1
|
Kim YB, Lee SH, Kasala D, Zhao Y, Jiao A, Hong J, Kim JS, Yoon AR, Yun CO. Potent therapeutic efficacy of intranasally deliverable paclitaxel modified with pH-sensitive and PEGylated polymeric micelle against glioblastoma. J Control Release 2025; 382:113711. [PMID: 40204132 DOI: 10.1016/j.jconrel.2025.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/10/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common type of brain tumor. Conventional therapies for GBM, such as surgery or radiotherapy, have shown inadequate therapeutic effect. Similarly, a large fraction of chemotherapeutics are ineffective against GBM due to the blood-brain barrier (BBB) preventing effective delivery of these drugs to the brain. To overcome these obstacles, an intranasally administrable and multifunctional drug-loaded polymeric micelle composed of a pH-sensitive PPCBA-PEI-Arg (PPA) polymer conjugated with PEGylated paclitaxel (PEG-PTX; PPP) was synthesized to treat GBM. PPP was more soluble in an aqueous solution than parental PTX and was more effectively internalized into the GBM cells. Further, PPP elicited a more potent cancer cell killing effect than PTX under physiological pH condition, which was further augmented under the mildly acidic condition that emulated the tumor microenvironment. Intranasal administration of PPP into orthotopic GBM tumor xenograft-bearing mice led to more efficient delivery of the drug to the brain tissues compared to parental PTX delivered via intranasal or intravenous route, thus resulting in superior inhibition of GBM growth. Collectively, these findings demonstrated that intranasal delivery of PTX via pH-sensitive and PEGylated polymeric micelles can be an effective approach for the treatment of aggressive GBM.
Collapse
Affiliation(s)
- Young-Beom Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Soo-Hwan Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yuebin Zhao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ao Jiao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd., Seoul, Republic of Korea
| | - Jin Su Kim
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; GeneMedicine Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
2
|
Jin SK, Baek KH. Unraveling the role of deubiquitinating enzymes on cisplatin resistance in several cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189297. [PMID: 40058507 DOI: 10.1016/j.bbcan.2025.189297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The use of platinum-based drugs in cancer treatment is one of the most common methods in chemotherapy. Especially, cisplatin induces cell death by interrupting DNA synthesis by binding to the DNA bases, thereby leading to the apoptosis via multiple pathways. However, the major hurdle in chemotherapy is drug resistance. To overcome drug resistance, the ubiquitin-proteasome system (UPS) has emerged as a potential therapeutic target. The UPS is a pivotal signaling pathway that regulates the majority of cellular proteins by attaching ubiquitin to substrates, leading to proteasomal degradation. Conversely, deubiquitinating enzymes (DUBs) remove tagged ubiquitin from the substrate and inhibit degradation, thereby maintaining proteostasis. Recently, studies have been conducted to identify the substrates of DUBs and investigated the cellular mechanisms, and now the development of therapeutics using DUB inhibitors is in clinical trials. However, the mechanism of the DUB response to cisplatin remains still unclear. In this review, we summarize the research reported on the function of DUBs responding to cisplatin.
Collapse
Affiliation(s)
- Sun-Kyu Jin
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
3
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024; 7:835-852. [PMID: 39219374 PMCID: PMC11680483 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| |
Collapse
|
4
|
Xu Z, Miao R, Han T, Liu Y, Zhou J, Guo J, Xing Y, Bai Y, Wu J, Hu D. KIF2C as a potential therapeutic target: insights from lung adenocarcinoma subtype classification and functional experiments. Mol Omics 2024; 20:417-429. [PMID: 38940931 DOI: 10.1039/d4mo00044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Objective: this study evaluates the prognostic relevance of gene subtypes and the role of kinesin family member 2C (KIF2C) in lung cancer progression. Methods: high-expression genes linked to overall survival (OS) and progression-free interval (PFI) were selected from the TCGA-LUAD dataset. Consensus clustering analysis categorized lung adenocarcinoma (LUAD) patients into two subtypes, C1 and C2, which were compared using clinical, drug sensitivity, and immunotherapy analyses. A random forest algorithm pinpointed KIF2C as a prognostic hub gene, and its functional impact was assessed through various assays and in vivo experiments. Results: The study identified 163 key genes and distinguished two LUAD subtypes with differing OS, PFI, pathological stages, drug sensitivity, and immunotherapy response. KIF2C, highly expressed in the C2 subtype, was associated with poor prognosis, promoting cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), with knockdown reducing tumor growth in mice. Conclusion: The research delineates distinct LUAD subtypes with significant clinical implications and highlights KIF2C as a potential therapeutic target for personalized treatment in LUAD.
Collapse
Affiliation(s)
- Zhi Xu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Rui Miao
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, 230041, P. R. China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| |
Collapse
|
5
|
Wang J, Liu Q, Zhao Y, Fu J, Su J. Tumor Cells Transmit Drug Resistance via Cisplatin-Induced Extracellular Vesicles. Int J Mol Sci 2023; 24:12347. [PMID: 37569723 PMCID: PMC10418773 DOI: 10.3390/ijms241512347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a first-line clinical agent used for treating solid tumors. Cisplatin damages the DNA of tumor cells and induces the production of high levels of reactive oxygen species to achieve tumor killing. Tumor cells have evolved several ways to tolerate this damage. Extracellular vesicles (EVs) are an important mode of information transfer in tumor cells. EVs can be substantially activated under cisplatin treatment and mediate different responses of tumor cells under cisplatin treatment depending on their different cargoes. However, the mechanism of action of tumor-cell-derived EVs under cisplatin treatment and their potential cargoes are still unclear. This review considers recent advances in cisplatin-induced release of EVs from tumor cells, with the expectation of providing a new understanding of the mechanisms of cisplatin treatment and drug resistance, as well as strategies for the combined use of cisplatin and other drugs.
Collapse
Affiliation(s)
| | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (J.W.); (Q.L.); (Y.Z.); (J.F.)
| |
Collapse
|
6
|
Sun SY, Crago A. MDM2 Implications for Potential Molecular Pathogenic Therapies of Soft-Tissue Tumors. J Clin Med 2023; 12:3638. [PMID: 37297833 PMCID: PMC10253559 DOI: 10.3390/jcm12113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Murine double minute 2 (MDM2, gene name MDM2) is an oncogene that mainly codes for a protein that acts as an E3 ubiquitin ligase, which targets the tumor suppressor protein p53 for degradation. Overexpression of MDM2 regulates the p53 protein levels by binding to it and promoting its degradation by the 26S proteasome. This leads to the inhibition of p53's ability to regulate cell cycle progression and apoptosis, allowing for uncontrolled cell growth, and can contribute to the development of soft-tissue tumors. The application of cellular stress leads to changes in the binding of MDM2 to p53, which prevents MDM2 from degrading p53. This results in an increase in p53 levels, which triggers either cell cycle arrest or apoptosis. Inhibiting the function of MDM2 has been identified as a potential therapeutic strategy for treating these types of tumors. By blocking the activity of MDM2, p53 function can be restored, potentially leading to tumor cell death and inhibiting the growth of tumors. However, further research is needed to fully understand the implications of MDM2 inhibition for the treatment of soft-tissue tumors and to determine the safety and efficacy of these therapies in clinical trials. An overview of key milestones and potential uses of MDM2 research is presented in this review.
Collapse
Affiliation(s)
- Sylvia Yao Sun
- Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, 417 E 618 St, New York, NY 10065, USA
| | - Aimee Crago
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Department of Surgery, Weill Cornell Medical Center, 525 E 68th St M 404, New York, NY 10065, USA
| |
Collapse
|
7
|
Liu H, Su H, Wang F, Dang Y, Ren Y, Yin S, Lu H, Zhang H, Wu J, Xu Z, Zheng M, Gao J, Cao Y, Xu J, Chen L, Wu X, Ma M, Xu L, Wang F, Chen J, Su C, Wu C, Xie H, Gu J, Xi JJ, Ge B, Fei Y, Chen C. Pharmacological boosting of cGAS activation sensitizes chemotherapy by enhancing antitumor immunity. Cell Rep 2023; 42:112275. [PMID: 36943864 DOI: 10.1016/j.celrep.2023.112275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Enhancing chemosensitivity is one of the largest unmet medical needs in cancer therapy. Cyclic GMP-AMP synthase (cGAS) connects genome instability caused by platinum-based chemotherapeutics to type I interferon (IFN) response. Here, by using a high-throughput small-molecule microarray-based screening of cGAS interacting compounds, we identify brivanib, known as a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor, as a cGAS modulator. Brivanib markedly enhances cGAS-mediated type I IFN response in tumor cells treated with platinum. Mechanistically, brivanib directly targets cGAS and enhances its DNA binding affinity. Importantly, brivanib synergizes with cisplatin in tumor control by boosting CD8+ T cell response in a tumor-intrinsic cGAS-dependent manner, which is further validated by a patient-derived tumor-like cell clusters model. Taken together, our findings identify cGAS as an unprecedented target of brivanib and provide a rationale for the combination of brivanib with platinum-based chemotherapeutics in cancer treatment.
Collapse
Affiliation(s)
- Haipeng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai HUASHEN Institute of Microbes and Infections, Shanghai 200052, China.
