1
|
Zhong Q, Wu W, Xie J, Wang JL, Xu K, Ren Y, Chen J, Xie P. Limosilactobacillus-related 3-OMDP as a potential therapeutic target for depression. Ann Med 2024; 56:2417179. [PMID: 39421970 PMCID: PMC11492388 DOI: 10.1080/07853890.2024.2417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Gut microbiota was closely involved in the pathogenesis of depression, but the underlying molecular mechanisms in depression remained unclear. This study was conducted to investigate the relationship between neurotransmitters/inflammatory factors and gut microbiota in depressed mice. MATERIALS AND METHODS A chronic social defeat stress (CSDS) depression model was established. Gut microbial composition was detected in faeces, neurotransmitters were detected in faeces, colon, blood and hippocampus, and inflammatory factors were detected in hippocampus. After a key neurotransmitter was identified, intervention experiment was conducted to explore whether it could improve depressive-like behaviours. RESULTS Six differential genera in faeces, 14 differential neurotransmitters in gut-brain axis, and two differential inflammatory factors (interleukin-1 beta (IL-1β) and interleukin-6 (IL-6)) in hippocampus were identified in depressed mice. There were significant correlations among differential genera, differential neurotransmitters and IL-1β/IL-6. Among these differential neurotransmitters, 3-O-Methyldopa (3-OMDP) was found to be consistently decreased in faeces, colon, blood and hippocampus, and 3-OMDP was significantly correlated to Limosilactobacillus and IL-1β. After receiving 3-OMDP, the depressive-like behaviours in depressed mice were improved and the increased IL-1β/IL-6 levels were reversed. CONCLUSIONS These results indicated that gut microbiota might affect host's inflammation levels in brain through regulating neurotransmitters, eventually leading to the onset of depression. 'Limosilactobacillus-3-OMDP-IL-1β/IL-6' might be a potential pathway in the crosstalk of gut and brain, and 3-OMDP held the promise as a therapeutic target for depression.
Collapse
Affiliation(s)
- Qi Zhong
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Wentao Wu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Jing Xie
- Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, China
| | - Jiao-lin Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Huang HY, Yu RL, Tsai WF, Chuang WL, Huang JF, Dai CY, Tan CH. Impact of interleukin-1β single nucleotide polymorphisms and depressive symptoms in individuals with chronic viral hepatitis. Kaohsiung J Med Sci 2024; 40:94-104. [PMID: 37937732 DOI: 10.1002/kjm2.12776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Elevated levels of interleukin 1β (IL-1β) have been identified in patients with chronic viral hepatitis and have been associated with depressive symptoms. Given the high prevalence of depression in this patient population, this study sought to explore the potential influence of IL-1β genetic variations on the severity of depressive symptoms. In a cohort of 181 Taiwanese patients with chronic viral hepatitis, we investigated the impact of five common IL-1β single nucleotide polymorphisms (SNPs), including rs16944, rs1143627, rs1143630, rs1143643, and rs3136558, on depressive symptoms using the Beck's Depression Inventory-II. Additionally, we analyzed the primary domains of IL-1β-related depressive symptoms according to Beck's six symptom categories of depression. Our analysis revealed significant associations between depressive symptoms and three intronic IL-1β SNPs. After controlling for age, sex, marital status, and education level, patients with the rs1143630 GG, rs1143643 CC, and rs3136558 AA genotypes demonstrated higher severity of depressive symptoms in the domains of indecision (p = 0.004), agitation (p = 0.001), and feelings of punishment (p = 0.005), respectively, compared to rs1143630 GA+AA, rs1143643 CT, and rs3136558 AG+GG genotypes. According to Beck's categorization, these symptoms can be classified into three dimensions: disturbances in emotion regulation, energy, and cognition. Our findings demonstrate the association between IL-1β polymorphisms and depressive symptoms and suggest a potential underlying mechanism for specific depressive symptoms within the chronic viral hepatitis population. These insights could improve our understanding and treatment of depressive symptoms in individuals with viral hepatitis.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rwei-Ling Yu
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Fang Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hsiang Tan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Genetics of antidepressant response and treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023. [DOI: 10.1016/bs.pbr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Ferencova N, Visnovcova Z, Ondrejka I, Funakova D, Hrtanek I, Kelcikova S, Tonhajzerova I. Evaluation of Inflammatory Response System (IRS) and Compensatory Immune Response System (CIRS) in Adolescent Major Depression. J Inflamm Res 2022; 15:5959-5976. [PMID: 36303711 PMCID: PMC9596279 DOI: 10.2147/jir.s387588] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose Nowadays, the role of two tightly interconnected systems, the inflammatory response system (IRS) and the compensatory immune response system (CIRS) in depression, is increasingly discussed. Various studies indicate pro-inflammatory activity in adolescent depression; however, there is an almost complete lack of findings about IRS and CIRS balance. Thus, we aimed to assess different IRS and CIRS indices, profiles, and IRS/CIRS ratios in drug-naïve MDD patients at adolescent age, with respect to sex. Patients and Methods One hundred MDD adolescents (40 boys, average age: 15.4±1.2 yrs.) and 60 controls (28 boys, average age: 15.3±1.5 yrs.) were examined. Evaluated parameters were 1. plasma levels of interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, interferon gamma, tumor necrosis factor alpha (TNF-α), soluble receptor of IL-6 (sIL-6R), soluble receptors of TNF-α (sTNF-R1, sTNF-R2); 2. profiles: IL-6 trans-signaling, M1 macrophage signaling, helper T lymphocytes (Th) 1 profile, regulatory T lymphocytes (Treg)+Th2, allIRS, and allCIRS; 3. IRS vs CIRS activity ratios: TNF-α/TNF-R1, TNF-α/TNF-R2, TNF-α/sTNF-Rs (ie sTNF-R1+sTNF-R2), Th1/Th2, Th1/Treg, Th1/Th2+Treg, M1/Th2, M1/Treg, M1/Treg+Th2, allIRS/allCIRS. Results MDD patients showed increased IL-4, IL-10, TNF-α, sIL-6R, Treg+Th2, allIRS, allCIRS, and TNF-α/sTNF-Rs, and decreased Th1/Th2+Treg. MDD females showed increased IL-10 and TNF-α compared to control females. MDD males showed increased IL-4, IL-10, sIL-6R, Treg+Th2, and TNF-α/TNF-R1 compared to control males. Increased sTNF-R1 was found in MDD males compared to MDD females. Positive correlations were found between CDI score and sIL-6R and IL-10 in the total group and between CDI score and IL-10 in adolescent males. Conclusion Our study for the first time extensively evaluated IRS and CIRS interactions revealing enhanced pro-inflammatory TNF-α signaling and IL-6 trans-signaling in association with increased IL-10- and IL-4-mediated anti-inflammatory activity in first-episode depression at the adolescent age. Moreover, results reflect the sex-specific simultaneous activation of IRS and CIRS pathways in adolescent depression.
Collapse
Affiliation(s)
- Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Igor Ondrejka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, Martin, Slovak Republic
| | - Dana Funakova
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, Martin, Slovak Republic
| | - Igor Hrtanek
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, Martin, Slovak Republic
| | - Simona Kelcikova
- Department of Midwifery, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic,Correspondence: Ingrid Tonhajzerova, Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, Martin, Slovak Republic, Tel +421432633425, Email
| |
Collapse
|
5
|
Biczo A, Bereczki F, Koch K, Varga PP, Lazary A. Genetic variants of interleukin 1B and 6 are associated with clinical outcome of surgically treated lumbar degenerative disc disease. BMC Musculoskelet Disord 2022; 23:774. [PMID: 35964023 PMCID: PMC9375337 DOI: 10.1186/s12891-022-05711-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Successfully surgically treating degenerative disc diseases can be challenging to the spine surgeons, the long-term outcome relies on both the physical and mental status of the patient before and after treatment. Numerous studies underlined the role of inflammatory cytokines - like interleukin 1B and 6 - in the development of chronic diseases such as failed back surgery syndrome (FBSS) and major depressive disorder (MDD) which alter the outcome after spinal surgery. Our aim was to evaluate the associations of IL6 and IL1B gene polymorphisms with the long-term outcome of degenerative lumbar spine surgeries. METHODS An international genetical database (GENODISC) was combined with our institute's clinical database to create a large pool with long term follow up data. Altogether 431 patient's data were analysed. Patient reported outcome measures and surgical outcome was investigated in association with IL1B and IL6 SNPs with the help of 'SNPassoc' R genome wide association package. RESULTS Interleukin 1B variants analysis confirmed association with improvement of pain after surgery on individual SNP level and on haplotype level, moreover relationship with patient reported outcome and preoperative level of depression was found on individual SNP level. IL6 variants were associated with preoperative depression, somatization and with subsequent surgery. CONCLUSION Understanding the complexity of spinal surgery patients' long-term well-being is crucial in effectively treating chronic debilitating somatic diseases and the associated mental illnesses. Further studies should investigate more comprehensively the linkage of chronic physical and mental illnesses focusing on their simultaneous treatment.
Collapse
Affiliation(s)
- Adam Biczo
- Semmelweis University School of Ph.D studies, Ulloi street 26, Budapest, 1086, Hungary.,National Center for Spinal Disorders, Kiralyhago street 1, Budapest, 1126, Hungary
| | - Ferenc Bereczki
- Semmelweis University School of Ph.D studies, Ulloi street 26, Budapest, 1086, Hungary.,National Center for Spinal Disorders, Kiralyhago street 1, Budapest, 1126, Hungary
| | - Kristóf Koch
- Semmelweis University School of Ph.D studies, Ulloi street 26, Budapest, 1086, Hungary.,National Center for Spinal Disorders, Kiralyhago street 1, Budapest, 1126, Hungary
| | - Peter Pal Varga
- National Center for Spinal Disorders, Kiralyhago street 1, Budapest, 1126, Hungary
| | | | - Aron Lazary
- National Center for Spinal Disorders, Kiralyhago street 1, Budapest, 1126, Hungary. .,Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Kiralyhago street 1, Budapest, 1126, Hungary.
| |
Collapse
|
6
|
de Mello AJ, Moretti M, Rodrigues ALS. SARS-CoV-2 consequences for mental health: Neuroinflammatory pathways linking COVID-19 to anxiety and depression. World J Psychiatry 2022; 12:874-883. [PMID: 36051596 PMCID: PMC9331446 DOI: 10.5498/wjp.v12.i7.874] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/03/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been linked to an increased prevalence of mental health disorders, particularly anxiety and depression. Moreover, the COVID-19 pandemic has caused stress in people worldwide due to several factors, including fear of infection; social isolation; difficulty in adapting to new routines; lack of coping methods; high exposure to social media, misinformation, and fake reports; economic impact of the measures implemented to slow the contagion and concerns regarding the disease pathogenesis. COVID-19 patients have elevated levels of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, and other inflammation-related factors. Furthermore, invasion of the central nervous system by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may potentially contribute to neuroinflammatory alterations in infected individuals. Neuroinflammation, a consequence of psychological stress due to the COVID-19 pandemic, may also play a role in the development of anxiety and depressive symptoms in the general population. Considering that neuroinflammation plays a significant role in the pathophysiology of depression and anxiety, this study investigated the effects of SARS-CoV-2 on mental health and focused on the impact of the COVID-19 pandemic on the neuroinflammatory pathways.
