclear factor kappa B pathway were conducted by western blot analysis. A BEL 7402-luc subcutaneous tumor model was established for the in vivo antitumor studies of britanin. In vivo bioluminescence imaging was conducted to monitor changes in tumor size. RESULTS The results of the cytotoxicity analysis showed that the IC50 values for britanin in BEL 7402 and HepG2 cells were 2.702μM and 6.006μM, respectively. The results of the colony formation demonstrated that the number of cells in a colony was reduced significantly after britanin treatment. And the results of transwell migration assays showed that the migration ability of tumor cells was significantly weakened after treatment with britanin. Tumor size measurements and staining results showed that tumor size was inhibited after britanin treatment. The western blot analysis results showed the inhibition of p65 protein expression and reduced the ratio of Bcl-2/Bax after treatment. CONCLUSION A series of in vitro and in vivo experiments demonstrated that britanin had good antitumor effects and provided an option for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Hanrui Li
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - GeTao Du
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Lu Yang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Liaojun Pang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yonghua Zhan
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
26
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
27
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
28
|
Chaconas G, Moriarty TJ, Skare J, Hyde JA. Live Imaging. Curr Issues Mol Biol 2020; 42:385-408. [PMID: 33310914 PMCID: PMC7946808 DOI: 10.21775/cimb.042.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Being able to vizualize a pathogen at a site of interaction with a host is an aesthetically appealing idea and the resulting images can be both informative as well as enjoyable to view. Moreover, the approaches used to derive these images can be powerful in terms of offering data unobtainable by other methods. In this article, we review three primary modalities for live imaging Borrelia spirochetes: whole animal imaging, intravital microscopy and live cell imaging. Each method has strengths and weaknesses, which we review, as well as specific purposes for which they are optimally utilized. Live imaging borriliae is a relatively recent development and there was a need of a review to cover the area. Here, in addition to the methods themselves, we also review areas of spirochete biology that have been significantly impacted by live imaging and present a collection of images associated with the forward motion in the field driven by imaging studies.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tara J. Moriarty
- Faculties of Dentistry and Medicine (Laboratory Medicine and Pathobiology), University of Toronto, Toronto, Ontario, M5G 1G6, Canada
| | - Jon Skare
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, 77807, USA
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, 77807, USA
| |
Collapse
|
29
|
Baek J, Ahmed R, Ye J, Gerber SA, Parker KJ, Doyley MM. H-scan, Shear Wave and Bioluminescent Assessment of the Progression of Pancreatic Cancer Metastases in the Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3369-3378. [PMID: 32907773 PMCID: PMC9066934 DOI: 10.1016/j.ultrasmedbio.2020.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 05/24/2023]
Abstract
The non-invasive quantification of tumor burden and the response to therapies remain an important objective for imaging modalities. To characterize the performance of two newly optimized ultrasound-based analyses, we applied shear wave and H-scan scattering analyses to repeated trans-abdominal ultrasound scans of a murine model of metastatic pancreatic cancer. In addition, bioluminescence measurements were obtained as an alternative reference. The tumor metastases grow aggressively and result in death at approximately 4 wk if untreated, but longer for those treated with chemotherapy. We found that our three imaging methods (shear wave speed, H-scan, bioluminescence) trended toward increasing output measures with time during tumor growth, and these measures were delayed for the group receiving chemotherapy. The relative sensitivity of H-scan tracked closely with bioluminescence measurements, particularly in the early to mid-stages of tumor growth. The correlation between H-scan and bioluminescence was found to be strong, with a Spearman's rank correlation coefficient greater than 0.7 across the entire series. These preliminary results suggest that non-invasive ultrasound imaging analyses are capable of tracking the response of tumor models to therapeutic agents.
Collapse
Affiliation(s)
- Jihye Baek
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Rifat Ahmed
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Scott A Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA.
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
30
|
Novickij V, Zinkevičienė A, Malyško V, Novickij J, Kulbacka J, Rembialkowska N, Girkontaitė I. Bioluminescence as a sensitive electroporation indicator in sub-microsecond and microsecond range of electrical pulses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112066. [PMID: 33142215 DOI: 10.1016/j.jphotobiol.2020.112066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
The cell membrane permeabilization in electroporation studies is usually quantified using fluorescent markers such as propidium iodide (PI) or YO-PRO, while Chinese Hamster Ovary cell line frequently serves as a model. In this work, as an alternative, we propose a sensitive methodology for detection and analysis of electroporation phenomenon based on bioluminescence. Luminescent mice myeloma SP2/0 cells (transfected using Luciferase-pcDNA3 plasmid) were used as a cell model. Electroporation has been studied using the 0.1-5 μs × 250 and 100 μs × 1-8 pulsing protocols in 1-2.5 kV/cm PEF range. It was shown that the bioluminescence response is dependent on the cell permeabilization state and can be effectively used to detect even weak permeabilization. During saturated permeabilization the methodology accurately predicts the losses of cell viability due to irreversible electroporation. The results have been superpositioned with permeabilization and pore resealing (1 h post-treatment) data using PI. Also, the viability of the cells was evaluated. Lastly, the SP2/0 tumors have been developed in BALB/C mice and the methodology has been tested in vivo using electrochemotherapy with bleomycin.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Veronika Malyško