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yifang Dang
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai HUASHEN Institute of Microbes and Infections, Shanghai 200052, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Shenyi Yin
- College of Future Technology, Peking University, Beijing 100871, China
| | - Huinan Lu
- GeneX Health Co. Ltd., Beijing 100195, China
| | - Hang Zhang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mengge Zheng
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jiani Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yajuan Cao
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junfang Xu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Li Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiangyang Wu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Long Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fang Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jianxia Chen
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Huikang Xie
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jijie Gu
- WuXi Biologics (Shanghai) Co., Ltd., Shanghai City 201401, China
| | - Jianzhong Jeff Xi
- College of Future Technology, Peking University, Beijing 100871, China
| | - Baoxue Ge
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| |
Collapse
|
8
|
Kciuk M, Kołat D, Kałuzińska-Kołat Ż, Gawrysiak M, Drozda R, Celik I, Kontek R. PD-1/PD-L1 and DNA Damage Response in Cancer. Cells 2023; 12:530. [PMID: 36831197 PMCID: PMC9954559 DOI: 10.3390/cells12040530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The application of immunotherapy for cancer treatment is rapidly becoming more widespread. Immunotherapeutic agents are frequently combined with various types of treatments to obtain a more durable antitumor clinical response in patients who have developed resistance to monotherapy. Chemotherapeutic drugs that induce DNA damage and trigger DNA damage response (DDR) frequently induce an increase in the expression of the programmed death ligand-1 (PD-L1) that can be employed by cancer cells to avoid immune surveillance. PD-L1 exposed on cancer cells can in turn be targeted to re-establish the immune-reactive tumor microenvironment, which ultimately increases the tumor's susceptibility to combined therapies. Here we review the recent advances in how the DDR regulates PD-L1 expression and point out the effect of etoposide, irinotecan, and platinum compounds on the anti-tumor immune response.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Mateusz Gawrysiak
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Rafał Drozda
- Department of Gastrointestinal Endoscopy, Wl. Bieganski Hospital, 91-347 Lodz, Poland
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
9
|
Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. Int J Mol Sci 2022; 23:ijms23095005. [PMID: 35563397 PMCID: PMC9103871 DOI: 10.3390/ijms23095005] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Named as the guardian of the genome, p53 is a tumor suppressor that regulates cell function, often through many different mechanisms such as DNA repair, apoptosis, cell cycle arrest, senescence, metabolism, and autophagy. One of the genes that p53 activates is MDM2, which forms a negative feedback loop since MDM2 induces the degradation of p53. When p53 activity is inhibited, damaged cells do not undergo cell cycle arrest or apoptosis. As 50% of human cancers inactivate p53 by mutation, current research focuses on reactivating p53 by developing drugs that target the p53-MDM2 interaction, which includes the binding of MDM2 and phosphorylation of p53. The objective of this article is to provide a short list and description of p53-MDM2 antagonists that may be excellent candidates for inducing cancer cell death. Relevant articles were searched for and identified using online databases such as PubMed and ScienceDirect. Increasing p53 levels, by targeting the p53-MDM2 interaction, can help p53 play its role as a tumor suppressor and induce cancer cell death. Researchers have identified different compounds that can act as inhibitors, either by directly binding to MDM2 or by modifying p53 with phosphorylation. The results associated with the drugs demonstrate the importance of targeting such interactions to inhibit cancer cell growth, which indicates that the use of the compounds may improve cancer therapeutics.
Collapse
|
10
|
Berkel C, Cacan E. Estrogen- and estrogen receptor (ER)-mediated cisplatin chemoresistance in cancer. Life Sci 2021; 286:120029. [PMID: 34634322 DOI: 10.1016/j.lfs.2021.120029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/28/2021] [Accepted: 10/02/2021] [Indexed: 12/21/2022]
Abstract
Cisplatin is a platinum-based chemotherapeutic drug used in the standard treatment of various solid cancers including testicular, bladder, head and neck, cervical and ovarian cancer. Although successful clinical responses are observed in patients following initial cisplatin treatment, resistance to cisplatin ultimately develops in most patients, leading to therapeutic failure. Multiple molecular mechanisms contributing to cisplatin resistance in cancer cells have been identified to date. In this review, we discuss the effect of estrogen, estrogen receptors (ERs) and estrogen-related receptors (ERRs) on cisplatin resistance in various cancer types. We highlight that estrogen treatment or increased expression of ERs or ERRs are generally associated with higher cisplatin resistance in cancer in vitro, mostly due to decreased caspase activity, increased anti-apoptotic protein levels such as BCL-2, higher drug efflux and higher levels of antioxidant enzymes. Targeted inhibition of ERs or estrogen production in combination with cisplatin treatment thus can be a useful strategy to overcome chemoresistance in certain cancer types. Estrogen levels and ER status can also be considered to identify cancer patients with a high potential of therapy response against cisplatin. A better mechanistic understanding of the involvement of estrogen, ERs and ERRs in the development of cisplatin resistance is needed to improve the management of cancer treatment.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat 60250, Turkey.
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat 60250, Turkey.
| |
Collapse
|
11
|
Zhang X, Dang Y, Liu R, Zhao S, Ma J, Qin Y. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol 2020; 235:8826-8838. [PMID: 32391592 DOI: 10.1002/jcp.29725] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
Distinct microRNA (miRNA) profiles have been reported in premature ovarian insufficiency (POI), but their functional relevance in POI is not yet clearly stated. In this study, aberrant expressions of miR-127-5p and high mobility group box 2 (HMGB2) were observed by microarrays in granulosa cells (GCs) from biochemical POI (bPOI) women and further confirmed by a quantitative reverse-transcription polymerase chain reaction. Immortalized human granulosa cell line and mouse primary ovarian GCs were used for functional validation. Orthotopic mouse model was established to examine the role of miR-127-5p in vivo. Finally, the expression of miR-127-5p was measured in the plasma of bPOI women. The receiver operating characteristic curve analysis was performed to determine the indicative role of miR-127-5p for ovarian reserve. Results showed the upregulation of miR-127-5p was identified in GCs from bPOI patients. It inhibited GCs proliferation and impaired DNA damage repair capacity through targeting HMGB2, which was significantly downregulated in GCs from the same cohort of cases. miR-127-5p was confirmed to attenuate DNA repair capability via HMGB2 in mouse ovary in vivo. Intriguingly, the upexpression of miR-127-5p was also detected in plasma of bPOI individuals, suggesting that miR-127-5p could be a promising indicator for bPOI. Taken together, our results discovered the deleterious effects of miR-127-5p on GCs function and its predictive value in POI process. The target gene HMGB2 could be considered as a new candidate for POI. This study highlights the importance of DNA repair capacity for ovarian function and sheds light on the epigenetic mechanism in the pathogenicity of POI.
Collapse
Affiliation(s)
- Xinyue Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yujie Dang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Ran Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| |
Collapse
|
12
|
Spears N, Lopes F, Stefansdottir A, Rossi V, De Felici M, Anderson RA, Klinger FG. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update 2020; 25:673-693. [PMID: 31600388 PMCID: PMC6847836 DOI: 10.1093/humupd/dmz027] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Anti-cancer therapy is often a cause of premature ovarian insufficiency and infertility since the ovarian follicle reserve is extremely sensitive to the effects of chemotherapy and radiotherapy. While oocyte, embryo and ovarian cortex cryopreservation can help some women with cancer-induced infertility achieve pregnancy, the development of effective methods to protect ovarian function during chemotherapy would be a significant advantage. OBJECTIVE AND RATIONALE This paper critically discusses the different damaging effects of the most common chemotherapeutic compounds on the ovary, in particular, the ovarian follicles and the molecular pathways that lead to that damage. The mechanisms through which fertility-protective agents might prevent chemotherapy drug-induced follicle loss are then reviewed. SEARCH METHODS Articles published in English were searched on PubMed up to March 2019 using the following terms: ovary, fertility preservation, chemotherapy, follicle death, adjuvant therapy, cyclophosphamide, cisplatin, doxorubicin. Inclusion and exclusion criteria were applied to the analysis of the protective agents. OUTCOMES Recent studies reveal how chemotherapeutic drugs can affect the different cellular components of the ovary, causing rapid depletion of the ovarian follicular reserve. The three most commonly used drugs, cyclophosphamide, cisplatin and doxorubicin, cause premature ovarian insufficiency by inducing death and/or accelerated activation of primordial follicles and increased atresia of growing follicles. They also cause an increase in damage to blood vessels and the stromal compartment and increment inflammation. In the past 20 years, many compounds have been investigated as potential protective agents to counteract these adverse effects. The interactions of recently described fertility-protective agents with these damage pathways are discussed. WIDER IMPLICATIONS Understanding the mechanisms underlying the action of chemotherapy compounds on the various components of the ovary is essential for the development of efficient and targeted pharmacological therapies that could protect and prolong female fertility. While there are increasing preclinical investigations of potential fertility preserving adjuvants, there remains a lack of approaches that are being developed and tested clinically.