Collapse
Affiliation(s)
- Anna Julie de Mello
- Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88040-200, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88040-200, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88040-200, Brazil
| |
Collapse
|
7
|
Umeda R, Teranishi H, Hada K, Shimizu N, Shiraishi H, Urushibata H, Shaohong L, Shide M, Apolinario MEC, Higa R, Shikano K, Shin T, Mimata H, Hikida T, Hanada T, Hanada R. Vrk2 deficiency elicits aggressive behavior in female zebrafish. Genes Cells 2022; 27:254-265. [DOI: 10.1111/gtc.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ryohei Umeda
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Kazumasa Hada
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Nobuyuki Shimizu
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | | | - Lai Shaohong
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Masahito Shide
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | | | - Ryoko Higa
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Kenshiro Shikano
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Toshitaka Shin
- Department of Urology Faculty of Medicine Oita University Oita Japan
| | - Hiromitsu Mimata
- Department of Urology Faculty of Medicine Oita University Oita Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions Institute for Protein Research Osaka University Osaka Japan
| | - Toshikatsu Hanada
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Reiko Hanada
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| |
Collapse
|
8
|
Kwon S, Cheon SY. Influence of the inflammasome complex on psychiatric disorders: clinical and preclinical studies. Expert Opin Ther Targets 2021; 25:897-907. [PMID: 34755582 DOI: 10.1080/14728222.2021.2005027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The innate immune complex, an inflammasome complex, has a role in the etiology of psychiatric disorders. Preclinical studies have demonstrated that the inflammasome activation leads to psychiatric disorders and clinical studies have proved that specific psychiatric illnesses are associated with aberrant levels of inflammatory cytokines and inflammasome. The inflammasome complex could be a major factor in the progression and pathology of psychiatric disorders. AREA COVERED We discuss the pathogenesis of psychiatric disorders with respect to the activation of the inflammasome complex. Inflammasome-associated inflammatory cytokines are observed in patients and animal models of psychiatric disorders. The article also reflects on inflammasome regulatory options for the prevention and treatment of psychiatric disorders. Relevant literature available on PubMed from 1992 to 2021 has been included in this review. EXPERT OPINION Modulating the inflammasome complex is a potential therapeutic strategy to treat symptom severity for patients with psychiatric disorders, particularly those with inflammasome-associated disorders. However, the nature of the psychiatric disorders should be considered when targeting inflammasome.
Collapse
Affiliation(s)
- Sunghark Kwon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea.,Research Institute for Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
9
|
Draganov M, Arranz MJ, Vives-Gilabert Y, Jubero M, de Diego-Adeliño J, Àvila-Parcet A, Puigdemont D, Portella MJ. Polymorphisms in the IL1-b gene are associated with increased Glu and Glx levels in treatment-resistant depression. Psychiatry Res Neuroimaging 2021; 316:111348. [PMID: 34371477 DOI: 10.1016/j.pscychresns.2021.111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Metodi Draganov
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Maria Jesús Arranz
- Research Laboratory, Fundació Docència i Investigació Mútua Terrassa, Catalonia, Spain
| | | | - Míriam Jubero
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Javier de Diego-Adeliño
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Aina Àvila-Parcet
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Dolors Puigdemont
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Maria J Portella
- Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona (UAB), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
10
|
Peng Z, Li X, Li J, Dong Y, Gao Y, Liao Y, Yan M, Yuan Z, Cheng J. Dlg1 Knockout Inhibits Microglial Activation and Alleviates Lipopolysaccharide-Induced Depression-Like Behavior in Mice. Neurosci Bull 2021; 37:1671-1682. [PMID: 34490521 PMCID: PMC8643377 DOI: 10.1007/s12264-021-00765-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
Microglia-mediated neuroinflammation is widely perceived as a contributor to numerous neurological diseases and mental disorders including depression. Discs large homolog 1 (Dlg1), an adaptor protein, regulates cell polarization and the function of K+ channels, which are reported to regulate the activation of microglia. However, little is known about the role of Dlg1 in microglia and the maintenance of central nervous system homeostasis. In this study, we found that Dlg1 knockdown suppressed lipopolysaccharide (LPS)-induced inflammation by down-regulating the activation of nuclear factor-κB signaling and the mitogen-activated protein kinase pathway in microglia. Moreover, using an inducible Dlg1 microglia-specific knockout (Dlg1flox/flox; CX3CR1CreER) mouse line, we found that microglial Dlg1 knockout reduced the activation of microglia and alleviated the LPS-induced depression-like behavior. In summary, our results demonstrated that Dlg1 plays a critical role in microglial activation and thus provides a potential therapeutic target for the clinical treatment of depression.
Collapse
Affiliation(s)
- Zhixin Peng
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jun Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yuan Dong
- Institutes of Brain Sciences and Disease, Medical College, Qingdao University, Qingdao, 266071, China
| | - Yuhao Gao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Meichen Yan
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Zengqiang Yuan
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, China. .,The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
11
|
Branchi I, Poggini S, Capuron L, Benedetti F, Poletti S, Tamouza R, Drexhage HA, Penninx BWJH, Pariante CM. Brain-immune crosstalk in the treatment of major depressive disorder. Eur Neuropsychopharmacol 2021; 45:89-107. [PMID: 33386229 DOI: 10.1016/j.euroneuro.2020.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/04/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
A growing number of studies are pointing out the need for a conceptual shift from a brain-centered to a body-inclusive approach in mental health research. In this perspective, the link between the immune and the nervous system, which are deeply interconnected and continuously interacting, is one of the most important novel theoretical framework to investigate the biological bases of major depressive disorder and, more in general, mental illness. Indeed, depressed patients show high levels of inflammatory markers, administration of pro-inflammatory drugs triggers a depressive symptomatology and antidepressant efficacy is reduced by excessive immune system activation. A number of molecular and cellular mechanisms have been hypothesized to act as a link between the immune and brain function, thus representing potential pharmacologically targetable processes for the development of novel and effective therapeutic strategies. These include the modulation of the kynurenine pathway, the crosstalk between metabolic and inflammatory processes, the imbalance in acquired immune responses, in particular T cell responses, and the interplay between neural plasticity and immune system activation. In the personalized medicine approach, the assessment and regulation of these processes have the potential to lead, respectively, to novel diagnostic approaches for the prediction of treatment outcome according to the patient's immunological profile, and to improved efficacy of antidepressant compounds through immune modulation.
Collapse
Affiliation(s)
- Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Lucile Capuron
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Francesco Benedetti
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Poletti
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Ryad Tamouza
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, Université Paris Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| | - Hemmo A Drexhage
- Department of Immunology, ErasmusMC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Department of Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Carmine M Pariante
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | -
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, Université Paris Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| |
Collapse
|
12
|
Strenn N, Pålsson E, Liberg B, Landén M, Ekman A. Influence of genetic variations in IL1B on brain region volumes in bipolar patients and controls. Psychiatry Res 2021; 296:113606. [PMID: 33348197 DOI: 10.1016/j.psychres.2020.113606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Involvement of the immune system has been implicated in the etiology and pathophysiology of mood disorders, including bipolar disorder. Neuroimaging studies have reported structural brain pathology in bipolar disorder patients, and both levels of and genetic variants in cytokines have been associated with altered volumes of brain regions. The aim of this study was to investigate associations between single nucleotide polymorphisms in the gene coding for the pro-inflammatory cytokine interleukin-1 beta (IL1B) and whole brain grey matter volume, as well as volumes of several brain regions shown to be of importance in mood disorders. Structural magnetic resonance imaging and vertex-based morphometry were used to obtain volume of different brain regions in subjects with bipolar disorder (n=188) and healthy controls (n=54). Four IL1B polymorphisms were genotyped: rs1143623, rs1143627, and rs16944 in the promoter region together with the synonymous variant rs1143634 in the IL1B gene. The genotype distribution did not differ between bipolar subjects and controls. The T allele at rs16944 and the C allele at rs1143627 were associated with increased volumes of the putamen of the left hemisphere in patients and controls, which lends support to the role of this immune system mediator for brain structure.
Collapse
Affiliation(s)
- Nina Strenn
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Erik Pålsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Benny Liberg
- Department of Clinical Neuroscience, Division of Psychiatry, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Ekman
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Draganov M, Arranz MJ, Salazar J, de Diego-Adeliño J, Gallego-Fabrega C, Jubero M, Carceller-Sindreu M, Portella MJ. Association study of polymorphisms within inflammatory genes and methylation status in treatment response in major depression. Eur Psychiatry 2020; 60:7-13. [DOI: 10.1016/j.eurpsy.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/28/2022] Open
Abstract
AbstractBackground:Although pharmacogenetics for major depressive disorder (MDD) is gaining momentum, the role of genetics in differences in response to antidepressant treatment is controversial, as they depend on multifactorial and polygenic phenotypes. Previous studies focused on the genes of the serotonergic system, leaving apart other pathological factors such as the inflammatory pathway. The main objective of the study was to assess whether treatment response might be associated with specific inflammation-related genetic variants or their methylation status.Methods:41 SNPs in 8 inflammatory genes: interleukin (IL) 1-β, IL2, IL6, IL6R, IL10, IL18, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were genotyped in 153 patients with MDD, who were evaluated with the Mausdley Staging Method to determine treatment response profiles. Pyrosequencing reactions and methylation quantification were performed in a PyroMark Q24 in 5 selected CpG islands of IL1- β, IL6 and IL6R. Linear and logistic regression analyses were conducted, including age and gender as covariates using PLINK 1.07.Results:Allelic distribution of IL1- β rs1143643 was significantly associated with MSM scores (FDR corrected p = 0.04). Allelic distribution of IL6R rs57569414 showed a trend towards significance with MSM scores (p = 0.002; FDR corrected p = 0.07). Haplotype analyses showed associations between allelic combinations of IL1-β and IL10 with treatment response (FDR corrected p < 0.01). Methylation percentage of treatment responders was only higher in an IL6R CpG island (p < 0.05).Conclusions:These exploratory findings suggest that IL1-β and, marginally, IL6R polymorphisms may affect treatment response in major depression. If confirmed, these results may account for the heterogeneous phenotypes of major depression that underlie differences in treatment response.