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Nina Rembialkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| |
Collapse
|
31
|
Ahmed R, Ye J, Gerber SA, Linehan DC, Doyley MM. Preclinical Imaging Using Single Track Location Shear Wave Elastography: Monitoring the Progression of Murine Pancreatic Tumor Liver Metastasis In Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2426-2439. [PMID: 32012006 PMCID: PMC7329602 DOI: 10.1109/tmi.2020.2971422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recently, researchers have discovered the direct impact of the tumor mechanical environment on the growth, drug uptake and prognosis of tumors. While estimating the mechanical parameters (solid stress, fluid pressure, stiffness) can aid in the treatment planning and monitoring, most of these parameters cannot be quantified noninvasively. Shear wave elastography (SWE) has shown promise as a means of noninvasively measuring the stiffness of soft tissue. However, stiffness is still not a recognized imaging biomarker. While SWE has been shown to be capable of measuring tumor stiffness in humans, much important research is done in small animal preclinical models, where tumors are often too small for the resolution of traditional SWE tools. Single-track location SWE (STL-SWE) has previously been shown to overcome the fundamental resolution limit of SWE imposed by ultrasound speckle, which may make it suitable for preclinical imaging. Using STL-SWE, in this work, we demonstrate, for the first time, that the stiffness changes occurring inside metastatic murine pancreatic tumors can be monitored over long time scales (up to 9 weeks). To prevent the respiration motion from degrading the STL-SWE estimates, we developed a real-time software-based respiration gating scheme that we implemented on a Verasonics ultrasound imaging system. By imaging the liver of three healthy mice and performing correlation analysis, we confirmed that the respiration-gated STL-SWE data was free from motion corruption. By performing coregistered power-doppler imaging, we found that the local variability in liver shear wave speed (SWS) measurements increased from 5.4% to 9.9% due to blood flow. We performed a longitudinal study using a murine model of pancreatic cancer liver metastasis to assess the temporal changes (over nine weeks) in SWS in two groups: a controlled group receiving no treatment (n=8), and an experimental group (n=6) treated with Gemcitabine, a chemotherapy agent. We independently evaluated tumor burden using bioluminescence imaging (BLI). The initial and endpoint SWS measurements were statistically different (p<0.05). Additionally, when the liver SWS exceeded 2.5 ± 0.3 and 2.73 ± 0.34 m/s in untreated and treated mice, respectively, the death of the mice was imminent within approximately 10 days. The time taken for the SWS to exceed the thresholds was 17 days (on average) longer in Gemcitabine treated mice compared to the untreated ones. The survival statistics corroborated the effectiveness of Gemcitabine. Spearman correlation analysis revealed a monotonic relationship between SWE measurements (SWS) and BLI measurements (radiance) for tumors whose radiance exceeded 1×107 photons/s/cm2/sr. Longitudinal measurements on the liver of four healthy mice revealed a maximum coefficient of variation of 11.4%. The results of this investigation demonstrate that with appropriate gating, researchers can use STL-SWE for small animal imaging and perform longitudinal studies using preclinical cancer models.
Collapse
|
32
|
CD24-targeted fluorescence imaging in patient-derived xenograft models of high-grade serous ovarian carcinoma. EBioMedicine 2020; 56:102782. [PMID: 32454401 PMCID: PMC7248428 DOI: 10.1016/j.ebiom.2020.102782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The survival rate of patients with advanced high-grade serous ovarian carcinoma (HGSOC) remains disappointing. Clinically translatable orthotopic cell line xenograft models and patient-derived xenografts (PDXs) may aid the implementation of more personalised treatment approaches. Although orthotopic PDX reflecting heterogeneous molecular subtypes are considered the most relevant preclinical models, their use in therapeutic development is limited by lack of appropriate imaging modalities. METHODS We developed novel orthotopic xenograft and PDX models for HGSOC, and applied a near-infrared fluorescently labelled monoclonal antibody targeting the cell surface antigen CD24 for non-invasive molecular imaging of epithelial ovarian cancer. CD24-Alexa Fluor 680 fluorescence imaging was compared to bioluminescence imaging in three orthotopic cell line xenograft models of ovarian cancer (OV-90luc+, Skov-3luc+ and Caov-3luc+, n = 3 per model). The application of fluorescence imaging to assess treatment efficacy was performed in carboplatin-paclitaxel treated orthotopic OV-90 xenografts (n = 10), before the probe was evaluated to detect disease progression in heterogenous PDX models (n = 7). FINDINGS Application of the near-infrared probe, CD24-AF680, enabled both spatio-temporal visualisation of tumour development, and longitudinal therapy monitoring of orthotopic xenografts. Notably, CD24-AF680 facilitated imaging of multiple PDX models representing different histological subtypes of the disease. INTERPRETATION The combined implementation of CD24-AF680 and orthotopic PDX models creates a state-of-the-art preclinical platform which will impact the identification and validation of new targeted therapies, fluorescence image-guided surgery, and ultimately the outcome for HGSOC patients. FUNDING This study was supported by the H2020 program MSCA-ITN [675743], Helse Vest RHF, and Helse Bergen HF [911809, 911852, 912171, 240222, HV1269], as well as by The Norwegian Cancer Society [182735], and The Research Council of Norway through its Centers of excellence funding scheme [223250, 262652].