Collapse
Affiliation(s)
- N Spears
- Biomedical Sciences, University of Edinburgh, Edinburgh UK
| | - F Lopes
- Biomedical Sciences, University of Edinburgh, Edinburgh UK
| | | | - V Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - M De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - R A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh UK
| | - F G Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
El-Naggar SA, El-Said KS. Antitumor efficacy of EDTA co-treatment with cisplatin in tumor-bearing mice. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem 2019; 88:102925. [PMID: 31003078 DOI: 10.1016/j.bioorg.2019.102925] [Citation(s) in RCA: 1055] [Impact Index Per Article: 175.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022]
Abstract
Cisplatin or (SP-4-2)-diamminedichloridoplatinum(II) is one of the most potential and widely used drugs for the treatment of various solid cancers such as testicular, ovarian, head and neck, bladder, lung, cervical cancer, melanoma, lymphomas and several others. Cisplatin exerts anticancer activity via multiple mechanisms but its most acceptable mechanism involves generation of DNA lesions by interacting with purine bases on DNA followed by activation of several signal transduction pathways which finally lead to apoptosis. However, side effects and drug resistance are the two inherent challenges of cisplatin which limit its application and effectiveness. Reduction of drug accumulation inside cancer cells, inactivation of drug by reacting with glutathione and metallothioneins and faster repairing of DNA lesions are responsible for cisplatin resistance. To minimize cisplatin side effects and resistance, combination therapies are used and have proven more effective to defect cancers. This article highlights a systematic description on cisplatin which includes a brief history, synthesis, action mechanism, resistance, uses, side effects and modulation of side effects. It also briefly describes development of platinum drugs from very small cisplatin complex to very large next generation nanocarriers conjugated platinum complexes.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
15
|
Luanpitpong S, Angsutararux P, Samart P, Chanthra N, Chanvorachote P, Issaragrisil S. Hyper-O-GlcNAcylation induces cisplatin resistance via regulation of p53 and c-Myc in human lung carcinoma. Sci Rep 2017; 7:10607. [PMID: 28878262 PMCID: PMC5587763 DOI: 10.1038/s41598-017-10886-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022] Open
Abstract
Aberrant metabolism in hexosamine biosynthetic pathway (HBP) has been observed in several cancers, affecting cellular signaling and tumor progression. However, the role of O-GlcNAcylation, a post-translational modification through HBP flux, in apoptosis remains unclear. Here, we found that hyper-O-GlcNAcylation in lung carcinoma cells by O-GlcNAcase inhibition renders the cells to apoptosis resistance to cisplatin (CDDP). Profiling of various key regulatory proteins revealed an implication of either p53 or c-Myc in the apoptosis regulation by O-GlcNAcylation, independent of p53 status. Using co-immunoprecipitation and correlation analyses, we found that O-GlcNAcylation of p53 under certain cellular contexts, i.e. high p53 activation, promotes its ubiquitin-mediated proteasomal degradation, resulting in a gain of oncogenic and anti-apoptotic functions. By contrast, O-GlcNAcylation of c-Myc inhibits its ubiquitination and subsequent proteasomal degradation. Gene manipulation studies revealed that O-GlcNAcylation of p53/c-Myc is in part a regulator of CDDP-induced apoptosis. Accordingly, we classified CDDP resistance by hyper-O-GlcNAcylation in lung carcinoma cells as either p53 or c-Myc dependence based on their molecular targets. Together, our findings provide novel mechanisms for the regulation of lung cancer cell apoptosis that could be important in understanding clinical drug resistance and suggest O-GlcNAcylation as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Paweorn Angsutararux
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Parinya Samart
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Nawin Chanthra
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand. .,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand. .,Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, 10310, Thailand.
| |
Collapse
|
16
|
Targeting the ATR-CHK1 Axis in Cancer Therapy. Cancers (Basel) 2017; 9:cancers9050041. [PMID: 28448462 PMCID: PMC5447951 DOI: 10.3390/cancers9050041] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Targeting the DNA damage response (DDR) is a new therapeutic approach in cancer that shows great promise for tumour selectivity. Key components of the DDR are the ataxia telangiectasia mutated and Rad3 related (ATR) and checkpoint kinase 1 (CHK1) kinases. This review article describes the role of ATR and its major downstream target, CHK1, in the DDR and why cancer cells are particularly reliant on the ATR-CHK1 pathway, providing the rationale for targeting these kinases, and validation of this hypothesis by genetic manipulation. The recent development of specific inhibitors and preclinical data using these inhibitors not only as chemosensitisers and radiosensitisers but also as single agents to exploit specific pathologies of tumour cells is described. These potent and specific inhibitors have now entered clinical trial and early results are presented.
Collapse
|
17
|
Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies. Biomolecules 2017; 7:biom7010019. [PMID: 28230817 PMCID: PMC5372731 DOI: 10.3390/biom7010019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.
Collapse
|
18
|
Role of 3′ repressor sequences of p53 in anti-cancer drug sensitivity of human lung tumor cells. Gene 2016; 594:190-196. [DOI: 10.1016/j.gene.2016.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/09/2016] [Accepted: 08/31/2016] [Indexed: 11/24/2022]
|
19
|
Syed N, Chavan S, Sahasrabuddhe NA, Renuse S, Sathe G, Nanjappa V, Radhakrishnan A, Raja R, Pinto SM, Srinivasan A, Prasad TSK, Srikumar K, Gowda H, Santosh V, Sidransky D, Califano JA, Pandey A, Chatterjee A. Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma. Proteomics 2015; 15:383-93. [PMID: 25327479 DOI: 10.1002/pmic.201400338] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/24/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022]
Abstract
Dysregulation of protein expression is associated with most diseases including cancer. MS-based proteomic analysis is widely employed as a tool to study protein dysregulation in cancers. Proteins that are differentially expressed in head and neck squamous cell carcinoma (HNSCC) cell lines compared to the normal oral cell line could serve as biomarkers for patient stratification. To understand the proteomic complexity in HNSCC, we carried out iTRAQ-based MS analysis on a panel of HNSCC cell lines in addition to a normal oral keratinocyte cell line. LC-MS/MS analysis of total proteome of the HNSCC cell lines led to the identification of 3263 proteins, of which 185 proteins were overexpressed and 190 proteins were downregulated more than twofold in at least two of the three HNSCC cell lines studied. Among the overexpressed proteins, 23 proteins were related to DNA replication and repair. These included high-mobility group box 2 (HMGB2) protein, which was overexpressed in all three HNSCC lines studied. Overexpression of HMGB2 has been reported in various cancers, yet its role in HNSCC remains unclear. Immunohistochemical labeling of HMGB2 in a panel of HNSCC tumors using tissue microarrays revealed overexpression in 77% (54 of 70) of tumors. The HMGB proteins are known to bind to DNA structure resulting from cisplatin-DNA adducts and affect the chemosensitivity of cells. We observed that siRNA-mediated silencing of HMGB2 increased the sensitivity of the HNSCC cell lines to cisplatin and 5-FU. We hypothesize that targeting HMGB2 could enhance the efficacy of existing chemotherapeutic regimens for treatment of HNSCC. All MS data have been deposited in the ProteomeXchange with identifier PXD000737 (http://proteomecentral.proteomexchange.org/dataset/PXD000737).
Collapse
Affiliation(s)
- Nazia Syed
- Institute of Bioinformatics, International Technology Park, Bangalore, India; Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kang FC, Chen PJ, Pan BS, Lai MS, Chen YC, Huang BM. Apoptotic effect of cordycepin combined with cisplatin and/or paclitaxel on MA-10 mouse Leydig tumor cells. Onco Targets Ther 2015; 8:2345-60. [PMID: 26366090 PMCID: PMC4562734 DOI: 10.2147/ott.s87010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Chemotherapy is not limited to a single treatment, and the evidence demonstrates that different drug combinations can have positive results in patients. In this study, we sought to determine whether cordycepin combined with cisplatin and/or paclitaxel would have an additive effective on inducing apoptosis in mouse Leydig tumor cells, and the mechanisms were also briefly examined. Methods The additive effects of cordycepin combined with cisplatin and/or paclitaxel on apoptosis in MA-10 cells were investigated by monitoring changes in morphological characteristics and examining cell viability, flow cytometry assays, and Western blot analyses. Results Combination of cordycepin plus cisplatin and/or paclitaxel for 12 and 24 hours induced apoptotic features in MA-10 cells. The MTT assay showed that the combination treatment reduced the viability of MA-10 cells in a dose-dependent manner, with additive effects. Cell cycle analysis showed that combination treatment significantly increased subG1 phase cell numbers in MA-10 cells, indicating apoptosis. Moreover, cordycepin plus cisplatin and/or paclitaxel significantly induced cleavage of caspase-8, caspase-9, caspase-3, and poly ADP-ribose polymerase, and phosphorylation of c-Jun NH2-terminal kinase, extracellular signal-regulated kinase, p38, and p53 proteins in MA-10 cells. Conclusion Cordycepin plus cisplatin and/or paclitaxel can have an additive effect on apoptosis in MA-10 cells, with activation of caspase, mitogen-activated protein kinase, and p53 signal pathways.
Collapse
Affiliation(s)
- Fu-Chi Kang
- Department of Anesthesia, Chi Mei Medical Center, Chiali, Republic of China
| | - Pei-Jung Chen
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Republic of China
| | - Bo-Syong Pan
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Republic of China ; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Republic of China
| | - Meng-Shao Lai
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Republic of China ; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Republic of China
| | - Yung-Chia Chen
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Republic of China ; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Republic of China
| |
Collapse
|
21
|
Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet 2015; 6:157. [PMID: 25954303 PMCID: PMC4407582 DOI: 10.3389/fgene.2015.00157] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/18/2023] Open
Abstract
DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.
Collapse
Affiliation(s)
- Alessandro Torgovnick
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases Research Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases Research Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
p21-Activated kinase 5 affects cisplatin-induced apoptosis and proliferation in hepatocellular carcinoma cells. Tumour Biol 2015; 36:3685-91. [PMID: 25560489 DOI: 10.1007/s13277-014-3007-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/23/2014] [Indexed: 12/29/2022] Open
Abstract
p21-Activated kinase 5 (PAK5) is the last identified member of the PAK family. The PAKs are highly conserved serine/threonine and effector proteins for Cdc42 and Rac and are essential in regulating cell motility and survival. Previous studies have demonstrated that PAK5 played a pivotal role in apoptosis, proliferation, cancer migration, and invasion. However, the biological function of PAK5 in hepatocellular carcinoma, as well as its underlying mechanism, still remains to be fully elucidated. In the present study, we demonstrated that PAK5 markedly inhibited cisplatin-induced apoptosis and promoted cell proliferation in hepatocellular carcinoma cells. Moreover, our results showed that overexpression of PAK5 contributed to cell cycle regulation. In order to elucidate the underlying mechanism of PAK5 on cisplatin-induced apoptosis and cell cycle regulation, we also examined the protein expressions of chk2 and p-chk2. In summary, our study investigated the role of PAK5 in cisplatin-induced cellular processes and provided evidence of its underlying mechanism.