Collapse
|
14
|
He MC, Shi Z, Sha NN, Chen N, Peng SY, Liao DF, Wong MS, Dong XL, Wang YJ, Yuan TF, Zhang Y. Paricalcitol alleviates lipopolysaccharide-induced depressive-like behavior by suppressing hypothalamic microglia activation and neuroinflammation. Biochem Pharmacol 2019; 163:1-8. [DOI: 10.1016/j.bcp.2019.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
|
15
|
Srivastava A, Singh P, Gupta H, Kaur H, Kanojia N, Guin D, Sood M, Chadda RK, Yadav J, Vohora D, Saso L, Kukreti R. Systems Approach to Identify Common Genes and Pathways Associated with Response to Selective Serotonin Reuptake Inhibitors and Major Depression Risk. Int J Mol Sci 2019; 20:1993. [PMID: 31018568 PMCID: PMC6514561 DOI: 10.3390/ijms20081993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 12/27/2022] Open
Abstract
Despite numerous studies on major depressive disorder (MDD) susceptibility, the precise underlying molecular mechanism has not been elucidated which restricts the development of etiology-based disease-modifying drug. Major depressive disorder treatment is still symptomatic and is the leading cause of (~30%) failure of the current antidepressant therapy. Here we comprehended the probable genes and pathways commonly associated with antidepressant response and MDD. A systematic review was conducted, and candidate genes/pathways associated with antidepressant response and MDD were identified using an integrative genetics approach. Initially, single nucleotide polymorphisms (SNPs)/genes found to be significantly associated with antidepressant response were systematically reviewed and retrieved from the candidate studies and genome-wide association studies (GWAS). Also, significant variations concerning MDD susceptibility were extracted from GWAS only. We found 245 (Set A) and 800 (Set B) significantly associated genes with antidepressant response and MDD, respectively. Further, gene set enrichment analysis revealed the top five co-occurring molecular pathways (p ≤ 0.05) among the two sets of genes: Cushing syndrome, Axon guidance, cAMP signaling pathway, Insulin secretion, and Glutamatergic synapse, wherein all show a very close relation to synaptic plasticity. Integrative analyses of candidate gene and genome-wide association studies would enable us to investigate the putative targets for the development of disease etiology-based antidepressant that might be more promising than current ones.
Collapse
Affiliation(s)
- Ankit Srivastava
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Priyanka Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi 110007, India.
| | - Hitesh Gupta
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
| | - Harpreet Kaur
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi 110007, India.
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India.
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Rakesh Kumar Chadda
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Jyoti Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
| |
Collapse
|
16
|
McQuaid RJ, Gabrys RL, McInnis OA, Anisman H, Matheson K. Understanding the Relation Between Early-Life Adversity and Depression Symptoms: The Moderating Role of Sex and an Interleukin-1β Gene Variant. Front Psychiatry 2019; 10:151. [PMID: 30967802 PMCID: PMC6438954 DOI: 10.3389/fpsyt.2019.00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/28/2019] [Indexed: 12/30/2022] Open
Abstract
Pro-inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), are thought to play a fundamental role in the pathogenesis of depression within a subset of individuals. However, the involvement of IL-1β has not been as consistently linked to depression, possibly owing to difficulties in detecting this cytokine in blood samples or that changes in circulating levels might only be apparent in a subgroup of patients who have experienced early-life adversity. From this perspective, the association between early-life adversity and depressive illness might depend on genetic variants regulating IL-1β activity. Considering the inflammatory-depression link, and that women are twice as likely to experience depression compared to men, the current study (N = 475 university students) examined the moderating role of three independent cytokine single nucleotide polymorphisms (SNPs; IL-1β rs16944, IL-6 rs1800795 SNP, TNF-α rs1800629) in the relationship between early-life adversity and depressive symptoms, and whether these relations differed between males and females. The relation between childhood adversity and depressive symptoms was moderated by the IL-1β SNP, and further varied according to sex. Specifically, among females, higher childhood maltreatment was accompanied by elevated depressive symptoms irrespective of the IL-1β SNP, but among males, this relationship was particularly pronounced for those carrying the GG genotype of the IL-1β SNP. These findings suggest that, in the context of early life adversity, genetic variations of IL-1β functioning are related to depressive symptomatology and this may vary among males and females. The present study also, more broadly, highlights the importance of considering the confluence of experiential factors (e.g., early life adversity) and personal characteristics (e.g., sex and genetics) in understanding depressive disorders, an approach increasingly recognized in developing personalized treatment approaches to this illness.
Collapse
Affiliation(s)
- Robyn J. McQuaid
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Robert L. Gabrys
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Opal A. McInnis
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hymie Anisman
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Kimberly Matheson
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
17
|
Li D, Cai Z, Wu J, Zhang Y. Bax inhibitor-1 overexpression in prelimbic cortex protects rats against depression-like behavior induced by olfactory bulbectomy and reduces apoptotic and inflammatory signals. Neurol Res 2019; 41:369-377. [DOI: 10.1080/01616412.2019.1565649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dao Li
- City College, Wuhan University of Science and Technology, Wuhan, China
| | - Zhou Cai
- City College, Wuhan University of Science and Technology, Wuhan, China
| | - Ji Wu
- City College, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zhang
- City College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Li M, Yue W. VRK2, a Candidate Gene for Psychiatric and Neurological Disorders. MOLECULAR NEUROPSYCHIATRY 2018; 4:119-133. [PMID: 30643786 PMCID: PMC6323383 DOI: 10.1159/000493941] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, p = 3.43 × 10-8) and MDD (130,620 cases and 347,620 controls, p = 4.32 × 10-12) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, p = 3.78 × 10-13), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
19
|
Cui W, Ning Y, Hong W, Wang J, Liu Z, Li MD. Crosstalk Between Inflammation and Glutamate System in Depression: Signaling Pathway and Molecular Biomarkers for Ketamine's Antidepressant Effect. Mol Neurobiol 2018; 56:3484-3500. [PMID: 30140973 DOI: 10.1007/s12035-018-1306-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/07/2018] [Indexed: 12/25/2022]
Abstract
Depression is a worldwide illness with a significant impact on both family and society. Conventional antidepressants are ineffective for more than 30% of patients. In such patients, who have what is called treatment-resistant depression (TRD), inflammatory biomarkers are expressed excessively in both the central nervous system (CNS) and the peripheral blood. Ketamine, a glutamate receptor antagonist, exerts a rapid and sustained therapeutic effect in patients with TRD. Thus, the investigation of the relations between inflammation and glutamate underlying depression has drawn great attention. Inflammation influences glutamate release, transmission, and metabolism, resulting in accumulated extracellular glutamate in the CNS. Downstream of the glutamate receptors, the mammalian target of rapamycin (mTOR) signaling pathway plays a key role in mediating ketamine's antidepressant effect by improving neurogenesis and plasticity. Based on the mechanism and clinical evidence of the inflammatory contribution to the pathogenesis of depression, extensive research has been devoted to inflammatory biomarkers of the clinical response of depression to ketamine. The inconsistent findings from the biomarker investigations are at least partially attributable to the heterogeneity of depression, limited sample size, and complex gene-environment interactions. Deep exploration of the clinical observations and the underlying mechanism of ketamine's antidepressant response can provide new insights into the selection of specific groups of depressed patients for ketamine treatment and to aid in monitoring the therapeutic effect during antidepressant medication. Further, targeting persistent inflammation in patients with TRD and the key molecules mediating ketamine's antidepressant effect may encourage the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Zhening Liu
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China. .,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China. .,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
20
|
Mora C, Zonca V, Riva MA, Cattaneo A. Blood biomarkers and treatment response in major depression. Expert Rev Mol Diagn 2018; 18:513-529. [DOI: 10.1080/14737159.2018.1470927] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cristina Mora
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Valentina Zonca
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King’s College, London, UK
| |
Collapse
|
21
|
Shadrina M, Bondarenko EA, Slominsky PA. Genetics Factors in Major Depression Disease. Front Psychiatry 2018; 9:334. [PMID: 30083112 PMCID: PMC6065213 DOI: 10.3389/fpsyt.2018.00334] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Depressive disorders (DDs) are one of the most widespread forms of psychiatric pathology. According to the World Health Organization, about 350 million people in the world are affected by this condition. Family and twin studies have demonstrated that the contribution of genetic factors to the risk of the onset of DDs is quite large. Various methodological approaches (analysis of candidate genes, genome-wide association analysis, genome-wide sequencing) have been used, and a large number of the associations between genes and different clinical DD variants and DD subphenotypes have been published. However, in most cases, these associations have not been confirmed in replication studies, and only a small number of genes have been proven to be associated with DD development risk. To ascertain the role of genetic factors in DD pathogenesis, further investigations of the relevant conditions are required. Special consideration should be given to the polygenic characteristics noted in whole-genome studies of the heritability of the disorder without a pronounced effect of the major gene. These observations accentuate the relevance of the analysis of gene-interaction roles in DD development and progression. It is important that association studies of the inherited variants of the genome should be supported by analysis of dynamic changes during DD progression. Epigenetic changes that cause modifications of a gene's functional state without changing its coding sequence are of primary interest. However, the opportunities for studying changes in the epigenome, transcriptome, and proteome during DD are limited by the nature of the disease and the need for brain tissue analysis, which is possible only postmortem. Therefore, any association studies between DD pathogenesis and epigenetic factors must be supplemented through the use of different animal models of depression. A threefold approach comprising the combination of gene association studies, assessment of the epigenetic state in DD patients, and analysis of different "omic" changes in animal depression models will make it possible to evaluate the contribution of genetic, epigenetic, and environmental factors to the development of different forms of depression and to help develop ways to decrease the risk of depression and improve the treatment of DD.