Collapse
|
33
|
Hypoxia-Inducible Factor 1α (HIF-1α) Counteracts the Acute Death of Cells Transplanted into the Injured Spinal Cord. eNeuro 2020; 7:ENEURO.0092-19.2019. [PMID: 31488552 PMCID: PMC7215587 DOI: 10.1523/eneuro.0092-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023] Open
Abstract
Cellular transplantation is in clinical testing for a number of central nervous system disorders, including spinal cord injury (SCI). One challenge is acute transplanted cell death. To prevent this death, there is a need to both establish when the death occurs and develop approaches to mitigate its effects. Here, using luciferase (luc) and green fluorescent protein (GFP) expressing Schwann cell (SC) transplants in the contused thoracic rat spinal cord 7 d postinjury, we establish via in vivo bioluminescent (IVIS) imaging and stereology that cell death occurs prior to 2–3 d postimplantation. We then test an alternative approach to the current paradigm of enhancing transplant survival by including multiple factors along with the cells. To stimulate multiple cellular adaptive pathways concurrently, we activate the hypoxia-inducible factor 1α (HIF-1α) transcriptional pathway. Retroviral expression of VP16-HIF-1α in SCs increased HIF-α by 5.9-fold and its target genes implicated in oxygen transport and delivery (VEGF, 2.2-fold) and cellular metabolism (enolase, 1.7-fold). In cell death assays in vitro, HIF-1α protected cells from H2O2-induced oxidative damage. It also provided some protection against camptothecin-induced DNA damage, but not thapsigargin-induced endoplasmic reticulum stress or tunicamycin-induced unfolded protein response. Following transplantation, VP16-HIF-1α increased SC survival by 34.3%. The increase in cell survival was detectable by stereology, but not by in vivo luciferase or ex vivo GFP IVIS imaging. The results support the hypothesis that activating adaptive cellular pathways enhances transplant survival and identifies an alternative pro-survival approach that, with optimization, could be amenable to clinical translation.
Collapse
|
34
|
Kratzsch T, Piffko A, Broggini T, Czabanka M, Vajkoczy P. Role of mTOR and VEGFR Inhibition in Prevention of Metastatic Tumor Growth in the Spine. Front Oncol 2020; 10:174. [PMID: 32140451 PMCID: PMC7042460 DOI: 10.3389/fonc.2020.00174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/31/2020] [Indexed: 11/26/2022] Open
Abstract
Objective: Spinal metastatic disease remains a major problem of oncological diseases. Patients affected may suffer pain, spinal instability, and severe neurological deficits. Today, palliative surgery and radiotherapy are the mainstays of therapy. In contrast, preventive treatment strategies or treatment concepts for an early stage are lacking. Here, we have used a syngeneic, experimental spine metastases model in the mouse to test the efficacy of mTOR inhibition and anti-angiogenesis on the formation and progression of spinal melanoma metastases. Methods: We used our previously established syngeneic spinal metastases mouse model by injecting luciferin-transfected B16 melanoma cells into the common carotid artery. Following injection, mice were treated with everolimus, an inhibitor of the mammalian target of rapamycin (mTOR) complex, axitinib, a tyrosine kinase inhibitor, that blocks vascular endothelial growth factor receptors (VEGFR) 1-3, as well as placebo. Animals were followed-up daily by neurological assessment and by repeat in vivo bioluminescence imaging. With occurrence of neurological deficits, a spinal MRI was performed, and mice were sacrificed. The whole spine was dissected free and analyzed by immunohistochemical techniques. Results: Overall survival was 23 days in the control group, significantly prolonged to 30 days (p = 0.04) in the everolimus group, and to 28 days (p = 0.04) in the axitinib group. While 78% of mice in the placebo group developed symptomatic metastatic epidural spinal cord compression, only 50% did so in the treatment groups. The mean time to manifestation of paralysis was 22 days in the control group, 26 days (p = 0.10) in the everolimus group, and 27 days (p = 0.06) in the axitinib group. Screening for spinal metastases by bioluminescence imaging on two different time points showed a decrease in metastatic tumor formation in the treatment groups compared to the controls. Immunohistochemical analysis confirmed the bioactivity of the two compounds: The Ki67 proliferation labeling index was reduced in the everolimus group and numbers of CD31 positive endothelial cells were reduced in the axitinib group. Conclusion: Both, the mTOR inhibitor everolimus as well as antiangiogenetic effects by the VEGFR inhibitor axitinib showed potential to prevent and retard formation of symptomatic spinal metastases. However, the therapeutic efficacy was only mild in this experimental model.
Collapse
Affiliation(s)
- Tobias Kratzsch
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Andras Piffko
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Thomas Broggini
- Department of Physics, University of California, San Diego, La Jolla, CA, United States
| | - Marcus Czabanka
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| |
Collapse
|
35
|
Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, Sun B, Chen B, Xiao Z. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology 2020; 18:10. [PMID: 31918721 PMCID: PMC6950820 DOI: 10.1186/s12951-019-0563-2] [Citation(s) in RCA: 424] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background 5-Fluorouracil (5-FU) has been commonly prescribed for patients with colorectal cancer (CRC), but resistance to 5-FU is one of the main reasons for failure in CRC. Recently, microRNAs (miRNAs) have been established as a means of reversing the dilemma by regulating signaling pathways involved in initiation and progression of CRC. However, how to safely and effectively deliver miRNA to target cells becomes a main challenge. Results In this study, Engineered exosomes were exploited to simultaneously deliver an anticancer drug 5-FU and miR-21 inhibitor oligonucleotide (miR-21i) to Her2 expressing cancer cells. Purified engineered exosomes from the donor cells loaded with 5-FU and miR-21i via electroporation to introduce into 5-FU-resistant colorectal cancer cell line HCT-1165FR. Furthermore, systematic administration of 5-FU and miR-21i loaded exosomes in tumor bearing mice indicated a significantly anti-tumor effect. The results showed that the engineered exosome-based 5-FU and miR-21i co-delivery system could efficiently facilitate cellular uptake and significantly down-regulate miR-21 expression in 5-FU resistant HCT-1165FR cell lines. Consequently, the down-regulation of miR-21 induced cell cycle arrest, reduced tumor proliferation, increased apoptosis and rescued PTEN and hMSH2 expressions, regulatory targets of miR-21. Of particular importance was the significant reduction in tumor growth in a mouse model of colon cancer with systematic administration of the targeting miR-21i. More excitedly, the combinational delivery of miR-21i and 5-FU with the engineered exosomes effectively reverse drug resistance and significantly enhanced the cytotoxicity in 5-FU-resistant colon cancer cells, compared with the single treatment with either miR-21i or 5-FU. Conclusion The strategy for co-delivering the functional small RNA and anticancer drug by exosomes foreshadows a potential approach to reverse the drug resistance in CRC and thus to enhance the efficacy of the cancer treatment.