Collapse
|
23
|
Shirazi Fard S, Thyselius M, All-Ericsson C, Hallböök F. The terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest. Cell Cycle 2014; 13:3698-706. [PMID: 25483080 PMCID: PMC4615048 DOI: 10.4161/15384101.2014.964985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- ATM/ATR
- ATR, ataxia telangiectasia Rad-3 related protein
- C-casp-3, cleaved caspase 3
- Cdk1, cyclin-dependent kinase 1
- Chk1, checkpoint kinase 1
- Chk2, checkpoint kinase 2
- E, Embryonic day;
- HCs, horizontal cells
- HPCs, horizontal progenitor cells
- INM, interkinetic nuclear migration
- Mdm2, murine double minute 2
- Mdm4/X, murine double minute 4/X
- Nutlin3a
- PH3, PhosphoHistone 3
- TBP, TATA binding protein
- cell cycle regulation
- chk1
- cyclin B1-Cdk1
- p21
- p21, p21CIP1/waf1;
- p53
- retina
- st, stage
- γ-H2AX, phosphorylated histone H2AX
Collapse
|
24
|
Otte A, Rauprich F, Hillemanns P, Park-Simon TW, von der Ohe J, Hass R. In vitro and in vivo therapeutic approach for a small cell carcinoma of the ovary hypercalcaemic type using a SCCOHT-1 cellular model. Orphanet J Rare Dis 2014; 9:126. [PMID: 25103190 PMCID: PMC4249738 DOI: 10.1186/s13023-014-0126-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/23/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The small cell ovarian carcinoma of the hypercalcemic type (SCCOHT) which preferably affects young women during regenerative age represents a rare and aggressive form of ovarian tumors with poor prognosis and lacks an efficient therapy. METHODS AND RESULTS In vitro chemotherapy testing in a fluorescence assay using a recently developed cellular model from a recurrent SCCOHT revealed sensitivity for certain epothilones, methotrexate and topotecan whereas little if any cytotoxicity was observed with other chemotherapeutics including platin-based compounds. In particular, epothilone B demonstrated a high sensitivity in contrast to ixabepilone with only little detectable effects. Western blot and cell cycle analysis revealed that the epothilone B sensitivity was associated with increased Ser15 phosphorylation of p53, a significant G1 and G2 cell cycle accumulation and subsequent cell death in subG1 phase. Moreover, tubulinβ3 expression in SMARCA4/BRG1-defective SCCOHT-1 in contrast to other ovarian cancer cells was also affected during chemotherapy treatment. Increased extracellular Ca2+ levels further enhanced the epothilone B cytotoxicity in SCCOHT-1 cells. These in vitro effects were also confirmed in vivo in NOD/scid mouse xenografts demonstrating an attenuated tumor growth in epothilone B / Ca2+-treated mice. After 4d of subsequent treatment, the tumor sizes were reduced by about 90% as compared to continuously growing control tumors. In parallel, a hypercalcemia in control tumor-carrying mice was reverted to normal serum Ca2+ levels after epothilone B / Ca2+ therapy. CONCLUSIONS Taken together, these data demonstrated anti-tumorigenic effects of epothilone B / Ca2+ in SCCOHT providing a focused therapeutic approach against this rare disease and arising recurrent tumors.
Collapse
Affiliation(s)
- Anna Otte
- Biochemistry and Tumor Biology Laboratory, Department of Gynecology and Obstetrics Medical, University Hannover, Carl-Neuberg-Str. 1, D – 30625 Hannover, Germany
| | - Finn Rauprich
- Biochemistry and Tumor Biology Laboratory, Department of Gynecology and Obstetrics Medical, University Hannover, Carl-Neuberg-Str. 1, D – 30625 Hannover, Germany
| | - Peter Hillemanns
- Biochemistry and Tumor Biology Laboratory, Department of Gynecology and Obstetrics Medical, University Hannover, Carl-Neuberg-Str. 1, D – 30625 Hannover, Germany
| | - Tjoung-Won Park-Simon
- Biochemistry and Tumor Biology Laboratory, Department of Gynecology and Obstetrics Medical, University Hannover, Carl-Neuberg-Str. 1, D – 30625 Hannover, Germany
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Laboratory, Department of Gynecology and Obstetrics Medical, University Hannover, Carl-Neuberg-Str. 1, D – 30625 Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Gynecology and Obstetrics Medical, University Hannover, Carl-Neuberg-Str. 1, D – 30625 Hannover, Germany
| |
Collapse
|
25
|
Koussounadis A, Langdon SP, Harrison DJ, Smith VA. Chemotherapy-induced dynamic gene expression changes in vivo are prognostic in ovarian cancer. Br J Cancer 2014; 110:2975-84. [PMID: 24867692 PMCID: PMC4056064 DOI: 10.1038/bjc.2014.258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/13/2014] [Accepted: 04/17/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The response of ovarian cancer patients to carboplatin and paclitaxel is variable, necessitating identification of biomarkers that can reliably predict drug sensitivity and resistance. In this study, we sought to identify dynamically controlled genes and pathways associated with drug response and its time dependence. METHODS Gene expression was assessed for 14 days post-treatment with carboplatin or carboplatin-paclitaxel in xenografts from two ovarian cancer models: platinum-sensitive serous adenocarcinoma-derived OV1002 and a mixed clear cell/endometrioid carcinoma-derived HOX424 with reduced sensitivity to platinum. RESULTS Tumour volume reduction was observed in both xenografts, but more dominantly in OV1002. Upregulated genes in OV1002 were involved in DNA repair, cell cycle and apoptosis, whereas downregulated genes were involved in oxygen-consuming metabolic processes and apoptosis control. Carboplatin-paclitaxel triggered a more comprehensive response than carboplatin only in both xenografts. In HOX424, apoptosis and cell cycle were upregulated, whereas Wnt signalling was inhibited. Genes downregulated after day 7 from both xenografts were predictive of overall survival. Overrepresented pathways were also predictive of outcome. CONCLUSIONS Late expressed genes are prognostic in ovarian tumours in a dynamic manner. This longitudinal gene expression study further elucidates chemotherapy response in two models, stressing the importance of delayed biomarker detection and guiding optimal timing of biopsies.
Collapse
Affiliation(s)
- A Koussounadis
- School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| | - S P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - D J Harrison
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| | - V A Smith
- School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
26
|
Kwon YJ, Jung JJ, Park NH, Ye DJ, Kim D, Moon A, Chun YJ. Annexin a5 as a new potential biomarker for Cisplatin-induced toxicity in human kidney epithelial cells. Biomol Ther (Seoul) 2013; 21:190-5. [PMID: 24265863 PMCID: PMC3830116 DOI: 10.4062/biomolther.2013.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022] Open
Abstract
Cisplatin is a member of platinum-containing anti-cancer drugs that causes cross-linking of DNA and ultimately cancer cell apoptosis. The therapeutic function of cisplatin on various types of cancers has been widely reported but the side effects have been discovered together and nephrotoxicity has been regarded as major side effect of cisplatin. To select candidates for new sensitive nephrotoxicity biomarker, we performed proteomic analysis using 2-DE/MALDI-TOF-MS followed by cisplatin treatment in human kidney cell line, HK-2 cells, and compared the results to the gene profi le from microarray composed of genes changed in expression by cisplatin from formerly reported article. Annexin A5 has been selected to be the most potential candidate and it has been identifi ed using Western blot, RT-PCR and cell viability assay whether annexin A5 is available to be a sensitive nephrotoxic biomarker. Treatment with cisplatin on HK-2 cells caused the increase of annexin A5 expression in protein and mRNA levels. Overexpression of annexin A5 blocked HK-2 cell proliferation, indicating correlation between annexin A5 and renal cell toxicity. Taken together, these results suggest the possibility of annexin A5 as a new biomarker for cisplatin-mediated nephrotoxicity.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul 156-756
| | | | | | | | | | | | | |
Collapse
|
27
|
Carminati PO, Donaires FS, Marques MM, Donadi EA, Passos GAS, Sakamoto-Hojo ET. Cisplatin associated with LY294002 increases cytotoxicity and induces changes in transcript profiles of glioblastoma cells. Mol Biol Rep 2013; 41:165-77. [DOI: 10.1007/s11033-013-2849-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 10/29/2013] [Indexed: 02/03/2023]
|
28
|
Abstract
Microtubule inhibitors (MTIs) such as Taxol have been used for treating various malignant tumors. Although MTIs have been known to induce cell death through mitotic arrest, other mechanisms can operate in MTI-induced cell death. Especially, the role of p53 in this process has been controversial for a long time. Here we investigated the function of p53 in Taxol-induced apoptosis using p53 wild type and p53 null cancer cell lines. p53 was upregulated upon Taxol treatment in p53 wild type cells and deletion of p53 diminished Taxol-induced apoptosis. p53 target proteins including MDM2, p21, BAX, and β-isoform of PUMA were also upregulated by Taxol in p53 wild type cells. Conversely, when the wild type p53 was re-introduced into two different p53 null cancer cell lines, Taxol-induced apoptosis was enhanced. Among post-translational modifications that affect p53 stability and function, p53 acetylation, rather than phosphorylation, increased significantly in Taxol-treated cells. When acetylation was enhanced by anti-Sirt1 siRNA or an HDAC inhibitor, Taxol-induced apoptosis was enhanced, which was not observed in p53 null cells. When an acetylation-defective mutant of p53 was re-introduced to p53 null cells, apoptosis was partially reduced compared to the re-introduction of the wild type p53. Thus, p53 plays a pro-apoptotic role in Taxol-induced apoptosis and acetylation of p53 contributes to this pro-apoptotic function in response to Taxol in several human cancer cell lines, suggesting that enhancing acetylation of p53 could have potential implication for increasing the sensitivity of cancer cells to Taxol.