Collapse
Affiliation(s)
- Maria Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena A Bondarenko
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Petr A Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Effects of interleukin-1beta polymorphisms on brain function and behavior in healthy and psychiatric disease conditions. Cytokine Growth Factor Rev 2017; 37:89-97. [DOI: 10.1016/j.cytogfr.2017.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
|
23
|
Kaufmann FN, Costa AP, Ghisleni G, Diaz AP, Rodrigues ALS, Peluffo H, Kaster MP. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav Immun 2017; 64:367-383. [PMID: 28263786 DOI: 10.1016/j.bbi.2017.03.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, an intricate interaction between immune activation, release of pro-inflammatory cytokines and changes in brain circuits related to mood and behavior has been described. Despite extensive efforts, questions regarding when inflammation becomes detrimental or how we can target the immune system to develop new therapeutic strategies for the treatment of psychiatric disorders remain unresolved. In this context, novel aspects of the neuroinflammatory process activated in response to stressful challenges have recently been documented in major depressive disorder (MDD). The Nod-like receptor pyrin containing 3 inflammasome (NLRP3) is an intracellular multiprotein complex responsible for a number of innate immune processes associated with infection, inflammation and autoimmunity. Recent data have demonstrated that NLRP3 activation appears to bridge the gap between immune activation and metabolic danger signals or stress exposure, which are key factors in the pathogenesis of psychiatric disorders. In this review, we discuss both preclinical and clinical evidence that links the assembly of the NLRP3 complex and the subsequent proteolysis and release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) in chronic stress models and patients with MDD. Importantly, we also focus on the therapeutic potential of targeting the NLRP3 inflammasome complex to improve stress resilience and depressive symptoms.
Collapse
Affiliation(s)
- Fernanda N Kaufmann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ana Paula Costa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gabriele Ghisleni
- Department of Life and Health Sciences, Catholic University of Pelotas, Rio Grande do Sul, Brazil
| | - Alexandre P Diaz
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Lab., Institut Pasteur de Montevideo, Uruguay; Dept. Histology and Embryology, Faculty of Medicine, UDELAR, Uruguay
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
24
|
Hovhannisyan L, Stepanyan A, Arakelyan A. Genetic variability of interleukin-1 beta as prospective factor from developing post-traumatic stress disorder. Immunogenetics 2017; 69:703-708. [PMID: 28681202 DOI: 10.1007/s00251-017-1016-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/14/2017] [Indexed: 02/03/2023]
Abstract
Individual susceptibility to post-traumatic stress disorder (PTSD) is conditioned by genetic factors, and association between this disorder and polymorphisms of several genes have been shown. The aim of this study was to explore a potential association between single nucleotide polymorphisms (SNP) of the IL-1β gene (IL1B) and PTSD. In genomic DNA samples of PTSD-affected and healthy subjects, the rs16944, rs1143634, rs2853550, rs1143643, and rs1143633 SNPs of IL1B gene have been genotyped. The results obtained demonstrated that IL1B rs1143633*C and rs16944*A minor allele frequency were significantly lower in patients than in controls. Our results confirm that IL1B rs1143633 and rs16944 SNPs are negatively associated with PTSD which allows us to consider them as protective variants for PTSD. IL1B rs1143633*C and rs16944*A minor allele frequencies and carriage rates are significantly lower in the PTSD patients as compared to the controls. These results may provide a base to conclude that above-mentioned alleles can be protective against PTSD, and IL1B gene can be involved in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Lilit Hovhannisyan
- Institute of Molecular Biology, Armenian National Academy of Sciences, Hasratyan 7 street, 0014, Yerevan, Armenia.
| | - Ani Stepanyan
- Institute of Molecular Biology, Armenian National Academy of Sciences, Hasratyan 7 street, 0014, Yerevan, Armenia
| | - Arsen Arakelyan
- Institute of Molecular Biology, Armenian National Academy of Sciences, Hasratyan 7 street, 0014, Yerevan, Armenia
| |
Collapse
|
25
|
Fabbri C, Hosak L, Mössner R, Giegling I, Mandelli L, Bellivier F, Claes S, Collier DA, Corrales A, Delisi LE, Gallo C, Gill M, Kennedy JL, Leboyer M, Lisoway A, Maier W, Marquez M, Massat I, Mors O, Muglia P, Nöthen MM, O'Donovan MC, Ospina-Duque J, Propping P, Shi Y, St Clair D, Thibaut F, Cichon S, Mendlewicz J, Rujescu D, Serretti A. Consensus paper of the WFSBP Task Force on Genetics: Genetics, epigenetics and gene expression markers of major depressive disorder and antidepressant response. World J Biol Psychiatry 2017; 18:5-28. [PMID: 27603714 DOI: 10.1080/15622975.2016.1208843] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a heritable disease with a heavy personal and socio-economic burden. Antidepressants of different classes are prescribed to treat MDD, but reliable and reproducible markers of efficacy are not available for clinical use. Further complicating treatment, the diagnosis of MDD is not guided by objective criteria, resulting in the risk of under- or overtreatment. A number of markers of MDD and antidepressant response have been investigated at the genetic, epigenetic, gene expression and protein levels. Polymorphisms in genes involved in antidepressant metabolism (cytochrome P450 isoenzymes), antidepressant transport (ABCB1), glucocorticoid signalling (FKBP5) and serotonin neurotransmission (SLC6A4 and HTR2A) were among those included in the first pharmacogenetic assays that have been tested for clinical applicability. The results of these investigations were encouraging when examining patient-outcome improvement. Furthermore, a nine-serum biomarker panel (including BDNF, cortisol and soluble TNF-α receptor type II) showed good sensitivity and specificity in differentiating between MDD and healthy controls. These first diagnostic and response-predictive tests for MDD provided a source of optimism for future clinical applications. However, such findings should be considered very carefully because their benefit/cost ratio and clinical indications were not clearly demonstrated. Future tests may include combinations of different types of biomarkers and be specific for MDD subtypes or pathological dimensions.
Collapse
Affiliation(s)
- Chiara Fabbri
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Ladislav Hosak
- b Department of Psychiatrics , Charles University, Faculty of Medicine and University Hospital, Hradec Králové , Czech Republic
| | - Rainald Mössner
- c Department of Psychiatry and Psychotherapy , University of Tübingen , Tübingen , Germany
| | - Ina Giegling
- d Department of Psychiatry, Psychotherapy and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
| | - Laura Mandelli
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Frank Bellivier
- e Fondation Fondamental, Créteil, France AP-HP , GH Saint-Louis-Lariboisière-Fernand-Widal, Pôle Neurosciences , Paris , France
| | - Stephan Claes
- f GRASP-Research Group, Department of Neuroscience , University of Leuven , Leuven , Belgium
| | - David A Collier
- g Social, Genetic and Developmental Psychiatry Centre , Institute of Psychiatry, King's College London , London , UK
| | - Alejo Corrales
- h National University (UNT) Argentina, Argentinean Association of Biological Psychiatry , Buenos Aires , Argentina
| | - Lynn E Delisi
- i VA Boston Health Care System , Brockton , MA , USA
| | - Carla Gallo
- j Departamento de Ciencias Celulares y Moleculares, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía , Universidad Peruana Cayetano Heredia , Lima , Peru
| | - Michael Gill
- k Neuropsychiatric Genetics Research Group, Department of Psychiatry , Trinity College Dublin , Dublin , Ireland
| | - James L Kennedy
- l Neurogenetics Section, Centre for Addiction and Mental Health , Toronto , Ontario , Canada
| | - Marion Leboyer
- m Faculté de Médecine , Université Paris-Est Créteil, Inserm U955, Equipe Psychiatrie Translationnelle , Créteil , France
| | - Amanda Lisoway
- l Neurogenetics Section, Centre for Addiction and Mental Health , Toronto , Ontario , Canada
| | - Wolfgang Maier
- n Department of Psychiatry , University of Bonn , Bonn , Germany
| | - Miguel Marquez
- o Director of ADINEU (Asistencia, Docencia e Investigación en Neurociencia) , Buenos Aires , Argentina
| | - Isabelle Massat
- p UNI - ULB Neurosciences Institute, ULB , Bruxelles , Belgium
| | - Ole Mors
- q Department P , Aarhus University Hospital , Risskov , Denmark
| | | | - Markus M Nöthen
- s Institute of Human Genetics , University of Bonn , Bonn , Germany
| | - Michael C O'Donovan
- t MRC Centre for Neuropsychiatric Genetics and Genomics , Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University , Cardiff , UK
| | - Jorge Ospina-Duque
- u Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina , Universidad de Antioquia , Medellín , Colombia
| | | | - Yongyong Shi
- w Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education , Shanghai Jiao Tong University , Shanghai , China
| | - David St Clair
- x University of Aberdeen, Institute of Medical Sciences , Aberdeen , UK
| | - Florence Thibaut
- y University Hospital Cochin (Site Tarnier), University Sorbonne Paris Cité (Faculty of Medicine Paris Descartes), INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Sven Cichon
- z Division of Medical Genetics, Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Julien Mendlewicz
- aa Laboratoire de Psychologie Medicale, Centre Européen de Psychologie Medicale , Université Libre de Bruxelles and Psy Pluriel , Brussels , Belgium
| | - Dan Rujescu
- d Department of Psychiatry, Psychotherapy and Psychosomatics , Martin Luther University of Halle-Wittenberg , Halle , Germany
| | - Alessandro Serretti
- a Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
26
|
|
27
|
Ye Q, Bai F, Zhang Z. Shared Genetic Risk Factors for Late-Life Depression and Alzheimer's Disease. J Alzheimers Dis 2017; 52:1-15. [PMID: 27060956 DOI: 10.3233/jad-151129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Considerable evidence has been reported for the comorbidity between late-life depression (LLD) and Alzheimer's disease (AD), both of which are very common in the general elderly population and represent a large burden on the health of the elderly. The pathophysiological mechanisms underlying the link between LLD and AD are poorly understood. Because both LLD and AD can be heritable and are influenced by multiple risk genes, shared genetic risk factors between LLD and AD may exist. OBJECTIVE The objective is to review the existing evidence for genetic risk factors that are common to LLD and AD and to outline the biological substrates proposed to mediate this association. METHODS A literature review was performed. RESULTS Genetic polymorphisms of brain-derived neurotrophic factor, apolipoprotein E, interleukin 1-beta, and methylenetetrahydrofolate reductase have been demonstrated to confer increased risk to both LLD and AD by studies examining either LLD or AD patients. These results contribute to the understanding of pathophysiological mechanisms that are common to both of these disorders, including deficits in nerve growth factors, inflammatory changes, and dysregulation mechanisms involving lipoprotein and folate. Other conflicting results have also been reviewed, and few studies have investigated the effects of the described polymorphisms on both LLD and AD. CONCLUSION The findings suggest that common genetic pathways may underlie LLD and AD comorbidity. Studies to evaluate the genetic relationship between LLD and AD may provide insights into the molecular mechanisms that trigger disease progression as the population ages.