Collapse
Affiliation(s)
- Gaofeng Liang
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China.,Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Yanliang Zhu
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Huantian Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Ke Si
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Baoan Chen
- Medical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
36
|
Hermans E, Hulleman E. Patient-Derived Orthotopic Xenograft Models of Pediatric Brain Tumors: In a Mature Phase or Still in Its Infancy? Front Oncol 2020; 9:1418. [PMID: 31970083 PMCID: PMC6960099 DOI: 10.3389/fonc.2019.01418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
In recent years, molecular profiling has led to the discovery of an increasing number of brain tumor subtypes, and associated therapeutic targets. These molecular features have been incorporated in the 2016 new World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS), which now distinguishes tumor subgroups not only histologically, but also based on molecular characteristics. Despite an improved diagnosis of (pediatric) tumors in the CNS however, the survival of children with malignant brain tumors still is far worse than for those suffering from other types of malignancies. Therefore, new treatments need to be developed, based on subgroup-specific genetic aberrations. Here, we provide an overview of the currently available orthotopic xenograft models for pediatric brain tumor subtypes as defined by the 2016 WHO classification, to facilitate the choice of appropriate animal models for the preclinical testing of novel treatment strategies, and to provide insight into the current gaps and challenges.
Collapse
Affiliation(s)
- Eva Hermans
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Rallapalli H, Tan IL, Volkova E, Wojcinski A, Darwin BC, Lerch JP, Joyner AL, Turnbull DH. MEMRI-based imaging pipeline for guiding preclinical studies in mouse models of sporadic medulloblastoma. Magn Reson Med 2020; 83:214-227. [PMID: 31403226 PMCID: PMC6778701 DOI: 10.1002/mrm.27904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE Genetically engineered mouse models of sporadic cancers are critical for studying tumor biology and for preclinical testing of therapeutics. We present an MRI-based pipeline designed to produce high resolution, quantitative information about tumor progression and response to novel therapies in mouse models of medulloblastoma (MB). METHODS Sporadic MB was modeled in mice by inducing expression of an activated form of the Smoothened gene (aSmo) in a small number of cerebellar granule cell precursors. aSmo mice were imaged and analyzed at defined time-points using a 3D manganese-enhanced MRI-based pipeline optimized for high-throughput. RESULTS A semi-automated segmentation protocol was established that estimates tumor volume in a time-frame compatible with a high-throughput pipeline. Both an empirical, volume-based classifier and a linear discriminant analysis-based classifier were tested to distinguish progressing from nonprogressing lesions at early stages of tumorigenesis. Tumor centroids measured at early stages revealed that there is a very specific location of the probable origin of the aSmo MB tumors. The efficacy of the manganese-enhanced MRI pipeline was demonstrated with a small-scale experimental drug trial designed to reduce the number of tumor associated macrophages and microglia. CONCLUSION Our results revealed a high level of heterogeneity between tumors within and between aSmo MB models, indicating that meaningful studies of sporadic tumor progression and response to therapy could not be conducted without an imaging-based pipeline approach.
Collapse
Affiliation(s)
- Harikrishna Rallapalli
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine
- Department of Radiology, New York University School of Medicine
- Biomedical Imaging Graduate Program, New York University School of Medicine
| | - I-Li Tan
- Developmental Biology Program, Sloan Kettering Institute
- Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University
| | - Eugenia Volkova
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine
| | | | - Benjamin C. Darwin
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute
- Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University
| | - Daniel H. Turnbull
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine
- Department of Radiology, New York University School of Medicine
- Biomedical Imaging Graduate Program, New York University School of Medicine
| |
Collapse
|
38
|
Xu Y, Wang J, Cai S, Chen G, Xiao N, Fu Y, Chen Q, Qiu S. PNCK depletion inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cells in vitro and in vivo. J Cancer 2019; 10:6925-6932. [PMID: 31839828 PMCID: PMC6909947 DOI: 10.7150/jca.33698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/26/2019] [Indexed: 11/22/2022] Open
Abstract