Collapse
|
29
|
Adamski J, Price A, Dive C, Makin G. Hypoxia-induced cytotoxic drug resistance in osteosarcoma is independent of HIF-1Alpha. PLoS One 2013; 8:e65304. [PMID: 23785417 PMCID: PMC3681794 DOI: 10.1371/journal.pone.0065304] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/24/2013] [Indexed: 01/06/2023] Open
Abstract
Survival rates from childhood cancer have improved dramatically in the last 40 years, such that over 80% of children are now cured. However in certain subgroups, including metastatic osteosarcoma, survival has remained stubbornly poor, despite dose intensive multi-agent chemotherapy regimens, and new therapeutic approaches are needed. Hypoxia is common in adult solid tumours and is associated with treatment resistance and poorer outcome. Hypoxia induces chemotherapy resistance in paediatric tumours including neuroblastoma, rhabdomyosarcoma and Ewing’s sarcoma, in vitro, and this drug resistance is dependent on the oxygen-regulated transcription factor hypoxia inducible factor-1 (HIF-1). In this study the effects of hypoxia on the response of the osteosarcoma cell lines 791T, HOS and U2OS to the clinically relevant cytotoxics cisplatin, doxorubicin and etoposide were evaluated. Significant hypoxia-induced resistance to all three agents was seen in all three cell lines and hypoxia significantly reduced drug-induced apoptosis. Hypoxia also attenuated drug-induced activation of p53 in the p53 wild-type U2OS osteosarcoma cells. Drug resistance was not induced by HIF-1α stabilisation in normoxia by cobalt chloride nor reversed by the suppression of HIF-1α in hypoxia by shRNAi, siRNA, dominant negative HIF or inhibition with the small molecule NSC-134754, strongly suggesting that hypoxia-induced drug resistance in osteosarcoma cells is independent of HIF-1α. Inhibition of the phosphoinositide 3-kinase (PI3K) pathway using the inhibitor PI-103 did not reverse hypoxia-induced drug resistance, suggesting the hypoxic activation of Akt in osteosarcoma cells does not play a significant role in hypoxia-induced drug resistance. Targeting hypoxia is an exciting prospect to improve current anti-cancer therapy and combat drug resistance. Significant hypoxia-induced drug resistance in osteosarcoma cells highlights the potential importance of hypoxia as a target to reverse drug resistance in paediatric osteosarcoma. The novel finding of HIF-1α independent drug resistance suggests however other hypoxia related targets may be more relevant in paediatric osteosarcoma.
Collapse
Affiliation(s)
- Jennifer Adamski
- Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Manchester, United Kingdom
- Institute of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Department of Paediatric Oncology, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Andrew Price
- Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Manchester, United Kingdom
| | - Caroline Dive
- Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Manchester, United Kingdom
- Institute of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Guy Makin
- Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, Manchester, United Kingdom
- Institute of Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Department of Paediatric Oncology, Royal Manchester Children’s Hospital, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Kawano Y, Nagata M, Kohno T, Ichimiya A, Iwakiri T, Okumura M, Arimori K. Caffeine increases the antitumor effect of Cisplatin in human hepatocellular carcinoma cells. Biol Pharm Bull 2012; 35:400-7. [PMID: 22382328 DOI: 10.1248/bpb.35.400] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caffeine is thought to increase the antitumor effect of cisplatin or DNA-damaging agents because it is known that caffeine inhibits DNA repair. Caffeine-assisted chemotherapy has been used in the treatment of osteosarcomas. In addition, there are several reports about combination chemotherapy with caffeine for certain malignancies other than osteosarcomas. However, there are no reports that show the utility of combination chemotherapy with caffeine for hepatocellular carcinoma (HCC). We examined the combined effects of caffeine and cisplatin in human HCC cell lines, and screened for a more effective administration method of caffeine in vitro. Human HCC cell lines (HepG2, HLF, HuH-7, and Li-7) were exposed to caffeine (0-0.5 mM) and cisplatin (0-1.2 μg/mL) for 72 h, either alone or in combination. Cell numbers were measured by WST-8 assay, and cell apoptosis was determined by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) binding assay. As a result, caffeine increased the antitumor effect of cisplatin on cell proliferation and cell apoptosis in the HCC cell lines. Moreover, this effect was dependent on the amount of exposure to caffeine. These results suggest that caffeine-assisted chemotherapy is useful for HCC treatment.
Collapse
Affiliation(s)
- Yohei Kawano
- Department of Pharmacy, University of Miyazaki Hospital, Kiyotake-cho, Miyazaki, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Mechanisms of Cisplatin-Induced Apoptosis and of Cisplatin Sensitivity: Potential of BIN1 to Act as a Potent Predictor of Cisplatin Sensitivity in Gastric Cancer Treatment. Int J Surg Oncol 2012; 2012:862879. [PMID: 22778941 PMCID: PMC3384945 DOI: 10.1155/2012/862879] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/05/2012] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is the most important and efficacious chemotherapeutic agent for the treatment of advanced gastric cancer. Cisplatin forms inter- and intrastrand crosslinked DNA adducts and its cytotoxicity is mediated by propagation of DNA damage recognition signals to downstream pathways involving ATR, p53, p73, and mitogen-activated protein kinases, ultimately resulting in apoptosis. Cisplatin resistance arises through a multifactorial mechanism involving reduced drug uptake, increased drug inactivation, increased DNA damage repair, and inhibition of transmission of DNA damage recognition signals to the apoptotic pathway. In addition, a new mechanism has recently been revealed, in which the oncoprotein c-Myc suppresses bridging integrator 1 (BIN1), thereby releasing poly(ADP-ribose)polymerase 1, which results in increased DNA repair activity and allows cancer cells to acquire cisplatin resistance. The present paper focuses on the molecular mechanisms of cisplatin-induced apoptosis and of cisplatin resistance, in particular on the involvement of BIN1 in the maintenance of cisplatin sensitivity.
Collapse
|
32
|
Michnov O, Solomayer E, Fehm T, Stubenrauch F, Iftner T. Knock down of p53 or its ubiquitin ligase E6AP does not affect the sensitivity of human papillomavirus-positive cervical cancer cells to cisplatin. Am J Cancer Res 2012; 2:309-321. [PMID: 22679561 PMCID: PMC3365809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/20/2012] [Indexed: 06/01/2023] Open
Abstract
The persistent infection with high risk human papillomaviruses (hrHPV) is a necessary risk factor for the development of cervical cancer, which is the second most frequent cancer in women worldwide. Cisplatin-based radiotherapy represents the current treatment regimen. However, the results for advanced and recurrent disease are far from optimal. Since almost all cervical cancers contain wild type (wt) p53, which is degraded by the complex of hrHPV E6 and the ubiquitin ligase E6AP, we addressed if the reconstitution of p53 via silencing of E6AP sensitizes cervical cancer cells towards cisplatin treatment. For this we established and characterized two novel cervical cancer cell lines that contain integrated HPV16 genomes. Long-term established HeLa and SiHa cells and the novel cervical cancer cell lines at low passage numbers were treated with different concentrations of cisplatin. Cell viability was measured by the WST-1 assay. In addition, single cisplatin treatment was combined with the silencing of E6AP or p53. The comparison to HeLa and SiHa cells revealed a higher sensitivity of the novel cell lines to cisplatin treatment, which caused p53 accumulation and transcriptional induction of p21. Silencing of E6AP further increased p53 protein levels, but had no effect on cell viability when combined with cisplatin treatment. Interestingly, silencing of p53 had also no effect. We therefore conclude that reactivation of p53 via silencing of E6AP does not increase the sensitivity of cervical cancer cells towards cisplatin treatment.
Collapse
Affiliation(s)
- Olga Michnov
- Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, University Hospital TuebingenElfriede-Aulhorn-Str. 6, 72076 Tuebingen, Germany
| | - Erich Solomayer
- Department of Obstetrics and Gynecology, University of SaarlandKirrbergerstr. 100, 66424, Homburg, Saar, Germany
| | - Tanja Fehm
- Department of Obstetrics & Gynecology, University Hospital of TuebingenCalwer Str. 7, 72076 Tuebingen, Germany
| | - Frank Stubenrauch
- Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, University Hospital TuebingenElfriede-Aulhorn-Str. 6, 72076 Tuebingen, Germany
| | - Thomas Iftner
- Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, University Hospital TuebingenElfriede-Aulhorn-Str. 6, 72076 Tuebingen, Germany
| |
Collapse
|
33
|
The oncogenic phosphatase PPM1D confers cisplatin resistance in ovarian carcinoma cells by attenuating checkpoint kinase 1 and p53 activation. Oncogene 2011; 31:2175-86. [DOI: 10.1038/onc.2011.399] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2011; 31:1869-83. [PMID: 21892204 DOI: 10.1038/onc.2011.384] [Citation(s) in RCA: 1989] [Impact Index Per Article: 142.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platinum-based drugs, and in particular cis-diamminedichloroplatinum(II) (best known as cisplatin), are employed for the treatment of a wide array of solid malignancies, including testicular, ovarian, head and neck, colorectal, bladder and lung cancers. Cisplatin exerts anticancer effects via multiple mechanisms, yet its most prominent (and best understood) mode of action involves the generation of DNA lesions followed by the activation of the DNA damage response and the induction of mitochondrial apoptosis. Despite a consistent rate of initial responses, cisplatin treatment often results in the development of chemoresistance, leading to therapeutic failure. An intense research has been conducted during the past 30 years and several mechanisms that account for the cisplatin-resistant phenotype of tumor cells have been described. Here, we provide a systematic discussion of these mechanism by classifying them in alterations (1) that involve steps preceding the binding of cisplatin to DNA (pre-target resistance), (2) that directly relate to DNA-cisplatin adducts (on-target resistance), (3) concerning the lethal signaling pathway(s) elicited by cisplatin-mediated DNA damage (post-target resistance) and (4) affecting molecular circuitries that do not present obvious links with cisplatin-elicited signals (off-target resistance). As in some clinical settings cisplatin constitutes the major therapeutic option, the development of chemosensitization strategies constitute a goal with important clinical implications.
Collapse
Affiliation(s)
- L Galluzzi
- INSERM, U848 Apoptosis, Cancer and Immunity, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The discovery of human DNA polymerase eta (pol η) has a major impact on the fields of DNA replication/repair fields. Since the discovery of human pol η, a number of new DNA polymerases with the ability to bypass various DNA lesions have been discovered. Among these polymerases, pol η is the most extensively studied lesion bypass polymerase with a defined major biological function, that is, to replicate across the cyclobutane pyrimidine dimers introduced by UV irradiation. Cyclobutane pyrimidine dimer is a major DNA lesion that causes distortion of DNA structure and block the replicative DNA polymerases during DNA replication process. Genetic defects in the pol η gene, Rad30, results in a disease called xeroderma pigmentosum variant. This review focuses on the overall properties of pol η and the mechanism that involved in regulating its activity in cells. In addition, the role of pol η in the action of DNA-targeting anticancer compounds is also discussed.