Collapse
|
28
|
Kang HJ, Bae KY, Kim SW, Shin IS, Hong YJ, Ahn Y, Jeong MH, Yoon JS, Kim JM. Relationship between interleukin-1β and depressive disorder after acute coronary syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:55-59. [PMID: 27608541 DOI: 10.1016/j.pnpbp.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 10/21/2022]
Abstract
This study was aimed to investigate the effect of serum interleukin (IL)-1β in the depression trajectory after acute coronary syndrome (ACS) considering two IL-1β polymorphisms: -511C/T or +3953C/T. A total of 969 patients were evaluated within 2weeks after ACS and of these, 711 were followed-up 1year later. Depressive disorders were evaluated at baseline and 1year after ACS, using the Mini-International Neuropsychiatric Interview. Serum IL-1β levels and IL-1β genotypes were investigated at baseline. Covariates on socio-demographic and clinical characteristics including depressive symptoms, cardiovascular risk factors, and current cardiac status were assessed. Depression during the acute ACS was significantly associated with the IL-1β levels and the -511T allele. The interaction of the IL-1β level with depression at baseline in the presence of the -511T allele was also significant. No associations were found with depression during the chronic ACS. For the +3953C/T genotype, there was no association with depression in either the acute or chronic phase. The IL-1β level and -511C/T genotype, separately or interactively, could be a biomarker for depressive disorder in the acute phase of ACS. Focused interventions for those with higher IL-1β level and -511T allele might reduce the risk of depressive disorder.
Collapse
Affiliation(s)
- Hee-Ju Kang
- Departments of Psychiatry, Chonnam National University Medical School, Republic of Korea
| | - Kyung-Yeol Bae
- Departments of Psychiatry, Chonnam National University Medical School, Republic of Korea
| | - Sung-Wan Kim
- Departments of Psychiatry, Chonnam National University Medical School, Republic of Korea
| | - Il-Seon Shin
- Departments of Psychiatry, Chonnam National University Medical School, Republic of Korea
| | - Young Joon Hong
- Departments of Caridology, Chonnam National University Medical School, Republic of Korea
| | - Youngkeun Ahn
- Departments of Caridology, Chonnam National University Medical School, Republic of Korea
| | - Myung Ho Jeong
- Departments of Caridology, Chonnam National University Medical School, Republic of Korea
| | - Jin-Sang Yoon
- Departments of Psychiatry, Chonnam National University Medical School, Republic of Korea
| | - Jae-Min Kim
- Departments of Psychiatry, Chonnam National University Medical School, Republic of Korea.
| |
Collapse
|
29
|
Genetic Contributions of Inflammation to Depression. Neuropsychopharmacology 2017; 42:81-98. [PMID: 27555379 PMCID: PMC5143493 DOI: 10.1038/npp.2016.169] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023]
Abstract
This paper describes the effects of immune genes genetic variants and mRNA expression on depression's risk, severity, and response to antidepressant treatment, through a systematic review on all papers published between 2000 and 2016. Our results, based largely on case-control studies, suggest that common genetic variants and gene-expression pathways are involved in both immune activation and depression. The most replicated and relevant genetic variants include polymorphisms in the genes for interleukin (IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1, tumor necrosis factor-alpha, C-reactive protein, and phospholipase A2. Moreover, increased blood cytokines mRNA expression (especially of IL-1β) identifies patients that are less likely to respond to conventional antidepressants. However, even for the most replicated findings there are inconsistent results, not only between studies, but also between the immune effects of the genetic variants and the resulting effects on depression. We find evidence that these discrepant findings may be explained, at least in part, by the heterogeneity of the depression immunophenotype, by environmental influences and gene × environment interactions, and by the complex interfacing of genetic variants with gene expression. Indeed, some of the most robust findings have been obtained in patients developing depression in the context of treatment with interferon-alpha, a widely used model to mimic depression in the context of inflammation. Further 'omics' approaches, through GWAS and transcriptomics, will finally shed light on the interaction between immune genes, their expression, and the influence of the environment, in the pathogenesis of depression.
Collapse
|
30
|
Ellul P, Boyer L, Groc L, Leboyer M, Fond G. Interleukin-1 β-targeted treatment strategies in inflammatory depression: toward personalized care. Acta Psychiatr Scand 2016; 134:469-484. [PMID: 27744648 DOI: 10.1111/acps.12656] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES It is unknown whether a cytokine signature may help the identification of subgroup of patient who would respond to personalized treatment. As interleukin-1 beta (Il-1β) seems to play a major role in mood disorder, a systematic review and meta-analysis of its potential role in major depressive disorder (MDD) was carried out. METHODS A systematic search was performed to identify appropriate MDD vs. control studies pertaining to Il-1β. Methodological quality and possible moderators were also assessed. RESULTS A total of 1922 studies were identified, and 53 articles were selected. Results showed an association between increased blood IL-1β and MDD in high-quality studies only. No association with age was found. No IL-1β gene-related polymorphisms has been associated with MDD. No effect of antidepressant on IL-1β level has been found, although the antidepressants investigated were various. Qualitative analyses indicate that MDD coupled to a history of childhood trauma may be a subgroup for IL-1β -targeted therapies. No difference in studies utilizing a stimulation method has been identified to date. CONCLUSIONS The present work has confirmed IL-1β as a biological marker of interest for innovative MDD treatments. However, further studies are needed to clarify the patients with MDD who may benefit from these therapies.
Collapse
Affiliation(s)
- P Ellul
- INSERM U955, eq15 Translational Psychiatry team, Paris Est University, DHU Pe-PSY, Pôle de Psychiatrie et d'addictologie des Hôpitaux Universitaires H Mondor, Créteil, France
| | - L Boyer
- EA 3279 Research Unit - Public Health: Chronic Diseases and Quality of Life, Aix-Marseille University, Marseille, France
| | - L Groc
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux University, Bordeaux, France
| | - M Leboyer
- INSERM U955, eq15 Translational Psychiatry team, Paris Est University, DHU Pe-PSY, Pôle de Psychiatrie et d'addictologie des Hôpitaux Universitaires H Mondor, Créteil, France.,Fondation FondaMental, Créteil, France
| | - G Fond
- INSERM U955, eq15 Translational Psychiatry team, Paris Est University, DHU Pe-PSY, Pôle de Psychiatrie et d'addictologie des Hôpitaux Universitaires H Mondor, Créteil, France.,Fondation FondaMental, Créteil, France
| |
Collapse
|
31
|
Effects of IL1B single nucleotide polymorphisms on depressive and anxiety symptoms are determined by severity and type of life stress. Brain Behav Immun 2016; 56:96-104. [PMID: 26891860 DOI: 10.1016/j.bbi.2016.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/23/2016] [Accepted: 02/12/2016] [Indexed: 11/24/2022] Open
Abstract
Interleukin-1β is one of the main mediators in the cross-talk between the immune system and the central nervous system. Higher interleukin-1β levels are found in mood spectrum disorders, and the stress-induced expression rate of the interleukin-1β gene (IL1B) is altered by polymorphisms in the region. Therefore we examined the effects of rs16944 and rs1143643 single nucleotide polymorphisms (SNPs) within the IL1B gene on depressive and anxiety symptoms, as measured by the Brief Symptom Inventory, in a Hungarian population sample of 1053 persons. Distal and proximal environmental stress factors were also included in our analysis, namely childhood adversity and recent negative life-events. We found that rs16944 minor (A) allele specifically interacted with childhood adversity increasing depressive and anxiety symptoms, while rs1143643's minor (A) allele showed protective effect against depressive symptoms after recent life stress. The genetic main effects of the two SNPs were not significant in the main analysis, but the interaction effects remained significant after correction for multiple testing. In addition, the effect of rs16944 A allele was reversed in a subsample with low-exposure to life stress, suggesting a protective effect against depressive symptoms, in the post hoc analysis. In summary, both of the two IL1B SNPs showed specific environmental stressor-dependent effects on mood disorder symptoms. We also demonstrated that the presence of exposure to childhood adversity changed the direction of the rs16944 effect on depression phenotype. Therefore our results suggest that it is advisable to include environmental factors in genetic association studies when examining the effect of the IL1B gene.
Collapse
|
32
|
Kudinova AY, Deak T, Hueston CM, McGeary JE, Knopik VS, Palmer RHC, Gibb BE. Cross-species evidence for the role of interleukin-33 in depression risk. JOURNAL OF ABNORMAL PSYCHOLOGY 2016; 125:482-94. [PMID: 27054346 DOI: 10.1037/abn0000158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extensive evidence highlights the role of inflammatory processes in major depressive disorder (MDD). However, most studies have examined a consistent set of inflammatory cytokines and there is evidence that other immune-derived products may play a role in MDD. In this article, we present data from 3 complimentary studies that support the role of a novel cytokine, interleukin-33 (IL-33), in depression risk. First, we show that a 2-SNP haplotype in the IL-33 gene (rs11792633 and rs7044343) moderated the link between women's history of childhood abuse and their history of recurrent MDD (rMDD), such that the link between childhood abuse and rMDD was stronger among women with fewer copies of the protective IL-33 CT haplotype. Second, linking these findings to differences in circulating cytokine levels, we show in a separate sample that those with a history of rMDD had higher peripheral levels of IL-33 and IL-1β compared with women with a single MDD episode or no history of MDD. Third, providing initial evidence of brain regions underlying these effects using archival rat brain tissue, we show that an acute stressor increased IL-33 expression in the paraventricular nucleus of the hypothalamus and, to a lesser extent, the prefrontal cortex, key brain regions underlying stress response and emotion regulation. These findings provide converging support for the potential role of IL-33 in risk for recurrent MDD. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Terrence Deak
- Center for Affective Science, Binghamton University (SUNY)
| | - Cara M Hueston
- Center for Affective Science, Binghamton University (SUNY)
| | | | | | | | - Brandon E Gibb
- Center for Affective Science, Binghamton University (SUNY)
| |
Collapse
|
33
|
Slyepchenko A, Maes M, Köhler CA, Anderson G, Quevedo J, Alves GS, Berk M, Fernandes BS, Carvalho AF. T helper 17 cells may drive neuroprogression in major depressive disorder: Proposal of an integrative model. Neurosci Biobehav Rev 2016; 64:83-100. [PMID: 26898639 DOI: 10.1016/j.neubiorev.2016.02.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/04/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
The exact pathophysiology of major depressive disorder (MDD) remains elusive. The monoamine theory, which hypothesizes that MDD emerges as a result of dysfunctional serotonergic, dopaminergic and noradrenergic pathways, has guided the therapy of this illness for several decades. More recently, the involvement of activated immune, oxidative and nitrosative stress pathways and of decreased levels of neurotrophic factors has provided emerging insights regarding the pathophysiology of MDD, leading to integrated theories emphasizing the complex interplay of these mechanisms that could lead to neuroprogression. In this review, we propose an integrative model suggesting that T helper 17 (Th17) cells play a pivotal role in the pathophysiology of MDD through (i) microglial activation, (ii) interactions with oxidative and nitrosative stress, (iii) increases of autoantibody production and the propensity for autoimmunity, (iv) disruption of the blood-brain barrier, and (v) dysregulation of the gut mucosa and microbiota. The clinical and research implications of this model are discussed.