Purpose: Recent studies indicate that pregnancy upregulated non-ubiquitous calmodulin kinase (PNCK) is significantly up-regulated in breast and renal carcinomas. However, the expression profile and its biological relevance of PNCK in nasopharyngeal carcinoma (NPC) have not been elucidated. Methods: The expression level of PNCK was detected in specimens of NPC (n=10) and normal tissues (n=10) by real-time PCR and immunohistochemistry. Celigo Cell Counting and MTT assay were used to measure cell viability. Apoptosis was detected by flow cytometric analysis and caspases 3/7 activity assay. Real-time PCR and Western blotting were performed to evaluate the expression of PNCK. The bioluminescence imaging was used to evaluate the effects of PNCK knockdown on tumor growth using a xenograft animal model. The global gene expression profile was determined in wild type and PNCK-depleted CNE-2 cells via transcriptomics analysis. For mechanical investigation, the changes of PI3K/AKT/mTOR signaling pathway were detected by Western blotting. Results: The mRNA and protein levels of PNCK were increased in human NPC samples. In vitro experiments showed that shRNA or CRISPR-Cas9 mediated silencing of PNCK inhibited proliferation and induced apoptosis in NPC cells. In addition, in vivo assay revealed that knockdown of PNCK suppressed tumor growth. Consistently, a significant reduction of tumor bioluminescence in mice inoculated with PNCK-knockdown cells compared to that of control cells. In gene expression, the transcriptomics analysis revealed that there were 589 upregulated genes and 589 downregulated genes in PNCK-knockdown cells. Ingenuity Pathway Analysis (IPA) identified significant changes of PI3K/AKT/mTOR signaling pathway in PNCK-knockdown cells. Furthermore, western blot analysis revealed that interference with PNCK reduced the phosphorylation levels of PI3K, AKT and mTOR in CNE-2 cells. Conclusion: This study for the first time demonstrates that knockdown of PNCK could suppress growth and induce apoptosis of NPC cells both in vitro and in vivo by regulating PI3K/AKT/mTOR signaling pathway. These findings suggest that PNCK might be a novel therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Yuanji Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Jiling Wang
- Department of Medical Oncology, The First Hospital of Putian City, Putian, China
| | - Shaoli Cai
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.,The Key Laboratories of Innate Immune Biology of Fujian Province, Fuzhou, China
| | | | - Nanyang Xiao
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.,The Key Laboratories of Innate Immune Biology of Fujian Province, Fuzhou, China
| | - Yajuan Fu
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.,The Key Laboratories of Innate Immune Biology of Fujian Province, Fuzhou, China
| | - Qi Chen
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China.,The Key Laboratories of Innate Immune Biology of Fujian Province, Fuzhou, China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| |
Collapse
|
39
|
Serganova I, Blasberg RG. Molecular Imaging with Reporter Genes: Has Its Promise Been Delivered? J Nucl Med 2019; 60:1665-1681. [PMID: 31792128 PMCID: PMC12079160 DOI: 10.2967/jnumed.118.220004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The first reporter systems were developed in the early 1980s and were based on measuring the activity of an enzyme-as a surrogate measure of promoter-driven transcriptional activity-which is now known as a reporter gene system. The initial objective and application of reporter techniques was to analyze the activity of a specific promoter (namely, the expression of a gene that is under the regulation of the specific promoter that is linked to the reporter gene). This system allows visualization of specific promoter activity with great sensitivity. In general, there are 2 classes of reporter systems: constitutively expressed (always-on) reporter constructs used for cell tracking, and inducible reporter systems sensitive to endogenous signaling molecules and transcription factors that characterize specific tissues, tumors, or signaling pathways.This review traces the development of different reporter systems, using fluorescent and bioluminescent proteins as well as radionuclide-based reporter systems. The development and application of radionuclide-based reporter systems is the focus of this review. The question at the end of the review is whether the "promise" of reporter gene imaging has been realized. What is required for moving forward with radionuclide-based reporter systems, and what is required for successful translation to clinical applications?
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald G Blasberg
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Hospital, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; and
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
40
|
Li X, Wang A, Wang J, Lu J. Efficient Strategy for the Synthesis and Modification of 2-Hydroxyethylluciferin for Highly Sensitive Bioluminescence Imaging of Endogenous Hydrogen Sulfide in Cancer Cells and Nude Mice. Anal Chem 2019; 91:15703-15708. [DOI: 10.1021/acs.analchem.9b03877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xuewei Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Anni Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jinyi Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
41
|
de Souza Fernandes Pereira M, Fantacini DMC, Picanço-Castro V. Generation of Tumor Cells Expressing Firefly Luciferase (fLuc) to Evaluate the Effectiveness of CAR in a Murine Model. Methods Mol Biol 2019; 2086:237-250. [PMID: 31707681 DOI: 10.1007/978-1-0716-0146-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Immunotherapy has been showed as a promisor treatment, in special for hematological diseases. Chimeric antigen receptor T cells (CARs) which are showing satisfactory results in early-phase cancer clinical trials can be highlighted. However, preclinical models are critical steps prior to clinical trial. In this way, a well-established preclinical model is an important key in order to confirm the proof of principle. For this purpose, in this chapter will be pointed the methods to generate tumor cells expressing firefly Luciferase. In turn, these modified cells will be used to create a subcutaneous and a systemic murine model of Burkitt's lymphoma in order to evaluate the effectiveness of CAR-T.