Collapse
Affiliation(s)
- Kai-ming Chou
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
36
|
He G, Kuang J, Khokhar AR, Siddik ZH. The impact of S- and G2-checkpoint response on the fidelity of G1-arrest by cisplatin and its comparison to a non-cross-resistant platinum(IV) analog. Gynecol Oncol 2011; 122:402-9. [PMID: 21592546 DOI: 10.1016/j.ygyno.2011.04.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/18/2011] [Accepted: 04/23/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cisplatin is a DNA-damaging antitumor agent that is highly effective in treating ovarian cancer. It activates the p53/p21 pathway for its cytotoxic mode of action, but it does not induce p21-dependent cell cycle arrest in G1. Therefore, we investigated this paradox, and used the model analog DAP as a positive control for p21-dependent G1-arrest. METHODS Studies were conducted in p53-proficient ovarian A2780 tumor cells to examine Cdk activity, cell cycle distribution and DNA damage signaling after cisplatin or DAP in combination with the mitotic inhibitor nocodazole. RESULTS Cisplatin consistently induced transient S-phase arrest by inhibiting Cdk2/cyclin A complex in S-phase at 12 h and then a durable G2/M-arrest by inhibiting Cdc2/cyclin B complex at 12-18 h. These inhibitions were associated with Chk1 and Chk2 activation and resultant increase in inhibitory tyrosine phosphorylation of Cdk2 and Cdc2. Cisplatin also potently inhibited G1-phase Cdk4/cyclin D1 and Cdk2/cyclin E activities at ~18 h. In agreement, exposure of cisplatin-treated A2780, HCT-116(p53-/-) and HCT-116(p21-/-) tumor cells to nocodazole revealed limited G1-arrest that was dependent on p53 and p21. In contrast, the durable G1-arrest by DAP, which failed to activate Chk1 and Chk2, was unaffected by nocodazole. CONCLUSIONS Cisplatin induced G1-arrest, but at an attenuated level. This was primarily due to orchestration of Cdk inhibition in S-phase first, then in G2, and finally in G1 that effectively blocked cells in G2 and prevented cells from progressing and arresting in G1. These studies demonstrate that cisplatin unequivocally activates G1-checkpoint response, but the fidelity of G1-arrest is compromised by Chk1/2 activation and checkpoint response in S- and G2/M-phase.
Collapse
Affiliation(s)
- Guangan He
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
37
|
Hublarova P, Greplova K, Holcakova J, Vojtesek B, Hrstka R. Switching p53-dependent growth arrest to apoptosis via the inhibition of DNA damage-activated kinases. Cell Mol Biol Lett 2010; 15:473-84. [PMID: 20526748 PMCID: PMC6275699 DOI: 10.2478/s11658-010-0021-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 05/27/2010] [Indexed: 12/18/2022] Open
Abstract
Cisplatin and doxorubicin are widely used anticancer drugs that cause DNA damage, which activates the ATM-Chk2-p53 pathway in cancer cells. This activation leads to cell cycle block or apoptosis, depending on the nature of the DNA damage. In an attempt to enhance the effects of these agents, we inhibited ATM/ATR and Chk2, which are known upstream regulators of p53. The cancer cell lines A2780 and ARN8, bearing the wild-type p53 protein, were used to study changes in p53 activation and trans-activation. Our results suggest that the G(1)-checkpoint, normally activated by DNA damage, is functionally overcome by the action of kinase inhibitors that sensitize cells to apoptosis. Both inhibitors show these effects, albeit with variable intensity in different cell lines, which is promising for other studies and theoretically for use in clinical practice.
Collapse
Affiliation(s)
- Pavla Hublarova
- Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Kristina Greplova
- Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Jitka Holcakova
- Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Roman Hrstka
- Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
38
|
Clementi M, Sánchez C, Benitez DA, Contreras HR, Huidobro C, Cabezas J, Acevedo C, Castellón EA. Gonadotropin releasing hormone analogs induce apoptosis by extrinsic pathway involving p53 phosphorylation in primary cell cultures of human prostatic adenocarcinomas. Prostate 2009; 69:1025-33. [PMID: 19301301 DOI: 10.1002/pros.20954] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Gonadotropin-releasing-hormone (GnRH) analogs are widely used to block hypothalamic-pituitary-gonadal axis and inhibit blood androgen levels in patients with prostate cancer (PCa). In addition, GnRH analogs induce proliferation arrest and apoptosis through GnRH receptors expressed on the membrane of PCa cells. Possible molecular mechanisms involved in GnRH-mediated apoptosis on prostate cancer cells were studied. METHODS Primary cultures from PCa and benign prostatic hyperplasia (BPH) (non-malignant control) were derived from samples provided by our Institutional Hospital. Cell cultures were incubated for 24 hr with 20 ng/ml of GnRH agonist Leuprolide (Lp) or antagonist Cetrorelix (Cx). Apoptosis was evaluated by studying the expression of Bax and Bcl-2 and the activation of caspase-9 (intrinsic pathway), caspase-8 (extrinsic pathway), and caspase-3. Also, mRNA level, protein expression and phosphorylation of p53 were studied. RESULTS Cleaved caspase-8 and -3, but not -9, increased in presence of Lp and Cx in PCa cell cultures. Bax and Bcl-2 mRNA levels showed no changes after GnRH-analog treatments. Only Bax protein showed an increase after Cx treatment in PCa cell cultures. p53 mRNA level was higher in PCa than in BPH cell cultures. Lp and Cx increased p53 expression and phosphorylation in PCa cell cultures. CONCLUSIONS Apoptosis induced by GnRH analogs seems to be mediated by extrinsic pathway involving p53 phosphorylation. Phosphorylated-p53 might be associated with the increase in apoptotic NGF receptor, p75, previously reported by our laboratory. These findings reinforce the concept of clinical use of GnRH analogs for PCa suggesting that intraprostatic treatment may be more effective.
Collapse
Affiliation(s)
- Marisa Clementi
- Faculty of Medicine, Physiology and Biophysics Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lewis KA, Lilly KK, Reynolds EA, Sullivan WP, Kaufmann SH, Cliby WA. Ataxia telangiectasia and rad3-related kinase contributes to cell cycle arrest and survival after cisplatin but not oxaliplatin. Mol Cancer Ther 2009; 8:855-63. [PMID: 19372558 DOI: 10.1158/1535-7163.mct-08-1135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The DNA cross-linking agents cisplatin and oxaliplatin are widely used in the treatment of human cancer. Lesions produced by these agents are widely known to activate the G1 and G2 cell cycle checkpoints. Less is known about the role of the intra-S-phase checkpoint in the response to these agents. In the present study, two different cell lines expressing a dominant-negative kinase dead (kd) version of the ataxia telangiectasia and rad3-related (ATR) kinase in an inducible fashion were examined for their responses to these two platinating agents and a variety of other DNA cross-linking drugs. The expression of the kdATR allele markedly sensitized the cells to cisplatin, but not to oxaliplatin, as assessed by inhibition of colony formation, induction of apoptosis, and cell cycle analysis. Similar differences in survival were noted for melphalan (ATR dependent) and 4-hydroperoxycyclophosphamide (ATR independent). Further experiments showed that ATR function is not necessary for removal of Pt-DNA adducts. The predominant difference between the responses to the two platinum drugs was the presence of a drug-specific ATR-dependent S-phase arrest after cisplatin but not oxaliplatin. These results indicate that involvement of ATR in the response to DNA cross-linking agents is lesion specific. This observation might need to be taken into account in the development and use of ATR or Chk1 inhibitors.
Collapse
Affiliation(s)
- Kriste A Lewis
- Division of Obstetrics and Gynecology, Mayo Clinic, 200 First Street, Southwest, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
40
|
Sun L, Zhang G, Li Z, Song T, Huang C, Si L. In GFP with high risk HPV-18E6 fusion protein expressed 293T and MCF-7 cells, the endogenous wild-type p53 could be transiently phosphorylated at multiple sites. J Exp Clin Cancer Res 2008; 27:35. [PMID: 18778462 PMCID: PMC2546361 DOI: 10.1186/1756-9966-27-35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/08/2008] [Indexed: 11/13/2022] Open
Abstract
Background Infected cells recognize viral replication as a DNA damage stress and elicit the host surveillance mechanism to anti-virus infection. Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. They could manipulate p53 function through phosphorylation modification for their own purpose. But there is rarely research about p53 phosphorylation status in the context of HPV-E6. Therefore, we investigated whether p53 could be phosphorylated by HPV-E6. Methods We used a mammalian green fluorescence protein (GFP) expression system to express HPV-18E6 with GFP fusion proteins (GFP-18E6) in wild-type (wt) p53 cell lines, such as 293T and MCF-7 cells to trace the traffic and subcellular location of E6 protein. By immunofluorescence technique and immunoblotting, we determined the positive phosphorylated sites of p53 and observed the distribution of phosphorylated p53 in the context of GFP-18E6. Results GFP-18E6 was predominantly located in nuclei of wt p53 cell lines, and it could induce transient phosphorylation of p53 at multiple sites, such as Ser15, Ser20, and Ser392. All the three sites of phosphorylated p53s were localized in nuclei together with GFP-18E6. Conclusion In GFP with high risk HPV-18E6 fusion protein expressed 293T and MCF-7 cells, the endogenous wt p53 could be transiently phosphorylated at multiple sites.