Collapse
Affiliation(s)
- Anastasiya Slyepchenko
- Womens Health Concerns Clinic, St. Joseph's Healthcare Hamilton, MiNDS Program, McMaster University; Hamilton, Ontario, Canada
| | - Michael Maes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health, Geelong, VIC, Australia
| | - Cristiano A Köhler
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - João Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gilberto S Alves
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Berk
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health, Geelong, VIC, Australia; Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Orygen, The National Centre of Excellence in Youth Mental Health and Orygen Youth Health Research Centre, University of Melbourne, Parkville, VIC, Australia
| | - Brisa S Fernandes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health, Geelong, VIC, Australia; Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
34
|
Woo YS, Seo HJ, McIntyre RS, Bahk WM. Obesity and Its Potential Effects on Antidepressant Treatment Outcomes in Patients with Depressive Disorders: A Literature Review. Int J Mol Sci 2016; 17:ijms17010080. [PMID: 26771598 PMCID: PMC4730324 DOI: 10.3390/ijms17010080] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence regarding clinical, neurobiological, genetic, and environmental factors suggests a bidirectional link between obesity and depressive disorders. Although a few studies have investigated the link between obesity/excess body weight and the response to antidepressants in depressive disorders, the effect of weight on treatment response remains poorly understood. In this review, we summarized recent data regarding the relationship between the response to antidepressants and obesity/excess body weight in clinical studies of patients with depressive disorders. Although several studies indicated an association between obesity/excess body weight and poor antidepressant responses, it is difficult to draw definitive conclusions due to the variability of subject composition and methodological differences among studies. Especially, differences in sex, age and menopausal status, depressive symptom subtypes, and antidepressants administered may have caused inconsistencies in the results among studies. The relationship between obesity/excess body weight and antidepressant responses should be investigated further in high-powered studies addressing the differential effects on subject characteristics and treatment. Moreover, future research should focus on the roles of mediating factors, such as inflammatory markers and neurocognitive performance, which may alter the antidepressant treatment outcome in patients with comorbid obesity and depressive disorder.
Collapse
Affiliation(s)
- Young Sup Woo
- Department of Psychiatry, College of Medicine, the Catholic University of Korea, Seoul 07345, Korea.
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada.
| | - Hye-Jin Seo
- Department of Psychiatry, College of Medicine, the Catholic University of Korea, Seoul 07345, Korea.
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 2S8, Canada.
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, the Catholic University of Korea, Seoul 07345, Korea.
| |
Collapse
|
35
|
Abstract
Depression and inflammation fuel one another. Inflammation plays a key role in depression's pathogenesis for a subset of depressed individuals; depression also primes larger cytokine responses to stressors and pathogens that do not appear to habituate. Accordingly, treatment decisions may be informed by attention to questions of how (pathways) and for whom (predispositions) these links exist, which are the focus of this article. When combined with predisposing factors (moderators such as childhood adversity and obesity), stressors and pathogens can lead to exaggerated or prolonged inflammatory responses. The resulting sickness behaviors (e.g., pain, disturbed sleep), depressive symptoms, and negative health behaviors (e.g., poor diet, a sedentary lifestyle) may act as mediating pathways that lead to further, unrestrained inflammation and depression. Depression, childhood adversity, stressors, and diet can all influence the gut microbiome and promote intestinal permeability, another pathway to enhanced inflammatory responses. Larger, more frequent, or more prolonged inflammatory responses could have negative mental and physical health consequences. In clinical practice, inflammation provides a guide to potential targets for symptom management by signaling responsiveness to certain therapeutic strategies. For example, a theme across research with cytokine antagonists, omega-3 fatty acids, celecoxib, and exercise is that anti-inflammatory interventions have a substantially greater impact on mood in individuals with heightened inflammation. Thus, when inflammation and depression co-occur, treating them in tandem may enhance recovery and reduce the risk of recurrence. The bidirectional links between depression, inflammation, and disease suggest that effective depression treatments could have a far-reaching impact on mood, inflammation, and health.
Collapse
|
36
|
Kang HJ, Kim JM, Kim SW, Shin IS, Park SW, Kim YH, Yoon JS. Associations of cytokine genes with Alzheimer's disease and depression in an elderly Korean population. J Neurol Neurosurg Psychiatry 2015; 86:1002-7. [PMID: 25315113 DOI: 10.1136/jnnp-2014-308469] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/28/2014] [Indexed: 11/03/2022]
Abstract
BACKGROUND Inflammatory processes regulated by cytokines are important in the aetiology of Alzheimer's disease (AD) and depression. Differences in transcriptional activities associated with several genetic polymorphisms affect cytokine production. We investigated the involvement of alleles associated with higher production of proinflammatory and lower production of anti-inflammatory cytokines in AD and depression in a community-dwelling sample of elderly individuals. METHOD A total of 732 community-dwelling elders were clinically evaluated for AD applying the NINCDS-ADRDA criteria and for depression applying the Geriatric Mental State Schedule. Genotyping was performed for six proinflammatory (interleukin (IL)-1β -511C/T and +3953C/T, IL-6 -174G/C, IL-8 -251T/A, tumour necrosis factor (TNF)-α -850C/T) and two anti-inflammatory (IL-4 +33T/C, IL-10 -1082G/A) cytokines. The sums of risk alleles of proinflammatory and anti-inflammatory cytokine genes were estimated. Age, gender, education and apolipoprotein E genotype were considered covariates. RESULTS TNF-α -308G/A and IL-8 -251T/A were significantly associated with AD and IL-1β +3953C/T with late-life depression, while the significance of these associations was lost after Bonferroni correction. A greater number of risk alleles producing proinflammatory cytokines was significantly associated with AD, but not with depression, after adjustment for the covariates. No association was found between an increased number of risk alleles for anti-inflammatory cytokine production and either AD or depression. CONCLUSIONS The present findings support the inflammatory hypothesis in the aetiology of AD as measured by several cytokine genes associated with increased proinflammatory cytokine production.
Collapse
Affiliation(s)
- Hee-Ju Kang
- Department of Psychiatry, Depression Clinical Research Centre, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Min Kim
- Department of Psychiatry, Depression Clinical Research Centre, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Depression Clinical Research Centre, Chonnam National University Medical School, Gwangju, Korea
| | - Il-Seon Shin
- Department of Psychiatry, Depression Clinical Research Centre, Chonnam National University Medical School, Gwangju, Korea
| | - Sung-Woo Park
- Department of Neuropsychiatry, School of Medicine, Haeundae Paik Hospital, Paik Institute for Clinical Research & FIRST research group, Inje University, Busan, Korea
| | - Young-Hoon Kim
- Department of Neuropsychiatry, School of Medicine, Haeundae Paik Hospital, Paik Institute for Clinical Research & FIRST research group, Inje University, Busan, Korea
| | - Jin-Sang Yoon
- Department of Psychiatry, Depression Clinical Research Centre, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
37
|
Tartter M, Hammen C, Bower JE, Brennan PA, Cole S. Effects of chronic interpersonal stress exposure on depressive symptoms are moderated by genetic variation at IL6 and IL1β in youth. Brain Behav Immun 2015; 46:104-11. [PMID: 25596176 PMCID: PMC4515110 DOI: 10.1016/j.bbi.2015.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 01/22/2023] Open
Abstract
AIMS Close to one third of patients with major depression show increases in pro-inflammatory cytokines, which are in turn associated with risk for inflammatory disease. Genetic variants that enhance immune reactivity may thus enhance inflammatory and depressive reactions to stress. The aim of the present study was to investigate a trio of functional SNPs in the promoter regions of IL6 (-174G>C, rs1800795), IL1β (-511C>T, rs16944), and TNF (-308G>A, rs1800629) as moderators of the relationship between chronic stress exposure and elevations in depressive symptoms. METHODS Participants were 444 Australian youth (mean age=20.12) whose exposure to chronic stress in the past 6months was assessed using the semi-structured UCLA Life Stress Interview, and who completed the Beck Depression Inventory II at ages 15 and 20. Between ages 22 and 25, all participants in the selected sample provided blood samples for genotyping. RESULTS In line with a hypothesized moderation effect, -174G allele carriers at IL6 had fewer depressive symptoms following interpersonal stress, relative to C/C homozygotes with equal interpersonal stress exposure. However, IL6 genotype did not moderate the effects of non-interpersonal stress exposure (i.e., financial, work and health-related difficulties) on depression. Also in line with hypotheses, the -511C allele in IL1β, previously associated with higher IL-1β expression, was associated with more severe depression following chronic interpersonal stress exposure, relative to T/T homozygotes. Again, the moderating effect was specific to interpersonal stressors and did not generalize to non-interpersonal stress. TNF was not a moderator of the effects of either interpersonal or non-interpersonal stress on later depression outcomes. CONCLUSION Findings were consistent with the hypothesis that pro-inflammatory genetic variation increases the risk of stress-induced depression. The present results provide evidence of a genetic mechanism contributing to individual differences in depressive symptomatology following interpersonal stress exposure.