Collapse
MESH Headings
- Animals
- Burkitt Lymphoma/diagnostic imaging
- Burkitt Lymphoma/etiology
- Burkitt Lymphoma/pathology
- Burkitt Lymphoma/therapy
- Cell Line, Tumor
- Disease Models, Animal
- Gene Expression
- Genes, Reporter
- Humans
- Immunotherapy, Adoptive/methods
- Luciferases, Firefly/genetics
- Mice
- Molecular Imaging/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transduction, Genetic
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | - Virgínia Picanço-Castro
- Center for Cell-Based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Kim KW, Jeong JU, Lee KH, Uong TNT, Rhee JH, Ahn SJ, Kim SK, Cho D, Quang Nguyen HP, Pham CT, Yoon MS. Combined NK Cell Therapy and Radiation Therapy Exhibit Long-Term Therapeutic and Antimetastatic Effects in a Human Triple Negative Breast Cancer Model. Int J Radiat Oncol Biol Phys 2019; 108:115-125. [PMID: 31605787 DOI: 10.1016/j.ijrobp.2019.09.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 01/26/2023]
Abstract
PURPOSE We investigated whether adoptive cell therapy with ex vivo-activated natural killer (NK) cells enhances the therapeutic efficacy of local tumor radiation therapy (RT) using a human triple-negative breast cancer xenograft model. METHODS AND MATERIALS NK cells from healthy donors were expanded ex vivo. MDA-MB-231/Luc-GFP cells were subcutaneously implanted into the thighs of NSG mice. The animals were divided into 4 experimental groups: control, RT, NK, and RT + NK. On day 17 after tumor implantation, tumors from the RT groups were irradiated. The ex vivo-expanded NK cells were intravenously administered twice, on days 17 and 19. Primary and secondary tumors were evaluated using long-term bioluminescence imaging, and histopathology was performed on resected tumor tissue specimens. RESULTS The luciferase signals of the primary tumors in the RT + NK group were significantly lower than those of comparably sized primary tumors in the RT group. The long-term migration and infiltration of NK cells into the primary tumor sites were significantly higher in RT + NK than in NK mice. Moreover, lymphatic metastasis to the axillary lymph nodes and liver and lung metastases were highly suppressed in the RT + NK group, as demonstrated by BLI and p53 immunohistochemistry. The long-term survival of the RT + NK group was significantly higher than that of the RT or NK groups. CONCLUSIONS Reduction in tumor burden by combining RT and systemic NK cell therapy improved the suppression of primary tumor growth, with efficient NK cell migration and penetration into the primary tumor site. Administered NK cells were maintained in the primary tissue for a significantly longer time in RT + NK group compared with NK group. Both lymphatic spread and distant metastasis to the lungs and liver were effectively suppressed by the combined therapy.
Collapse
Affiliation(s)
- Kyung Won Kim
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Jae-Uk Jeong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Tung Nguyen Thanh Uong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Joon Haeng Rhee
- Department of Microbiology and Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea
| | - Sung-Ja Ahn
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Sang-Ki Kim
- Department of Companion & Laboratory Animal Science, Kongju National University, Yesan, Republic of Korea
| | - Duck Cho
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Huy Phuoc Quang Nguyen
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea
| | - Chanh Tin Pham
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Mee Sun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, South Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, South Korea.
| |
Collapse
|
43
|
Yim MS, Son EJ, Kim HN, Ryu EK. A TAT-conjugated peptide inhibitor of polo-like kinase 1 for in vivo tumor imaging. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0187-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Norleual, a hepatocyte growth factor and macrophage stimulating protein dual antagonist, increases pancreatic cancer sensitivity to gemcitabine. Anticancer Drugs 2019; 29:295-306. [PMID: 29389804 DOI: 10.1097/cad.0000000000000598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is a leading cause of cancer deaths in the USA and is characterized by an exceptionally poor long-term survival rate compared with other major cancers. The hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP) growth factor systems are frequently over-activated in pancreatic cancer and significantly contribute to cancer progression, metastasis, and chemotherapeutic resistance. Small molecules homologous to the 'hinge' region of HGF, which participates in its dimerization and activation, had been developed and shown to bind HGF with high affinity, antagonize HGF's actions, and possess anticancer activity. Encouraged by sequence homology between HGF's hinge region and a similar sequence in MSP, our laboratory previously investigated and determined that these same antagonists could also block MSP-dependent cellular responses. Thus, the purpose of this study was to establish that the dual HGF/MSP antagonist Norleual could inhibit the prosurvival activity imparted by both HGF and MSP to pancreatic cancer cells in vitro, and to determine whether this effect translated into an improved chemotherapeutic impact for gemcitabine when delivered in combination in a human pancreatic cancer xenograft model. Our results demonstrate that Norleual does indeed suppress HGF's and MSP's prosurvival effects as well as sensitizing pancreatic cancer cells to gemcitabine in vitro. Most importantly, treatment with Norleual in combination with gemcitabine markedly inhibited in-vivo tumor growth beyond the suppression observed with gemcitabine alone. These results suggest that dual functional HGF/MSP antagonists like Norleual warrant further development and may offer an improved therapeutic outcome for pancreatic cancer patients.
Collapse
|
45
|
Aswendt M, Vogel S, Schäfer C, Jathoul A, Pule M, Hoehn M. Quantitative in vivo dual-color bioluminescence imaging in the mouse brain. NEUROPHOTONICS 2019; 6:025006. [PMID: 31093514 PMCID: PMC6504011 DOI: 10.1117/1.nph.6.2.025006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/15/2019] [Indexed: 05/03/2023]
Abstract
Bioluminescence imaging (BLI) is an optical imaging method that can be translated from the cell culture dish in vitro to cell tracking in small animal models in vivo. In contrast to the more widely used fluorescence imaging, which requires light excitation, in BLI the light is exclusively generated by the enzyme luciferase. The luciferase gene can be engineered to target and monitor almost every cell and biological process quantitatively in vitro and even from deep tissue in vivo. While initially used for tumor imaging, bioluminescence was recently optimized for mouse brain imaging of neural cells and monitoring of viability or differentiation of grafted stem cells. Here, we describe the use of bright color-shifted firefly luciferases (Flucs) based on the thermostable x5 Fluc that emit red and green for effective and quantitative unmixing of two human cell populations in vitro and after transplantation into the mouse brain in vivo. Spectral unmixing predicts the ratio of luciferases in vitro and a mixture of cells precisely for cortical grafts, however, with less accuracy for striatal grafts. This dual-color approach enables the simultaneous visualization and quantification of two cell populations on the whole brain scale, with particular relevance for translational studies of neurological disorders providing information on stem cell survival and differentiation in one imaging session in vivo.