Collapse
Affiliation(s)
- Lina Sun
- Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, School of Medicine, Xi an Jiaotong University, Xi an, PR China.
| | | | | | | | | | | |
Collapse
|
41
|
Sagawa T, Yamada Y, Takahashi M, Sato Y, Kobune M, Takimoto R, Fukaura J, Iyama S, Sato T, Miyanishi K, Matsunaga T, Takayama T, Kato J, Sasaki K, Hamada H, Niitsu Y. Treatment of hepatocellular carcinoma by AdAFPep/rep, AdAFPep/p53, and 5-fluorouracil in mice. Hepatology 2008; 48:828-40. [PMID: 18756484 DOI: 10.1002/hep.22420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Although conditionally replicable adenovirus (CRAd) has been used in the clinical treatment of hepatocellular carcinoma (HCC), it suffers from the inherent drawback of having relatively low antitumor activity. Here, we have sought to overcome this drawback. First, we combined CRAd (AdAFPep/Rep) driven by alpha-fetoprotein enhancer/promoter (AFPep) with a replication-incompetent adenovirus carrying a p53 transgene that is also driven by AFPep. The synergism of this combination produced a significantly improved tumoricidal effect on the human HCC cell line Hep3B, which has a relatively short doubling time in comparison with other human HCC cell lines, through the transactivation of p53 by early region 1A transcribed by AdAFPep/Rep. This synergistic interaction was augmented by the addition of a subtumoricidal dose (0.5 microg/mL) of 5-fluorouracil (5-FU), which enhanced p53 expression and facilitated the release of virions from tumor cells. When relatively large (10-mm-diameter) Hep3B tumors grown in nude mice were injected with the two viruses in combination, they showed significantly impaired growth in comparison with those treated with each virus separately. The growth suppression effect of the virus combination was enhanced by a low dose (600 microg) of 5-FU. Survival of the tumor-bearing mice treated with these three agents was significantly longer than that of control mice. Moreover, the tumor completely disappeared with the repeated injection of these agents. CONCLUSION This combination strategy holds promise for the treatment of relatively large and rapidly growing HCCs that may be encountered clinically.
Collapse
Affiliation(s)
- Tamotsu Sagawa
- Fourth Department of Internal Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cruet-Hennequart S, Glynn MT, Murillo LS, Coyne S, Carty MP. Enhanced DNA-PK-mediated RPA2 hyperphosphorylation in DNA polymerase eta-deficient human cells treated with cisplatin and oxaliplatin. DNA Repair (Amst) 2008; 7:582-96. [PMID: 18289945 DOI: 10.1016/j.dnarep.2007.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 12/17/2007] [Accepted: 12/21/2007] [Indexed: 12/20/2022]
Abstract
The chemotherapeutic drugs cisplatin and oxaliplatin act by induction of DNA damage, including monoadducts, intrastrand and interstrand crosslinks. An increased understanding of the repair and replication of platinum-damaged DNA is required to improve the effectiveness of these drugs in killing cancer cells. We have investigated the effect of expression of DNA polymerase eta (poleta), a translesion synthesis (TLS) enzyme, on the response of human cell lines to cisplatin and oxaliplatin. Poleta-deficient cells are more sensitive to both drugs than are normal cells. In poleta-deficient cells, drug treatment leads to prolonged S-phase arrest, and increased phosphorylation of the phosphatidylinositol-3-kinase-related protein kinase (PIKK) substrates Chk1, p95/Nbs1 and RPA2, the 34kDa subunit of replication protein A. Cisplatin- and oxaliplatin-induced hyperphosphorylation of RPA2, and association of the hyperphosphorylated protein with chromatin, is elevated in poleta-deficient cells. Cisplatin-induced phosphorylation of RPA2 on serine 4/serine 8, but not on serine 33, is inhibited by the DNA-PK inhibitor, NU7441, but not by the ATM inhibitor, KU-55933. Cisplatin-induced DNA-PK-dependent hyperphosphorylation of RPA2 on serine 4/serine 8 occurs after recruitment of RPA to chromatin, as determined by immunofluorescence and by subcellular fractionation. ATR is required both for recruitment of RPA2 to chromatin and its subsequent hyperphosphorylation on serine 4/serine 8 by DNA-PK, since CGK733, an inhibitor of ATM and ATR, blocked both recruitment and hyperphosphorylation. Thus, increased sensitivity to cisplatin and oxaliplatin in DNA poleta-deficient cells is associated with prolonged S-phase arrest, and enhanced PIKK-signalling, in particular activation of DNA-PK-dependent hyperphosphorylation of RPA2 on serines 4 and 8.
Collapse
Affiliation(s)
- Séverine Cruet-Hennequart
- DNA Damage Response Laboratory, Department of Biochemistry, and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway City, Ireland
| | | | | | | | | |
Collapse
|
43
|
Vitale I, Galluzzi L, Vivet S, Nanty L, Dessen P, Senovilla L, Olaussen KA, Lazar V, Prudhomme M, Golsteyn RM, Castedo M, Kroemer G. Inhibition of Chk1 kills tetraploid tumor cells through a p53-dependent pathway. PLoS One 2007; 2:e1337. [PMID: 18159231 PMCID: PMC2131784 DOI: 10.1371/journal.pone.0001337] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Accepted: 11/16/2007] [Indexed: 11/19/2022] Open
Abstract
Tetraploidy constitutes an adaptation to stress and an intermediate step between euploidy and aneuploidy in oncogenesis. Tetraploid cells are particularly resistant against genotoxic stress including radiotherapy and chemotherapy. Here, we designed a strategy to preferentially kill tetraploid tumor cells. Depletion of checkpoint kinase-1 (Chk1) by siRNAs, transfection with dominant-negative Chk1 mutants or pharmacological Chk1 inhibition killed tetraploid colon cancer cells yet had minor effects on their diploid counterparts. Chk1 inhibition abolished the spindle assembly checkpoint and caused premature and abnormal mitoses that led to p53 activation and cell death at a higher frequency in tetraploid than in diploid cells. Similarly, abolition of the spindle checkpoint by knockdown of Bub1, BubR1 or Mad2 induced p53-dependent apoptosis of tetraploid cells. Chk1 inhibition reversed the cisplatin resistance of tetraploid cells in vitro and in vivo, in xenografted human cancers. Chk1 inhibition activated p53-regulated transcripts including Puma/BBC3 in tetraploid but not in diploid tumor cells. Altogether, our results demonstrate that, in tetraploid tumor cells, the inhibition of Chk1 sequentially triggers aberrant mitosis, p53 activation and Puma/BBC3-dependent mitochondrial apoptosis.
Collapse
Affiliation(s)
- Ilio Vitale
- INSERM, U848, Cancer and Immunity, Villejuif, France
- Institut Gustave Roussy,Villejuif, France
- Université Paris Sud-11, Villejuif, France
| | - Lorenzo Galluzzi
- INSERM, U848, Cancer and Immunity, Villejuif, France
- Institut Gustave Roussy,Villejuif, France
- Université Paris Sud-11, Villejuif, France
| | - Sonia Vivet
- INSERM, U848, Cancer and Immunity, Villejuif, France
- Institut Gustave Roussy,Villejuif, France
- Université Paris Sud-11, Villejuif, France
| | - Lisa Nanty
- INSERM, U848, Cancer and Immunity, Villejuif, France
- Institut Gustave Roussy,Villejuif, France
| | - Philippe Dessen
- Institut Gustave Roussy,Villejuif, France
- Université Paris Sud-11, Villejuif, France
- Centre National de la Recherche Scientifique (CNRS), FRE2939, Villejuif, France
- Unité de Génomique Fonctionnelle, Institut Gustave Roussy,Villejuif, France
| | - Laura Senovilla
- INSERM, U848, Cancer and Immunity, Villejuif, France
- Institut Gustave Roussy,Villejuif, France
- Université Paris Sud-11, Villejuif, France
| | - Ken A. Olaussen
- INSERM, U848, Cancer and Immunity, Villejuif, France
- Institut Gustave Roussy,Villejuif, France
- Université Paris Sud-11, Villejuif, France
| | - Vladimir Lazar
- Institut Gustave Roussy,Villejuif, France
- Université Paris Sud-11, Villejuif, France
- Centre National de la Recherche Scientifique (CNRS), FRE2939, Villejuif, France
- Unité de Génomique Fonctionnelle, Institut Gustave Roussy,Villejuif, France
| | - Michelle Prudhomme
- Université Blaise Pascal, Synthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504 Centre National de la Recherche Scientifique (CNRS), Aubière, France
| | | | - Maria Castedo
- INSERM, U848, Cancer and Immunity, Villejuif, France
- Institut Gustave Roussy,Villejuif, France
- Université Paris Sud-11, Villejuif, France
| | - Guido Kroemer
- INSERM, U848, Cancer and Immunity, Villejuif, France
- Institut Gustave Roussy,Villejuif, France
- Université Paris Sud-11, Villejuif, France
| |
Collapse
|
44
|
Kim HS, Hwang JT, Yun H, Chi SG, Lee SJ, Kang I, Yoon KS, Choe WJ, Kim SS, Ha J. Inhibition of AMP-activated protein kinase sensitizes cancer cells to cisplatin-induced apoptosis via hyper-induction of p53. J Biol Chem 2007; 283:3731-42. [PMID: 18079115 DOI: 10.1074/jbc.m704432200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cisplatin is one of the most effective and widely used chemotherapeutic agents. However, one of the most salient limitations to the clinical application of cisplatin is the acquired or intrinsic drug resistance exhibited by some tumors. In the present study, we have assessed the potential of an intracellular energy balancing system as a target for augmentation of cisplatin sensitivity in tumors. AMP-activated protein kinase (AMPK) regulates the energy balance system by monitoring intracellular energy status. Here we demonstrate that AMPK is rapidly activated by cisplatin in AGS and HCT116 cancer cells. The inhibition of AMPK in those cells and in xenografts of HCT116 resulted in a remarkable increase in cisplatin-induced apoptosis, which was associated with hyper-induction of the tumor suppressor p53. We further showed that ERK, but not ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) kinases, was involved in the hyper-induction of p53 by the inhibition of cisplatin-induced AMPK. By way of contrast, cisplatin did not induce AMPK activation in HeLa cells, which appear to have a relatively high sensitivity to cisplatin-induced cytotoxicity, but expression of the constitutive active form of AMPK in HeLa cells resulted in a significant increase of cell viability after cisplatin treatment. Collectively, our data suggest that AMPK performs a pivotal function for protection against the cytotoxic effect of cisplatin, thereby implying that AMPK is one of the cellular factors determining the cellular sensitivity to cisplatin. On the basis of these observations, we propose that a strategy combining cisplatin and AMPK inhibition could be developed into a novel chemotherapeutic modality.