Collapse
Affiliation(s)
- Margaret Tartter
- Department of Psychology, University of California, Los Angeles, USA.
| | - Constance Hammen
- Department of Psychology, University of California, Los Angeles, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| | - Julienne E Bower
- Department of Psychology, University of California, Los Angeles, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA; Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, USA
| | | | - Steven Cole
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA; Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, USA; School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|
38
|
Applications of blood-based protein biomarker strategies in the study of psychiatric disorders. Prog Neurobiol 2014; 122:45-72. [PMID: 25173695 DOI: 10.1016/j.pneurobio.2014.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023]
Abstract
Major psychiatric disorders such as schizophrenia, major depressive and bipolar disorders are severe, chronic and debilitating, and are associated with high disease burden and healthcare costs. Currently, diagnoses of these disorders rely on interview-based assessments of subjective self-reported symptoms. Early diagnosis is difficult, misdiagnosis is a frequent occurrence and there are no objective tests that aid in the prediction of individual responses to treatment. Consequently, validated biomarkers are urgently needed to help address these unmet clinical needs. Historically, psychiatric disorders are viewed as brain disorders and consequently only a few researchers have as yet evaluated systemic changes in psychiatric patients. However, promising research has begun to challenge this concept and there is an increasing awareness that disease-related changes can be traced in the peripheral system which may even be involved in the precipitation of disease onset and course. Converging evidence from molecular profiling analysis of blood serum/plasma have revealed robust molecular changes in psychiatric patients, suggesting that these disorders may be detectable in other systems of the body such as the circulating blood. In this review, we discuss the current clinical needs in psychiatry, highlight the importance of biomarkers in the field, and review a representative selection of biomarker studies to highlight opportunities for the implementation of personalized medicine approaches in the field of psychiatry. It is anticipated that the implementation of validated biomarker tests will not only improve the diagnosis and more effective treatment of psychiatric patients, but also improve prognosis and disease outcome.
Collapse
|
39
|
Madeeh Hashmi A, Awais Aftab M, Mazhar N, Umair M, Butt Z. The fiery landscape of depression: A review of the inflammatory hypothesis. Pak J Med Sci 2014; 29:877-84. [PMID: 24353650 PMCID: PMC3809277 DOI: 10.12669/pjms.293.3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | - Nauman Mazhar
- Nauman Mazhar MBBS, MD, Assistant Professor, Psychiatry
| | | | - Zeeshan Butt
- Zeeshan Butt, MBBS, Resident in Internal Medicine
| |
Collapse
|
40
|
Fabbri C, Minarini A, Niitsu T, Serretti A. Understanding the pharmacogenetics of selective serotonin reuptake inhibitors. Expert Opin Drug Metab Toxicol 2014; 10:1093-118. [PMID: 24930681 DOI: 10.1517/17425255.2014.928693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The genetic background of antidepressant response represents a unique opportunity to identify biological markers of treatment outcome. Encouraging results alternating with inconsistent findings made antidepressant pharmacogenetics a stimulating but often discouraging field that requires careful discussion about cumulative evidence and methodological issues. AREAS COVERED The present review discusses both known and less replicated genes that have been implicated in selective serotonin reuptake inhibitors (SSRIs) efficacy and side effects. Candidate genes studies and genome-wide association studies (GWAS) were collected through MEDLINE database search (articles published till January 2014). Further, GWAS signals localized in promising genetic regions according to candidate gene studies are reported in order to assess the general comparability of results obtained through these two types of pharmacogenetic studies. Finally, a pathway enrichment approach is applied to the top genes (those harboring SNPs with p < 0.0001) outlined by previous GWAS in order to identify possible molecular mechanisms involved in SSRI effect. EXPERT OPINION In order to improve the understanding of SSRI pharmacogenetics, the present review discusses the proposal of moving from the analysis of individual polymorphisms to genes and molecular pathways, and from the separation across different methodological approaches to their combination. Efforts in this direction are justified by the recent evidence of a favorable cost-utility of gene-guided antidepressant treatment.
Collapse
Affiliation(s)
- Chiara Fabbri
- University of Bologna, Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences , Viale Carlo Pepoli 5, 40123 Bologna , Italy +39 051 6584233 ; +39 051 521030 ;
| | | | | | | |
Collapse
|
41
|
Vogelzangs N, Beekman ATF, van Reedt Dortland AKB, Schoevers RA, Giltay EJ, de Jonge P, Penninx BWJH. Inflammatory and metabolic dysregulation and the 2-year course of depressive disorders in antidepressant users. Neuropsychopharmacology 2014; 39:1624-34. [PMID: 24442097 PMCID: PMC4023159 DOI: 10.1038/npp.2014.9] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/27/2013] [Accepted: 12/16/2013] [Indexed: 01/15/2023]
Abstract
Scarce evidence suggests that inflammatory and metabolic dysregulation predicts poor response to antidepressants, which could result in worse depression outcome. This study prospectively examined whether inflammatory and metabolic dysregulation predicted the 2-year course of depressive disorders among antidepressant users. Data were from the Netherlands Study of Depression and Anxiety, including 315 persons (18-65 years) with a current depressive disorder (major depressive disorder, dysthymia) at baseline according to the DSM-IV criteria and using antidepressants. Inflammatory (C-reactive protein, interleukin-6 (IL-6), tumor-necrosis factor-α) and metabolic (waist circumference, triglycerides, high-density lipoprotein (HDL) cholesterol, blood pressure, fasting glucose) factors were measured at baseline. Primary outcome for course of depression was indicated by whether or not a DSM-IV depressive disorder diagnosis was still/again present at 2-year follow-up, indicating chronicity of depression. Elevated IL-6, low HDL cholesterol, hypertriglyceridemia, and hyperglycemia were associated with chronicity of depression in antidepressant users. Persons showing ⩾ 4 inflammatory or metabolic dysregulations had a 1.90 increased odds of depression chronicity (95% CI = 1.12-3.23). Among persons who recently (ie, at most 3 months) started antidepressant medication (N = 103), having ⩾ 4 dysregulations was associated with a 6.85 increased odds of depression chronicity (95% CI = 1.95-24.06). In conclusion, inflammatory and metabolic dysregulations were found to predict a more chronic course of depressive disorders among patients using antidepressants. This could suggest that inflammatory and metabolic dysregulation worsens depression course owing to reduced antidepressant treatment response and that alternative intervention treatments may be needed for depressed persons with inflammatory and metabolic dysregulation.
Collapse
Affiliation(s)
- Nicole Vogelzangs
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands,Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands,Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, AJ Ernststraat 1187, 1081 HL Amsterdam, The Netherlands, Tel: +31 20 788 4521, Fax: +31 20 788 5664, E-mail: /
| | - Aartjan TF Beekman
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Arianne KB van Reedt Dortland
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert A Schoevers
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik J Giltay
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter de Jonge
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Brenda WJH Penninx
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands,Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Martin C, Tansey KE, Schalkwyk LC, Powell TR. The inflammatory cytokines: molecular biomarkers for major depressive disorder? Biomark Med 2014; 9:169-80. [PMID: 24524646 DOI: 10.2217/bmm.14.29] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cytokines are pleotropic cell signaling proteins that, in addition to their role as inflammatory mediators, also affect neurotransmitter systems, brain functionality and mood. Here we explore the potential utility of cytokine biomarkers for major depressive disorder. Specifically, we explore how genetic, transcriptomic and proteomic information relating to the cytokines might act as biomarkers, aiding clinical diagnosis and treatment selection processes. We advise future studies to investigate whether cytokine biomarkers might differentiate major depressive disorder patients from other patient groups with overlapping clinical characteristics. Furthermore, we invite future pharmacogenetic studies to investigate whether early antidepressant-induced changes to cytokine mRNA or protein levels precede behavioral changes and act as longer-term predictors of clinical antidepressant response.
Collapse
Affiliation(s)
- Charlotte Martin
- MRC Social, Genetic & Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, King's College London, PO 80, Denmark Hill, London, SE5 8AF, UK.
| | | | | | | |
Collapse
|
43
|
Anderson G, Berk M, Dean O, Moylan S, Maes M. Role of immune-inflammatory and oxidative and nitrosative stress pathways in the etiology of depression: therapeutic implications. CNS Drugs 2014; 28:1-10. [PMID: 24150993 DOI: 10.1007/s40263-013-0119-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Accumulating data have led to a re-conceptualization of depression that emphasizes the role of immune-inflammatory processes, coupled to oxidative and nitrosative stress (O&NS). These in turn drive the production of neuroregulatory tryptophan catabolites (TRYCATs), driving tryptophan away from serotonin, melatonin, and N-acetylserotonin production, and contributing to central dysregulation. This revised perspective better encompasses the diverse range of biological changes occurring in depression and in doing so provides novel and readily attainable treatment targets, as well as potential screening investigations prior to treatment initiation. We briefly review the role that immune-inflammatory, O&NS, and TRYCAT pathways play in the etiology, course, and treatment of depression. We then discuss the pharmacological treatment implications arising from this, including the potentiation of currently available antidepressants by the adjunctive use of immune- and O&NS-targeted therapies. The use of such a frame of reference and the treatment benefits attained are likely to have wider implications and utility for depression-associated conditions, including the neuroinflammatory and (neuro)degenerative disorders.
Collapse
|
44
|
Chopra K, Arora V. An intricate relationship between pain and depression: clinical correlates, coactivation factors and therapeutic targets. Expert Opin Ther Targets 2013; 18:159-76. [PMID: 24295272 DOI: 10.1517/14728222.2014.855720] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION An apparent clinical relationship between pain and depression has long been recognized, which makes an enormous impact on the individual health care. At present, the practical implication of such overlapping symptomatology between pain and depression is not clear, but the prevalence estimates for depression are substantially inflated among patients with chronic pain and vice versa. This interaction has been labeled as the depression-pain syndrome or depression-pain dyad. AREAS COVERED This article discusses the neurobiological substrates and neuroanatomical pathways involved in pain-depression dyad along with newer therapeutic targets. EXPERT OPINION Several key themes emerged from our review of the relationship between depression and pain. First, the diagnosis of depression in pain or vice versa is particularly challenging, and the development of better diagnostic framework that involves both pain and depression is particularly required. Secondly, the entwined relationship between pain and depression supports the possibility of common coactivating factors that results in their neurophysiological overlap. A broad understanding of the role played by the central nervous system (CNS) in the processing of pain and depression may eventually lead to the introduction of triple reuptake inhibitors, agomelatine, vilazodone and ketamine with novel mechanism of action, hence appear to be of promising potential for pain with depression.
Collapse
Affiliation(s)
- Kanwaljit Chopra
- Panjab University, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Pharmacology Research Laboratory , Chandigarh-160 014 , India +91 172 2534105 ; +91 172 2541142 ;
| | | |
Collapse
|
45
|
Choi D. Potency of melatonin in living beings. Dev Reprod 2013; 17:149-77. [PMID: 25949131 PMCID: PMC4282293 DOI: 10.12717/dr.2013.17.3.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/01/2013] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
Living beings are surrounded by various changes exhibiting periodical rhythms in environment. The environmental changes are imprinted in organisms in various pattern. The phenomena are believed to match the external signal with organisms in order to increase their survival rate. The signals are categorized into circadian, seasonal, and annual cycles. Among the cycles, the circadian rhythm is regarded as the most important factor because its periodicity is in harmony with the levels of melatonin secreted from pineal gland. Melatonin is produced by the absence of light and its presence displays darkness. Melatonin plays various roles in creatures. Therefore, this review is to introduce the diverse potential ability of melatonin in manifold aspects in living organism.