Collapse
Affiliation(s)
- Markus Aswendt
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Address all correspondence to Markus Aswendt, E-mail:
| | - Stefanie Vogel
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory, Cologne, Germany
| | - Cordula Schäfer
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory, Cologne, Germany
| | - Amit Jathoul
- Cardiff School of Biosciences, Molecular Biosciences, Cardiff, United Kingdom
| | - Martin Pule
- University College London, Cancer Institute, Department of Haematology, London, United Kingdom
| | - Mathias Hoehn
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory, Cologne, Germany
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| |
Collapse
|
46
|
Yan Y, Wang S, Xie F, Fang X, Zhang YM, Zhang SXA. Firefly-Inspired Approach to Develop New Chemiluminescence Materials. iScience 2019; 13:478-487. [PMID: 30880044 PMCID: PMC6441873 DOI: 10.1016/j.isci.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/26/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022] Open
Abstract
Bioluminescence, wherein marine and terrestrial organisms chemically produce light for communication, is a burgeoning area of research. Herein, we demonstrate a new series of artificial chemiluminescent compounds inspired by the enol-degradation reaction of natural bioluminescent molecules, luciferins. Based on systematic optical experiments, isotope labeling, and theoretical calculations, the chemiluminescent mechanism of these new materials and the relationship of enol-degradation reaction and chemiluminescence are fully discussed. The color and efficiency of the artificial chemiluminescent materials can be easily adjusted, and blue (486 nm), yellow (565 nm), and near-infrared (756 nm) luminescence can thus be obtained. The findings and in-depth understanding herein may accelerate the development of bio/chemiluminescent materials for analytical applications and non-invasive bioluminescence imaging.
Collapse
Affiliation(s)
- Yuxing Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Shuo Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Fuli Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xiaofeng Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China.
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China; College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
47
|
Seo S, Moon Y, Choi J, Yoon S, Jung KH, Cheon J, Kim W, Kim D, Lee CH, Kim SW, Park KS, Lee DH. The GTP binding activity of transglutaminase 2 promotes bone metastasis of breast cancer cells by downregulating microRNA-205. Am J Cancer Res 2019; 9:597-607. [PMID: 30949413 PMCID: PMC6448065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023] Open
Abstract
Previous studies have shown that transglutaminase 2 (TG2) induces epithelial to mesenchymal transition (EMT) in various tumors. Several studies have also demonstrated the critical role of microRNAs (miRNAs) in regulating EMT of various types of tumors. However, the relationship between TG2 and miRNAs is not well understood. In the present study, we investigated if miR-205, which is known to inhibit EMT and is commonly regulated by TG2, contributes to TG2-induced EMT of human breast cancer cells. We have analyzed the expression of miR-205 in TG2-expressing and TG2-non-expressing breast cancer cells by quantitative real-time PCR (qRT-PCR) and the expression of TG2 and EMT related markers, such as ZEB1 and Vimentin, by western blotting. We also have studied the regulation of tumor metastasis by miR-205 and TG2 using matrigel invasion assays, intracardiac injection of breast cancer cells into mice and in vivo bioluminescent imaging. MiR-205 was significantly downregulated in high TG2-expressing or TG2-transfected breast cancer cells than in low TG2-expressing or mock-transfected breast cancer cells. Overexpression of miR-205 reduced the bone metastasis of MCF7/TG2-C277S cells that express transamidase-activity deficient TG2 and inhibits the invasiveness of MDA-MB-231 breast cancer cells that express TG2. Bioluminescent imaging showed that intracardiac injection of MCF7/TG2-C277S cells in mice promoted bone tumors, especially in the knee and jaw, but MCF7/TG2-C277S cells ectopically expressing miR-205 did not metastasize. The GTP binding activity, but not transamidase activity, of TG2, induces EMT in breast cancer cells by inhibiting the expression of miR-205 that suppresses EMT by downregulating the expression of ZEB1, an EMT marker. Moreover, in vivo experiments demonstrate that miR-205 down-regulation by TG2 induces bone metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Seyoung Seo
- Department of Oncology, Asan Medical Center, University of Ulsan College of MedicineSeoul 05505, Republic of Korea
| | - Yongwha Moon
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA UniversitySeongnam-si 463-712, Gyeonggi-do, Republic of Korea
| | - Junyoung Choi
- Department of Oncology, Asan Medical Center, University of Ulsan College of MedicineSeoul 05505, Republic of Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of MedicineSeoul 05505, Republic of Korea
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of MedicineSeoul 05505, Republic of Korea
| | - Jaekyung Cheon
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine 877 Bangeojinsunhwan-doroDong-gu, Ulsan 44033, Republic of Korea
| | - Wanlim Kim
- Department of Orthopaedic Surgery, Asan Medical Center, University of Ulsan College of MedicineSeoul 05505, Republic of Korea
| | - Deokhoon Kim
- Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical CenterSeoul 05505, Republic of Korea
| | - Chang Hoon Lee
- Bio & Drug Discovery Division, Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology (KRICT)Daejeon, Republic of Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of MedicineSeoul 05505, Republic of Korea
| | - Kang-Seo Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of MedicineSeoul 05505, Republic of Korea
- Department of Biomedical Sciences, University of Ulsan College of MedicineSeoul 05505, Republic of Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of MedicineSeoul 05505, Republic of Korea
| |
Collapse
|
48
|