Collapse
Affiliation(s)
- Hak-Su Kim
- Department of Biochemistry and Molecular Biology, Medical Research Center for Bioreaction to Reactive Oxygen Species, Kyung Hee University School of Medicine, Tongdaemun-gu, Hoegi-dong 1, Seoul 130-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Yongwon Jung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
46
|
Blanco S, Klimcakova L, Vega FM, Lazo PA. The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J 2006; 273:2487-504. [PMID: 16704422 DOI: 10.1111/j.1742-4658.2006.05256.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
VRK is a new kinase family of unknown function. Endogenous human vacinia-related kinase 2 (VRK2) protein is present in both the nucleus and the cytosol, which is a consequence of alternative splicing of two VRK2 messages coding for proteins of 508 and 397 amino acids, respectively. VRK2A has a C-terminal hydrophobic region that anchors the protein to membranes in the endoplasmic reticulum (ER) and mitochondria, and it colocalizes with calreticulin, calnexin and mitotracker; whereas VRK2B is detected in both the cytoplasm and the nucleus. VRK2A is expressed in all cell types, whereas VRK2B is expressed in cell lines in which VRK1 is cytoplasmic. Both VRK2 isoforms have an identical catalytic N-terminal domain and phosphorylate p53 in vitro uniquely in Thr18. Phosphorylation of the p53 protein in response to cellular stresses results in its stabilization by modulating its binding to other proteins. However, p53 phosphorylation also occurs in the absence of stress. Only overexpression of the nuclear VRK2B isoform induces p53 stabilization by post-translational modification, largely due to Thr18 phosphorylation. VRK2B may play a role in controlling the binding specificity of the N-terminal transactivation domain of p53. Indeed, the p53 phosphorylated by VRK2B shows a reduction in ubiquitination by Mdm2 and an increase in acetylation by p300. Endogenous p53 is also phosphorylated in Thr18 by VRK2B, promoting its stabilization and transcriptional activation in A549 cells. The relative phosphorylation of Thr18 by VRK2B is similar in magnitude to that induced by taxol, which might use a different signalling pathway. In this context, VRK2B kinase might functionally replace nuclear VRK1. Therefore, these kinases might be components of a new signalling pathway that is likely to play a role in normal cell proliferation.
Collapse
Affiliation(s)
- Sandra Blanco
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
47
|
Hopkins-Donaldson S, Belyanskaya LL, Simões-Wüst AP, Sigrist B, Kurtz S, Zangemeister-Wittke U, Stahel R. p53-induced apoptosis occurs in the absence of p14(ARF) in malignant pleural mesothelioma. Neoplasia 2006; 8:551-9. [PMID: 16867217 PMCID: PMC1601933 DOI: 10.1593/neo.06148] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Malignant pleural mesotheliomas (MPMs) are usually wild type for the p53 gene but contain homozygous deletions in the INK4A locus that encodes p14(ARF), an inhibitor of p53-MDM2 interaction. Previous findings suggest that lack of p14(ARF) expression and the presence of SV40 large T antigen (L-Tag) result in p53 inactivation in MPM. We did not detect SV40 L-Tag mRNA in either MPM cell lines or primary cultures, and treatment of p14(ARF)-deficient cells with cisplatin (CDDP) increased both total and phosphorylated p53 and enhanced p53 DNA-binding activity. On incubation with CDDP, levels of positively regulated p53 transcriptional targets p21(WAF), PIG3, MDM2, Bax, and PUMA increased in p14(ARF)-deficient cells, whereas negatively regulated survivin decreased. Significantly, p53-induced apoptosis was activated by CDDP in p14(ARF)-deficient cells, and treatment with p53-specific siRNA rendered them more CDDP-resistant. p53 was also activated by: 1) inhibition of MDM2 (using nutlin-3); 2) transient overexpression of p14(ARF); and 3) targeting of survivin using antisense oligonucleotides. However, it is noteworthy that only survivin downregulation sensitized cells to CDDP-induced apoptosis. These results suggest that p53 is functional in the absence of p14(ARF) in MPM and that targeting of the downstream apoptosis inhibitor survivin can sensitize to CDDP-induced apoptosis.
Collapse
Affiliation(s)
- Sally Hopkins-Donaldson
- Laboratory for Molecular Oncology, University Hospital Zurich, Haeldeliweg 4, CH-8044 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Gaiddon C, Jeannequin P, Bischoff P, Pfeffer M, Sirlin C, Loeffler JP. Ruthenium (II)-derived organometallic compounds induce cytostatic and cytotoxic effects on mammalian cancer cell lines through p53-dependent and p53-independent mechanisms. J Pharmacol Exp Ther 2005; 315:1403-11. [PMID: 16169939 DOI: 10.1124/jpet.105.089342] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The metallic compound cisplatin has been used for many years to treat various human cancers. Here, we describe the cytostatic and cytotoxic properties of a new class of organometallic compounds that contain a ruthenium (II) atom covalently linked to carbon and nitrogen atoms. We found that several ruthenium-derived compounds (RDCs) led to G1 arrest and induced apoptosis in tumor cell lines derived from glioblastomas, neuroblastomas, and lymphoid tumors at least as efficiently as cisplatin. We further analyzed the signaling pathways underlying these effects, and we showed that both RDCs and cisplatin induced p53 and p73 protein levels but with different intensities and kinetics. This accumulation of p53 and p73 proteins correlated with an increase in p21 and Bax expression, two p53 target genes linked to cell growth arrest and apoptosis. However, in contrast to cisplatin-induced apoptosis, overexpression of DeltaNp73, a p53 and p73 dominant-negative isoform, only partly reduced RDC-induced apoptosis, suggesting p53-dependent and p53-independent modes of action. This observation was further confirmed by the ability of RDC to induce apoptosis in p53-/- cells. Altogether, this study highlights key cellular and molecular features of RDCs and suggests that further development of this new class of compounds may contribute to improve future chemotherapeutic protocols.
Collapse
Affiliation(s)
- C Gaiddon
- U692 INSERM-Université Louis Pasteur, Signalisations Moléculaires et Neurodégénérescence, 11 rue Human, 67085 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
49
|
Brew CT, Aronchik I, Hsu JC, Sheen JH, Dickson RB, Bjeldanes LF, Firestone GL. Indole-3-carbinol activates the ATM signaling pathway independent of DNA damage to stabilize p53 and induce G1 arrest of human mammary epithelial cells. Int J Cancer 2005; 118:857-68. [PMID: 16152627 DOI: 10.1002/ijc.21445] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The phytochemical indole-3-carbinol (I3C), from cruciferous vegetables such as broccoli, has been shown to elicit a potent anti-proliferative response in human breast cancer cell lines. Treatment of the immortalized human mammary epithelial cell line MCF10A with I3C induced a G1 cell cycle arrest, elevated p53 tumor suppressor protein levels and stimulated expression of downstream transcriptional target, p21. I3C treatment also elevated p53 levels in several breast cancer cell lines that express mutant p53. I3C did not arrest MCF10A cells stably transfected with dominant-negative p53, establishing a functional requirement for p53. Cell fractionation and immunolocalization studies revealed a large fraction of stabilized p53 protein in the nucleus of I3C-treated MCF10A cells. With I3C treatment, phosphatidyl-inositol-3-kinase family member ataxia telangiectasia-mutated (ATM) was phosphorylated, as were its substrates p53, CHK2 and BRCA1. Phosphorylation of p53 at the N-terminus has previously been shown to disrupt the interaction between p53 and its ubiquitin ligase, MDM2, and therefore stabilizing p53. Coimmunoprecipitation analysis revealed that I3C reduced by 4-fold the level of MDM2 protein that associated with p53. The p53-MDM2 interaction and absence of p21 production were restored in cells treated with I3C and the ATM inhibitor wortmannin. Significantly, I3C does not increase the number of 53BP1 foci or H2AX phosphorylation, indicating that ATM is activated independent of DNA double-strand breaks. Taken together, our results demonstrate that I3C activates ATM signaling through a novel pathway to stimulate p53 phosphorylation and disruption of the p53-MDM2 interaction, which releases p53 to induce the p21 CDK inhibitor and a G1 cell cycle arrest.
Collapse
Affiliation(s)
- Christine T Brew
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Bar J, Lukaschuk N, Zalcenstein A, Wilder S, Seger R, Oren M. The PI3K inhibitor LY294002 prevents p53 induction by DNA damage and attenuates chemotherapy-induced apoptosis. Cell Death Differ 2005; 12:1578-87. [PMID: 15933740 DOI: 10.1038/sj.cdd.4401677] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The p53 tumor suppressor plays a key role in the natural protection against cancer. Activation of p53 by DNA-damaging agents can contribute to successful elimination of cancer cells via chemotherapy-induced apoptosis. The phosphatidylinositol-3 kinase (PI3K) pathway, triggered in normal cells upon exposure to growth factors, regulates a cascade of proliferation and survival signals. The PI3K pathway is abnormally active in many cancers, thus making it an attractive target for inactivation in an attempt to achieve better cancer therapy. We report here that exposure to LY294002, a potent PI3K inhibitor, aborts the activation of p53 by several drugs commonly used in cancer chemotherapy. Concomitantly, LY294002 attenuates p53-dependent, chemotherapy-induced apoptosis of cancer cells. These findings invoke an unexpected positive role for PI3K in p53 activation by anticancer agents, and suggest that the efficacy of PI3K inhibitors in cancer therapy may be greatly affected by the tumor p53 status.
Collapse
Affiliation(s)
- J Bar
- The Chaim Sheba Medical Center, Department of Oncology, Tel Hashomer, Israel
| | | | | | | | | | | |
Collapse
|