Collapse
Affiliation(s)
- Donchan Choi
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 449-714, Republic of Korea
| |
Collapse
|
46
|
Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:487-520. [PMID: 23852853 DOI: 10.1002/ajmg.b.32184] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is an emergent cause of personal and socio-economic burden, both for the high prevalence of the disorder and the unsatisfying response rate of the available antidepressant treatments. No reliable predictor of treatment efficacy and tolerance in the single patient is available, thus drug choice is based on a trial and error principle with poor clinical efficiency. Among modulators of treatment outcome, genetic polymorphisms are thought to explain a significant share of the inter-individual variability. The present review collected the main pharmacogenetic findings primarily about antidepressant response and secondly about antidepressant induced side effects, and discussed the main strengths and limits of both candidate and genome-wide association studies and the most promising methodological opportunities and challenges of the field. Despite clinical applications of antidepressant pharmacogenetics are not available yet, previous findings suggest that genotyping may be applied in the clinical practice. In order to reach this objective, further rigorous pharmacogenetic studies (adequate sample size, study of better defined clinical subtypes of MDD, adequate covering of the genetic variability), their combination with the results obtained through complementary methodologies (e.g., pathway analysis, epigenetics, transcriptomics, and proteomics), and finally cost-effectiveness trials are required.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
47
|
Myint AM, Bondy B, Baghai TC, Eser D, Nothdurfter C, Schüle C, Zill P, Müller N, Rupprecht R, Schwarz MJ. Tryptophan metabolism and immunogenetics in major depression: a role for interferon-γ gene. Brain Behav Immun 2013; 31:128-33. [PMID: 23597432 DOI: 10.1016/j.bbi.2013.04.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 03/27/2013] [Accepted: 04/07/2013] [Indexed: 12/19/2022] Open
Abstract
The tryptophan metabolism and immune activation play a role in pathophysiology of major depressive disorders. The pro-inflammatory cytokine interferon-γ transcriptionally induces the indoleamine 2,3-dioxygenase enzyme that degrades the tryptophan and thus induces serotonin depletion. The polymorphism of certain cytokine genes was reported to be associated with major depression. We investigated the association between interferon-γ (IFNγ) gene CA repeat polymorphism, the profile of serotonin and tryptophan pathway metabolites and clinical parameters in 125 depressed patients and 93 healthy controls. Compared to controls, serum tryptophan and 5-hydroxyindoleacetic acid (5HIAA) concentrations in the patients were significantly lower and serum kynurenine concentrations were significantly higher at baseline (p<0.0001). The presence of IFNγ CA repeat allele 2 homozygous has significant association with higher kynurenine concentrations in controls (F=4.47, p=0.038) as well as in patients (F=3.79, p=0.045). The existence of interferon-γ CA repeat allele 2 (homo- or heterozygous) showed significant association with increase of tryptophan breakdown over time during the study period (F=6.0, p=0.019). The results indicated the association between IFNγ CA repeat allele 2, tryptophan metabolism and the effect of medication.
Collapse
Affiliation(s)
- Aye Mu Myint
- Department of Psychiatry, Ludwig-Maximilian University Munich, Nussbaumstr. 7, D-80336 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Harrison NA, Cooper E, Voon V, Miles K, Critchley HD. Central autonomic network mediates cardiovascular responses to acute inflammation: relevance to increased cardiovascular risk in depression? Brain Behav Immun 2013; 31:189-96. [PMID: 23416033 PMCID: PMC3701839 DOI: 10.1016/j.bbi.2013.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a risk factor for both depression and cardiovascular disease. Depressed mood is also a cardiovascular risk factor. To date, research into mechanisms through which inflammation impacts cardiovascular health rarely takes into account central effects on autonomic cardiovascular control, instead emphasizing direct effects of peripheral inflammatory responses on endothelial reactivity and myocardial function. However, brain responses to inflammation engage neural systems for motivational and homeostatic control and are expressed through depressed mood state and changes in autonomic cardiovascular regulation. Here we combined an inflammatory challenge, known to evoke an acute reduction in mood, with neuroimaging to identify the functional brain substrates underlying potentially detrimental changes in autonomic cardiovascular control. We first demonstrated that alterations in the balance of low to high frequency (LF/HF) changes in heart rate variability (a measure of baroreflex sensitivity) could account for some of the inflammation-evoked changes in diastolic blood pressure, indicating a central (rather than solely local endothelial) origin. Accompanying alterations in regional brain metabolism (measured using (18)FDG-PET) were analysed to localise central mechanisms of inflammation-induced changes in cardiovascular state: three discrete regions previously implicated in stressor-evoked blood pressure reactivity, the dorsal anterior and posterior cingulate and pons, strongly mediated the relationship between inflammation and blood pressure. Moreover, activity changes within each region predicted the inflammation-induced shift in LF/HF balance. These data are consistent with a centrally-driven component originating within brain areas supporting stressor evoked blood pressure reactivity. Together our findings highlight mechanisms binding psychological and physiological well-being and their perturbation by peripheral inflammation.
Collapse
Affiliation(s)
- Neil A. Harrison
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex Campus, Falmer, Brighton BN1 3AR, UK,Sackler Centre for Consciousness Science, University of Sussex, Falmer BN1 9RR, UK,Sussex Partnership NHS Foundation Trust, Sussex Education Centre, Mill View Hospital, Nevill Road, Hove BN3 7HY, UK,Corresponding author. Address: Clinical Imaging Sciences Centre, Brighton & Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK. Tel.: +44 (0)1273 876657.
| | - Ella Cooper
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex Campus, Falmer, Brighton BN1 3AR, UK
| | - Valerie Voon
- Department of Psychiatry, Behavioural & Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ken Miles
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex Campus, Falmer, Brighton BN1 3AR, UK
| | - Hugo D. Critchley
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex Campus, Falmer, Brighton BN1 3AR, UK,Sackler Centre for Consciousness Science, University of Sussex, Falmer BN1 9RR, UK,Sussex Partnership NHS Foundation Trust, Sussex Education Centre, Mill View Hospital, Nevill Road, Hove BN3 7HY, UK
| |
Collapse
|
49
|
Bufalino C, Hepgul N, Aguglia E, Pariante CM. The role of immune genes in the association between depression and inflammation: a review of recent clinical studies. Brain Behav Immun 2013; 31:31-47. [PMID: 22580182 DOI: 10.1016/j.bbi.2012.04.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/27/2012] [Accepted: 04/27/2012] [Indexed: 01/08/2023] Open
Abstract
The role for dysregulation of the immune system in the pathogenesis of depressive disorder is well established, and emerging research suggests the role of an underlying genetic vulnerability. The purpose of this review is to summarize the existing literature on the genetic variants involved in neurobiological pathways associated with both immune activation and depression. Using PubMed, Scopus, The Cochrane Library, Embase, Ovid of Medline, PsycINFO and ISI web of Knowledge, we selected 52 papers which are relevant for this literature review. Findings across the literature suggest that functional allelic variants of genes for interleukin-1beta (IL)-1β, tumor necrosis factor-alpha (TNF-α) and C-reactive protein (CRP), as well as genetic variations affecting T-cell function, may increase the risk for depression. Moreover, single nucleotide polymorphisms (SNPs) in the IL-1β, IL-6 and IL-11 genes, and in those regulating T-cell function may be associated with reduced responsiveness to antidepressant therapy. There is also some evidence indicative of a role of genetic variants of the enzymes, Cyclo-oxygenase2 (COX-2) and Phospholipase2 (PLA2), in the aetiology of depression. Finally, SNPs in genes related to the serotonin pathway may play a fundamental role in the shared genetic liability to both immune activation and depressive symptoms. Our review confirms that genetic variants influence the biological mechanisms by which the innate immune system contributes to the development of depression. However, future studies are necessary to identify the molecular mechanisms underlying these associations.
Collapse
Affiliation(s)
- Chiara Bufalino
- King's College London, Institute of Psychiatry, Department of Psychological Medicine, London, UK
| | | | | | | |
Collapse
|
50
|
Kim JM, Stewart R, Kim SY, Kang HJ, Jang JE, Kim SW, Shin IS, Park MH, Yoon JH, Park SW, Kim YH, Yoon JS. A one year longitudinal study of cytokine genes and depression in breast cancer. J Affect Disord 2013; 148:57-65. [PMID: 23276701 DOI: 10.1016/j.jad.2012.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Since inflammatory cytokines have been implicated in the pathophysiology of both cancer and depression, genes that contribute to determining cytokine functional activity are reasonable candidate risk factors for depression related to cancer. This study aimed to investigate whether alleles related to higher pro-inflammatory and/or lower anti-inflammatory cytokine production would associate with depression in a cohort with breast cancer. METHODS A total of 309 women with breast cancer were evaluated one week after surgery, and 244 (79%) were followed one year later. Depression (major+minor depressive disorders) was diagnosed according to DSM-IV criteria using the Mini International Neuropsychiatric Interview on both occasions. Six pro-(TNF-α-850C/T and -308G/A, IL-1β-511C/T and +3953C/T, IL-6-174G/C, IL-8-251T/A) and two anti-inflammatory (IL-4 +33T/C, IL-10-1082G/A) cytokine polymorphisms were assayed, and total numbers of potential risk alleles were calculated for pro- and anti-inflammatory cytokine genes. Adjustments were made for demographic and clinical characteristics. RESULTS At baseline, 74 (24%) patients were classified with prevalent depression; and at follow-up, 19 (8%) and 25 (10%) patients were classified with persistent and incident depression, respectively. A higher number of pro-inflammatory cytokine risk alleles, and IL-1β-511T/T genotype individually, were independently associated with both prevalent depression at baseline and persistent depression at one year follow-up. LIMITATIONS Sample size was relatively small. CONCLUSIONS Our findings support the role of pro-inflammatory cytokines in the etiology of depression related to breast cancer, and provide novel evidence of a potential genetic basis for this.
Collapse
Affiliation(s)
- Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, and Depression Clinical Research Center, Chonnam National University Hospital, Gwangju, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|