Xia Y, Pang H. Glucuronidation of d-Luciferin In Vitro: Isoform Selectivity and Kinetics Characterization. Eur J Drug Metab Pharmacokinet 2019; 44:549-556. [DOI: 10.1007/s13318-019-00549-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Corradi RB, LaRosa S, Jebiwott S, Murray KS, Rosenzweig B, Somma AJ, Gomez RS, Scherz A, Kim K, Coleman JA. Effectiveness of the combination of vascular targeted photodynamic therapy and anti-cytotoxic T-lymphocyte-associated antigen 4 in a preclinical mouse model of urothelial carcinoma. Int J Urol 2019; 26:414-422. [PMID: 30659668 DOI: 10.1111/iju.13878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/04/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the effectiveness of combination treatment of vascular targeted photodynamic therapy and anti-cytotoxic T-lymphocyte-associated antigen 4 immunotherapy in a mouse model of urothelial carcinoma. METHODS We used C57BL/6 mice injected with murine bladder 49 cell line. Mice were randomly allocated into four treatment groups: vascular targeted photodynamic therapy only, anti-cytotoxic T-lymphocyte-associated antigen 4 only, combination therapy and control. We carried out three separate experiments that used distinct cohorts of mice: tumor growth and development of lung metastases monitored with bioluminescent imaging (n = 91); survival evaluated with Kaplan-Meier curves (n = 111); and tumor cell population studied with flow cytometry (n = 20). In a fourth experiment, we re-challenged tumors in previously treated mice and compared tumor growth with that of naïve mice. RESULTS Combination therapy provided significant benefits over the other three treatment groups: prolonged survival (P < 0.0001), lower tumor signal (P < 0.0001) and decreased lung signal uptake (P ≤ 0.002). We also observed that mice previously treated with vascular targeted photodynamic therapy only or combination therapy did not present tumor growth after re-challenged tumors. CONCLUSIONS Combination of vascular targeted photodynamic therapy with anti-cytotoxic T-lymphocyte-associated antigen 4 is an effective therapy in a urothelial carcinoma syngeneic mouse model. The present results suggest this therapy as a potential treatment option for both bladder and upper tract tumors in future clinical trials.
Collapse
Affiliation(s)
- Renato B Corradi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Stephen LaRosa
- Department of Surgery, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Sylvia Jebiwott
- Department of Surgery, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Katie S Murray
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Barak Rosenzweig
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Alexander J Somma
- Department of Surgery, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Renato S Gomez
- Department of Surgery, Federal University of Minas Gerais State, Belo Horizonte, Minas Gerais, Brazil
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Kwanghee Kim
- Department of Surgery, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Jonathan A Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, New York, USA.,Department of Urology, Weill Cornell Medical College, New York City, New York, USA
| |
Collapse
|
50
|
Shanmugam MK, Ahn KS, Hsu A, Woo CC, Yuan Y, Tan KHB, Chinnathambi A, Alahmadi TA, Alharbi SA, Koh APF, Arfuso F, Huang RYJ, Lim LHK, Sethi G, Kumar AP. Thymoquinone Inhibits Bone Metastasis of Breast Cancer Cells Through Abrogation of the CXCR4 Signaling Axis. Front Pharmacol 2018; 9:1294. [PMID: 30564115 PMCID: PMC6288203 DOI: 10.3389/fphar.2018.01294] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
Overexpression of chemokine receptor type 4 (CXCR4) has been found to be associated with increased cell proliferation, metastasis and also act as an indicator of poor prognosis in patients with breast cancer. Therefore, new agents that can abrogate CXCR4 expression have potential against breast cancer metastasis. In this study, we examined the potential effect of thymoquinone (TQ), derived from the seeds of Nigella sativa, on the expression and regulation of CXCR4 in breast cancer cells. TQ was found to inhibit the expression of CXCR4 in MDA-MB-231 triple negative breast cancer (TNBC) cells in a dose- and time-dependent manner. It was noted that suppression of CXCR4 by TQ was possibly transcriptionally regulated, as treatment with this drug caused down-regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and suppression of NF-κB binding to the CXCR4 promoter. Pretreatment with a proteasome inhibitor and/or lysosomal stabilization did not affect TQ induced suppression of CXCR4. Down-regulation of CXCR4 was further correlated with the inhibition of CXCL12-mediated migration and invasion of MDA-MB-231 cells. Interestingly, it was observed that the deletion of p65 could reverse the observed anti-invasive/anti-migratory effects of TQ in breast cancer cells. TQ also dose-dependently inhibited MDA-MB-231 tumor growth and tumor vascularity in a chick chorioallantoic membrane assay model. We also observed TQ (2 and 4 mg/kg) treatment significantly suppressed multiple lung, brain, and bone metastases in a dose-dependent manner in a metastasis breast cancer mouse model. Interestingly, H&E and immunohistochemical analysis of bone isolated from TQ treated mice indicated a reduction in number of osteolytic lesions and the expression of metastatic biomarkers. In conclusion, the results indicate that TQ primarily exerts its anti-metastatic effects by down-regulation of NF-κB regulated CXCR4 expression and thus has potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Annie Hsu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chern Chiuh Woo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Yuan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Kwong Huat Benny Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Angele Pei Fern Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Medical Sciences Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Faculty of Health Sciences, Curtin Medical School, Curtin University, Perth, WA, Australia.,National University Cancer Institute, National University Health System, Singapore, Singapore
| |
Collapse
|